WAFMSS U.S. Department of the Interior BUREAU OF LAND MANAGEMENT	Drilling Plan	Data Report ^{09/11/2017}
APD ID: 10400013117 Operator Name: LEGACY RESERVES OP	Submission Date: 04/20/2017 ERATING LP	Highlighted data reflects the most
Well Name: LEA UNIT	Well Number: 55H	Show Final Text
Well Type: OIL WELL	Well Work Type: Drill	

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
17697		3662	0	0	OTHER :	USEABLE WATER	No
					Quaternary		
15330	RUSTLER ANHYDRITE	1982	1680	1680	ANHYDRITE	NONE	No
17718	TOP SALT	1942	1720	1720	SALT	NONE	No
17723	BOTTOM SALT	512	3150	3150	SALT	NONE	No
17740	CAPITAN REEF	512	3150	3150	······································	USEABLE WATER	No
15314	SAN ANDRES	-1048	4710	4710	LIMESTONE	NATURAL GAS,CO2,OIL	No
17760	DELAWARE SAND	-2004	5666	5666	SANDSTONE	NATURAL GAS,CO2,OIL	No
17721	BONE SPRING LIME	-4543	8205	8205	LIMESTONE	NATURAL GAS,CO2,OIL	No
17769	AVALON SAND	-5098	8760	8760	SHALE	NATURAL GAS,CO2,OIL	No
15338	BONE SPRING 1ST	-5839	9501	9501		NATURAL GAS,CO2,OIL	No
17737	BONE SPRING 2ND	-6372	10034	10035		NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 11000

Equipment: Legacy Reserves plans to use a 13-5/8" 5000-psi working pressure BOP system consisting of a double ram BOP with one ram being pipe and one ram being blind, a 5000-psi annular type preventer, a 5000-psi choke manifold and 80 gallon accumulator with floor, five remote operating stations and an auxiliary power system. A rotating head will be utilized as needed. A drill string safety valve in the open position will be available on the rig floor. A mud gas separator will be available for use if needed. A 3M BOP will be used to drill from the surface casing shoe (~1800') to the intermediate casing shoe (~5600'). The BOP will be a 5M system, however the "A" section wellhead will be a 3M wellhead (see attached BOP Diagram). The BOP unit will be hydraulically operated. The BOP will be operated at least once per day while drilling and the blind rams will be operated when out of hole during trips. No abnormal pressure or temperature is expected while drilling. **Requesting Variance?** NO

Variance request:

Operator Name: LEGACY RESERVES OPERATING LP

Well Name: LEA UNIT

Well Number: 55H

Testing Procedure: The BOPs will be tested by an independent service company to 250 psi low and 5000 psi high.

Choke Diagram Attachment:

Lea_55H_choke_04-19-2017.pdf

BOP Diagram Attachment:

Lea_55H_BOP_04-19-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N ·	0	1800	0	1800	3662	1862	1800	J-55	54.5	STC	1.42	3.86	DRY	2.59	DRY	2.59
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4000	0	4000	3662	338	4000	J-55	40	LTC	1.25	2.56	DRY	1.6	DRY	1.6
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	4000	5600	4000	5600	338	-1938	1600	HCK -55	40	LTC	1.45	2.54	DRY	4.23	DRY	4.23
4	PRODUCTI ON	8.75	5.5	NEW	API	N	0	17678	0	10500	3662	-6838	17678	P- 110	20	OTHER - BTC	2.03	1.28	DRY	1.6	DRY	1.6

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Lea_55H_casings_design_assumptions_04-19-2017.pdf

Operator Name: LEGACY RESERVES OPERATING LP

Well Name: LEA UNIT

Well Number: 55H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Lea_55H_casings_design_assumptions_04-19-2017.pdf Casing ID: 3 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Lea_55H_casings_design_assumptions_04-19-2017.pdf

Casing ID: 4 String Type: PRODUCTION **Inspection Document:**

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Lea_55H_casings_design_assumptions_04-19-2017.pdf

Section 4 - Cement

Operator Name: LEGACY RESERVES OPERATING LP

Well Name: LEA UNIT

Well Number: 55H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1800	1100	1.93	13.5	2123		Class C cement	4% bwoc bentonite II + 2% bwoc Calcium Chloride + 0.25 lbs/sack Cello Flake + 0.005% bwoc Static Free + 0.005 gps FP-6L
SURFACE	Tail			·	200	1.34	14.8	268		C cement	1.5% bwoc Calcium Chloride + 0.005 Ibs/sack Static Free + 0.005 gps FP-6L
INTERMEDIATE	Lead		0	3901	1400	1.33	14.8	2982		Class C cement	4% bwoc bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL- 52 + 5 Ibs/sack LCM-1 +0.125 Ibs/sk cello flake + 0.005 Ibs/sk defoamer + 0.005 gpsFP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride
INTERMEDIATE	Tail		1		200	1.33	14.8	266		Class C cement	none
INTERMEDIATE	Lead		3950	5600	1400	1.33	14.8	266		Poz (fly ash) Class C cement	4% bwoc bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL- 52 + 5 Ibs/sack LCM-1 +0.125 Ibs/sk cello flake+ 0.005 Ibs/sk defoamer + 0.005 gpsFP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride
INTERMEDIATE	Tail				200	1.33	14.8	266		Class C cement	none
PRODUCTION	Lead		0	1767 8	1600	2.38	11,9	3808		Poz (fly ash) Class H cement	10% bwoc bentonite II + 5% bwow sodium chloride + 5 pps LCM-1 + 0.005 lbs/sk Static Free + 0.005 gps FP-6L
PRODUCTION	Tail				1700	1.62	13.2	2754		Class H	CSE-2 + 4% bwow sodium chloride + 3 pps LCM- 1 + 0.6% bwoc FL-25 + 0.005 gps FP- 6L + 0.005% bwoc Static Free

Well Number: 55H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials will be kept on location at all times in order to combat lost circulation or unexpected kicks. Mud logging program: 2 man unit from approximately after setting intermediate casing. No open hole logs, DSTs or cores are planned.

Describe the mud monitoring system utilized: A Pason PVT system will be rigged up prior to spudding this well. A volume monitoring system that measures, calculates and displays readings from the mud system on the rig to alert the rig crew of impending gas kicks and lost circulation. In order to effectively run open hole logs and casing, the mud viscosity and fluid loss properties may be adjusted.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
5600	1050 0	OTHER : Fresh water/brine	8.4	8.6							
1800	5600	OTHER : Brine water	9.8	10							
0	1800	SPUD MUD	8.4	8.9							
1050 0	1050 0	OTHER : Fresh water/brine	8.9	9.1							

Operator Name: LEGACY RESERVES OPERATING LP in the second Well Name: LEA UNIT

Well Number: 55H

わっこ いわらい 切式ける

en and the second second second

and an interrest and a second

11 June 10 10 1

1、动物资料生活公司 达到部门 网络白细胞

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Mud logging, H2S plan, BOP and choke plans all in place for testing, equipment, safety

List of open and cased hole logs run in the well: MUDLOG

Coring operation description for the well: No coring planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4620 Anticipated Surface Pressure: 2310 Anticipated Bottom Hole Temperature(F): 162 Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan:

Lea 55H H2S 04-20-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Lea_55H_horizontal_drilling_plan_04-20-2017.pdf

Other proposed operations facets description:

Attached is the general drill plan

Other proposed operations facets attachment:

Lea_55H_general_drilling_plan_04-20-2017.pdf

Other Variance attachment:

*We use the same choke manifolds for all aspects of our operations & all are rated to 10K;

* All connections downstream from BOP thru chokes Are Flanged, All connections downstream from chokes are Flanged.

"We use the same choke manifolds for all aspects of our operations & all are rated to 10K;

* All connections downstream from BOP thru chokes Are Flanged, All connections downstream from chokes are Flanged

	Midw	est Hose	
Inter	a spec nal Hydrosto	naity, Inc. Atic Test Certificate	
General Inform	nation	Hose Speci	ications
Customer	HOBBS	Hose Assembly Type	Rotary/Vibrator
MWH Sales Representative	CHARLES ASH	Certification	API 7K/FSL LEVEL2
Date Assembled	2/19/2017	Hose Grade	D
Location Assembled	ОКС	Hose Working Pressure	5000
Sal es Order #	318810	Hose Lot # and Date Code	10958-08/13
Customer Purchase Order #	356945	Hose I.D. (Inches)	3.5"
Assembly Serial # (Pick Ticket #)	384842	Hose O.D. (Inches)	5.45"
Hose Assembly Length	20FT	Armor (yes/no)	NO
	Fit	tings	
End A		End	5
Stem (Part and Revision #)	R3.5X64WB	Stem (Part and Revision #)	R3.5X64WB
	13105653	Stem (Heat #)	13105653
Stem (Heat #)			
Stem (Heat #) Ferrule (Part and Revision #) Formula (Part and Revision #)	RF3.5X5330	Ferrule (Part and Revision #)	RF3.5X5330
Stem (Heat #) Ferrule (Part and Revision #) Ferrule (Heat #)	RF3.5X5330 34038185	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (act #)	RF3.5X5330 3403818
Stem (Heat #) Ferrule (Part and Revision #) Ferrule (Heat #) Connection . Flange Hammer Union Part Connection (Heat #)	RF3.5X5330 34038185 4-1/16 5K	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Part #)	RF3.5X5330 3403818 4-1/16 5K
Stem (Heat #) Ferrule (Port and Revision #) Ferrule (Heat #) Connection : Flange Hammer Union Part Connection (Heat #) Nut (Port #)	RF3.5X5330 34038185 4-1/16 5K	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Heat #) Nut (Part #)	RF3.5X5330 3403818 4-1/16 5K
Stem (Heat #) Ferrule (Port and Revision #) Ferrule (Heat #) Connection : Flange Hammer Union Part Connection (Heat #) Nut (Part #)	RF3.5X5330 34038185 4-1/16 5K	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Heat #) Nut (Part #) Nut (Part #)	RF3.5X5330 3403818 4-1/16 5K
Stem (Heat #) Ferrule (Port and Revision #) Ferrule (Heat #) Connection : Flange Hammer Union Part Connection (Heat #) Nut (Port #) Nut (Heat #) Diar (Lead	RF3.5X5330 34038185 4-1/16 5K	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Heat #) Nut (Part #) Nut (Heat #) Disc (Lead	RF3.5X5330 3403818 4-1/16 5K
Stem (Heat #) Ferrule (Port and Revision #) Ferrule (Heat #) Connection . Flange Hammer Union Part Connection (Heat #) Nut (Part #) Nut (Heat #) Dies Used	RF3.5X5330 34038185 4-1/16 5K 5.62" Hydrostatic Të	Ferrule (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Heat #) Nut (Part #) Nut (Heat #) Dies Used Est Requirements	RF3.5X5330 3403818 4-1/16 5K 5.53"
Stem (Heat #) Ferrule (Port and Revision #) Ferrule (Heat #) Connection Flange Hammer Union Part Connection (Heat #) Nut (Part #) Nut (Heat #) Dies Used Test Pressure (osi)	RF3.5X5330 34038185 4-1/16 5K 5.62" Hydrostatic Te 7,500	rerruie (Part and Revision #) Ferrule (Heat #) Connection (Part #) Connection (Heat #) Nut (Part #) Nut (Heat #) Dies Used Est Requirements Hose assembly was tested	RF3.5X5330 3403818 4-1/16 5K 5.53"

MHSI-008 Rev. 0.0 Proprietary

	Midw	est Hose
	& Spec	cialty, Inc.
	Certificate	of Conformity
Customer: HOBBS		Customer P.O.# 356945
Sales Order # 318810		Date Assembled. 2/19/2017
	Speci	fications
Hose Assembly Type:	Rotary/Vibrator	Rig #
Assembly Serial #	384842	Hose Lot # and Date Code 10958-08/13
Hose Working Pressure (psi)	5000	, Test Pressure (psi) 7500
Hose Assembly Description:		TRH56D-645KH-645KH-20.00' FT
We hereby certify that the above to the requirements of the purch Supplier:	material supplied for an and current and and and and and and and and	or the referenced purchase order to be true according nt industry standards.
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129		· · · · · · · · · · · · · · · · · · ·
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments:		·
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments:	,	Oata

MHSI-009 Rev.0.0 Proprietary

Surface Casing

				Burst				Dry	Mud
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Weight
						· · ·		98,100	
13.375"	J-55	54.5	1130 psi	2730 psi	514 kips	STC	1800'	lbs	8.5 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: 1,130psi / [(0.44psi/ft)(1,800')] = **1.42**

Cementing Operations: 1,130psi / [(0.77psi/ft – 0.433psi/ft)(1800')] = **1.86**

Burst: $DF_B = 1.25$

Base Assumption

• Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an external force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.

Burst Calculations: Internal Yield Rating / Internal Force

Casing Pressure Test: 2,730psi / [(1500psi)-(0.44 psi/ft)(1,800')] = **3.86**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: 514 kips / (100,000 lbs. + 98,100 lbs.) = **2.59**

Intermediate Casing

				Burst	Dry					
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight	
9.625"	J-55	40	2570 psi	3950 psi	520 kips	LTC	4000'	160,000 lb	10.0 ppg	
9.625"	HCK-55	40	4230 psi	3950 psi	694 kips	LTC	1600'	64,000 lb	10.0 ppg	

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.52 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: J-55: 2570psi / [(0.52psi/ft)(4,000')] = **1.25**

HCK-55: 4230psi / [(0.52psi/ft)(5,600')] = **1.45**

Cementing Operations:

J-55: 2570psi / [(0.77psi/ft - 0.433psi/ft)(4000')] = **1.91** HCK-55: 4230psi / [(0.77psi/ft - 0.433psi/ft)(5600')] = **2.24**

Burst: DF_B = 1.25

Base Assumption

- Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an internal force equivalent to the displacement fluid of 8.6 ppg and external force equivalent to 8.4 ppg.
- Gas kick at the casing shoe, in which a 0.7 psi/ft shoe test is assumed, and 0.2 psi/ft gas gradient is assumed.

Burst Calculations: Internal Yield Rating / Burst Force

```
Casing Pressure Test:

J-55: 3950psi / [(1500psi +1789 psi) - (1747psi)] = 2.56

HCK-55: 3950psi / [(1500psi +2504 psi) - (2446psi)] = 2.54

Gas Kick:

J-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(5600')] = 1.41
```

HCK-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(4000')] = **1.27**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: J-55: 520 kips / (100,000 lbs. + 224,00 lbs.) = **1.6** HCK-55: 694 kips / (100,000 lbs. + 64,100 lbs.) = **4.23**

Production Casing

				Dry					
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight
5.5"	P-110	20		12360 psi	641 kips	BTC	17,700'	354,000 lb	9.1 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Cementing operations in which utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).
- Production operations in which the pipe is completely evacuated with an external force equivalent to the pore pressure gradient (0.52 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Cementing Operations: 11,080psi / [(0.66psi/ft-0.433 psi/ft)(10,500'TVD)] = 3.13

Production Operations: 11080psi / (10,500' TVD)(0.52psi/ft) = **2.03**

Burst: $DF_B = 1.25$

Base Assumption

- Frac pressure utilizing an internal force of 9500 psi along with a frac fluid gradient equivalent to 0.468 psi/ft and an external force equal to the minimum fluid gradient (0.433 psi/ft) in which the casing will be ran.
- Production operations in which the casing is completely filled with a gas equivalent gradient of 0.2 psi/ft and an external force equivalent to pore pressure of 0.5 psi/ft.

Burst Calculations: Internal Yield Rating / Burst Force

Frac Pressure: 12,360psi / [(9500 psi)+ (0.468 – 0.433psi/ft)(10,500'TVD)] = **1.28**

Production Operations: 12,360psi / [(0.5 psi/ft – 0.2 psi/ft)(10,500'TVD)] = **3.92**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and considering the effects of buoyancy (factor =0.86).

Tensile Calculations: Joint Strength / Axial Load

Overpull: 641,000 lbs /[(100,000 lbs.) + (354,000 lbs.)(0.86)] = **1.6**

Contingency String (If Necessary) Size Grade #/ft Collapse Yield Tensile Coupling Length Weight Mud Weight 13.375 H-40 48 770 1730 322 ST&C 18000 8.5 375

Surface Casing

Size	Grade	#/ft	Collapse	Yie	ld	Tensile	Coupling	Length	Weight	Mud Weight
8.625	J-55		24	1370	2950	- 24	4 ST&C	425	10200	9.9

Production Casing

Size	Grade	#/ft	Collapse		Yield	Tensile	Coupling	Length	Weight	Mud Weight
5	.5 J-55		17	4910	5320	-2	72 LT&C	4100	69700	9.9

Casing Parameters

Tensile

SF_t = Tensile / Weight ; Must exceed 2.0										
13.375 Contingency	322000	/	18000	=	17.89					
8.625 Surface	244000	1	10200	=	23.92					
5.5 Production	272000	1	69700	=	3.90					

Collapse

SF_c = Collapse / (Mud Gradient x TVD) ; Must exceed 1.18										
13.375 Contingency	770	1	165.5588	Ŧ	4.65					
8.625 Surface	1370	1	218.5376	=	6.27					
5.5 Production	4910	/	2108.245	=	2.33					

Burst

SF_b = Burst /	(Mud Gradie	nt x TVI	D); Must exceed	1.18	
13.375 Contingency	1730	1	165.5588	=	10.45
8.625 Surface	2950	1	218.5376	=	13.50
5.5 Production	5320	1	2108.245	=	2.52

Surface Casing

			1	Burst				Dry	Mud
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Weight
				· · · ·				98,100	·
13.375"	J-55	54.5	1130 psi	2730 psi	514 kips	STC	1800'	lbs	8.5 ppg
•					•			-, • .	

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: 1,130psi / [(0.44psi/ft)(1,800')] = **1.42**

Cementing Operations: 1,130psi / [(0.77psi/ft – 0.433psi/ft)(1800')] = **1.86**

Burst: DF_B = 1.25

Base Assumption

 Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an external force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.

Burst Calculations: Internal Yield Rating / Internal Force

Casing Pressure Test: 2,730pši / [(1500psi)-(0.44 psi/ft)(1,800')] = **3.86**

Tensile: $DF_T = 1.6$ Base Assumption

A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: 514 kips / (100,000 lbs. + 98,100 lbs.) = **2.59**

Intermediate Casing

	Burst							Dry	
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight
9.625"	J-55	40	2570 psi	3950 psi	520 kips	LTC	4000'	160,000 lb	10.0 ppg
9.625"	НСК-55	40	4230 psi	3950 psi	694 kips	LTC	1600'	64,000 lb	10.0 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.52 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation:

J-55: 2570psi / [(0.52psi/ft)(4,000')] = **1.25** HCK-55: 4230psi / [(0.52psi/ft)(5,600')] = **1.45**

Cementing Operations:

J-55: 2570psi / [(0.77psi/ft – 0.433psi/ft)(4000')] = **1.91** HCK-55: 4230psi / [(0.77psi/ft – 0.433psi/ft)(5600')] = **2.24**

Burst: $DF_B = 1.25$

Base Assumption

- Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an internal force equivalent to the displacement fluid of 8.6 ppg and external force equivalent to 8.4 ppg.
- Gas kick at the casing shoe, in which a 0.7 psi/ft shoe test is assumed, and 0.2 psi/ft gas gradient is assumed.

Burst Calculations: Internal Yield Rating / Burst Force

Casing Pressure Test: J-55: 3950psi / [(1500psi +1789 psi) - (1747psi)] = **2.56** HCK-55: 3950psi / [(1500psi +2504 psi) - (2446psi)] = **2.54**

Gas Kick:

J-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(5600')] = **1.41** HCK-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(4000')] = **1.27**

Tensile: DF_T = 1.6

3 N Q.M.

3198

Base Assumption • A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and not considering the effects of buoyancy.

and a split part of the split is the test of the

> 》。 唐代中代的 11月1日(唐代中代)

1459.2

and the second second

计正确 化化物 化物料 机合金炉

dentes a set.

and and also each

Tensile Calculations: Joint Strength / Axial Load

and the state of the

Overpull: J-55: 520 kips / (100,000 lbs. + 224,00 lbs.) = **1.6** HCK-55: 694 kips / (100,000 lbs. + 64,100 lbs.) = **4.23**

Production Casing

	Burst							Dry	
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight
5.5"	P-110	20	11080 psi	12360 psi	641 kips	BTC	17,700'	354,000 lb	9.1 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Cementing operations in which utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).
- Production operations in which the pipe is completely evacuated with an external force equivalent to the pore pressure gradient (0.52 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Cementing Operations: 11,080psi / [(0.66psi/ft-0.433 psi/ft)(10,500'TVD)] = **3.13**

Production Operations: 11080psi / (10,500' TVD)(0.52psi/ft) = **2.03**

Burst: $DF_B = 1.25$

Base Assumption

- Frac pressure utilizing an internal force of 9500 psi along with a frac fluid gradient equivalent to 0.468 psi/ft and an external force equal to the minimum fluid gradient (0.433 psi/ft) in which the casing will be ran.
- Production operations in which the casing is completely filled with a gas equivalent gradient of 0.2 psi/ft and an external force equivalent to pore pressure of 0.5 psi/ft.

Burst Calculations: Internal Yield Rating / Burst Force

Frac Pressure: 12,360psi / [(9500 psi)+ (0.468 – 0.433psi/ft)(10,500'TVD)] = **1.28**

Production Operations: 12,360psi / [(0.5 psi/ft – 0.2 psi/ft)(10,500'TVD)] = **3.92**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and considering the effects of buoyancy (factor =0.86).

Tensile Calculations: Joint Strength / Axial Load

Overpull: 641,000 lbs /[(100,000 lbs.) + (354,000 lbs.)(0.86)] = **1.6** Contingency String (If Necessary)SizeGrade #/ftCollapseYieldTensileCouplingLengthWeightMud Weight13.375 H-40487701730322 ST&C375180008.5

Surface Casing

SizeGrade #/ftCollapseYieldTensileCouplingLengthWeightMud Weight8.625 J-552413702950244ST&C425102009.9

Production Casing

SizeGrade #/ftCollapseYieldTensileCouplingLengthWeightMud Weight5.5 J-551749105320272 LT&C4100697009.9

Casing Parameters

Tensile

SF_t = Tensile / Weight ; Must exceed 2.0										
13.375 Contingency	322000	1	18000		17.89					
8.625 Surface	244000	/	10200	= .	23.92					
5.5 Production	272000	1	69700	=	3.90					

Collapse

SF_c = Collapse,	/ (Mud Gradi	ent x T	VD) ; Must excee	d 1.18	
13.375 Contingency	770	1	165.5588	=	4.65
8.625 Surface	1370	1	218.5376	=	6.27
5.5 Production	4910	1	2108.245	=	2.33

Burst

<pre>SF_b = Burst / (Mud Gradient x TVD); Must exceed 1.18</pre>										
13.375 Contingency	1730	/	165.5588	=	10.45					
8.625 Surface	2950	1	218.5376	=	13.50					
5.5 Production	5320	1	2108.245	=	2.52					

Surface Casing

				Burst				Dry	Mud
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Weight
								98,100	
13.375"	J-55	54.5	1130 psi	2730 psi	514 kips	STC	1800'	lbs	8.5 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: 1,130psi / [(0.44psi/ft)(1,800')] = **1.42**

Cementing Operations: 1,130psi / [(0.77psi/ft - 0.433psi/ft)(1800')] = **1.86**

Burst: DF_B = 1.25

Base Assumption

• Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an external force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.

Burst Calculations: Internal Yield Rating / Internal Force

Casing Pressure Test: 2,730psi / [(1500psi)-(0.44 psi/ft)(1,800')] = **3.86**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: 514 kips / (100,000 lbs. + 98,100 lbs.) = **2.59**

Intermediate Casing

			Dry						
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight
9.625"	J-55	40	2570 psi	3950 psi	520 kips	LTC	4000'	160,000 lb	10.0 ppg
9.625"	НСК-55	40	4230 psi	3950 psi	694 kips	LTC	1600'	64,000 lb	10.0 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.52 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: J-55: 2570psi / [(0.52psi/ft)(4,000')] = **1.25** HCK-55: 4230psi / [(0.52psi/ft)(5,600')] = **1.45**

Cementing Operations: J-55: 2570psi / [(0.77psi/ft – 0.433psi/ft)(4000')] = **1.91** HCK-55: 4230psi / [(0.77psi/ft – 0.433psi/ft)(5600')] = **2.24**

Burst: $DF_B = 1.25$

Base Assumption

- Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an internal force equivalent to the displacement fluid of 8.6 ppg and external force equivalent to 8.4 ppg.
- Gas kick at the casing shoe, in which a 0.7 psi/ft shoe test is assumed, and 0.2 psi/ft gas gradient is assumed.

Burst Calculations: Internal Yield Rating / Burst Force

Casing Pressure Test: J-55: 3950psi / [(1500psi +1789 psi) - (1747psi)] = **2.56** HCK-55: 3950psi / [(1500psi +2504 psi) - (2446psi)] = **2.54**

Gas Kick:

J-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(5600')] = **1.41** HCK-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(4000')] = **1.27**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: J-55: 520 kips / (100,000 lbs. + 224,00 lbs.) = **1.6** HCK-55: 694 kips / (100,000 lbs. + 64,100 lbs.) = **4.23**

Production Casing

	Burst							Dry	
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight
5.5"	P-110	20	11080 psi	12360 psi	641 kips	BTC	17,700'	354,000 lb	9.1 ppg

Collapse: $DF_c = 1.25$

Base Assumptions

- Cementing operations in which utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).
- Production operations in which the pipe is completely evacuated with an external force equivalent to the pore pressure gradient (0.52 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Cementing Operations: 11,080psi / [(0.66psi/ft-0.433 psi/ft)(10,500'TVD)] = 3.13

Production Operations: 11080psi / (10,500' TVD)(0.52psi/ft) = **2.03**

Burst: $DF_B = 1.25$

Base Assumption

- Frac pressure utilizing an internal force of 9500 psi along with a frac fluid gradient equivalent to 0.468 psi/ft and an external force equal to the minimum fluid gradient (0.433 psi/ft) in which the casing will be ran.
- Production operations in which the casing is completely filled with a gas equivalent gradient of 0.2 psi/ft and an external force equivalent to pore pressure of 0.5 psi/ft.

Burst Calculations: Internal Yield Rating / Burst Force

Frac Pressure: 12,360psi / [(9500 psi)+ (0.468 – 0.433psi/ft)(10,500'TVD)] = **1.28**

Production Operations: 12,360psi / [(0.5 psi/ft – 0.2 psi/ft)(10,500'TVD)] = **3.92**

Tensile: $DF_T = 1.6$

Base Assumption

 A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and considering the effects of buoyancy (factor =0.86).

Tensile Calculations: Joint Strength / Axial Load

Overpull: 641,000 lbs /[(100,000 lbs.) + (354,000 lbs.)(0.86)] = **1.6**

.

Contingency String (If Necessary)

Grade #/ft Size Collapse Yield Tensile Coupling Length Weight Mud Weight 13.375 H-40 48 322 ST&C 770 1730 375 18000 8.5

Surface Casing

SizeGrade #/ftCollapseYieldTensileCouplingLengthWeightMud Weight8.625 J-552413702950244 ST&C425102009.9

Production Casing

Size	Grade	#/ft	Collapse	١	Yield	Tensile	Coupling	Length	Weight	Mud Weight
5.	5 J-55		17	4910	5320	2	72 LT&C	4100	69700	9.9

Casing Parameters

Tensile

SF_t = Tensile / Weight ; Must exceed 2.0											
13.375 Contingency	322000	1	18000	=	17.89						
8.625 Surface	244000	1	10200	=	23.92						
5.5 Production	272000	1	69700	= ·	3.90						

Collapse

SF_c = Collapse / (Mud Gradient x TVD) ; Must exceed 1.18											
13.375 Contingency	770	1	165.5588	=	4.65						
8.625 Surface	1370	1	218.5376	=	6.27						
5.5 Production	4910	1	2108.245	=	2.33						

Burst

SF_b = Burst / (Mud Gradient x TVD); Must exceed 1.18											
13.375 Contingency		1730		/	165.5588 =		10.45				
8.625 Surface	`~	2950		/	218.5376 =		13.50				
5.5 Production		5320		/	2108.245 =		2.52				

Surface Casing

			1	Burst				Dry	Mud
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Weight
								98,100	
13.375"	J-55	54.5	1130 psi	2730 psi	514 kips	STC	1800'	lbs	8.5 ppg

Collapsé: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.44 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: 1,130psi / [(0.44psi/ft)(1,800')] = **1.42**

Cementing Operations: 1,130psi / [(0.77psi/ft – 0.433psi/ft)(1800')] = **1.86**

Burst: DF_B = 1.25

Base Assumption

- Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an external force equivalent
 - to the mud gradient (0.44 psi/ft) in which the casing will be ran.

Burst Calculations: Internal Yield Rating / Internal Force

Casing Pressure Test:

2,730psi / [(1500psi)-(0.44 psi/ft)(1,800')] = 3.86

Tensile: $DF_T = 1.6$

Base Assumption

A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight and not considering the effects of buoyancy.

Tensile Calculations: Joint Strength / Axial Load

Overpull: 514 kips / (100,000 lbs. + 98,100 lbs.) = **2.59**

Intermediate Casing

				Burst	Dry					
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight	
9.625"	J-55	40	2570 psi	3950 psi .	520 kips	LTC	4000'	160,000 lb	10.0 ppg	
9.625"	НСК-55	40	4230 psi	3950 psi	694 kips	LTC	1600'	64,000 lb	10.0 ppg	

Collapse: $DF_c = 1.25$

Base Assumptions

- Complete internal evacuation of the casing, utilizing a collapse force equivalent to the mud gradient (0.52 psi/ft) in which the casing will be ran.
- Cementing operations in which, utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Complete Evacuation: J-55: 2570psi / [(0.52psi/ft)(4,000')] = **1.25** HCK-55: 4230psi / [(0.52psi/ft)(5,600')] = **1.45**

Cementing Operations:

J-55: 2570psi / [(0.77psi/ft - 0.433psi/ft)(4000')] = **1.91** HCK-55: 4230psi / [(0.77psi/ft - 0.433psi/ft)(5600')] = **2.24**

Burst: $DF_B = 1.25$

Base Assumption

- Casing pressure test as per Onshore Oil and Gas Order No. 2 (0.22 psi/ft or 1500 psi), utilizing an internal force equivalent to the displacement fluid of 8.6 ppg and external force equivalent to 8.4 ppg.
- Gas kick at the casing shoe, in which a 0.7 psi/ft shoe test is assumed, and 0.2 psi/ft gas gradient is assumed.

Burst Calculations: Internal Yield Rating / Burst Force

Casing Pressure Test: J-55: 3950psi / [(1500psi +1789 psi) - (1747psi)] = **2.56** HCK-55: 3950psi / [(1500psi +2504 psi) - (2446psi)] = **2.54**

Gas Kick:

J-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(5600')] = **1.41** HCK-55: 3950psi / [(0.7psi/ft)(5600')-(0.2psi/ft)(4000')] = **1.27**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and not 101 P. C. - C. I.B. W Ś., 1 considering the effects of buoyancy.

1.5.1.5.5

i sang ing

Contraction of the second

1. 1. Let 1.

a second the second

and a get start by a start by a second and

a contraction of the second states of the

and the take of the

N. S. Martine

e . . .

and states and a

a stander i s

of or Professional

1. 1. 1.

A. C. C.

and a stream of the

NER AN AN A

· . . .

NO MARK

Tensile Calculations: Joint Strength / Axial Load

•

Sec. Barrow

1. 1. 2

Overpull:

J-55: 520 kips / (100,000 lbs. + 224,00 lbs.) = 1.6 HCK-55: 694 kips / (100,000 lbs. + 64,100 lbs.) = 4.23

Production Casing

				Burst		Dry						
Size	Grade	#/ft	Collapse	(Internal Yield)	Tensile	Coupling	Length	Weight	Mud Weight			
5.5"	P-110	20	11080 psi	12360 psi	641 kips	BTC	17,700'	354,000 lb	9.1 ppg			

Collapse: $DF_c = 1.25$

Base Assumptions

- Cementing operations in which utilizes a collapse force equivalent to the gradient of the planned cement slurry (0.77 psi/ft) and an internal back-up force equivalent to the fresh water displacement fluid (0.433 psi/ft).
- Production operations in which the pipe is completely evacuated with an external force equivalent to the pore pressure gradient (0.52 psi/ft).

Collapse Calculations: Collapse Rating / Collapse Force

Cementing Operations: 11,080psi / [(0.66psi/ft-0.433 psi/ft)(10,500'TVD)] = **3.13**

Production Operations: 11080psi / (10,500' TVD)(0.52psi/ft) = **2.03**

Burst: $DF_B = 1.25$

Base Assumption

- Frac pressure utilizing an internal force of 9500 psi along with a frac fluid gradient equivalent to 0.468 psi/ft and an external force equal to the minimum fluid gradient (0.433 psi/ft) in which the casing will be ran.
- Production operations in which the casing is completely filled with a gas equivalent gradient of 0.2 psi/ft and an external force equivalent to pore pressure of 0.5 psi/ft.

Burst Calculations: Internal Yield Rating / Burst Force

Frac Pressure: 12,360psi / [(9500 psi)+ (0.468 – 0.433psi/ft)(10,500'TVD)] = **1.28**

Production Operations: 12,360psi / [(0.5 psi/ft – 0.2 psi/ft)(10,500'TVD)] = **3.92**

Tensile: $DF_T = 1.6$

Base Assumption

• A downward force of 100,000 lb. overpull is applied at the base of the casing along with the weight of the string and considering the effects of buoyancy (factor =0.86).

Tensile Calculations: Joint Strength / Axial Load

Overpull: 641,000 lbs /[(100,000 lbs.) + (354,000 lbs.)(0.86)] = **1.6**

		1 - 4 8		,			•	·							· · · · · · · · · · · · · · · · · · ·	
							•	· .				۶.		1. 		· .
					Ċc	ontinger	ncy Str	ing (If Ne	cessary)							
Size	Grade	#/ft	•••	Collapse		Yield	T€	ensile	Coupling	Length	Weight	Mud Weigh	t (
13.375	H-40		48		. 770	1	/30		2 ST&C	375	18000	D	8.5			
-			•			· ·	Surfaci	o Casing	•							
Size	Grade	#/ft		Collapse		Yield	Juniae. Te	ensile	Counling	Length	Weight	Mud Weigh	t	•		
8.625	J-55		- 24		1370	2	950	244	ST&C	425	10200)	9.9			
										a na si ka		intell, " sånt söde et, sær	undalajs dis L			
			Ť,			Pr	oducti	ion Casin	g							• • •
Size	Grade	#/ft		Collapse		Yield	Te	ensile	Coupling	Length	Weight	Mud Weigh	t		- -	
5.5	J-55	,	17		4910	5	320	272	2 LT&C	4100	69700	D	9.9			
		· • •					• -				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
						Ca	ising P	arameter	ר ג		500	с — х 21		у Х. 1 Х.		
	x			•		· . • .	То	ncilo			· ·					
		. –	1. A		SFot =	- Tensile	/ Wei	ght: Mus	st exceed 2	0						
	w	$\frac{1}{10}$	13.375	Continger	ncv	322	000	/ · · ·	1800	0 =	17.89	9		,		
			8.625	Surface		244	000	. /	1020	0 =	23.92	2			×	
		2	5.5	Productic	on 🦾	272	000	1	6970	0 =	3.90	D				
	ی ۱		5		ي. وغير	ي بي 124 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14		an a	8 .	· · · · · · · · · · · · · · · · · · ·						
		2	a a ser	~			Col	lapse								
	2			$SF_c = C$	ollapse	e / (Muc	l Gradi	ient x TVI	D) ; Must e	ceed 1.18						
· .			13.375	Continger	ncy		770		165.558	8	4.6		-		• • •	
		• .	8.625	Surface	۰۰۰۰۰ ۲۰۰۰ ۲۰۰۰ میر	1	370		218.537	Б = г	b.Z.				÷.	
		· · ·	5.5	Productio	n s	4	910		2108.24) (1 ∰ 2 − 1	Z.3)				
	-						- 	urst					-			
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		i di su Sustante Sustante	SF b =	Burst	/ (Mud	Gradie	ent x TVD): Must exc	eed 1.18	F					
	-		13.375	Continger	ncv	,	730	1	165.558	8 =	10.4	5.	:			
			8.625	Surface	• • •	2	950		218.537	6 =	13.50)			2	
÷			5.5	Productic)n.	5	320	1	2108.24	5 =	2.52	2			23) 1	· ·
								· · · ·	and the second se	•		- · ·	1. 		÷	
	• • • • • • • •			- 440 			•	-				, */	· · · ·			
· .																