ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P14 15H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	· · · · · · · · · · · · · · · · · · ·
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic) for drill out below surface casing. Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

C. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:	850'			
Intermediate Casing:	11,200' TVI	D		
Production Casing:	23,000' MD	/12,750' TVD (10,300' VS	@ 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	Х	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 13 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpuli	X	X	X	X

ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P14 15H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 3

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner								
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	17	1362	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P14 15H Lea County, NM

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-11.0	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	9.5-11.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP is: 4500 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

CONTITECH RUBBER	No:QC-DB- 231/ 2014
Industrial Kft.	Page: 14 / 119

ContiTech

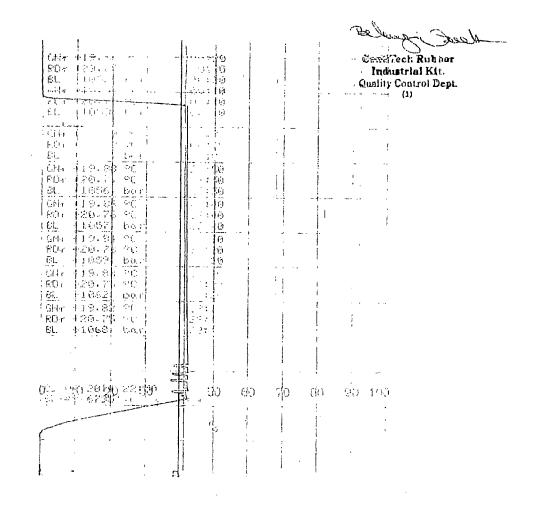
Hose Data Sheet

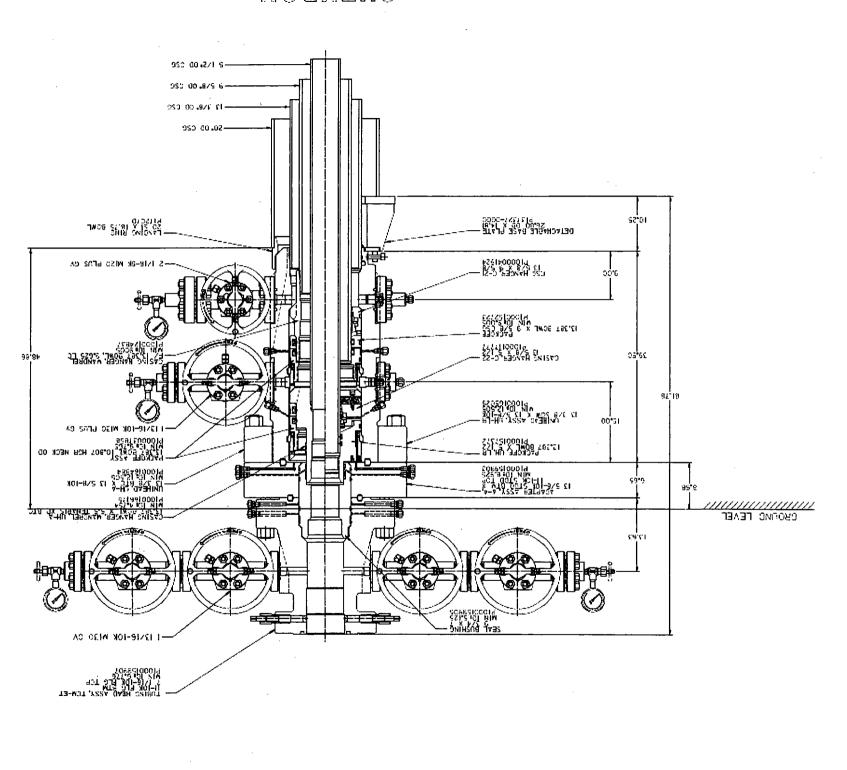
CRI Order No.	538332
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500412631 CBC544771, CBC544769, CBC544767, CBC544763, CBC544768, CBC544745, CBC544744, CBC544746
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	45 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOURC/W BX155 ST/ST INLAID R.GR.
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOUR C/W BX155 ST/ST INLAID R.GR.
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	Yes
Lifting collar	Yes
Element C	Yes
Safety chain	Yes
Safety wire rope	Νο
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Ontinental 🄧

CONTITECH RUBBER	No:QC	-DB- 231/ 2014
Industrial Kft.	Page:	10 / 119

ContiTech


	LITY CONT		ATE	1	CERT. N	10: 10:	594	
PURCHASER:	ContiTech C	Dil & Marine C	orp.	<u> </u>	P.O. Nº:		4500412631	1
CONTITECH ORDER Nº:	538332	HOSE TYPE:	3"	ID		Choke &	Kill Hose	
HOSE SERIAL Nº:	67349	NOMINAL / AC	TUAL LE	ENGTH:		13,72 m	/ 13,85 m	
W.P. 68,9 MPa	10000 psi	T.P. 103,4	MPa	1500)O psi	Duration:	60	mi
Pressure test with water a	t			· · · ·				
ambient temperature								
	·	Saa attaab	mont	(1 no	ao)			
		See attach	ment.	(тра	ge)			
A 40 -								
	Min.							
	Min. MPa				ود فود معنی و در وارد و ارمان			
	MPa	Seria	- I Nº		Q	uality	Heat N	lo
→ 10 mm = 25 m	МРа Туре	Seria 1435	I Nº .143	6		uality il 4130	Heat N A1258	
→ 10 mm = 25 g COUPLINGS	MPa Type with	· · · · · · · · · · · · · · · ·		6	AIS			U
→ 10 mm = 25 r COUPLINGS 3" coupling v	MPa Type with	· · · · · · · · · · · · · · · ·		6	AIS	il 4130	A1258	U 9
→ 10 mm = 25 y COUPLINGS 3" coupling y 4 1/16" 10K API Swive Hub	MPa Type with el Flange end	1435		6	AIS	6 4130 6 4130 6 4130	A1258 03493 A1045	U 9 N
→ 10 mm = 25 y COUPLINGS 3" coupling y 4 1/16" 10K API Swive Hub Not Designed Fo	MPa Type with el Flange end r Well Testin g	1435		6	AIS	i 4130 i 4130 i 4130 Al	A1258 03493 A1045 PI Spec 16 (U 9 N C
→ 10 mm = 25 g COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub	MPa Type with el Flange end r Well Testin g	1435		6	AIS	i 4130 i 4130 i 4130 Al	A1258 03493 A1045	U 9 N C
→ 10 mm = 25 F COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119	MPa Type with el Flange end r Well Testin g	1435		6	AIS	i 4130 i 4130 i 4130 Al	A1258 03493 A1045 PI Spec 16 (U 9 N C
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 Ni metal parts are flawless VE CERTIFY THAT THE AB	MPa Type with el Flange end r Well Testing 98 5 50VE HOSE HAS BE	1435 g en Manufactuf	143 RED IN A	CCORDA		6 4130 6 4130 6 4130 Al Temp	A1258 03493 A1045 PI Spec 16 (perature rate	U 9 N C e:"B'
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 All metal parts are flawless WE CERTIFY THAT THE ABI NSPECTED AND PRESSUR	MPa Type with el Flange end r Well Testing 8 5 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1435 9 EN MANUFACTUR VE WITH SATISFA	143 RED IN A	CCORDA	AIS AIS AIS	61 4130 61 4130 61 4130 Al Temp H THE TERMS	A1258 03493 A1045 PI Spec 16 (perature rate	U 9 N C e:"B'
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 Ill metal parts are flawless VE CERTIFY THAT THE ABI NSPECTED AND PRESSUR STATEMENT OF CONFOR conditions and specificatio	MPa Type with el Flange end r Well Testing 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1435 g EN MANUFACTUR VE WITH SATISFA certify that the abox chaser Order and th	143 RED IN A ACTORY re items/e at these	CCORDA RESULT equipmen items/egi	AIS AIS AIS	il 4130 il 4130 il 4130 Al Temp H THE TERMS by us are in ca are fabricated	A1258 03493 A1045 PI Spec 16 (perature rate of of THE ORDER	U 9 N C e:"B' ≹ terms, ted in
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 All metal parts are flawless WE CERTIFY THAT THE ABI NSPECTED AND PRESSUR STATEMENT OF CONFOR conditions and specificatio	MPa Type with el Flange end r Well Testing 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1435 g EN MANUFACTUR VE WITH SATISFA certify that the abox chaser Order and th	143 RED IN A ACTORY re items/e at these	CCORDA RESULT equipmen items/egi	AIS AIS AIS	il 4130 il 4130 il 4130 Al Temp H THE TERMS by us are in ca are fabricated	A1258 03493 A1045 PI Spec 16 (perature rate of of THE ORDER	U 9 N C e:"B' ≹ terms, ted in
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 All metal parts are flawless WE CERTIFY THAT THE ABI NSPECTED AND PRESSUR STATEMENT OF CONFOR	MPa Type with el Flange end r Well Testing 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1435 g EN MANUFACTUR VE WITH SATISFA certify that the abox chaser Order and th	RED IN A ACTORY ve items/e nat these and mee	CCORDA RESULT equipmen items/egi	AIS AIS AIS AIS	All 4130 All 4130 All 4130 All Temp H THE TERMS by us are in co are fabricated by an are in co are fabricated by an are in co	A1258 03493 A1045 PI Spec 16 (perature rate of of THE ORDER onformity with the inspected and test and design require	U 9 N C e:"B' ≹ terms, ted in
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 All metal parts are flawless WE CERTIFY THAT THE ABO NSPECTED AND PRESSUR STATEMENT OF CONFOR conditions and specificatio accordance with the reference	MPa Type with el Flange end r Well Testing 08 0VE HOSE HAS BE E TESTED AS ABO MITY: We hereby on ns of the above Purc ed standards, codes	1435 g EN MANUFACTUR VE WITH SATISFA certify that the abox chaser Order and th	RED IN A ACTORY ve items/e nat these and mee	CCORDA RESULT equipmen items/equit the rele	AIS AIS AIS AIS ANCE WITI ANCE WITI ANCE WITI AUXINIAL CONTRACTOR	All 4130 All 4130 All 4130 All Temp H THE TERMS by us are in co are fabricated stance criteria	A1258 03493 A1045 PI Spec 16 (perature rate of of THE ORDER onformity with the inspected and test and design require	U 9 N C e:"B' ≹ terms, ted in
→ 10 mm = 25 H COUPLINGS 3" coupling v 4 1/16" 10K API Swive Hub Not Designed Fo Tag No.: 66 – 119 All metal parts are flawless WE CERTIFY THAT THE ABO NSPECTED AND PRESSUR STATEMENT OF CONFOR conditions and specificatio accordance with the reference	MPa Type with el Flange end r Well Testing 08 0VE HOSE HAS BE E TESTED AS ABO MITY: We hereby on ns of the above Purc ed standards, codes	1435 g EN MANUFACTUR VE WITH SATISFA certify that the abox chaser Order and th	RED IN A ACTORY ve items/e nat these and mee	CCORDA RESULT equipmen items/equit the rele	AIS AIS AIS AIS ANCE WIT In the supplied uipment we vant acception of Com	All 4130 All 4130 All 4130 All Temp H THE TERMS by us are in co are fabricated by an are in co are fabricated by an are in co	A1258 03493 A1045 PI Spec 16 (perature rate s OF THE ORDER onformity with the inspected and test and design require	U 9 N C e:"B' ≹ terms, ted in

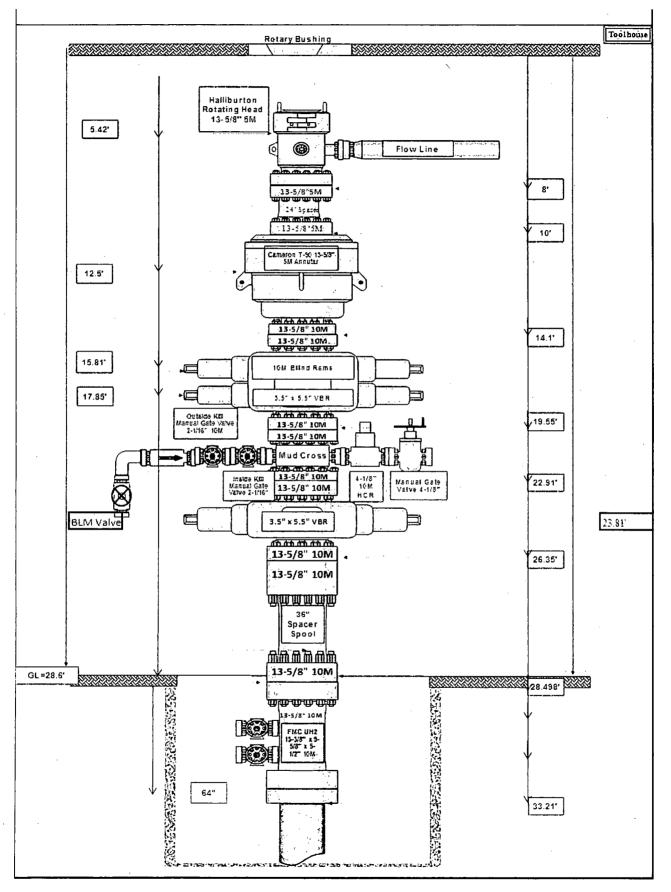

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE

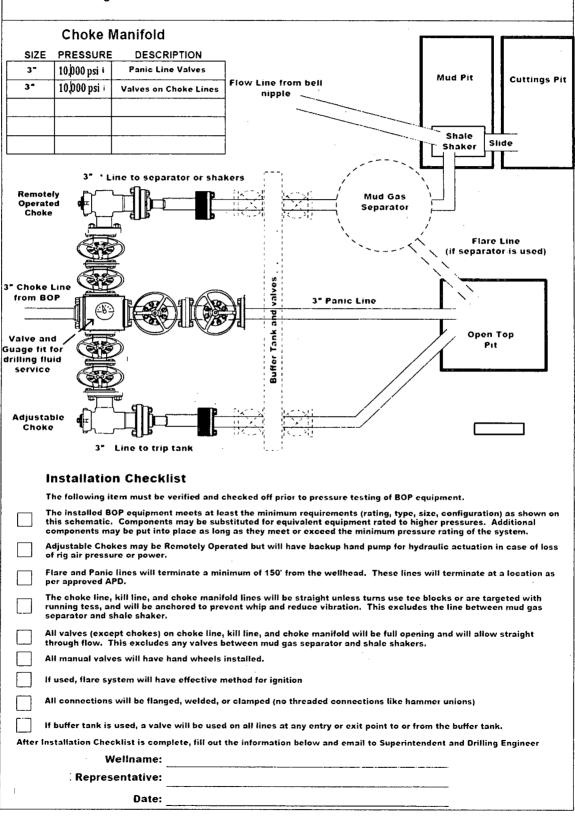
.

No: 594, 596, 597

Page: 1/1

برجافا فتصبحون بداسته احرجا ور




Diagram A

CHOKE MANIFOLD SCHEMATIC

Minimum Requirements

OPERATION : Wolfcamp A wells

Minimum System Pressure Rating : 10,000 psi

Diagram B

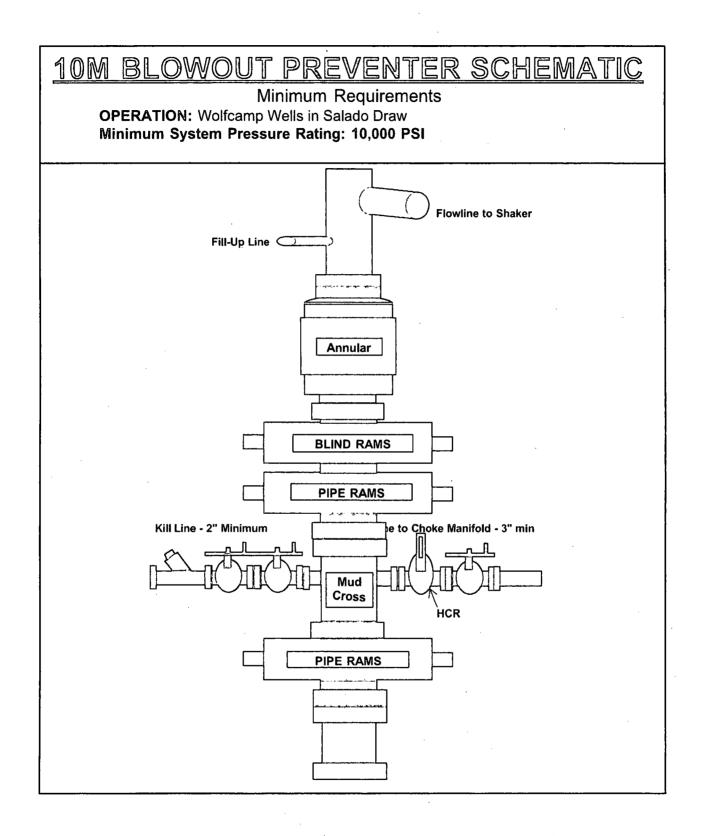
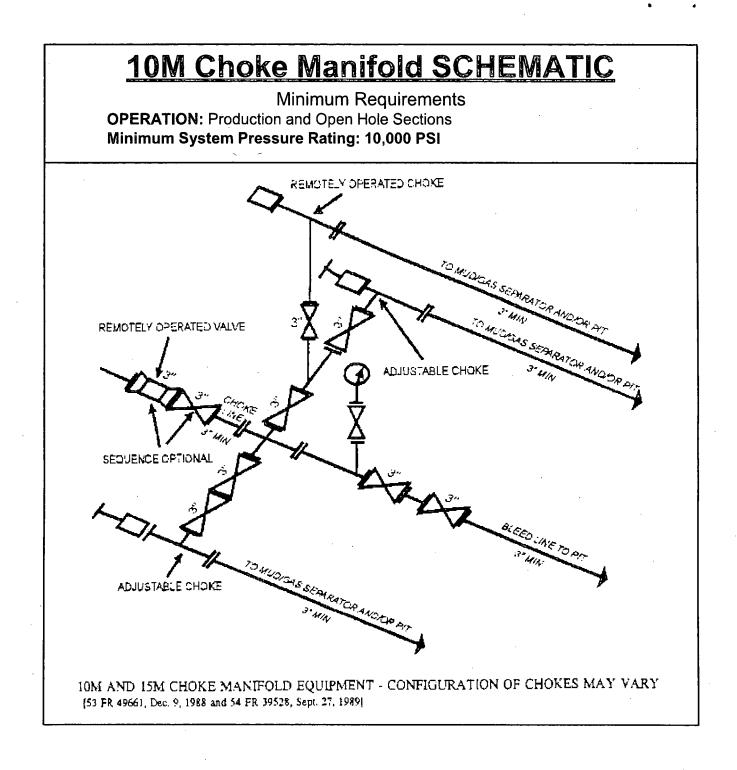



Diagram C

