1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal. Production

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	_6-3/4"	5"	18#	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based	on the following "V	Vorst Case" casing desi	<u>gn:</u>	
Surface Casing:	850'			
Intermediate Casing:	11,200' TV	D		
Production Casing:	23,000' MD	/12,750' TVD (10,300' VS	@ 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09

1.23

1.97

Min SF is the smallest of a group of safety factors that include the following considerations:

1.11

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid		/		
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none		1		
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

1.37

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface	F 7			(ppg)	(sx/cu ft)	Open Hole		gal/sk
. Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	<u>6.35</u>
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner								
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

ONSHORE ORDER NO. 1 Chevron SD EA 18/19 Fed Com P15 19H Lea County, NM

6. MUD PROGRAM

From	- To	Type	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30
	From 0' 800' 11,150'	From To 0' 800' 800' 11,150' 11,150' 12,300'	From To Type 0' 800' Spud Mud 800' 11,150' Oil Based Mud 11,150' 12,300' Oil Based Mud	From To Type Weight 0' 800' Spud Mud 8.3 - 8.7 800' 11,150' Oil Based Mud 8.7-9.2 11,150' 12,300' Oil Based Mud 9.5-13.5	From To Type Weight F. Vis 0' 800' Spud Mud 8.3 - 8.7 32 - 34 800' 11,150' Oil Based Mud 8.7-9.2 28 - 30 11,150' 12,300' Oil Based Mud 9.5-13.5 70 - 75

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

うじゅうか そりれいけい

Section Section

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	 •	Interval	Timing	Vendor
Mudlogs	2 man mudlog	у, [°]	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma		Int. and Prod. Hole	While Drilling	TBD

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE.

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is: 5750 psi No abnormal pressures or temperatures are expected. Estimated BHP at production TD is: 9830 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)	· · · · · · · · · · · · · · · · ·	12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8''	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18# _	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

Surface Casing:	850'			
Intermediate Casing:	11,200' TVI	D		
Production Casing:	23,000' MD	/12,750' TVD (10,300' VS	@ 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement		i i		
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

.

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner								
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

а.	No abnormal pressures or temperatures are expected.	Estimated BHP at intermediate TD is:	5750	psi
	No abnormal pressures or temperatures are expected.	Estimated BHP at production TD is:	9830	psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

ĥ

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC 4	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based	l on the following "V	Vorst Case" casing desi	<u>gn:</u>	
Surface Casing:	850'			
Intermediate Casing:	11,200' TVI	D		
Production Casing:	23,000' MD	/12,750' TVD (10,300' VS	@ 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				· · · · · ·
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				·
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				Х
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage'2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner					3			
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production			.					
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 4

6. MUD PROGRAM

From	To	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a.	No abnormal pressures or temperatures are expected.	Estimated BHP at intermediate TD is:	5750	psi
	No abnormal pressures or temperatures are expected.	Estimated BHP at production TD is:	9830	psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

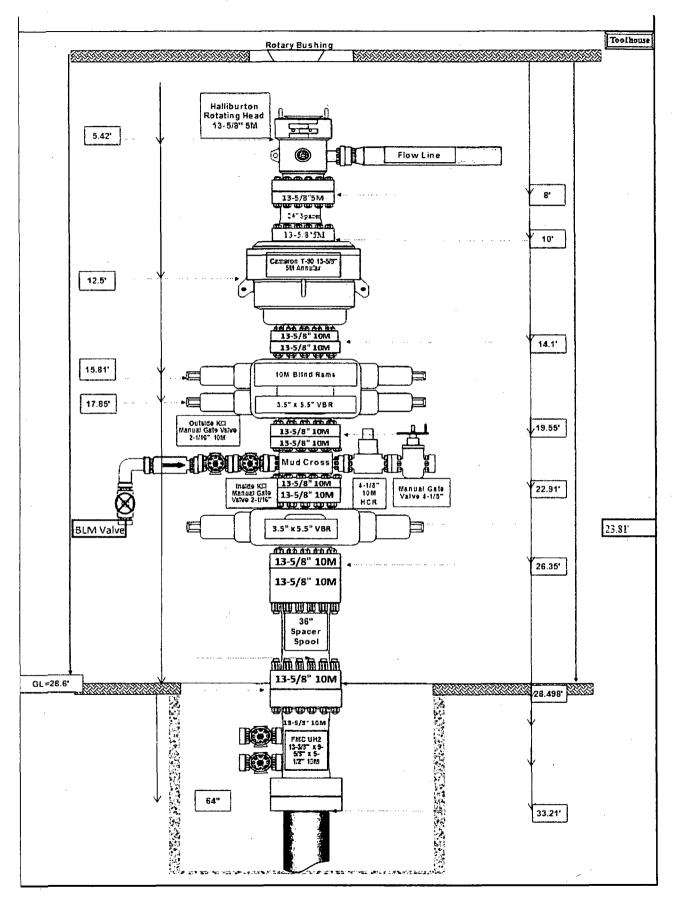
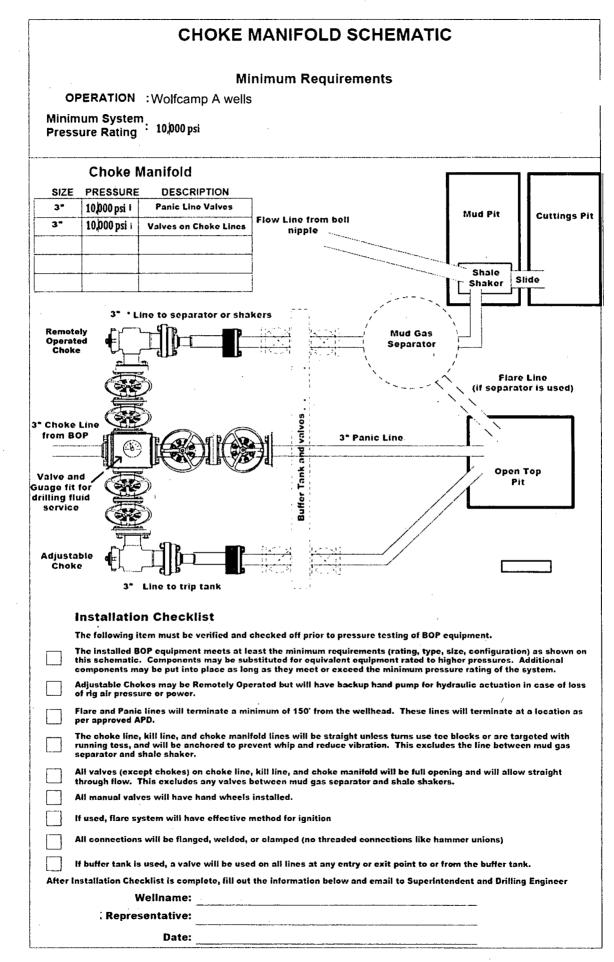



Diagram A

Diagram B

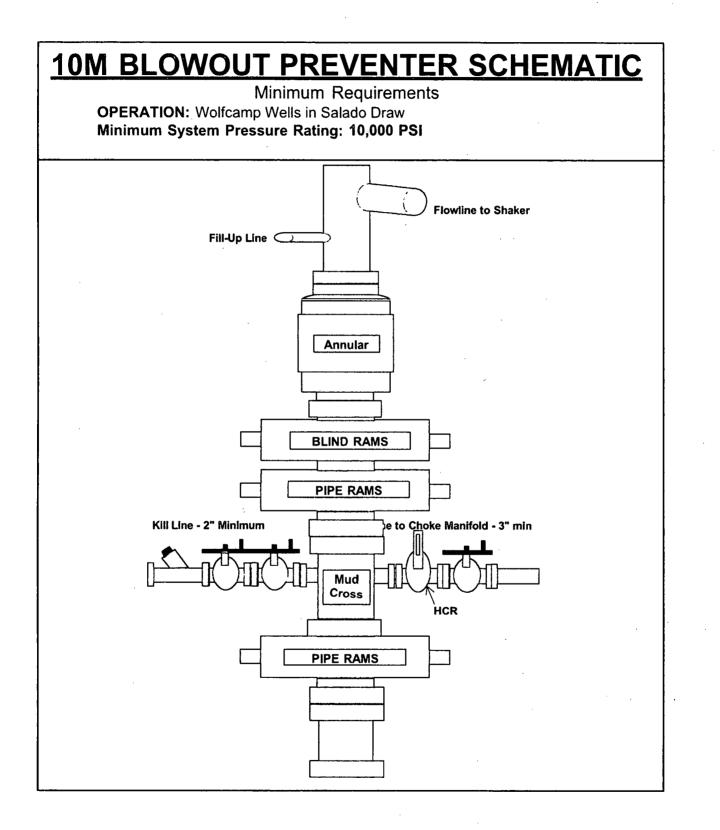


Diagram C

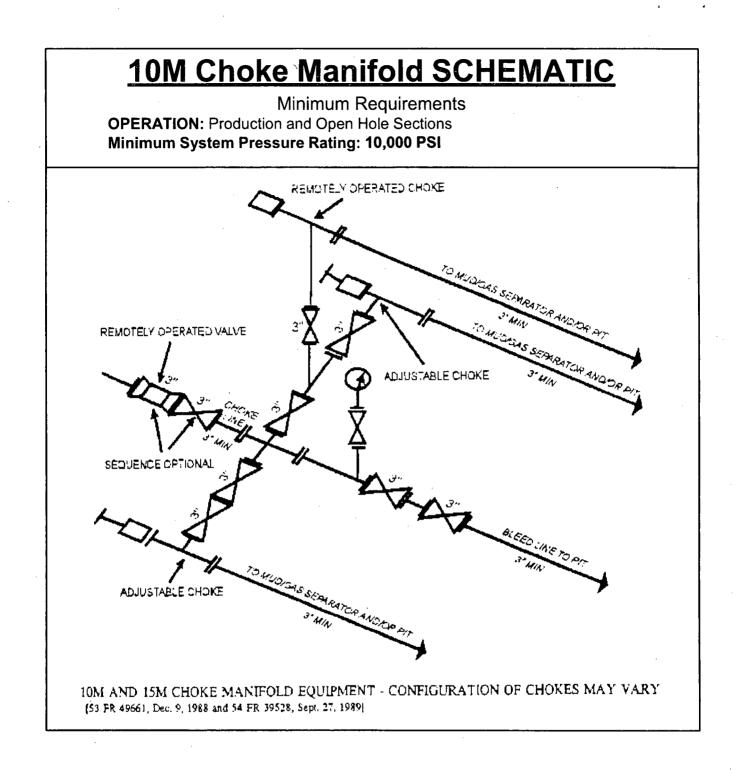
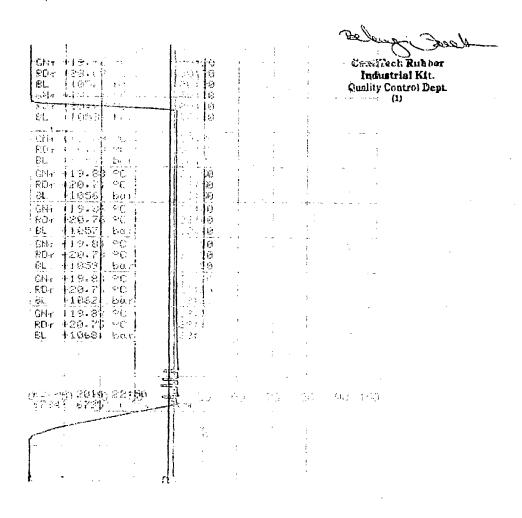
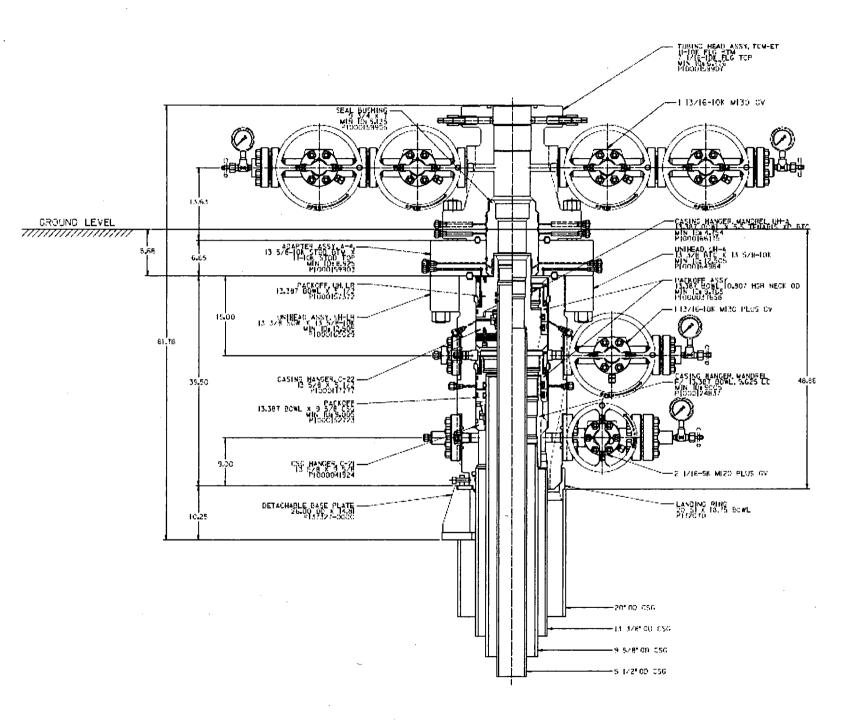
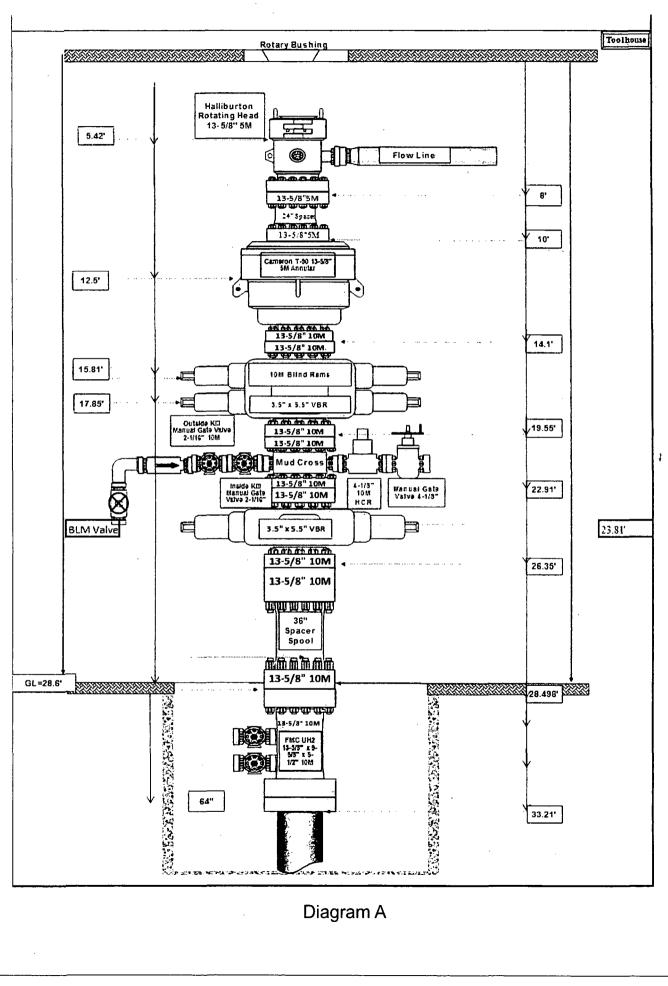


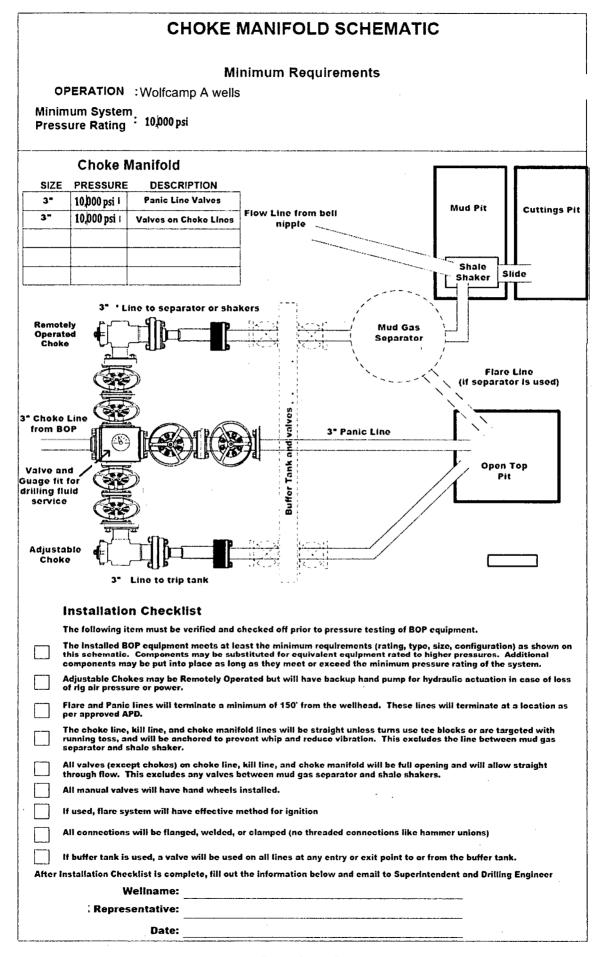
Diagram D

CONTITECH RUBBER	No:QC-DB- 231/ 2014		
Industrial Kft.	Page:	10 / 11 9	

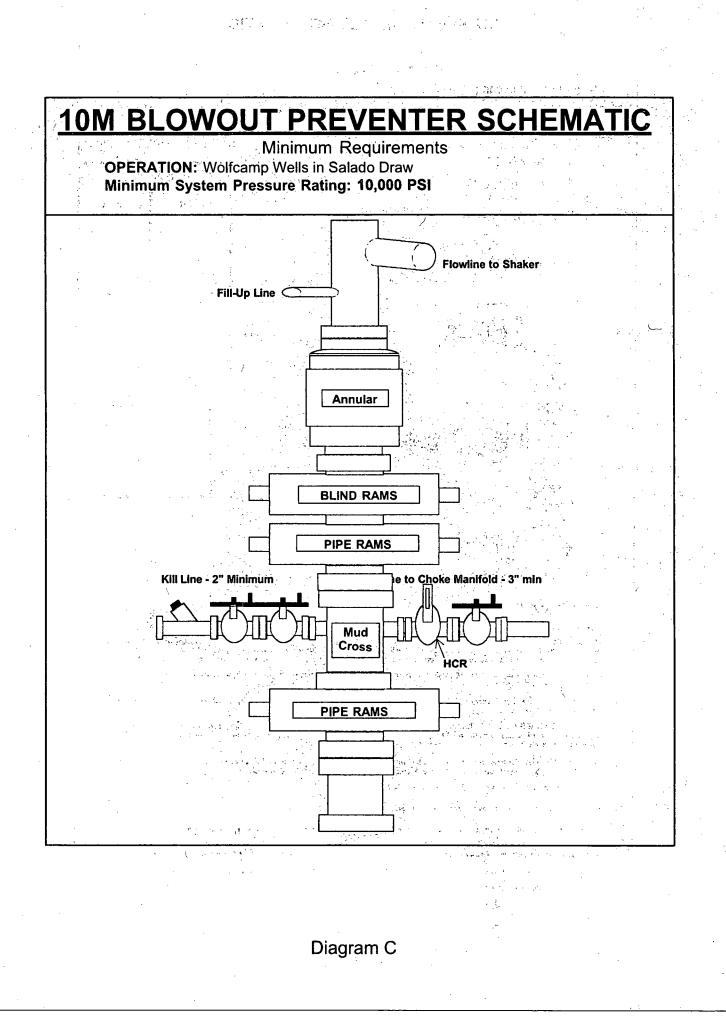

ContiTech -


-	LITY CONT	ROL CERTIFICAT	E	CERT. N	1 °:	594	
PURCHASER:	ContiTech (Dil & Marine Corp.	-	P.O. Nº:		450041263	1
CONTITECH ORDER Nº:	538332	HOSE TYPE: 3	" ID		Choke 8	k Kill Hose	
HOSE SERIAL Nº:	67349	NOMINAL / ACTUA	LENGTH	:	13,72 m	n / 13,85 m	·· <u>-</u> ·· ·· · ,
W.P. 68,9 MPa	10000 psi	T.P. 103,4 MP	a 150	00 psi	Duration:	60	min.
ambient temperature							
	· .	See attachme	nt. (1 pa	ige)			•
						Ļ	
	Min. MPa						
		Serial N°		Q	uality	Heat N	lo
3" coupling	with	14 35 1	436	AIS	SI 4130	A1258	 U
4 1/16" 10K API Swiv				AIS	si 4130	03493	9
Hub				AIS	il 4130	A1045	<u>N</u>
Not Designed Fo	r Well Testin	g			A	PI Spec 16 (2
Tag No.: 66 – 119	98				Temp	perature rate	∋:"B"
All metal parts are flawles	5						
WE CERTIFY THAT THE AB					H THE TERM	S OF THE ORDER	2
STATEMENT OF CONFOR conditions and specification accordance with the reference	ons of the above Pur	chaser Order and that the	ese items/eq	juipment w	ere fabricated	inspected and test	ed in
Date:	Inspector	Qu	ality Contro	Con In	tiTech Rubb dustrial Kft.		1/
03. April 2014.		0	e hunt	itauto	ty Control De (1)	south 4	als


ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE


No: 594, 596, 597

Page: 1/1



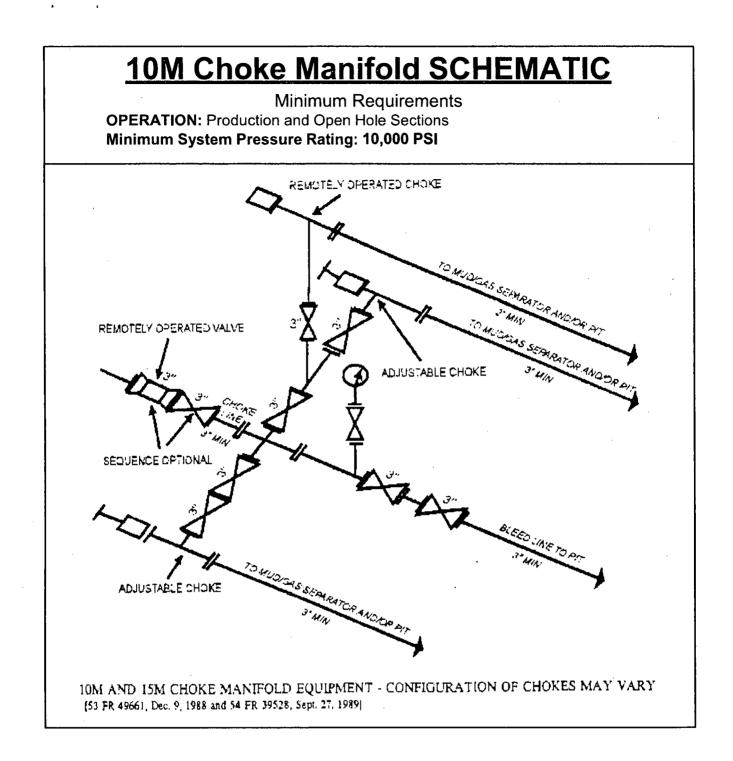


Diagram B

For the latest performance data, always visit our website: www.tenaris.com

January 18 2016

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 5.500 in. Wall: 0.361 in: Weight: 20.00 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

		·	PIPE BOD)	DATA	·				
g			GEOME	TRY					
i de la	Nominál OD	5.500 in.	Nominal Weight	20.00 (bs/ft	Standard Drift Diameter	4.653 in.			
2	Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A			
·ξ	Plain End Weight	19.83 lbs/ft			and Bertan				
ξ		an a	PERFORM	ANCE					
S S S S	Body Yield Strength	729 x 1000 lbs	Internal Yield	14360 psi	SMYS	125000 psi			
Ì	Collapse	12100 psi	a la companya da serie da se			•			
	· · · · · · · · · · · · · · · · · · ·								
		TEI	NARISXP® BTC CC		ATA				
		· · · · · · · · · · · · · · · · · · ·	GEOME						
ξ	Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in			
Ş	Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.			
3			PERFORM						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Tension Efficiency	100 %	Joint Yield Strength	<b>729</b> x 1000 Ibs	Internal Pressure Capacity ⁽¹⁾	14360 psi			
3	Śtructural	х <b>н</b> , к	Structural	700 1000	Ctructural				
5	Compression	100 %	Compression Strength	<b>729</b> x 1000	Structural Bending ⁽ 2)	<b>104</b> °/100 ft			
	External Pressure Capacity	12100 psi							
		. E	STIMATED MAKE-	UP TORQUES	3)				
	Minimum	<b>11540</b> ft-Įbs	Optimum	12820 ft-lbs	Maximum	14100 ft-lbs			
			OPERATIONAL LI	MIT TORQUES	5				
	Operating Torque	22700 ft-lbs	Yield Torque	25250 ft-lbs					
		-	BLANKING DI	MENSIONS					
	Blanking Dimensions								

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

For the latest performance data, always visit our website: www.tenaris.com

June 17 2015

# Tenaris Hydril

# Connection: Wedge 521™ Casing/Tubing: CAS

Size: 5.000 in. Wall: 0.362 in. Weight: 18.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

	- / .	PIPE BODY	( DATA	÷.	
. ,		GEOME	TRY		•
Nominal OD	<b>5.000</b> in.	Nominal Weight	<b>18.00</b> lbs/ft	Standard Drift Diameter	<b>4.151</b> in.
Nominal ID	<b>4.276</b> in.	Wall Thickness	<b>0.362</b> in.	Special Drift Diameter	N/A
Plain End Weight	17.95 lbs/ft				· · · · · · · · · · · · · · · · · · ·
		PERFORM	ANCE		
Body Yield Strength	<b>580</b> × 1000 lbs	Internal Yield	<b>13940</b> psi	SMYS	<b>110000</b> psi
Collapse	14840 psi				
	V	VEDGE 521 ¹⁰¹ CON GEOME	· · · · · · · · · · · · · · · · · · ·	<b>ra</b>	
Connection OD	5.359 in.	Connectión ID	4.226 in.	Make-Up Loss	3.620 in.
Critical Section Area	<b>3.891</b> sq. in.	Threads per in.	3.36		
· · · · · · · · · · · · · · · · · · ·		PERFORM	IANCE		
Tension Efficiency	73.8 %	Joint Yield Strength	<b>428</b> × 1000 , lbs ₍	Internal Pressure Capacity	<b>13940</b> psi
Compression Strength	<b>514</b> × 1000 lbs	Compression Efficiency	<b>88.7</b> %	Bending	<b>75</b> °/100 ft
External Pressure Capacity	<b>14840</b> psi				•
		MAKE-UP TO	ORQUES		
Minimum	6100 ft-lbs	Öptimum	<b>7300</b> ft-lbs:	Maximum ( <u>*</u> )	<b>10700</b> ft-lbs
		OPERATIONAL LI	MIT TORQUES	* *	
Operating Torque	17300 ft-lbs	Yield Torque	26000 ft-lbs		· · · · · · · · · · · · · · · · · · ·
	······	BLANKING DI	MENSIONS	• · · · · · · · · · · · · · · · · · · ·	

http://premium.connectiondata.tenaris.com/tsh_print.php?hWall=0.362&hSize=5.000&hGrade=P110-IC&hConnection=TSH%20W521&hUnits=0&hRBW=87.50... 1/2

#### Blanking Dimensions

* If you need to use torque values that are higher than the maximum indicated, please contact a local

Tenaris technical sales representative.



Data Sheet

TH DS-16.0372 23 August 2016 Rev 00

# 5.000" 18.00 lb/ft P110-ICY TenarisHydril Wedge 521®

		PIPE BO	DY DATA		
			METRY		· · · · · · · · · · · · · · · · · · ·
				Standard Drift	
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	N/A
Plain End Weight	17.95 lbs/ft	· · · · · · · · · · · · · · · · · · ·		· ·	
	· · ·	PERFOR	RMANCE		
Body Yield Strength	659 x 1000 lbs	Internal Yield ¹	16290 psi	Collapse	14840 psi
$\frac{1}{2}$				and the second	
		CONNECT	ION DATA		
		GEO	METRY		
Box OD (Turned)	5,359 in.	Pin ID (Bored)	4.226 in.	Make-Up Loss	3.62 in.
Critical Section Area	3.891 sq. in.	Threads per in.	3.36		
		PERFO	RMANCE		
] Tension Efficiency	73.8 %	Joint Yield Strength	486 x 1000 lbs	Internal Yield ¹	16290 psi
Compression Efficiency	88.7 %	Compression Rating	585 x 1000 lbs	Collapse	14840 psi
Bending	85°/100 ft	х. Х.,			
		MAKE-UF	TORQUES		
Minimum	6100 ft-lbs	Optimum	7300 ft-lbs	Maximum*	10700 ft-lbs
		OPERATIONAL	LIMIT TORQUES		
Operational	20000 ft-lbs	13	· · · · · · ·	Yield Torque	30000 ft-lbs
<u> </u>	· · · · ·				<u> </u>

*If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

1. Internal Yield Rating is based on 90% RBW.

#### Data Sheet



TH DS-16.0370 11 ago 16 Rev 00

### 5" 18.00 ppf P110-ICY - TenarisXP® BTC (min wt 90%) (USC Units)

		PIPE BOD	Y DATA		
-		GEOME	TRY		
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	•
Plain End Weight	17.95 lbs/ft		·		
	¢	PERFORM	IANCE		, <b>o</b>
Body Yield Strength	659 x 1000 lbs	Internal Yield ⁽⁴⁾	16290 psi	Collapse	14840 psi
		CONNECTIO	ON DATA		
Regular OD	5.720 in.	Coupling Length	9.325 in.	Connection ID	4.264 in.
Critical Section Area	5.275 sq. in.	Threads per in.	5	Make-Up Loss	4.141 in.
		PERFORM	IANCE		•
Tension Efficiency	100.0 %	Joint Yield Strength	659 x 1000 lbs	Internal Pressure Capacity ^{(1) (4)}	16290 psi
Structural Compression Efficiency	100.0 %	Structural Compression Rating	659 x 1000 lbs	External Pressure Capacity	14840 psi
Structural Bending ⁽²⁾	115°/100 ft				
·····	· · · · · · · · · · · · · · · · · · ·	MAKE-UP TC	DRQUES ⁽³⁾	· · · · · · · · · · · · · · · · · · ·	
Minimum	11480 ft-lbs	Target	12750 ft-lbs	Maximum	14030 ft-lbs
Operating Torque	15800 ft-lbs	Yield Torque	17700 ft-lbs		

(1) Internal Yield pressure related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com.

(4) Minimum wall thickness 90% of nominal

v49

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1

#### 1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

#### 2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

#### 3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

#### 4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based	l on the following "W	<u>Vorst Case" casing desi</u>	gn:	
Surface Casing:	850'			
Intermediate Casing:	11,200' TV	D		
Production Casing:	23,000' MD	)/12,750' TVD (10,300' VS	@ 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water		,		1
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	x
P external: Water gradient in cement, mud above TOC				·
P internal: none				
Cementing- Surf, Int, Prod Csg		X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	Х	X	X	X

#### 5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole	,	gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner	- · · · ·							
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

#### 6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

#### 7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor	
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD	
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD	

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

#### 8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected.	Estimated BHP at intermediate TD is:	5750	psi
No abnormal pressures or temperatures are expected.	Estimated BHP at production TD is:	9830	psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

# Casing and Tubing Performance Dat

**Tenaris** 

		P	IPE BODY DAT	A	· · · · ·
		N	GEOMETRY		a and a second
Outside Diameter	9.625 in	Wall Thickness	0.435 in	API Drift Diameter	8.599 in
Nominal Weight	43.50 lbs/ft	Nominal ID	8.755 in	Alternative Drift Diameter	8.625 in
Plain End Weight	42.73 lbs/ft	Nominal cross section	12.559 in		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		PERFORMANCI	a an	
Steel Grade	L80	Minimum Yield	80,000 psi	Minimum Ultimate	95,000 psi
Tension Yield	1,005,000 in	Internal Pressure Yield	6,330 psi	Collapse Pressure	3,810 psi
Available Seamless	Yes	Available Welded	No		
		co	NNECTION DA	TA	
TYPE: LTC	· · · · ·	· · · · · · · · · · · · · · · · · · ·	GEOMETR	and the second secon	

Coupling Reg OD	10.625 in	Threads per in	8	Thread turns make up 3.5
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	an a	PERFORMANCI	
Steel Grade	L80	Coupling Min Yield	80,000 psi	Coupling Min Ultimate 95,000 psi
Joint Strength	813,000 lbs	inter a state of the second		Internal Pressure Resistance 6,330 psi

الأيون ال 18

2415

1. Same and A St. Standy on

et Barret n e distance e

**Operator Name: CHEVRON USA INCORPORATED** 

Well Name: SD EA 18 19 FED COM P15

Well Number: 19H

Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

**USFS Ranger District:** 

Disturbance type: WELL PAD

Describe:

Surface Owner: OTHER

Other surface owner description: A E & J ROYALTIES, LLC

BIA Local Office:

**BOR Local Office:** 

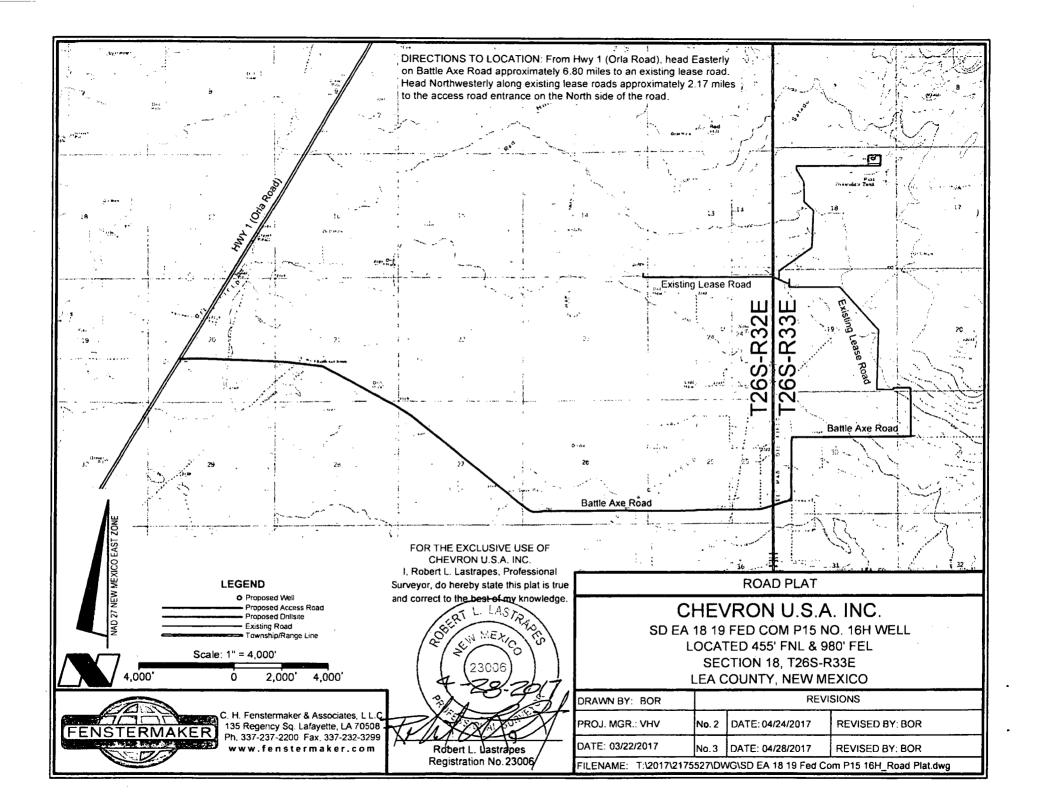
COE Local Office:

**DOD Local Office:** 

NPS Local Office:

State Local Office:

**Military Local Office:** 


**USFWS Local Office:** 

**Other Local Office:** 

**USFS Region:** 

USFS Forest/Grassland:

#### USFS Ranger District:

