30-025-44114

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler88Top of Salt1,2	1' 31'
1	41'
Base Anhydrite 5,0	68'
Lamar 5,0	68'
Bell Canyon 5,1	07'
Cherry Canyon 6,1	49'
Brushy Canyon 7,8	30'
Bone Spring Lime 9,3	04'
1 st Bone Spring Sand 10.	,232'
2 nd Bone Spring Shale 10.	,418'
2 nd Bone Spring Sand 10.	,786'
3 rd Bone Spring Carb 11.	,331'
3 rd Bone Spring Sand 11.	,859'
Wolfcamp 12	,280'
TD 12	,448'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Water

Upper Permian Sands	0-400'	Fresh
Cherry Canyon	6,149'	Oil
Brushy Canyon	7,830'	Oil
1 st Bone Spring Sand	10,232'	Oil
2 nd Bone Spring Shale	10,418'	Oil
2 nd Bone Spring Sand	10,786'	Oil
3 rd Bone Spring Carb	11,331'	Oil
3 rd Bone Spring Sand	11,859'	Oil
Wolfcamp	12,280'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 905' and circulating cement back to surface.

Hole		Csg				DFmin	DFmin	DFmin
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 - 905'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 - 1,000'	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
				110				
9.875"	1,000' -	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'							
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
				110				
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
					MS			
6.75"	11,100'-22,587'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

.

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4" 905'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 22,587'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 905'	Fresh - Gel	8.6-8.8	28-34	N/c
905' - 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,587'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR–CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7443 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

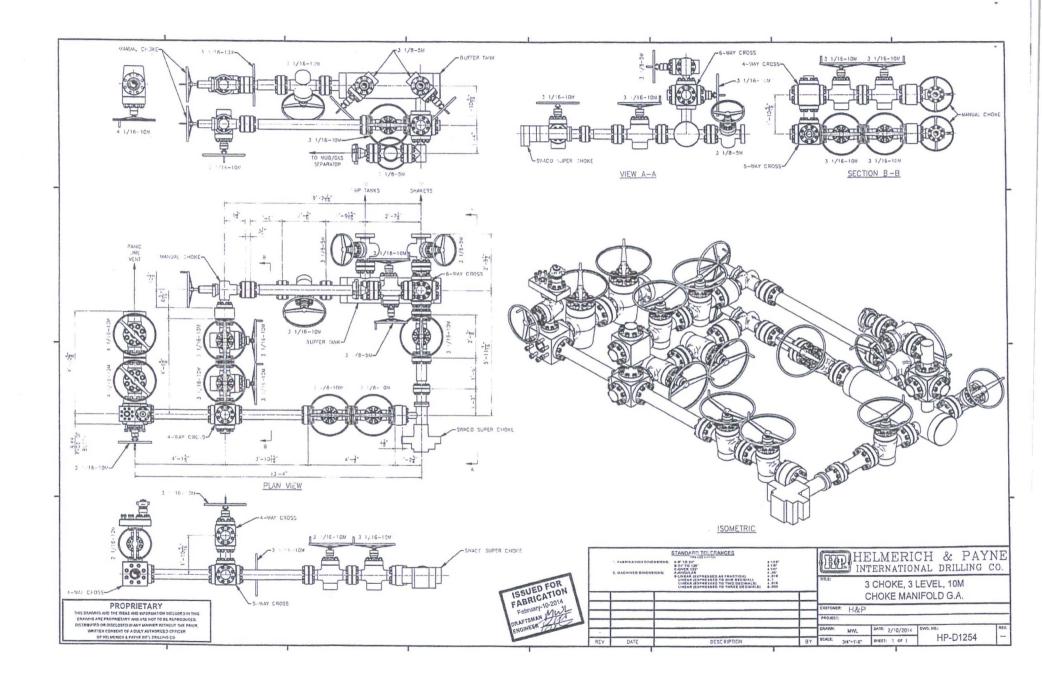
(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

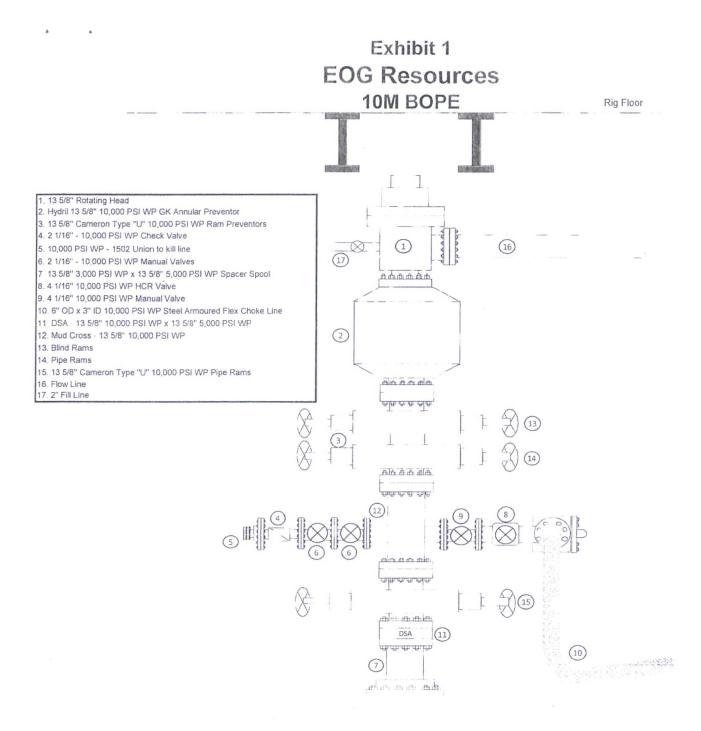
11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

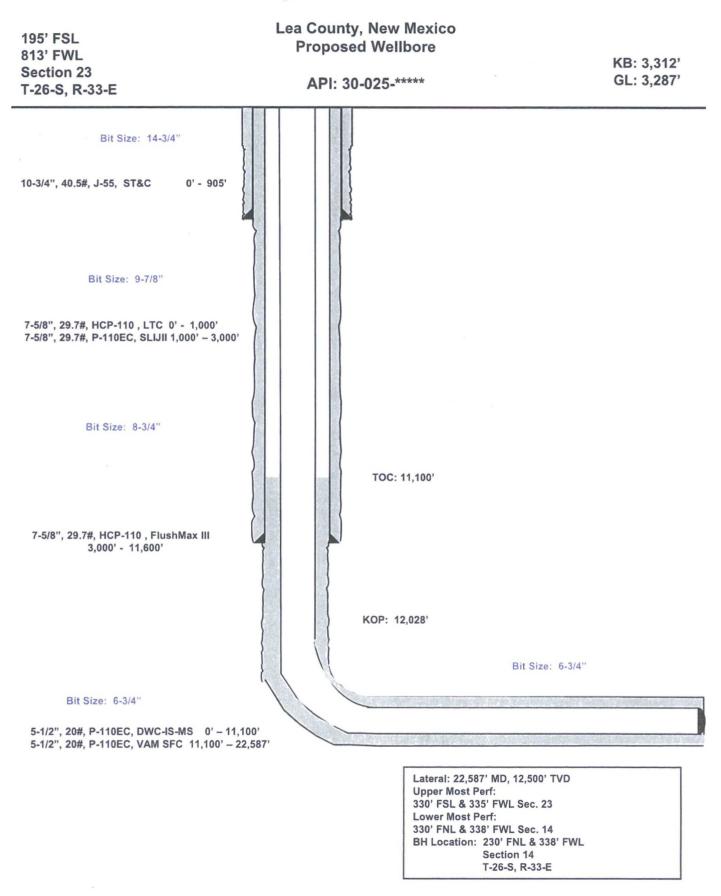

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

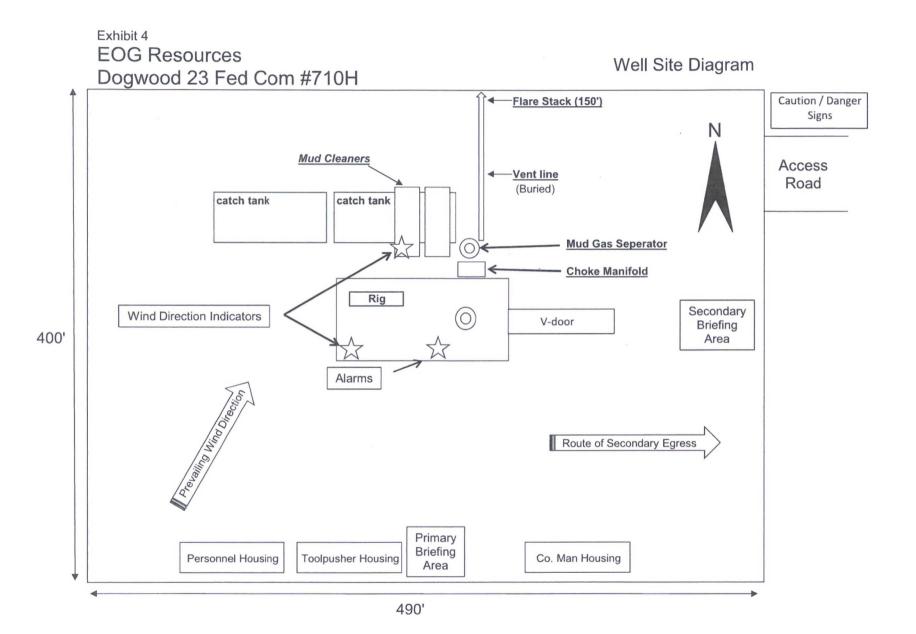

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.


fal One	FUI	SHMAX-III		Page Date	1-Oct-
iter Crite		ion Data Shee	ŀ	Date	
al One Corp	Connect	ion Data Shet		Rev.	N-0
Onecorp				Nev.	14-0
ŀ	4	Make up loss	3		
	fun	·····	m	not	
	-19-		1		
		7		/	
	Pin criti	cai area	6	Box critical ar	ea
Pipe Body		Imperia	al	S.I.	
Grade		P110		P110	
Pipe OD (D)	7 5/8	in	193.68	mm
Weight		29.7	lb/ft	44.25	kg/m
Actual weigh		29.0	lb/ft	43.26	kg/m
Wall thicknes	ss(t)	0.375	in	9.53	mm
Pipe ID (d)		6.875	in	174.63	mm
Pipe body cr	oss section	8.537	in ²	5,508	mm ²
Drift Dia.		6,750	in	171.45	mm
Connection Box OD (W PIN ID	>	7.625	in	193.68 174.63	mm
		4.420	in ²	2,852	mm ²
			in ²		
Pin critical ar				2,854	mm ²
Box critical a		4.424		00	
Box critical a Joint load eff	iciency	60	%	60	%
Box critical a Joint load eff Make up loss	iciency	60 3.040	% in	77.22	% mm
Box critical a Joint load eff Make up loss Thread taper	iciency	60 3.040	% in /16 (3/4 i	77.22 in per ft)	
Box critical a Joint load eff Make up loss	iciency	60 3.040	% in	77.22 in per ft)	
Box critical a Joint load eff Make up loss Thread taper Number of th Connection	iciency s ireads Performance	60 3.040 1 Properties	% in /16 (3/4 i 5 thread	77.22 in per ft) per in.	mm
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield	iciency s ireads Performance	60 3.040 1 Properties 563.4	% in /16 (3/4 i 5 thread kips	77.22 in per ft) per in. 2,506	kN
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P.	iciency areads Performance load	60 3.040 1 Properties 563.4 7,574	% in /16 (3/4 i 5 thread kips psi	77.22 in per ft) per in. 2,506 52.2	kN MPa
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P.	iciency areads Performance load	60 3.040 1 Properties 563.4 7,574	% in /16 (3/4 i 5 thread kips psi	77.22 in per ft) per in. 2,506 52.2	kN MPa
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P. Collapse stre Note M.I.Y.P. = Torque Reco	iciency areads Performance load ength Minimum Inte ommended	60 3.040 1 Properties 563.4 7,574 5,350 rnal Yield Press	% in /16 (3/4 i 5 thread kips psi psi ure of the	77.22 in per ft) per in. 2,506 52.2 36.9 e connection	kN MPa MPa
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P. Collapse stree Note M.I.Y.P. Torque Reco	Ticlency Ticlency Ticlency Ticlency Performance Toad Ticlency Ticl	60 3.040 1 Properties 563.4 7,574 5,350 rnal Yield Press 8,700	% in /16 (3/4 i 5 thread kips psi psi ure of the	77.22 in per ft) per in. 2,506 52.2 36.9 e connection 11,700	KN MPa MPa
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P. Collapse stree Note M.I.Y.P. = Torque Reco	Ticlency Ticlency Ticlency Ticlency Performance Ticlence Ticlence Ticlence Performance Ticlence Ticlency	60 3.040 1 Properties 563.4 7,574 5,350 rnal Yield Press 8,700 9,700	% in /16 (3/4 i 5 thread kips psi psi ure of the ft-lb ft-lb	77.22 in per ft) per in. 2,506 52.2 36.9 e connection 11,700 13,100	KN MPa MPa N-m N-m
Box critical a Joint load eff Make up loss Thread taper Number of th Connection Tensile Yield M.I.Y.P. Collapse stre Note M.I.Y.P. = Torque Reco	Ticlency Ticlency Ticlency Ticlency Performance Toad Ticlency Ticl	60 3.040 1 Properties 563.4 7,574 5,350 rnal Yield Press 8,700	% in /16 (3/4 i 5 thread kips psi psi ure of the	77.22 in per ft) per in. 2,506 52.2 36.9 e connection 11,700	KN MPa MPa


L

.

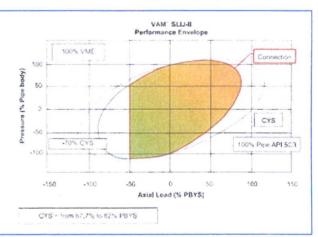
 Ψ^{ℓ}

Dogwood 23 Fed Com #710H

Issued on: 24 Jan. 2017

観念の観音でいたなり	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ાં એક સેવી પ્રાથમિક છે.		H. A. T. S. R. O. A. C. M.	and and the state of the
OD I	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in. 29	9.70 lb/ft	0.375 in.	VM 110 HC	6.750 in.	VAM® SLIJ-II

	PIPE PROPERTIES		1
	Nominal OD	7.625	in.
	Nominal ID	6.875	in.
	Nominal Cross Section Area	8.541	sqin.
	Grade Type	High Collapse	
	Min. Yield Strength	110	ksi
	Max. Yield Strength	140	ksi
	Min. Ultimate Tensile Strength	125	ksi
F			


CONNECTION PROPERTIES							
Connection Type	Premium integral semi-flush						
Connection OD (nom)	7.711 in.						
Connection ID (nom)	6.820 in.						
Make-up Loss	4.822 in.						
Critical Cross Section	5.912 sqin.						
Tension Efficiency	69.2 % of pipe						
Compression Efficiency	48.5 % of pipe						
Internal Deserves Efficience	100.0/ - 5						
Internal Pressure Efficiency	100 % of pipe						
External Pressure Efficiency	100 % of pipe						

CONNECTION PERFORMANCES							
Tensile Yield Strength	651 klb						
Compression Resistance	455 klb						
Internal Yield Pressure	9470 psi						
Uniaxial Collapse Pressure	7890 psi						
Max. Bending Capacity	TDB						
Max Bending with Sealability	20 °/100 ft						

11300 ft.lb
12600 ft.lb
13900 ft.lb

VAM® SLIJ-II is a semi-flush integral premium connection for all casing applications. It combines a near flush design with high performances in tension. compression and gas sealability.

VAM® SLIJ-II has been validated according to the most stringent tests protocols, and has an excellent performance history in the world's most prolific HPHT wells.

Do you need help on this product? - Remember no one knows VAM® like VAM

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com

singapore@vamfieldservice.com

australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

Manufacturer: Midwest Hose & Specialty

Serial Number: SN#90067

Length: 35'

Size: OD = 8" ID = 4"

Ends: Flanges Size: 4-1/16"

WP Rating: 10,000 psi Anchors required by manfacturer: No

MIDWEST

HOSE AND SPECIALTY INC.

1	NTERNAL	HYDROST	ATIC TEST	REPOR	Г	
Custome	r:			P.O. Number:		
CACTUS				RIG #123		
			Asset # M	10761		
	the second second second	HOSE SPECI	ICATIONS			
Туре:	CHOKE LIN	E		Length:	35'	
I.D.	4"	INCHES	O.D.	8"	INCH	IES
WORKING	PRESSURE	TEST PRESSUR	E	BURST PRES	SURE	
10,000	PSI	15,000	PSI			PSI
		COUP	LINGS			
Type of E	ind Fitting					
	4 1/16 10K F	LANGE				
Type of C	oupling:		MANUFACTU	RED BY		
	SWEDGED		MIDWEST HOS	SE & SPECIA	LTY	
		PROC	EDURE			
	Hone cocombb	v pressure tested w	ith uniter at ambles	temperature		
		TEST PRESSURE	1	URST PRESSU	RE-	
	1	MIN.			0 /	PS/
COMMEN	TS:					
	SN#90067	M10761				
	Hose is cov	ered with stain!	ess steel armou	ur cover and		
		fire resistant v				
	insulation ra	ated for 1500 de	grees complete	with lifting	eyes	
Date:		Tested By:		Approved:		
	6/6/2011	BOBBY FINK		MENDI J	ACKSO	N

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Bobby Fink

Approved By: Mendi Jackson

Souly ZE

x Mendi Jackson