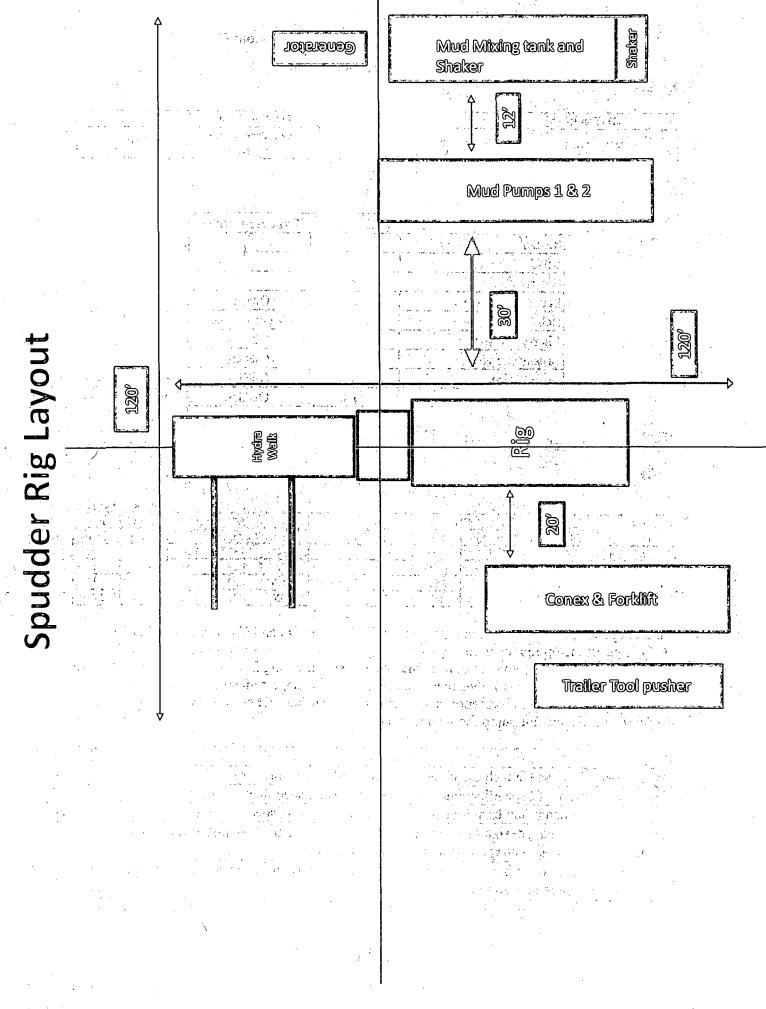
OXY USA Inc. - Mesa Verde 17-8 Federal Com 2H

1. Geologic Formations

TVD of target	10566'	Pilot Hole Depth	N/A
MD at TD:	20675'	Deepest Expected fresh water:	903'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	903	
Salado	1000	
Castile	3286	
Lamar/Delaware	4656	Oil/Gas
Bell Canyon	4671	Water/Oil/Gas
Cherry Canyon	5549	Oil/Gas
Brushy Canyon	6890	· Oil/Gas
Bone Spring	8483	Oil/Gas
1st Bone Spring	9656	Oil/Gas
2nd Bone Spring	9928	Oil/Gas


*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
Hole Size	Casing In	terval	Ċsg. Size	Size Weight SF on S				Body SF	Joint SF	
(in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tension
17.5	· 0	953	13.375	54.5	J55	BTC	4.83	1.34	2.46	2.63
12.25	0	7500	9.625	43.5	HCL-80	BTC	1.22	1.58	2.05	2.15
12.25	7500	9893	9.625	47	HCL-80	BTC	1.29	1.85	3.83	4.16
8.5	9793	20675	5:5	20	P-110	DQX	2.41	1.20	2.26	2.49

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	·Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y

OXY USA Inc. - Mesa Verde 17-8 Federal Com 2H

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (hours)	Slurry Description	
Surface	613	14.2	1.68	6.53	6:50	Class C Cement, Accelerator	
Production	529	10.2	3.05	15.63	15:07	Pozzolan Cement, Retarder	
Casing	239	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Sal	
DV/ECP Tool	l @ 4706' (We i	request the opti	on to cancel the	e second stage operations		ted to surface during the first stage of cement	
2nd Store	1151	12.9	`1.85	9.86	12:44	Class C Cement, Accelerator, Retarder	
2nd Stage	207	14.8	1.33	6.34	6:31	Class C Cement	
Production Liner	1760	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Sal	

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	953	N/A	50%
Production Casing	4606	8893	8893	9893	20%	20%
2nd Stage Production Casing	0	4206	4206	4706	75%	75%
Production Liner	Ň/A	N/A	9793	20675	N/A	15%

• <u>Cement Top and Liner Overlap</u>

- Oxy is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9-5/8" mainbore in the future.
- Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve
- Cement will be brought to the top of this liner hanger

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		4	Tested to:
· · · · · · · · · · · · · · · · · · ·			Annular		1	70% of working pressure
10.05271.1	13-5/8"	5M	Blind Ran	n	✓	j
12.25" Hole			Pipe Ram			250/5000
			Double Ra	m	✓	250/5000psi
			Other*	1		

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
		iance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart.			
	Y	Are anchors required by manufacturer?			
	and co per Or requir	tibowl or a unionized multibowl wellhead system will be employed. The wellhead onnection to the BOPE will meet all API 6A requirements. The BOP will be tested ashore Order #2 after installation on the surface casing which will cover testing ements for a maximum of 30 days. If any seal subject to test pressure is broken the in must be tested. We will test the flange connection of the wellhead with a test port			

that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematics.

5. Mud Program

Depth			Weight		
From (ft)	To (ft)	Туре	(ppg)	Viscosity	Water Loss
0	953	Water-Based Mud	8.4-8.6	40-60	N/C
953	4706	Brine	9.8-10.0	35-45	N/C
4706	9893	Water-Based Mud	8.8-9.6	38-50	N/C
9893	20675	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 13.375" surface casing shoe with a saturated brine system from 953' - 4706', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system or a fully saturated brine direct emulsion system. We will drill with this system to the intermediate TD @ 9893'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well - vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	ICP - TD
No	PEX	

4 Drilling Plan

OXY USA Inc. - Mesa Verde 17-8 Federal Com 2H

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5274 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	176°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.	
 Will more than one drilling rig be used for drilling operations? If yes, describe. Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that Oxy would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the attached document for information on the spudder rig. 	Yes

Total estimated cuttings volume: 2526.6 bbls.

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Dolling, Plan Data Report

0/31/2017

APD ID: 10400014162

Submission Date: 05/16/2017

Operator Name: OXY USA INCORPORATED Well Name: MESA VERDE 17-8 FEDERAL COM

Highlighted data reflects the most recent changes

Show Final Text

Well Number: 2H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3564	903	903	SHALE,DOLOMITE ,ANHYDRITE	USEABLE WATER	No
2	SALADO	2564	1000	1000	SHALE,DOLOMITE ,HALITE,ANHYDRI TE		No
3	CASTILE	278	3286	3286	ANHYDRITE	OTHER : salt	No
4	LAMAR	-1092	4656	4656	LIMESTONE,SAND STONE,SILTSTON E		No
5	BELL CANYON	-1107	4671	4671	SANDSTONE,SILT STONE	NATURAL GAS,OIL,OTHER : BRINE	No
6	CHERRY CANYON	-1985	5549	5549	SANDSTONE,SILT STONE	NATURAL GAS,OIL,OTHER : BRINE	No
7	BRUSHY CANYON	-3326	6890	6890	LIMESTONE,SAND STONE,SILTSTON E	NATURAL	No
8	BONE SPRING	-4919	8483	8485	LIMESTONE,SAND STONE,SILTSTON E	NATURAL GAS,OIL	Yes
9	BONE SPRING 1ST	-6092	9656	9675	LIMESTONE,SAND STONE,SILTSTON E	NATURAL GAS,OIL	. Yes
10	BONE SPRING 2ND	-6364	9928	9948	LIMESTONE,SAND STONE,SILTSTON E	NATURAL GAS,OIL	. Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10566

Equipment: 13-5/8" 5M Annular, Blind Ram, Double Ram

Requesting Variance? YES

Variance request: Request for the use of a flexible choke line from the BOP to Choke Manifold.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. A multibowl wellhead or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system will be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

Choke Diagram Attachment:

MesaVerde17_8FdCom2H_ChkManifold_5M__05-10-2017.pdf

BOP Diagram Attachment:

MesaVerde17_8FdCom2H_FlexHoseCert_05-10-2017.pdf

MesaVerde17_8FdCom2H_BOP_5M13_58_Amd_20170918140101.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	953	0	953			953	J-55	54.5	BUTT	4.83	1.34	BUOY	2.63	BUOY	2.46
	PRODUCTI ON	12.2 5	9.625	NEW	API	N	0	7500	0_	7500			7500	HCL -80	43.5	BUTT	1.22	1.58	BUOY	2.15	BUOY	2.05
1	PRODUCTI ON	12.2 5	9.625	NEW	API	N	7500	9893	7500	9873			2393	HCL -80	47	BUTT	1.29	1.85	BUOY	4.16	BUOY	3.83
4	LINER	8.5	5.5	NEW	API	N	9813 ·	20675	9773	9793			10862	P- 110		OTHER - DQX	2.41	1.2	BUOY	2.49	BUOY	2.26

Casing Attachments

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

Casing Attachments

 Casing ID:
 1
 String Type:SURFACE

 Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

MesaVerde17_8FdCom2H_CsgCriteria_05-10-2017.pdf

Casing ID: 2 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

MesaVerde17_8FdCom2H_CsgCriteria_05-10-2017.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

MesaVerde17_8FdCom2H_CsgCriteria_05-10-2017.pdf

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

Casing Attachments

Casing ID: 4

String Type: LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

MesaVerde17_8FdCom2H_CsgCriteria_05-10-2017.pdf

 $MesaVerde17_8FdCom2H_5.5_20_P110_DQX_05-10-2017.pdf$

Section	4 - Ce	emen									
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	953	613	1.68	14.2	1030	50	Class C Cement	Accelerator

PRODUCTION	Lead	4706	0	4206	1151	1.85	12.9	2129	75	Class C Cement	Accelerator, Retarder
PRODUCTION	Tail		4206	4706	207	1.33	14.8	275	75	Class C Cement	none
PRODUCTION	Lead		4606	8893	529	3.05	10.2	1613	20	Pozzolan/CI C	Retarder
PRODUCTION	Tail		8893	9893	239	1.65	13.2	394	20	Class H Cement	Retarder, Dispersant, Salt
LINER	Lead		9793	2067 5	1760	1.63	13.2	2864	15	Class H Cement	Retarder, Dispersant, Salt

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CaCl2. OXY proposes to drill out the 13-3/8" surface casing shoe with a saturated brine system from 953-4706', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the Production Casing TD @ 9893'.

Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	953	WATER-BASED MUD	8.4	8.6							
953	4706	OTHER : Brine	9.8	10							
4706	9893	WATER-BASED MUD	8.8	9.6							
9893	2067 5	OIL-BASED MUD	8.8	9.6							

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR from TD to surface (horizontal well - vertical portion of hole). Mud Log from production Csg Shoe to TD.

List of open and cased hole logs run in the well: GR,MUDLOG

Coring operation description for the well:

No coring is planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5274

Anticipated Surface Pressure: 2949.48

Anticipated Bottom Hole Temperature(F): 176

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

MesaVerde17_8FdCom2H_H2S1_05-10-2017.pdf MesaVerde17_8FdCom2H_H2S2_05-10-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MesaVerde17_8FdCom2H_DirectPlan_05-10-2017.pdf MesaVerde17_8FdCom2H_DirectPlot_05-10-2017.pdf

Other proposed operations facets description:

Well will be drilled with a walking/skidding operation. Plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.

OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancellation cone and not pump the second stage.

Cement Top and Liner Overlap -

a. OXY is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9-5/8" mainbore in the future.

b. Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 2H

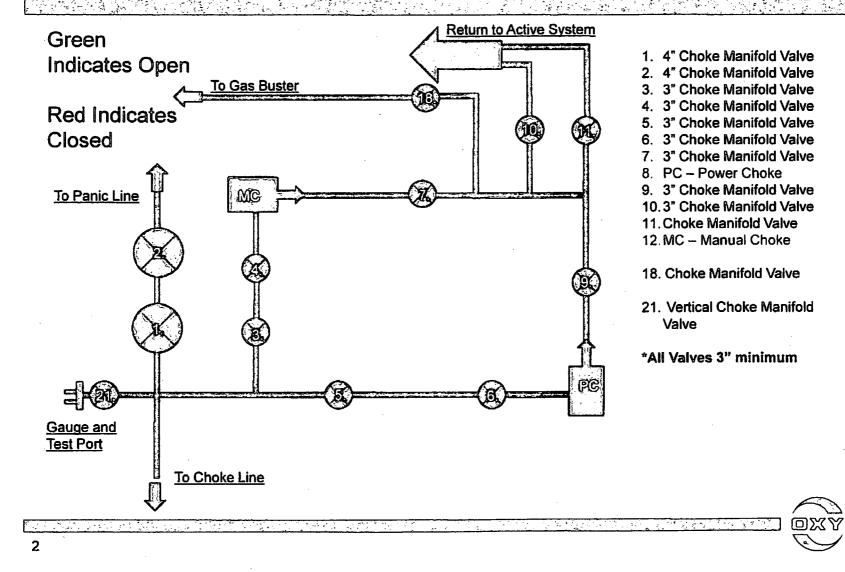
for the curve.

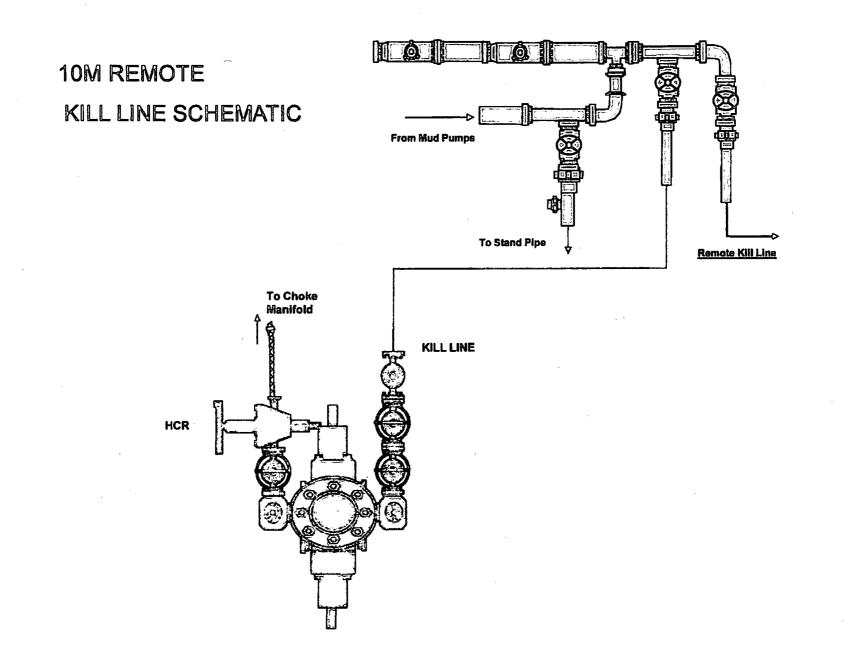
c. Cement will be brought to the top of this liner hanger

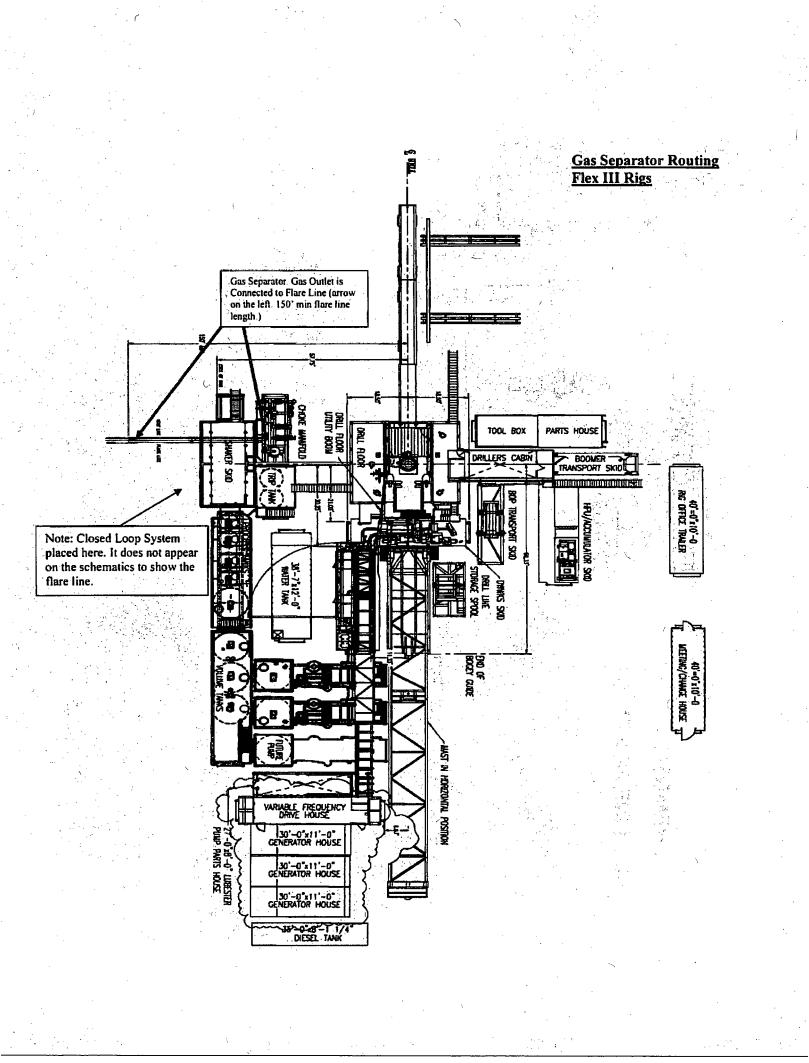
OXY requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that OXY would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the attached document for information on the spudder rig.

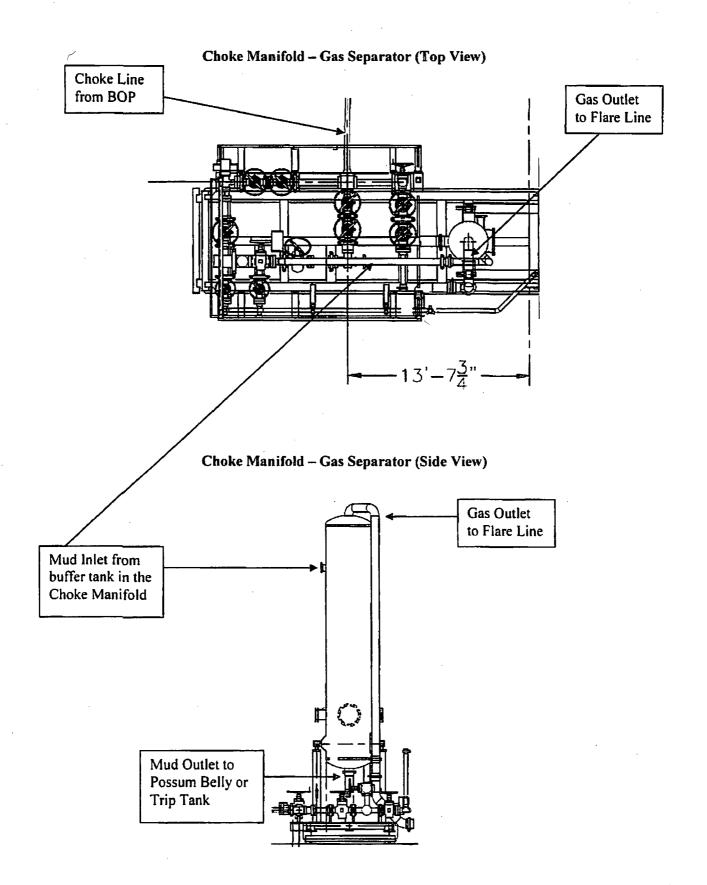
Per Mustafa Haque 8/29/17 disregard intermediate casing deficiency, the production casing string is serving as both and a production liner is being ran.

Other proposed operations facets attachment:


 $MesaVerde17_8FdCom2H_CsgTieBackDetail_05-10-2017.pdf$


MesaVerde17_8FdCom2H_SpudRigData_05-10-2017.pdf


MesaVerde17_8FdCom2H_DrillPlanAmd_20170918141242.pdf


Other Variance attachment:

5M Choke Panel

Fluid Technology

Quality Document

QUALIT INSPECTION A	TY CONT		ATE	CERT. N	1o:	746	
PURCHASER: F	Phoenix Bea	ttie Co.		P.O. Nº:	0	02491	
CONTITECH ORDER Nº: 4	12638	HOSE TYPE:	3" ID	Che	oke and K	II Hose	
HOBE SERIAL Nº:	52777	NOMINAL / ACT	UAL LENGTH:	ł	10,67 m		
W.P. 68,96 MPa 10	1000 psi	T.P. 103,4	MPa 1500	() psl	Ouration:	60 ~	ពារ់ក.
Pressure test with water at ambient temperature ↑ 10 mm = 10 Min. → 10 mm = 25 MPa	See	attachment.	(1 page)			,	
		COUPL	INGS				
Туре		Serial Nº		Quality		Heat N*	
3° coupling with 4 1/16° Flange end	917	913	ļ	il 4130 il 4130		T7998A 26984	
INFOCHIP INSTALLE All metal parts are flawless WE CERTIFY THAT THE ABOVE PRESSURE TEBTED AS ABOVE 1	HOSE HAS BE		ED IN ACCORD	ANCE WI	Ter	API Spec 16 nperature rat MS OF THE ORDE	e:"B"
Date:	Inspector		Quality Control		Tech Rabbe	t	
04. April. 2008	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Baca (in Trut	Control Deg	والمراجعة والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال	

::

Coflex Hose Certification

					·																						\frown	•
•										ļ									1					4	비			
	H H	Ţ		भिर्म र	1 2 2 0				Ī											1						ジャー	Cita cain Rubilion errial Kft. control Dept. (1)	<u> </u>
ł			1 10 11 11 10 10 10 10 10 10 10 10 10 10	11 1 1 134	<u> </u>																	1					(1) (1)	
1	部別				17. The The			amondary and			-		•															
 	尼司名	1	F	妇	19																							
	15.12	+1 +1		ET I		تنغد						ŀ													1			
1		- 1. 1						and and					1							1 20				ļ		T) M	
,	E B	3 1 1	1.12.1																								•	
1																	1	•										
1	7																											
	11														-				1		ŀ							
		1.					H																					
	\mathbb{H}	H	1					Ī				T											1					
	15													T				P	T	- 1			Ī			*****	17.22.07.02.07.07.07.07.07.07.07.07.07.07.07.07.07.	~

.

•

- PHOENIX Beattie

Form No 100/12

Phoenix Beattie Corp 11555 Britizoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-sarl weil@hoenizteattie.com wew.phoenizteattie.com

Delivery Note

Customer Order Number 370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Address HELMERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER TULSA, OK 74119	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - Ri 13609 Industrial Road Houston, Tx 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

ltern No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3° 10K 16C C&K HOSE x 35ft OAL CW 4.1/16° API SPEC FLANGE E/ End 1: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10.000psi Test pressure: 15.000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles		1	
- I	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	0

Continued...

All goods remain the property of Phoenix Beattie until paid for in full. Any damage or shortage on this delivery must be edviced within 5 days. Returns may be subject to a handling charge.

. .

FH-4

🗢 PHOENIX Beattie

Form No 100/12

Phoenix Beattie Corp 11535 Brittacore Park Drive Hourton, TX 77041 Tel: (632) 327-0141 Fex: (632) 327-0145 E-sall saliphoenixbeattle.cos

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addres HELMERICH & PAYNE INT'L (1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RIG 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	g 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Dete
KO1	JJL	006330	05/23/2008

ltem No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
5	OUCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
6	COCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	1	0
	<pre> </pre>	Pap	\bigwedge	
	Phoenix Beattle Inspection Signature :	IN MARKEN	WALEY	
	Received In Good Condition : Signature Print Name		\mathcal{A}	
ant hans: 1,		lining balan dalah dari kara dari menederiki	میں ایک	

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

PH(oenix Bea	ttie	Materia	l Iden	tificatio	on Certifi	cate			
PA No 006	330 Client HE	LMERICH & PA	YNE INT'L DRILLING	Clent	Ref 37	70-369-001			Page	1
Part No	Description	Material Desc	Material Spec	Qty	WO No	Batch No	Test Cert No	Bin No	Drg No	Issue No
HP100X3A-35-4F1	3" TOK 16C CAK HOSE x 35TE OAL			1	2491	52777/11884		WATER		1
SECK3-109F3	LIFTING & SAFETY EQUIPMENT TO			1	2440	002440		H/STK		
SC725-200CS	SAFETY CLAMP 200MN 7.25T	CARBON STEEL		1	2519	H665		Z2C		
SC725-132CS	SAFETY CLAMP 132HH 7.25T	CARBON STEEL		1	2242	#139		22		
ł										
<u> </u>										
1										
ļ			:							
			1		1	1 .				
					1	1	[
ļ					1	1				
ł					1				*	
1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1	1				
		<u> </u>	:		1	·				·
		······································					t			<u> </u>
			<u> </u>	┢		+		{		<u> </u>
	······	<u> </u>	<u></u>	<u> </u>			<u> </u>		<u> </u> -	<u> </u>
	<u> </u>			+	· [<u> </u>	t	<u> </u>	+
	t	+	<u> </u>	<u> </u>	+	1	<u> </u>			1
	·	+	ŀ	1	+		· ···· ·······························	<u> </u>	<u> </u>	<u> </u>
······································		<u> </u>	<u> </u>	<u> </u>		+		<u> </u>	<u> </u>	+
	<u> </u>		<u> </u>	ł	· [<u> </u>		<u> </u>	<u> </u>	<u>+</u>
······································			· · · · · · · · · · · · · · · · · · ·	t			·	<u> </u>	t	1
1			<u> </u>	<u> </u>	-{		+		1	+
<u>š</u>		+		<u> </u>				1	 	+
·····		+	<u>↓</u>	╂─────	+			ł	+	+
			<u> </u>	4	+			<u> </u>	t	+
<u>1</u>	+	+	<u> </u>	ł				ł		+
l l	ł	1	1	J	1		<u> </u>	L	1	

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

FH-S

Coflex Hose Certification

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier: CONTITECH RUBBER INDUSTRIAL KFT.Equipment: 6 pcs. Choke and Kill Hose with installed couplingsType :3" x 10,67 m WP: 10000 psiSupplier File Number: 412638Date of Shipment: April. 2008Customer: Phoenix Beattle Co.Customer P.o.: 002491Referenced Standards

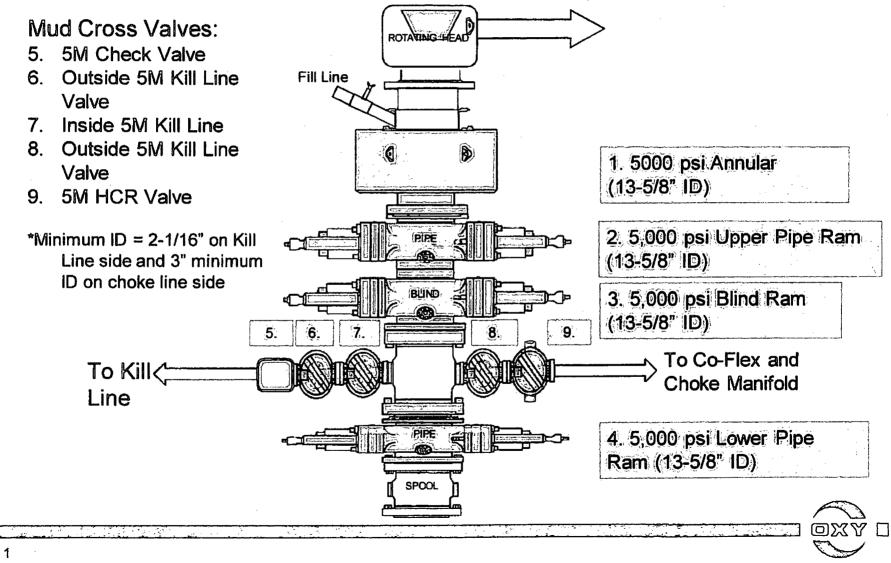
/ Codes / Specifications : API Spec 16 C

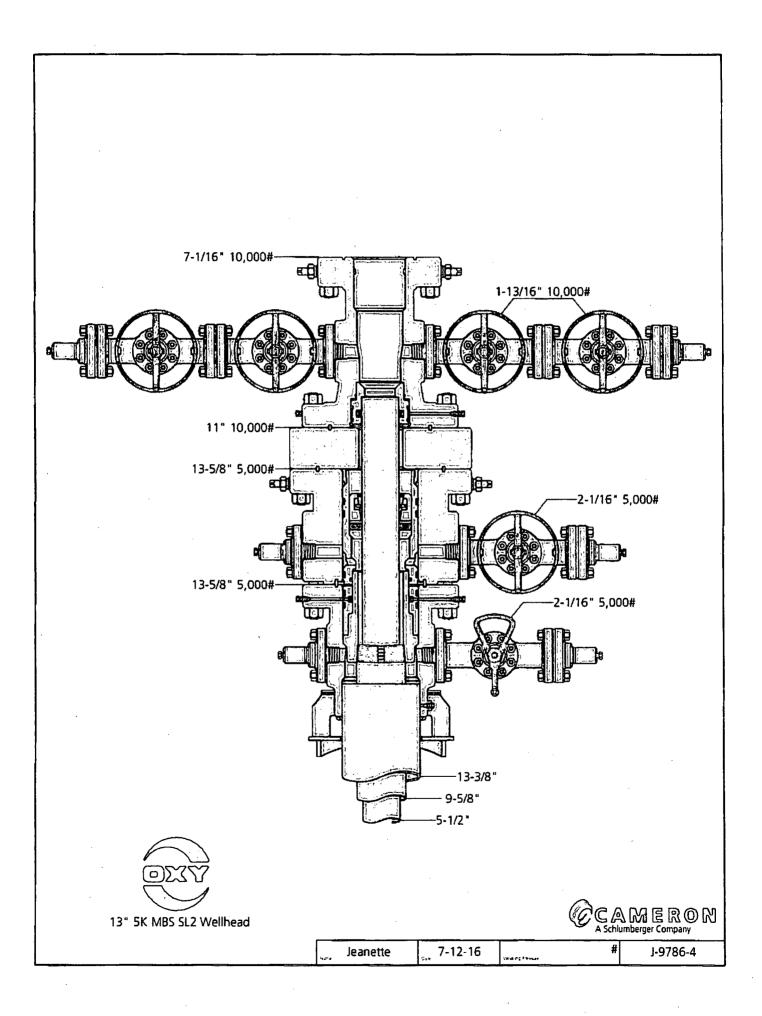
Serial No.: 52754,52755,52776,52777,52778,52782

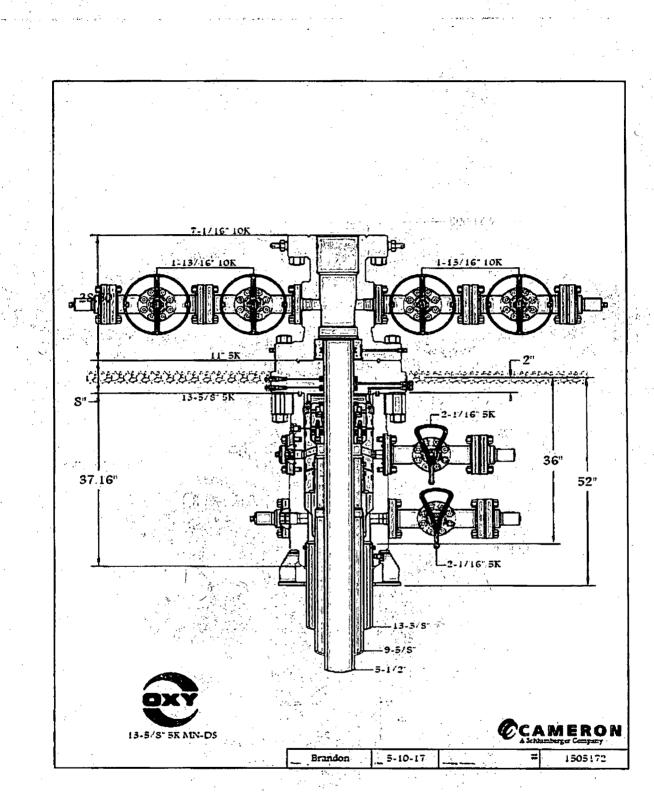
STATEMENT OF CONFORMITY

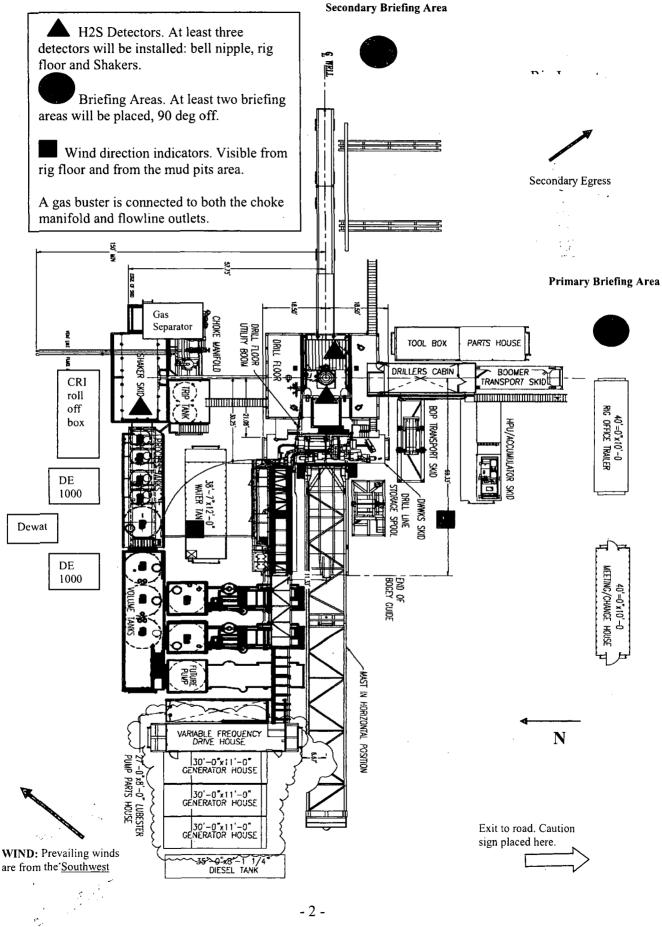
We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU


Signed


Position: Q.C. Manager


_ontiTech Rubber Industrial Kit. Quality Control Dept. (1)


Date: 04. April. 2008

5M BOP Stack

- 2 -

PERFORMANCE DATA

TMK UP DQX		5.500 in	20.00 lbs/ft P-110	
Technical Data S	Sheet	97 1		
		•		
Tubular Parame	ters	· · · · · · ·		

		1 - 3			
Size	5.500	in	Minimum Yield	110,000	psi
Nominal Weight	20.00	lbs/ft	Minimum Tensile	125,000	psi
Grade	P-110		Yield Load	641,000	lbs
. PE Weight	19.81	lbs/ft	Tensile Load	729,000	lbs
Wall Thickness	0.361	、 in -	Min. Internal Yield Pressure	12,600	psi
Nominal ID	4.778	in	O Collapse Pressure	11,100	→ psi
Drift Diameter	4.653	⊖in			t
Nom. Pipe Body Area	. 5.828	in²			Th

Connection Parameters	· · · ·		
Connection OD	6.050	in	- cong
Connection ID	4:778	in	
Make-Up Loss	4.122	in	
Critical Section Area	5 828	in²	- 192 - 19 - 19 - 19
Tension Efficiency	100.0	%	75. A .
Compression Efficiency	100.0	····· %;,	a set of
Yield Load In Tension	641,000	lbs	4
Min. Internal Yield Pressure	12,600	psi	
Collapse Pressure	11,100	i psi	· · · · · ·

wake-up Forquession		;	
Min. Make-Up Torque	11,600	ft-lbs	`
Opt. Make-Up Torque)/	12,900	ft-lbs	·
Max. Make Up Torque Yield Torque	14,100	ft-lbs	÷
Yield Torque	20.600	ft-lbs	

Printed on: July-29-2014

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their ownrisk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

λ.

٠.,	, '	~~	1 e					
1	- 676-	A = 1	1. 1. 1. 1. 1.		.'	1. H		<u>م</u>
· · ·	< N -				2 A (1997)			11
		-				ЭÌ		¥1
				· .,		2 - (S	1 1	6
· .		5 1 8		4				31.
		-	с., t,	. و شم			· · · · ·	36
ļ.		L 171	The second second				. 1 f	W.
Ç.,	111				٠.			*
Ì.	14						4	22
ŧ		1 × 1	1				24. L	11
7						S 44		3 Y
2	1	1.0	1.1.				vr. 2	<u>9</u>
2.		1.5			÷	- 30		çu –
) - i	1. E.			3			S	⇔ `
5			L H	a since	·	-	M	.
5								Ε.
£								
ς						19.11		5
ξ.							1. A 1	6
ć								80
5					Nonin	-	A 44	¥
2						-	14 10 10	1. S.
2		1		د.			141	2.5
÷		5			h	-	196 · · · · · · · · · · · · · · · · · · ·	1
	1.1				1.00	-		
Ð.		18		_				- P. J.
K.			\$					(-)
AN,		1	<i>i</i> .	3.			1 - T	<i>6</i>
C		1			يعجب والم			5
7				***		č i s		£
5		i.		Sec. 1	1	ا تعد تحض		2 4
γ.				- **		1775 M. 4		
>					-		- 1	
٤.								e. –
>		(,				÷.	··	Ø. –
5				5			11111	£.
5								
ξ.					- T. S.			K.
ς		. Š.		· · · · ·		Sec. 1		2.
<u>ر</u>		· ·			·			1 .
۲.		- P					- 4	52
Ċ.				0	alen ne re	3.2		- N
è -				- 1	••		-	£'
ž -					*	-	-	ŧ.
l.	E' 1					- <u>-</u>		12
	- MA					0.7		2)
4				,	.• =	524		Тâ.
1	- K.		Fi					81(T
1	112			1.5				11

 $(a_{23},b_{2}) \approx b_{22}$

Alan in a state

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.
- c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

o Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- CSG Test (Production)
- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

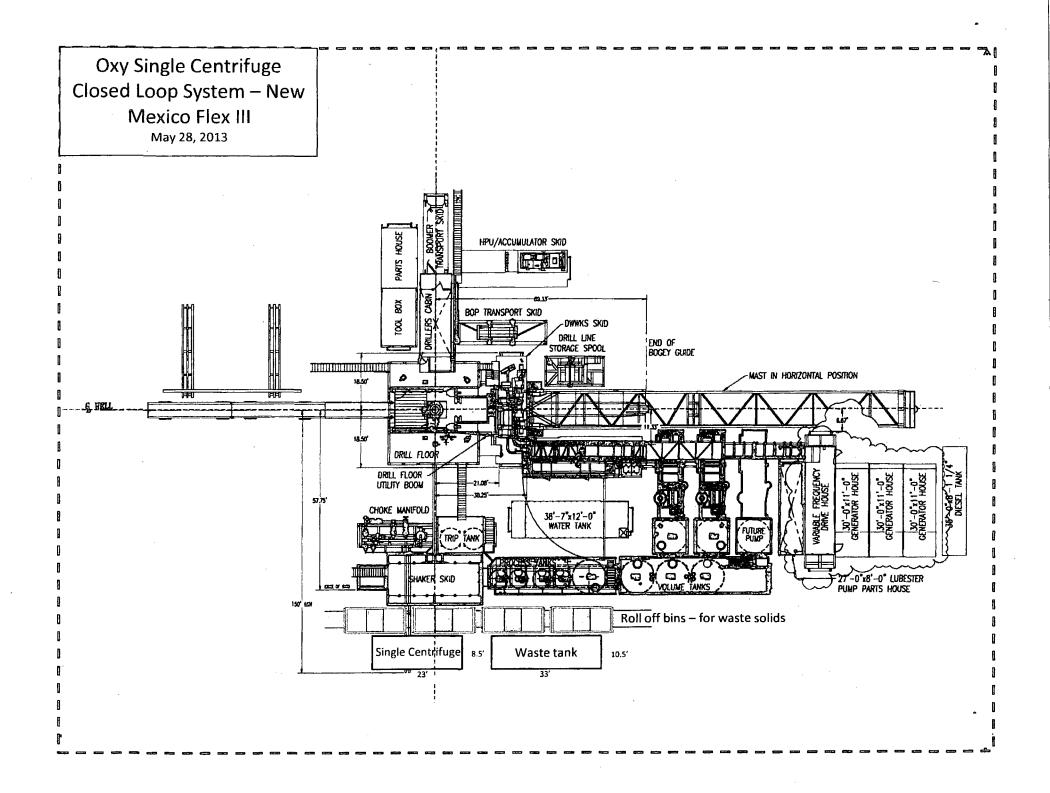
- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.


c) Tension Loads

Running Casing (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

Oxy U.S.A Inc.

Ne	w Mexico Staking Form
Date Staked:	12-17-15
icese/Weil Name:	MESAVERDE 17-8 Fed #2H
Legal Description:	280'FSC 1146' FWL Sec 17 T245 R32E
Latitude:	32° 12' 39.46" (AAd 83
longitude: -	103 42' 05.70"
More Mornation:	
County:	Lea
Surface Owner/Tenant:	BLM
Risarest Residence:	5 miles
Nearest Water Well:	
V-9001:	EAST
Road Description:	Road into comer from
New Road:	
Upgrade Existing Road:	
Interim Reclamation:	50' NORTH 30'EAST
Source of Caliche:	
Top Soil:	West
Onsite Date Performed: $\mathcal{T}\epsilon$	Sasie BASSETT, Brooke Wilson-BLM Jim Wilson-OKY
Onsite Attendees: N	ike Wilson-Oxy Swed Asel Survey

Special Notes:

NMOSE WELL NUMBER WELL COMMON NAME

GRR Inc.

NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION
C-100	Tres Rios - Next to well shack	PRIVATE	32.201921° -104.254317°
C-100-A	Tres Rios - Center of turnaround	PRIVATE	32.2018 56° - 104.254443°
С-272-В	Tres Rios - Northwest	PRIVATE	32.202315° -104.254812°
C-906	Whites City Commercial	PRIVATE	32.176949°-104.374371°
C-1246-AC & C-1246-AC-S	Lackey	PRIVATE	32.266978°-104.271212°
C-1886	1886 Tank	BLM	32.229316° -104.312930°
C-1083	Petska	PRIVATE	32.30904° -104.16979°
C-1142	Winston West	BLM	32.507845-104.177410
C-1360	ENG#1	PRIVATE	32.064922° -103.908818°
C-1361	ENG#2	PRIVATE	32.064908° -103.906266°
C-1573	Cooksey	PRIVATE	32.113463° -104.108092°
C-1575	ROCKHOUSE Ranch Well - Wildcat	BLM	32.493190° -104.444163°
C-2270	CW#1 (Oliver Kiehne)	PRIVATE	32.021440° -103.559208°
C-2242	Walterscheid	PRIVATE	32.39199° -104.17694°
C-2492POD2	Stacy Mills	PRIVATE	32.324203° -103.812472°
C-2569	. Paduca well #2	BLM	32.160588 -103.742051
C-2569POD2	Paduca well replacement	BLM	32.160588 -103.742051
C-2570	Paduca (tank) well #4	BLM	32.15668 -103.74114
C-2571	Paduca (road) well	BLM	32.163993° -103.745457°
C-2572	Paduca well #6	BLM	32.163985 -103.7412
C-2573	Paduca (in the bush) well	BLM	32.16229 -103.74363
C-2574	Paduca well (on grid power)	BLM	32.165777° -103.747590°
C-2701	401 Water Station	BLM	32.458767° -104.528097°
C-2772	Mobley Alternate	BLM	32.305220° -103.852360°
C-3011	ROCKY ARROYO - MIDDLE	BLM	32.409046° -104.452045°
C-3060	Max Vasquez	PRIVATE	32.31291° -104.17033°
C-3095	ROCKHOUSE Ranch Well - North of Rockcrusher	PRIVATE	32.486794° -104.426227°
C-3200	Beard East	PRIVATE	32.168720 -104.276600
C-3260	Hayhurst	PRIVATE	32.227110° -104.150925°
C-3350	Winston Barn	PRIVATE	32.511871° -104.139094°
C-3358	Branson	PRIVATE	32.19214° -104.06201°
C-3363	Watts#2	PRIVATE	32.444637° -103.931313°
C-3453	ROCKY ARROYO - FIELD	PRIVATE	32.458657° -104.460804°
C-3478	Mobley Private	PRIVATE	32.294937° -103.888656°
C-3483pod1	ENG#3	BLM	32.065556° -103.894722°
C-3483pod3	ENG#5	BLM	32.06614° -103.89231°
C-3483POD4	CW#4 (Oliver Kiehne)	PRIVATE	32.021803° -103.559030°
C-3483POD5	CW#5 (Oliver Kiehne)	PRIVATE	32.021692° -103.560158°
C-3554	Jesse Baker #1 well	PRIVATE	32.071937° -103.723030°
C-3577	CW#3 (Oliver Kiehne)	PRIVATE	32.021773° -103.559738°
C-3581	ENG#4	BLM	32.066083° -103.895024°
C-3595	Oliver Kiehne house well #2	PRIVATE	32.025484° -103.682529°
C-3596	CW#2 (Oliver Kiehne)	PRIVATE	32.021793° -103.559018°

NMOSE WELL NUMBER WELL COMMON NAME

GRR Inc.

LAND

GPS LOCATION

-

NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION	
C-3614	Dale Hood #2 well	PRIVATE	32.449290° -104.214500°	
C-3639	Jesse Baker #2 well	PRIVATE	32.073692° -103.727121°	
C-3679	McCloy-Batty	PRIVATE	32.215790° -103.537690°	
C-3689	Winston Bam_South	PRIVATE	32.511504° -104.139073°	
C-3731	Ballard Construction	PRIVATE	32.458551° -104.144219°	
C-3764	Watts#4	PRIVATE	32.443360° -103.942890°	
C-3795	Beckham#6	BLM	32.023434°-103.321968°	
C-3821	Three River Trucking	PRIVATE	32.34636° -104.21355	
C-3824	Collins	PRIVATE	32.224053° -104.090129°	
C-3829	Jesse Baker #3 well	PRIVATE	32.072545°-103.722258°	
C-3830	Paduca	BLM	32.156400° -103.742060°	
C-3836	Granger	PRIVATE	32.10073° -104.10284°	
C-384	ROCKHOUSE Ranch Well - Rockcrusher	PRIVATE	32.481275° -104.420706°	
C-459	Walker	PRIVATE	32.3379° -104.1498°	
C-496pod2	Munoz #3 Trash Pit Well	PRIVATE	32.34224° -104.15365°	
C-496pod3&4	Munoz #2 Corner of Porter & Derrick	PRIVATE	32.34182° -104.15272°	
C-552	Dale Hood #1 well	PRIVATE	32.448720° -104.214330°	
C-764	Mike Vasquez	PRIVATE	32.230553° -104.083518°	
C-766(old)	Grandi	PRIVATE	32.32352° -104.16941°	
C-93-S	Don Kidd well	PRIVATE	32.344876 -104.151793	
C-987	ROCKY ARROYO - HOUSE	PRIVATE	32.457049° -104.461506°	
C-98-A	Bindel well	PRIVATE	32.335125° -104.187255°	
CP-1170POD1	Beckham#1	PRIVATE	32.065889° -103.312583°	
CP-1201	Winston Ballard	BLM	32.580380° -104.115980°	
CP-1202	Winston Ballard	BLM	32.538178° -104.046024°	
CP-1231	Winston Ballard	PRIVATE	32.618968° -104.122690°	
CP-1263POD5	Beckham#5	PRIVATE	32.065670° -103.307530°	
CP-1414	Crawford #1	PRIVATE	32.238380° -103.260890°	
CP-1414 POD 1	RRR	PRIVATE	32.23911° -103.25988°	
CP-1414 POD 2	RRR	PRIVATE	32.23914° -103.25981°	
CP-519	Bond_Private	PRIVATE	32.485546 -104.117583	
CP-556	Jimmy Mills (Stacy)	STATE	32.317170° -103.495080°	
CP-626	OI Loco (W)	STĂTE	32.692660° -104.068064°	
CP-626-S	Beach Exploration/ OI Loco (E)	STATE	32.694229° -104.064759°	
CP-73	Laguna #1	BLM	32.615015°-103.747615°	
CP-74	Laguna #2	BLM	32.615255°-103.747688°	
CP-741	Jimmy Richardson	BLM	32.61913° -104.06101°	
CP-742	Jimmy Richardson	BLM	32.614061° -104.017211°	
CP-742	Hidden Well	BLM	32.614061 -104.017211	
CP-745	Leaning Tower of Pisa	BLM	32.584619° -104.037179°	
CP-75	Laguna #3	BLM	32.615499°-103.747715°	
CP-924	Winston Ballard	BLM	32.545888° -104.110114°	
CP-926	Winchester well (Winston)	BLM	32.601125° -104.128358°	
		JC:11	52.001120 -104.120000	

GRR Inc.			
NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION
J-27	Beckham	PRIVATE	32.020403° -103.299333°
J-5	EPNG Jal Well	PRIVATE	32.050232° -103.313117°
J-33	Beckham	PRIVATE	32.016443° -103.297714°
J-34	Beckham	PRIVATE	32.016443° -103.297714°
J-35	Beckham	PRIVATE	32.016443° -103.297714°
L-10167	Angell Ranch well	PRIVATE	32.785847° -103.644705°
L-10613	Northcutt3 (2nd House well)	PRIVATE	32.687922°-103.472452°
L-11281	Northcutt4	PRIVATE	32.687675°-103.471512°
L-12459	Northcutt1 (House well)	PRIVATE	32.689498°-103.472697°
L-12462	Northcutt8 Private Well	PRIVATE	32.686238°-103.435409°
L-13049	EPNG Maljamar well	PRIVATE	32.81274° -103.67730°
L-13129	Pearce State	STATE	32.726305°-103.553172°
L-13179	Pearce Trust	STATE	32.731304°-103.548461°
L-13384	Northcutt7 (State) CAZA	STATE	32.694651°-103.434997°
L-1880S-2	HB Intrepid well #7	PRIVATE	32.842212° -103.621299°
L-1880S-3	HB Intrepid well #8	PRIVATE	32.852415° -103.620405°
L-1881	HB Intrepid well #1	PRIVATE	32.829124° -103.624139°
L-1883	HB Intrepid well #4	PRIVATE	32.828041° -103.607654°
L-3887	Northcutt2 (Tower or Pond well)	PRIVATE	32.689036°-103.472437°
L-5434	Northcutt5 (State)	STATE	32.694074°-103.405111°
L-5434-S	Northcutt6 (State)	STATE	32.693355°-103.407004°
RA-14	Horner Can	PRIVATE	32.89348° -104.37208°
RA-1474	Irvin Smith	PRIVATE	32.705773° -104.393043°
RA-1474-B	NLake WS / Jack Clayton	PRIVATE	32.561221°-104.293095°
RA-9193	Angell Ranch North Hummingbird	PRIVATE	32.885162° -103.676376°
SP-55 & SP-1279-A	Blue Springs Surface POD	PRIVATE	32.181358° -104.294009°
SP-55 & SP-1279 (Bounds)	Bounds Surface POD	PRIVATE	32.203875° -104.247076°
SP-55 & SP-1279 (Wilson)	Wilson Surface POD	PRIVATE	32.243010° -104.052197°
City Treated Effluent	City of Carlsbad Waste Treatment	PRIVATE	32.411122° -104.177030°
Mine Industrial	Plant Mosaic Industrial Water	PRIVATE	32.370286° -103.947839°
Mobley State Well (NO	Mobley Ranch	STATE	32.308859° -103.891806°
OSE)			
EPNG Industrial	Monument Water Well Pipeline (Oil Center, Eunice)	PRIVATE	32.512943° -103.290300°
MCOX Commercial	Matt Cox Commercial	PRIVATE	32.529431° -104.188017°
AMAX Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS
WAG Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS
HB Mine Industrial	Intrepid Industrial Water	N/A	VARIOUS TAPS

Mesquite

Cedar Canyon Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

57 N.

Corral Fly – South of Cedar Canyon

Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

Cypress – North of Cedar Canyon

Major Source: Caviness B: C-501-AS2 Sec 23 T28S R15E

Sand Dunes - new frac pond

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl

Section of

States and the second

م. میراد از ا

des de l'étadderes pi

S. P. A.

i ging gine diasis A second di second 1.12 - 12 1 -

一门 法正确公司 网络马尔马马

Contraction of the State

12.00

2. Could the construction of the

Same and first in the

STAL IN A STORE

N - 141

÷ 4.5

556

Secondary Source: George Arnis; C-1303

Mésa Verde – east of Sand Dunes

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl

Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Smokey Bits/Ivore/Misty – had posiden tanks before

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Red Tank/Lost Tank

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Peaches

, e <u>e</u> 1,449

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

.

din sy n Tin sy n

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: <u>OXY USA Inc</u>

1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

PERFORMANCE DATA

TMK UP DQX **Technical Data Sheet** 5.500 in 20.00 lbs/ft

1211

Tubular Parameters			and the second		
Size	5.500	in	Minimum Yield	110,000	psi
Nominal Weight	20.00	lbs/ft	Minimum Tensile	125,000	psi
Grade	P-110		Yield Load	641,000	lbs
PE Weight	19.81	lbs/ft	Tensile Load	729,000	lbs
Wall Thickness	0.361	' in	Min. Internal Yield Pressure	.12,600	psi
Nominal ID	4.778	in	Collapse Pressure	11 100	psi
Drift Diameter	4.653	in	and the second secon	DATE DATE	
Nom. Pipe Body Area	5.828	in²			

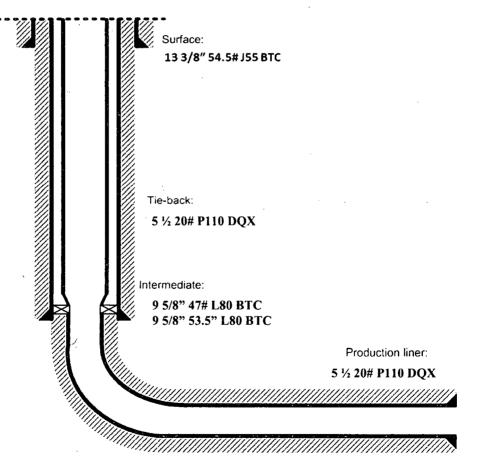
Connection Parameters		
Connection OD	6.050	in
Connection ID	4.778	in
Maka-Up Loss	4.122	រំព 🕺 🖓
Critical Section Area	5.828	in'
Tension Efficiency	.100.0	°%;
Compression Efficiency set	100.0	%
Yield Load In Tension	641,000	lbs
Min. Internal Yield Pressure	12,600	psi
Collapse Pressure	11,100	psi

Make-Up Torques					
Min. Make-Up Torque	11,600	ft-lbs			
Opt. Make-Up Torque	12,900	fi-lbs			
Max. Maka-Up Torque	14,100	fl-lbs			
Yield Torque	20,600	ft-lbs			

Printed on: July-29-2014

NOTE

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply liness for a particidar purpose, which only a competent draing protessmout can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMX IPSCO and might not be the latest information. Anyone using the information hereor does so of their river risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales full tree at 1 (888-268-2000.)


OXY USA Inc. Mesa Verde 17-8 Federal Com #2H

Below is a summary that describes the general operational steps to drill and complete the well.

- Drill 17-1/2" hole x 13-3/8" casing for surface section. Cement to surface.
- Drill 12-1/4" hole x 9-5/8" casing for intermediate section. Cement to surface.
- Drill 8-1/2" hole x 5-1/2" liner for production section. Cement to top of liner, 100' inside 9-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 20# P110 DQX tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

5 ¹/₂" 17# P110 DQX Tie-back string specifications: