CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. **BOP EQUIPMENT**

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalculated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

		,	6	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P13 9H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead Stage 1 Tail	50:50 Poz Class C	4,870' 10.650'	10,650'	11.9	2.21	25	1024	12.18
	Class II	10,650	11,150	13.0	1.22	25	104	5.37
Tail Production	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P13 9H Lea County, NM

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Type	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 5750 psi
 No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 9830 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

Internal Pressure Resistance 6,330 psi

813,000 lbs

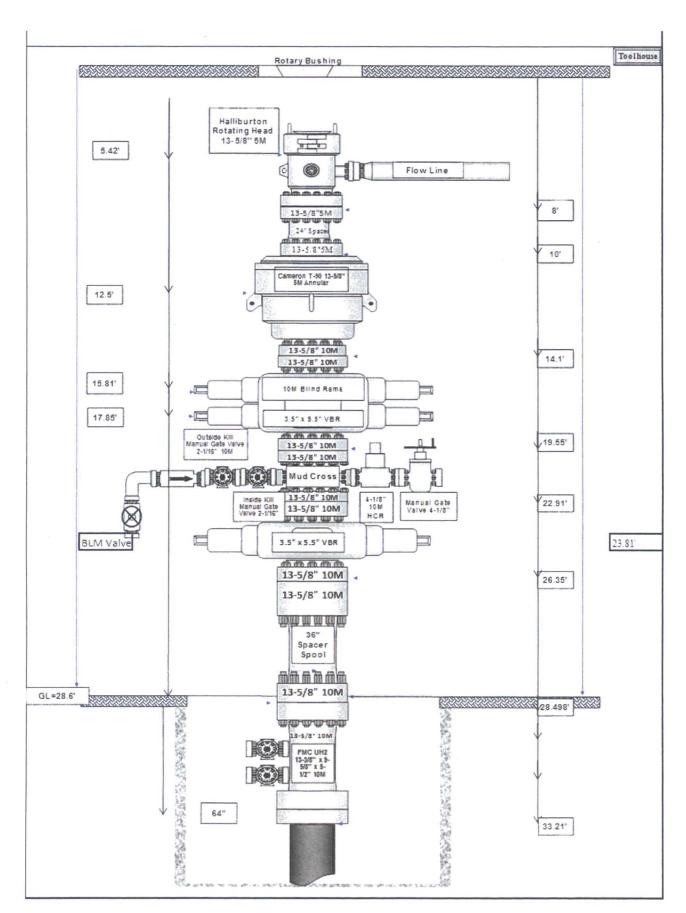
Joint Strength

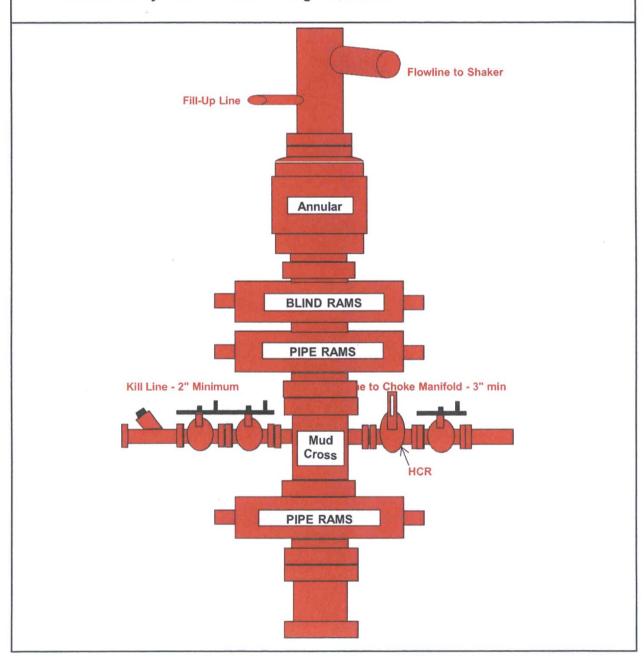
Casing and Tubing Performance Data

PIPE BODY DATA

GEOMETR)

Outside Diameter	9.625 in	Wall Thickness	0.435 in	API Drift Diameter	8.599 in
Nominal Weight	43.50 lbs/ft	Nominal ID	8.755 in	Alternative Drift Diameter	8.625 in
Plain End Weight	42.73 lbs/ft	Nominal cross section	12.559 in		
		PER	FORMANCI		
Steel Grade	L80	Minimum Yield	80,000 psi	Minimum Ultimate	95,000 psi
Tension Yield	1,005,000 in	Internal Pressure Yield	6,330 psi	Collapse Pressure	3,810 psi
Available Seamless	Yes	Available Welded	No		
		CONNE	CTION DAT	TA .	
TYPE: LTC		G	EOMETR)		
Coupling Reg OD	10.625 in	Threads per in	8	Thread turns make up	3.5
		PER	FORMANCI		
Steel Grade	L80	Coupling Min Yield	80.000 psi	Coupling Min Ultimate	95,000 psi

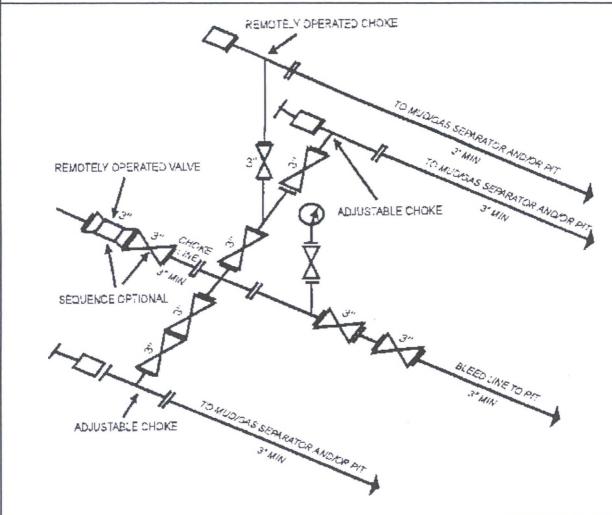


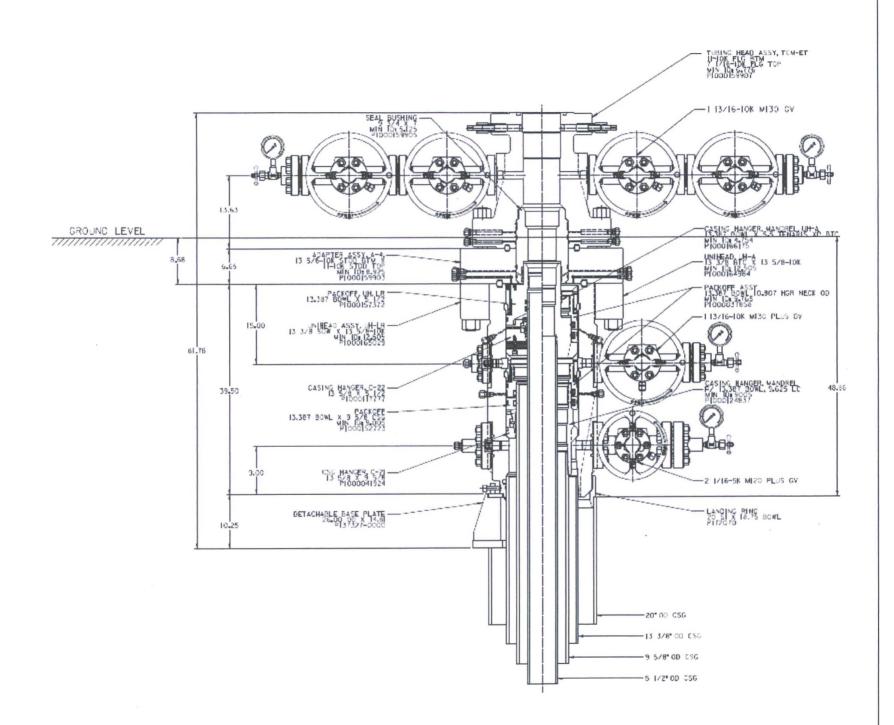

Diagram A

CHOKE MANIFOLD SCHEMATIC Minimum Requirements OPERATION : Wolfcamp A wells Minimum System 10,000 psi Pressure Rating Choke Manifold PRESSURE DESCRIPTION SIZE 3" Panic Line Valves 10,000 psi i Mud Pit **Cuttings Pit** Flow Line from bell 3" 10,000 psi Valves on Choke Lines nipple Shale Slide Shaker 'Line to separator or shakers Remotely Mud Gas Operated Separator Choke Flare Line (if separator is used) 3" Choke Line from BOP 3" Panic Line Open Top Valve and Pit Guage fit for drilling fluid service Adjustable Choke Line to trip tank **Installation Checklist** The following item must be verified and checked off prior to pressure testing of BOP equipment. The installed BOP equipment meets at least the minimum requirements (rating, type, size, configuration) as shown on this schematic. Components may be substituted for equivalent equipment rated to higher pressures. Additional components may be put into place as long as they meet or exceed the minimum pressure rating of the system. Adjustable Chokes may be Remotely Operated but will have backup hand pump for hydraulic actuation in case of loss of rig air pressure or power. Flare and Panic lines will terminate a minimum of 150' from the wellhead. These lines will terminate at a location as per approved APD. The choke line, kill line, and choke manifold lines will be straight unless turns use tee blocks or are targeted with running tess, and will be anchored to prevent whip and reduce vibration. This excludes the line between mud gas separator and shale shaker. All valves (except chokes) on choke line, kill line, and choke manifold will be full opening and will allow straight through flow. This excludes any valves between mud gas separator and shale shakers. All manual valves will have hand wheels installed. If used, flare system will have effective method for ignition All connections will be flanged, welded, or clamped (no threaded connections like hammer unions) If buffer tank is used, a valve will be used on all lines at any entry or exit point to or from the buffer tank. After Installation Checklist is complete, fill out the information below and email to Superintendent and Drilling Engineer Wellname: Representative: Date:

10M BLOWOUT PREVENTER SCHEMATIC

Minimum Requirements


OPERATION: Wolfcamp Wells in Salado Draw Minimum System Pressure Rating: 10,000 PSI


10M Choke Manifold SCHEMATIC

Minimum Requirements

OPERATION: Production and Open Hole Sections **Minimum System Pressure Rating:** 10,000 PSI

10M AND 15M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY [53 FR 49661, Dec. 9, 1988 and 54 FR 39528, Sept. 27, 1989]

