BLACK & TAN 27 FEDERAL COM 304H

Top Setting Depth (MD): Setting Depth (MD): Size: 13-3/8" Grade: J-55 Weight (Ibs/ft): 54.5 Joint (Butt,FJ, LTC,STC, SLH, N/A, Other): Condition (New/Used): New Standard (API/Non-API): API Tapered String (Y/N)?: N If yes, need spec attachment Safety Factors Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor: 3.79	String:	SURFACE								
Top Setting Depth (MD): O Depth (TVD): Size: 13-3/8" Grade: J-55 Weight (lbs/ft): 54.5 Joint (Butt,FJ, LTC,STC, SLH, N/A, Other): Condition (New/Used): New Standard (API/Non-API): API Tapered String (Y/N)?: N If yes, need spec attachment Safety Factors Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant	Hole Size:	17.5								
Size: 13-3/8" Grade: J-55 Weight (lbs/ft): 54.5 LTC,STC, SLH, N/A, Other): Condition (New/Used): New Standard (API/Non-API): API Tapered String (Y/N)?: N If yes, need spec attachment Safety Factors Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant		0	Setting Depth	0		1700	setting depth	1700		
Tapered String (Y/N)?: N If yes, need spec attachment Safety Factors Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant	Size:	13-3/8"	Grade:	J-55	Weight (lbs/ft):	54.5	(Butt,FJ, LTC,STC, SLH, N/A,	Buttress		
If yes, need spec attachment Safety Factors Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant	Condition (Ne	w/Used):	New		Standard (API/Non-A	API):	API			
Collapse Design Safety Factor: 2.15 Burst Design Safety Factor: 1.82 Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant										
Body Tensile Design Safety Factor type?: Dry/Buoyant Buoyant	Safety Factors	<u>s</u>								
	Collapse Desig	gn Safety Fa	ctor:	2.15	Burst Design Safety F	actor:	1.82			
		_		pe?: Dry/B			-			
Joint Tensile Design Safety Factor type?: Dry/Buoyant Buoyant Joint Tensile Design Safety Factor: 4.04				pe?: Dry/E		Buoyant	-			

String:	INTERMED	IATE					
Hole Size:	12.25						
Top Setting Depth (MD):	0	Top Setting Depth (TVD):	0	Btm setting depth (MD):	900	Btm setting depth (TVD):	900
Size:	9-5/8"	Grade:	J-55	Weight (lbs/ft):	40	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	Buttress

Condition (New/Used)	: New	-	Standard (API/Non-A	API):	API	
Tapered String (Y/N)?: If yes, need spec at	The second second second second second					
Safety Factors						
Collapse Design Safety	Factor:	5.37	Burst Design Safety I	Factor:	1.7	
Body Tensile Design Sa Body Tensile Design Sa		pe?: Dry/E	Buoyant 1.96	Buoyant	-	
Joint Tensile Design Sa Joint Tensile Design Sa		pe?: Dry/I	Buoyant 2.24	Buoyant	-	
Top Setting Depth (MD):	Top Setting Depth (TVD):	900	Btm setting depth (MD):	5780	Btm setting depth (TVD):	5780
Size: 9-5/8	" Grade:	J-55	Weight (lbs/ft):	40	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	LTC
Condition (New/Used)	: New		Standard (API/Non-A	API):	API	
Tapered String (Y/N)?: If yes, need spec at		-				
Safety Factors						
Collapse Design Safety	Factor:	1.54	Burst Design Safety F	Factor:	1.87	
Body Tensile Design Sa Body Tensile Design Sa		pe?: Dry/E	Buoyant 2.15	Buoyant		
Joint Tensile Design Sa Joint Tensile Design Sa		pe?: Dry/I	Buoyant 1.8	Buoyant	-	

String: PRODUCTION

Hole Size:	8.75						
Top Setting Depth (MD):	0	Top Setting Depth (TVD):	0	Btm setting depth (MD):	15619.62	Btm setting depth (TVD):	10955
Size:	5-1/2"	Grade:	P-110	Weight (lbs/ft):	17	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	Buttress
Condition (Ne	w/Used):	New		Standard (API/Non-A	API):	API	
Safety Factors	<u>s</u>						
Collapse Desig	gn Safety Fa	actor:	1.35	Burst Design Safety F	actor:	1.28	
Body Tensile I Body Tensile I			pe?: Dry/B	Buoyant 2.04	Buoyant		
Joint Tensile D Joint Tensile D			e?: Dry/E	Buoyant 2.13	Buoyant		
Tapered String	g (Y/N)?: d spec attac	N					

	Black and Tan Federal Com 304H
CEMENT: SURFACE	
Stage Tool Depth: N/A	
Lead:	
Top MD of Segment: 0	Btm MD of Segment: 1285.47
Cmt Type: C	Cmt Additives: 4% Bentonite + 1% CaCl2
Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	650 1.73 Volume (cu/ft): 1124.5 13.5 Percent OH Excess: 25%
Tail:	
Top MD of Segment: 1285.47	Btm MD of Segment: 1700
Cmt Type: C	Cmt Additives: 1% CaCl2
Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	300 1.33 Volume (cu/ft): 399 14.8 Percent OH Excess: 25%

CEMENT: INTERMEDIATE				
Single Stage				
Lead:				
Top MD of Segment:	0	Btm MD o Segment:	5144.38	
Cmt Type: C		Cmt /	Additives:	5% NaCl + 6% Bentonite + 2 lb/sk Kolseal + 0.125 lb/sk Celloflake + 0.4% Retarder
Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	_	1043 1.885 Volume (cu/ft): 12.9 Percent OH Excess:	1966.06 25%	
Tail:				

	Top MD of Segment: 5144.38	Btm MD of Segment:	5780	
	Cmt Type: C	Cmt Ac	dditives:	0.2% Retarder
	Quantity (sks): 200 Yield (cu/ft/sk): 1.34 Volume (cu/ft/sk): 14.8 Percent Cu/ft/sk)		268 25%	
2 Stage	Cement Job			
roport	ool depth(s) will be adjusted based on hole co tionally. DV tool will be set a minimum of 50 current shoe. Lab reports with the 500 psi co	feet below p	revious casi	ng and a minimum of 200 feet
	circulation is encountered, Apache may 2-st by be placed below DVT.	age Interm c	sg. A DVT ma	ay be used in the 9-5/8" csg &
Lst Stag	ge			
.ead:				
	Top MD of Segment: 3500	Btm MD of Segment:	5144.38	
	Cmt Type: C	Cmt Ac	dditives:	5% NaCl + 6% Bentonite + 2 lb/sk Kolseal + 0.125 lb/sk Celloflake + 0.4% Retarder
	Quantity (sks): 345	CITEAC	dutives.	cellollake 1 0.478 Netarael
	Yield (cu/ft/sk): 1.885 Volume (cu/ft/sk): 12.9 Percent Cu		650.33 25%	-
Γail:				
	Top MD of Segment: 5144.38	Btm MD of Segment:	5780	_
	Cmt Type: C	Cmt Ad	dditives:	0.3% Retarder
	Quantity (sks): 200 Yield (cu/ft/sk): 1.34 Volume (cu/ft):	268	<u> </u>

	Density (lbs/gal):	14.8 Percent Of	H Excess:	25%	
Stage T	ool / ECP Depth:	± 3500'			
2nd Sta	ge				
Lead:					
	Top MD of Segment: 0		Btm MD of Segment:	2815.44	
	Cmt Type: C		Cmt Ad	ditives:	5% NaCl + 6% Bentonite
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	1.868 Volume (co 12.9 Percent Of		1055.42 25%	
Tail:					
	Top MD of Segment: 2815.44		Btm MD of Segment:	3500	
	Cmt Type: C		Cmt Ad	ditives:	0.3% Retarder
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	200 1.34 Volume (co 14.8 Percent Of		268 25%	

EMEN	IT: PRODUCTION					
ngle S	Stage					
ead:						
	Top MD of		Btm MD of			
	Segment: 0		Segment:	10529.	.1	
	Cmt Type: H		Cmt Add		10% gel + 5% Salt	
	Overtite (also)	1270	1270			
	Quantity (sks):	1270				
	Yield (cu/ft/sk):	2.32 Volume	cu/ft):	2946.	4	
	Density (lbs/gal):	11.9 Percent	OH Excess:	209	<u>%</u>	

Top MD of

Btm MD of

Segment:

10529.1

Segment: 15619.62

Cmt Type: TXI Lite

Cmt Additives:

0.3% Fluid Loss + 0.2% Retarder

Quantity (sks):

1078

Yield (cu/ft/sk):

1.44 Volume (cu/ft):

1552.32

Density (lbs/gal):

12.8 Percent OH Excess:

20%

2 Stage Cement Job

* DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

*If lost circulation is encountered, Apache may 2-stage Interm csg. A DVT may be used in the 7" csg & ECP may be placed below DVT.

1st Stage

Lead:

Top MD of

Segment:

5830

Btm MD of

Segment:

10529.1

Cmt Type: H

Cmt Additives:

10% gel + 5% Salt

Quantity (sks):

614

Yield (cu/ft/sk):

2.32 Volume (cu/ft):

1424.48

Density (lbs/gal):

11.9 Percent OH Excess:

20%

Tail:

Top MD of

Btm MD of

Segment:

10529.1

Segment:

15619.62

Cmt Type: TXI Lite

Cmt Additives:

0.3% Fluid Loss + 0.2% Retarder

Quantity (sks):

1078

Yield (cu/ft/sk):

1.44 Volume (cu/ft):

1552.32

Density (lbs/gal):

12.8 Percent OH Excess:

20%

Stage Tool / ECP Depth:

± 5830'

2nd Sta	age	
Lead:		
	Top MD of Segment: 0 Btm MD of Segment: 4810.33	
	Cmt Type: H Cmt Additives: 1	0% gel + 5% Salt
	Quantity (sks): 540 Yield (cu/ft/sk): 2.32 Volume (cu/ft): 1252.8 Density (lbs/gal): 11.9 Percent OH Excess: 20%	
Tail:		
	Top MD of Segment: 4810.33 Btm MD of Segment: 5830	
	Cmt Type: C Cmt Additives: 0	.3% Retarder
	Quantity (sks):200Yield (cu/ft/sk):1.34 Volume (cu/ft):268Density (lbs/gal):14.8 Percent OH Excess:20%	

ContiTech

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 157/ 2014

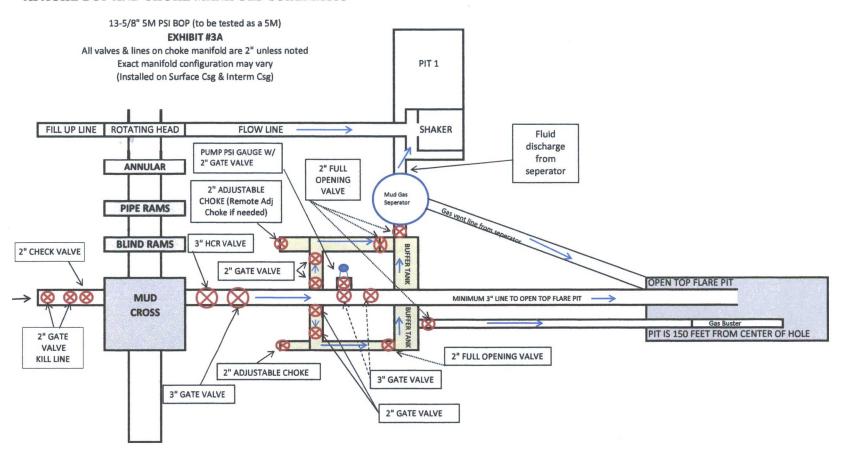
Page:

17 / 131

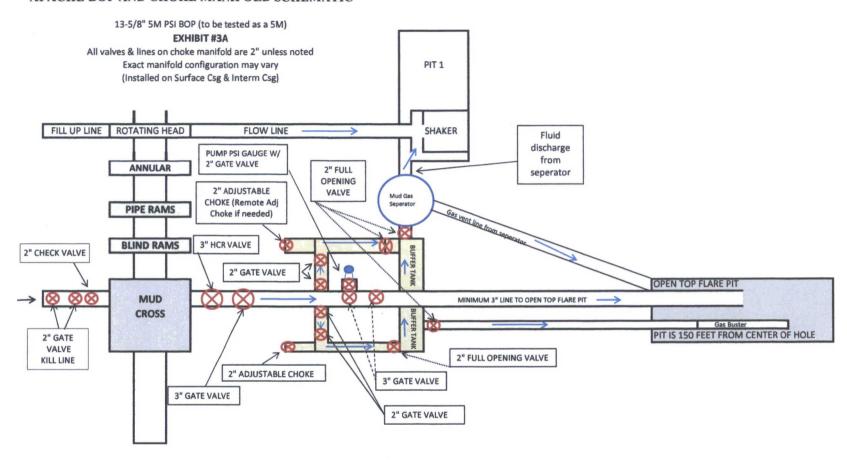
0114	177/ 00N	TDO			1			
	QUALITY CON INSPECTION AND TES				CERT.	N°:	373	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. Nº	:	4500398355	
CONTITECH RUBBER order N	o: 538079	HOSE TYPE:	3"	ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	67090	NOMINAL / A	CTUAL L	ENGTH:		10,67 m	/ 10,73 m	
W.P. 68,9 MPa 10	0000 psi	T.P. 103,4	MPa	1500)O psi	Duration:	60	min
Pressure test with water at ambient temperature								
ambient temperature								
		See attachn	nent. (1 page	:)			
↑ 10 mm = 10 Min.								
→ 10 mm = 25 MPa	1							
COUPLINGS Typ	oe	Ser	ial N°		C	Quality	Heat No	0
3" coupling with	1	1252	89	01	AIS	SI 4130	A0709N A	1126U
4 1/16" 10K API b.w. Fla	ange end				AIS	SI 4130	035285	5
NOT DESIGN	ED FOR W	ELL TEST	NG			A	PI Spec 16	С
All metal parts are flawless						Temp	erature rate	e:"B"
WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE T						H THE TERMS	OF THE ORDER	
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced si	: We hereby	certify that the ab	ove items	/equipmer	nt supplied	were fabricated	inspected and to	ested in
COUNTRY OF ORIGIN HUNGARY/EU								
Date:	Inspector		Quali	ty Contro	ol			
05. March 2014.			120	me '	Su	Contilized in Industrial Quality Control	Kft.	1

Page: 1/1

	lbest to the second of the sec	Rel	have you
		Com	netrial Kft
i	20 30 4		Control Dept.
-	6Hr 449.73 21	20	
1			
İ	BL +16534 par		
	BL HIBSEL STYLES		The state of the s
	GHR TIS SECTION		
	Teile Nr. 323017	16m-a-10,5 3669s	
i			To the second se
ı		E0	
	Francis E. Ding - Ding		A District of the Control of the Con


CONTITECH RUBBER Industrial Kft.	No:QC-DB- 157/ 2014	
	Page: 25 / 131	

Hose Data Sheet


CRI Order No.	538079
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500398355
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

APACHE BOP AND CHOKE MANIFOLD SCHEMATIC

^{***} If H2S is encountered in quantities greater than 100ppm, Apache will shut in well & install a remote operated choke ***

APACHE BOP AND CHOKE MANIFOLD SCHEMATIC

^{***} If H2S is encountered in quantities greater than 100ppm, Apache will shut in well & install a remote operated choke ***

Black and Tan 27 Federal COM 304H Intermediate Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi) (ppg)	
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Intermediate Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Gas Kick Profile
 - o Influx at 15,619.6' MD
 - o 30 Bbl Kick Volume
 - o 0.5 ppg Kick Intensity
 - o Maximum Mud Weight of 9.5 ppg
 - Kick gas gravity of 0.7 ppg
 - No margin of error on frac gradient
 - o 5" DP
 - o 650' of 6.5" Drill Collars
- Lost Returns with Water
 - o No margin of error on frac gradient
 - o Mud/Water Interface at 5780'
 - o Mud weight with losses at 9.5 ppg
- Pressure Test
 - o 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 2300 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - o Mud weight is 10.2 ppg
 - Cement Mix-Water Density is 8.33 ppg

Collapse Loads

Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 2890'.
 - Mud Weight is 10.2 ppg
- Lost Returns with Mud Drop

- o Losses occurring at 5800' MD
- o Pore Pressure at 8.33 ppg
- o Current Mud Weight at 9.5 ppg
- o Mud level drops to 714.3'
- Cementing
 - o Lead Slurry Density at 12.9 ppg
 - o Tail Slurry Density at 14.8 ppg
 - o Tail Slurry Length of 500'
 - o TOC at surface
 - o Mud Weight at shoe 10.2 ppg
 - o Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 10.2 ppg
 - O Fluid Gradient Below TOC is 10.2 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 2300 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 304H Surface Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi) (ppg)	
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Surface Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Fracture @ Shoe w/ Gas Gradient Above
 - o No margin of error on frac gradient
 - Using a 0.7 ppg gas gradient
- Lost Returns with Water
 - o No margin of error on frac gradient
 - o Mud/Water Interface at 1700'
 - o Mud weight with losses at 10.2 ppg
- Pressure Test
 - 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 1200 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - Mud weight is 8.6 ppg
 - Cement Mix-Water Density is 8.33 ppg

Collapse Loads

Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 850'.
 - Mud Weight is 8.6 ppg
- Lost Returns with Mud Drop
 - Losses occurring at 4000'
 - Pore Pressure at 8.00 ppg
 - o Current Mud Weight at 10.2 ppg
 - Mud level drops to 863'
- Cementing
 - Lead slurry of 13.5 ppg with TOC at surface

- o Tail slurry slurry at 14.8 ppg with length of 500'
- Mud weight at shoe 8.6 ppg
- o Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 8.6 ppg
 - O Fluid Gradient Below TOC is 8.6 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 1200 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 304H Intermediate Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi) (ppg)	
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Intermediate Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Gas Kick Profile
 - o Influx at 15,619.6' MD
 - o 30 Bbl Kick Volume
 - o 0.5 ppg Kick Intensity
 - o Maximum Mud Weight of 9.5 ppg
 - Kick gas gravity of 0.7 ppg
 - o No margin of error on frac gradient
 - o 5" DP
 - o 650' of 6.5" Drill Collars
- Lost Returns with Water
 - No margin of error on frac gradient
 - o Mud/Water Interface at 5780'
 - Mud weight with losses at 9.5 ppg
- Pressure Test
 - 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 2300 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - o Mud weight is 10.2 ppg
 - o Cement Mix-Water Density is 8.33 ppg

Collapse Loads

Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 2890'.
 - Mud Weight is 10.2 ppg
- Lost Returns with Mud Drop

- Losses occurring at 5800' MD
- o Pore Pressure at 8.33 ppg
- Current Mud Weight at 9.5 ppg
- o Mud level drops to 714.3'
- Cementing
 - o Lead Slurry Density at 12.9 ppg
 - o Tail Slurry Density at 14.8 ppg
 - o Tail Slurry Length of 500'
 - TOC at surface
 - o Mud Weight at shoe 10.2 ppg
 - o Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 10.2 ppg
 - O Fluid Gradient Below TOC is 10.2 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 2300 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 304H Production Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi) (ppg)	
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Production Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Pressure Test
 - o 8000 psi with 8.33 ppg fresh water
- Green Cement Pressure Test
 - o 3800 psi put on casing when bumping the plug with 8.33 ppg displacement

Production Loads

- Tubing Leak
 - o Packer Fluid Density at 8.6 ppg
 - o Packer Depth of 10,479.1'
 - o Perf Depth at 15,619.6' MD
 - o Gas/Oil Gradient 0.35 psi/ft
 - o Reservoir pressure at 5122 psi
- Injection Down Casing
 - o Injection pressure of 8000 psi
 - o Injection density of 9.4 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - 9.5 ppg mud weight above TOC
 - O 8.33 ppg below TOC
 - Pore pressure applied in the openhole

Collapse Loads

Internal Profile

- Cementing
 - Mud weight at shoe is 9.5 ppg
 - o TOC at surface
 - Lead Slurry Density is 11.9 ppg
 - o Tail Slurry Density is 12.8 ppg
 - o Tail Slurry Length at 5590.5'.
 - Displacement fluid density is 8.33 ppg

Production Loads

- Full Evacuation
- Above/Below Packer
 - o Reservoir pressure at 4853 psi
 - o Density Above Packer at 8.6 ppg
 - o Density Below Packer at 6.0 ppg
 - o Assuming a fluid drop above the packer

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 9.5 ppg
 - O Fluid Gradient Below TOC is 9.5 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 3800 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse