OXY USA Inc. - Mesa Verde 18 Federal Com 2H

1. Geologic Formations

TVD of target	10499'	Pilot Hole Depth	N/A
MD at TD:	15329'	Deepest Expected fresh water:	946'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	946	
Salado	1061	
Castile	3332	
Lamar/Delaware	4643	Oil/Gas
Bell Canyon	4658	Water/Oil/Gas
Cherry Canyon	5525	Oil/Gas
Brushy Canyon	6804	Oil/Gas
Bone Spring	8444	Oil/Gas
1st Bone Spring	9692	Oil/Gas
2nd Bone Spring	9899	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

					-				Buoyant	Buoyant
Hole Size	Casing Int	erval	Csg. Size	Weight	Grade	Conn.	SF	SF Burst	Body SF	Joint SF
(in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF BUIST	Tension	Tension
14.75	0	996	10.75	45.5	J55	BTC	8.91	1.75	3.51	3.56
9.875	0	7500	7.625	29.7	L80	BTC	1.22	1.84	4.65	2.16
9.875	7500	9826	7.625	29.7	HP L80	BTC	1.46	1.95	2.13	2.15
6.75	9726	15329	4.5	11.6	P-110	DQX	1.68	1.20	2.25	2.28

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y

OXY USA Inc. - Mesa Verde 18 Federal Com 2H

Is well located within Capitan Reef?					
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.					
Is well located in SOPA but not in R-111-P?	N				
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back					
500' into previous casing?					
Is well located in R-111-P and SOPA?	N				
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?					
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?					
Is well located in critical Cave/Karst?	N				
If yes, are there three strings cemented to surface?					

3. Cementing Program

Casing	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (hours)	Slurry Description
Surface	509	14.2	1.68	6.53	6:50	Class C Cement, Accelerator
Production	358	10.2	3.05	15.63	15:07	Pozzolan Cement, Retarder
Casing	163	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP Too	l @ 4693' (We i	request the opti	on to cancel the	e second stage operations		ted to surface during the first stage of cement
	770	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
2nd Stage	142	14.8	1.33	6.34	6:31	Class C Cement
Production Liner	548	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	996	N/A	50%
Production Casing	4593	8826	8826	9826	20%	20%
2nd Stage Production Casing	0	4193	4193	4693	75%	75%
Production Liner	N/A	N/A	9726	15329	N/A	15%

2 Drilling Plan

<u>Cement Top and Liner Overlap</u>

- Oxy is requesting permission to have minimum fill of cement behind the 4-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 7-5/8" mainbore in the future.
- Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve
- Cement will be brought to the top of this liner hanger

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		1	Tested to:
			Annula	IT	✓	70% of working pressure
0.975" Hala	11"	5M	Blind Ra	am	✓	
9.875" Hole	11	5101	Pipe Ra	m		250/5000
			Double R	lam	✓	250/5000psi
			Other*			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
	ance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart.			
YAre anchors required by manufacturer?A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port				

OXY USA Inc. - Mesa Verde 18 Federal Com 2H

that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematics.

5. Mud Program

D	epth		Weight		
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	996	Water-Based Mud	8.4-8.6	40-60	N/C
996	4693	Brine	9.8-10.0	35-45	N/C
4693	9826	Water-Based Mud	8.8-9.6	38-50	N/C
9826	15329	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 10.75" surface casing shoe with a saturated brine system from 996' - 4693', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system or a fully saturated brine direct emulsion system. We will drill with this system to the intermediate TD @ 9826'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	ICP - TD
No	PEX	

4 Drilling Plan

OXY USA Inc. - Mesa Verde 18 Federal Com 2H

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5241 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	176°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	it	
Y H2S Plan att	ched	

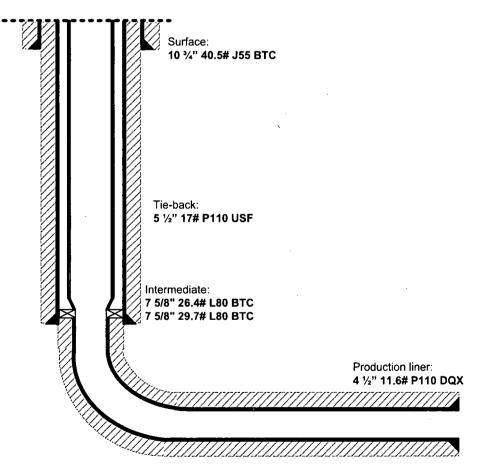
8. Other facets of operation

- -	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
• Oxy requests the option to contract a Surface Rig to drill, set surface	
casing, and cement for this well. If the timing between rigs is such that	
Oxy would not be able to preset surface, the Primary Rig will MIRU and	
drill the well in its entirety per the APD. Please see the attached document	
for information on the spudder rig.	

Total estimated cuttings volume: 2526.6 bbls.

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417


OXY USA Inc. Mesa Verde 18 Federal Com

Below is a summary that describes the general operational steps to drill and complete this well:

- Drill 14-3/4" hole x 10-3/4" casing for surface section. Cement to surface.
- Drill 9-7/8" hole x 7-5/8" casing for intermediate section. Cement to surface.
- Drill 6-3/4" hole x 4-1/2" liner for production section. Cement to top of liner, 100' inside 7-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 17# P110 USF tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

5 ¹/₂" 17# P110 USF Tie-back string specifications:

PERFORMANCE DATA

TMK UP ULTRA™ SF Technical Data Sheet 5.500 in

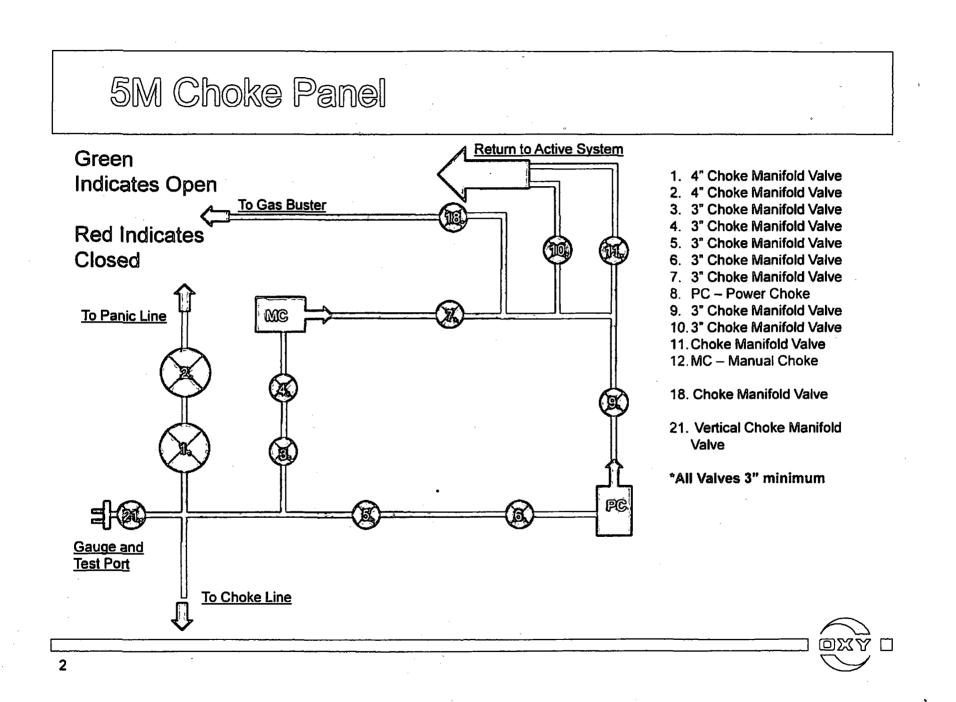
17.00 lbs/ft

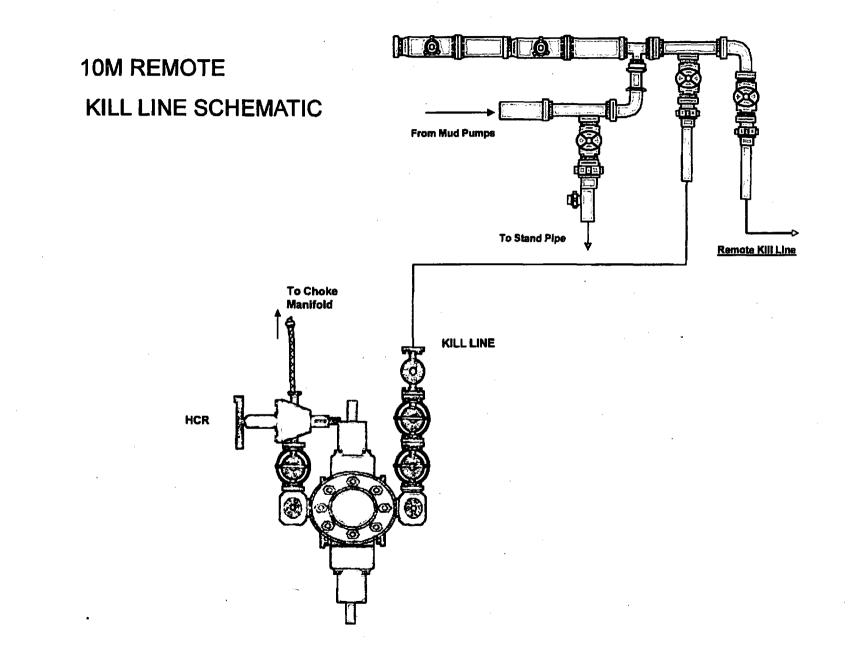
P-110

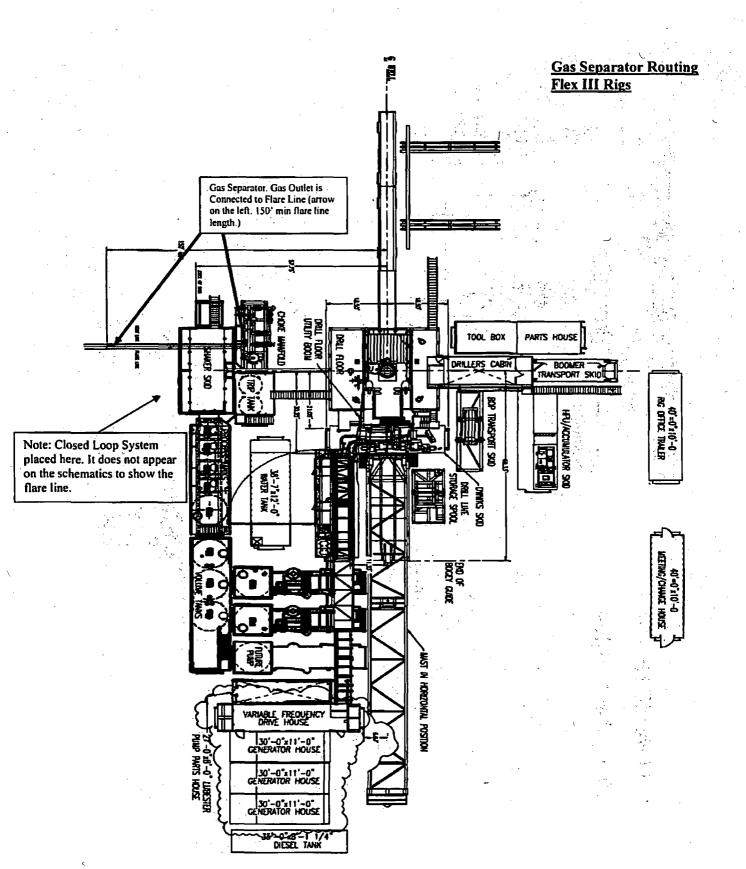
Tubular Parameters					
Size	5.500	in	Minimum Yield	110,000	p
Nominal Weight	17.00	lbs/ft	Minimum Tensile	125,000	p:
Grade	P-110		Yield Load	545,000	۱Þ
PE Weight	16.87	lbs/ft	Tensile Load	620,000	ю
Wall Thickness	0.304	ín	Min Internal Yield Pressure	10,600	p:
Nominal ID	4.892	in	Collapse Pressure	7,480	P!
Drift Diameter	4.767	ín			•
Nom. Pipe Body Area	4 962	in²			
Connection Parameters		<u>.</u>			
Connection OD	5.663	in			늰
Connection ID	4.848	in			
Make-Up Loss	5,911	in			+
Critical Section Area	4.559	in²			
Tension Efficiency	91.6	%			
Compression Efficiency	91,6	%⊔			
Yield Load In Tension	499,000	lios			
Min, Internal Yield Pressure	10,600	psi			
Collapse Pressure	7,480	psi			
Uniexiel Bending	84	1 100 ft		÷.,	
	-	-			
Make-Up Torques					
Min, Make-Up Torque	10,300	ft-ibs			
Opt Make-Up Torque	11,300	ft-lbs			
Max. Make-Up Torque	12,400	ft-lbs			

Printed on: July-24-2015

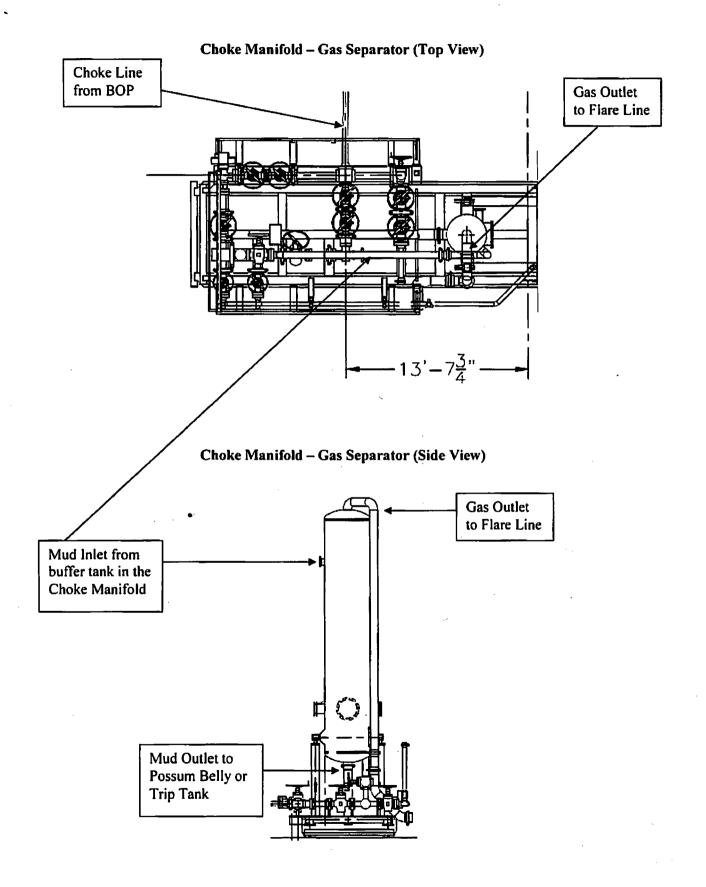
NOTE:


Yield Torque


The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll free at 1-888-258-2080.


ft-lbs

15,500



.

Fluid Technology

Quality Document

QUAL	ITY CONT		CATE		CERT. N	Yo:	746	
PURCHASER:	Phoenix Bea	ttie Co.			P.O. Nº:	00	2491	
CONTITECH ORDER Nº:	412638	HOSE TYPE:	3"	Ð	Cho	oke and Kill	Hose	
HOSE SERIAL Nº:	52777	NOMINAL / AC	TUAL LE	NGTH:		10,67 m		
W.P. 68,96 ^{MPa} 1	0000 psi	т.р. 103,4	MPa	15000) psi	Duration:	60 ~	ការ៉ា.
Pressure test with water at ambient temperature						.		
								·
	See	attachment.	(1 pag	je)			·	
								-
								-
10 mm = 10 Mir	1.							••
→ 10 mm = 25 MP	a				فليت والمراجع المراجع ا			
		COUP	LINGS					
Туре		Serial Nº		C	Juality		Heat №	
3" coupling with	917	913		AIS	1 4130		T7998A	, , , , , , , , , , , , , , , , , , ,
4 1/16" Flange and		r		AIS	14130		26984	
INFOCHIP INSTALL	ED	. <u></u>					PI Spec 16 perature ra	
VI metal parts are flawless				•			· ·	
VE CERTIFY THAT THE ABOV RESSURE TESTED AS ABOV			RED IN A	CCORD	ANCE WI	TH THE TERM	s of the ord	ER AND
bate:	Inspector		Quality	Control	0.00	Tech Rubber		
04. April. 2008		an Daripan David San Barbar da San Barbar da Ang	4		Ind.	distrial Kit. Control Dept	and and the distance of the state	(
	1			acn v		(m)	Jane	, I

.

.:

Coflex Hose Certification

.

Page: 1/1

•	
ł	
, 	
, 	
, 	
1	
}	
Ì	
1	
2 (1990) 2 (1990) 20 	

÷

Form No 100/12

FH-3

- PHOENIX Beattie

Phoenix Beattie Corp 11535 Britizoore Park Drive Hauston, TX 77041 Tel: (832) 327-0141 Fox: (832) 327-0148 Fox: (832) 327-0148 Fox: (832) 327-0148 Fox: (832) 427-0148 Fo

Delivery Note

Customer Order Number 370-369-001	Delivery Note Number	003078	Paga	1
Customar / Invoice Address HELMERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER TULSA, OK 74119	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - Ri 13609 Industrial Road Houston, Tx 77015	G 370		

Customer Acc No	Phoenix Beattle Contract Manager	Phoenix Beattie Reference	Date
HOI	JJL	006330	05/23/2008

item No	. Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kps1 API Spec 6A Type 68X Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10.000psi Test pressure: 15.000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	0
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	D

Continued...

All goods remain the property of Phoenix Besttie until paid for in full. Any damage or shortege on this delivery must be edvised within 5 days. Returns may be subject to a handling charge.

. .

Coflex Hose Certification

Form No 100/12

- PHOENIX Beattie

Phoenix Beattle Corp Huston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail sail@phoenixbeattle.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addres HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - Ri 13609 Industrial Road Houston, Tx 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
HO1	JJL	006330	05/23/2008

	ltem No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
	4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	. 1	1	0
	5	OOCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
	6	OOCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
		OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	. 1	0
		Ę	Pag		
Phoenix Beattle Inspection Signature :					
		Received in Good Condition : Signature			
24/42	1. Littlinin hereever		and and a state of the second s		alan in an
		Date _			

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge. .

- PHOENIX Beattie

Material Identification Certificate

A No 008	330 Client HE	LMEHICH & PA	YNE INT'L DRILLING	Cuent	Her 3	70-369-001			Page	1
Part No	Description	Material Desc	Material Spec	Qty	WO No	Batch No	Test Cert No	Bin No	Drg No	Issue No
P100034-35-4F1	3" TOK JOC CAR HOSE & 35TE DAL			1	2491	52777/H884		WATER		
SECKJ-HEFFJ	LIFTING & SAFETY EQUIPMENT TO		<u>.</u>	1	2440	002440		H/STK		1
SC725-200CS	SAFETY CLAMP 200HH 7.25T	CARBON STEEL		1	2519	H665		Z2C		
SC725-13205	SAFETY CLAMP 132MH 7.25T	CARBON STEEL		1	2242	1139		22	,=,,	ļ
<u> </u>			: :	+	+					+
1			:		1					
				+	+					+
			· · · · · · · · · · · · · · · · · · ·			<u></u>			······	+
										<u> </u>
<u> </u>			······································	 	·					
``			· · · · · · · · · · · · · · · · · · ·		+	·			·	+ <u>`-</u>
11 PC										1
8 103										
						<u> </u>	<u> </u>			+
	· · · · · · · · · · · · · · · · · · ·					<u> </u>				
			· · · · · · · · · · · · · · · · · · ·							
1										
						+				┿╼╼╼━
	·									
	<u> </u>									1
						+		 		
<u>i</u>			· · · · · · · · · · · · · · · · · · ·		+	+		 		

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

FH-

Coflex Hose Certification

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier: CONTITECH RUBBER INDUSTRIAL KFT.Equipment:6 pcs. Choke and Kill Hose with installed couplingsType:3" x 10,67 m WP: 10000 psiSupplier File Number: 412638Date of Shipment: April. 2008Customer: Phoenix Beattle Co.Customer P.o.: 002491Referenced Standards/ Codes / Specifications : API Spec 16 C

Serial No.: 52754,52755,52776,52777,52778,52782

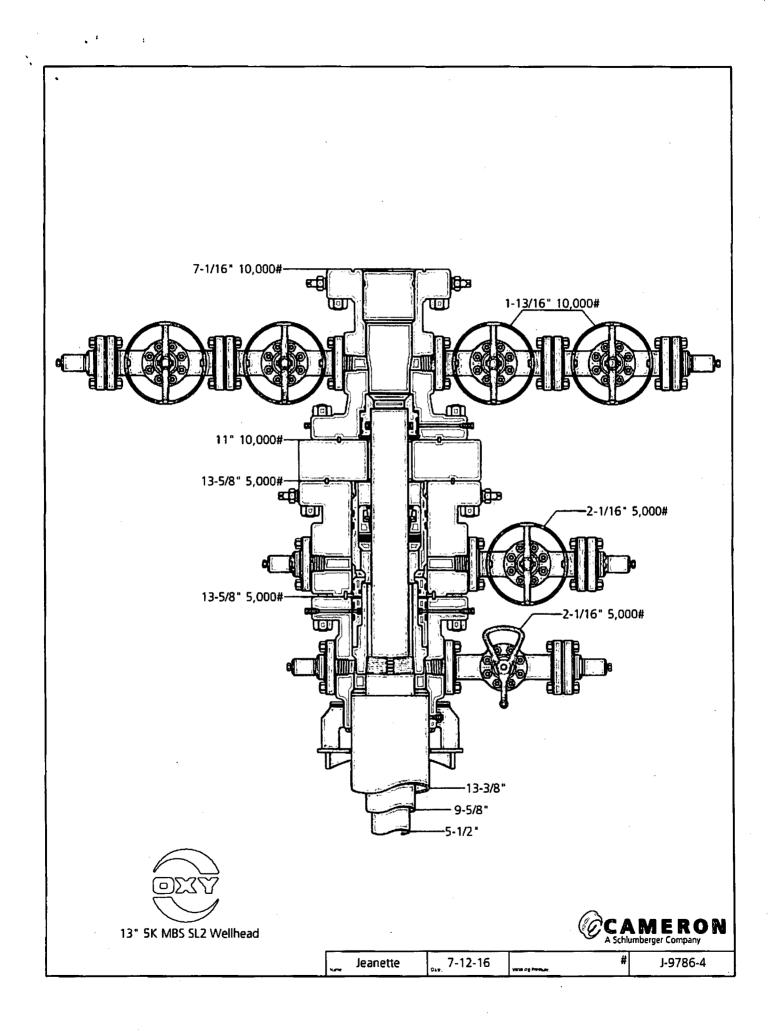
STATEMENT OF CONFORMITY

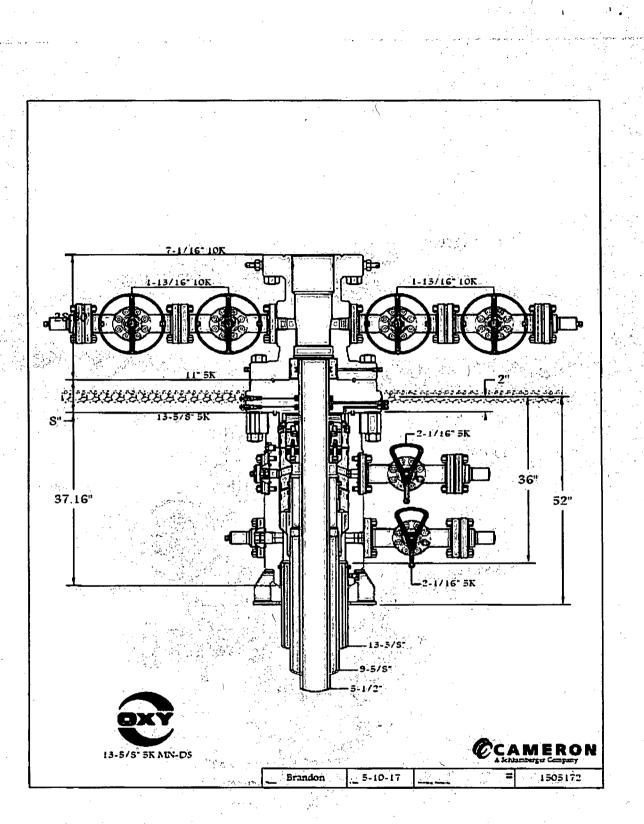
We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager


_ontiTech Rubber Industrial Kft. Quality Control Dept.


Date: 04. April. 2008

5M BOP Stack

1

Mud Cross Valves: 5. 5M Check Valve 6. Outside 5M Kill Line **Fill Line** Valve 7. Inside 5M Kill Line 8. Outside 5M Kill Line D (1 1. 5000 psi Annular Valve (AS-5/3° ID) 9. 5M HCR Valve 2. 5,000 psi Upper Pipe Rem *Minimum ID = 2-1/16" on Kill ((13-5/3° ID)) Line side and 3" minimum ID on choke line side 3. 5,000 pat Blind Rem BUNO (13-5/3° (D)) 9 To Co-Flex and To Kill< **Choke Manifold** Line 41. 5,000 psi Lower Pipe FIRE Rem (13-5/3" ID)) SPOOL

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.
- c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below. TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

1) Casing Design Assumptions

a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection¹/ Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.
- c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

1) Casing Design Assumptions

a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

 The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.

١,

- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

PERFORMANCE DATA

TMK UP DQX **Technical Data Sheet**

4.500 in

11.60 lbs/ft

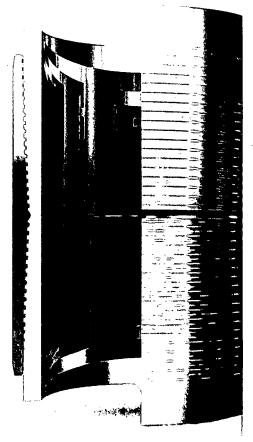
P-110

Tubular Parameters

Size	4.500	in
Nominal Weight	11.60	lbs/ft
Grade	P-110	
PE Weight	11.35	lbs/ft
Wall Thickness	0.250	in
Nominal ID	4.000	in
Drift Diameter	3.875	in
Nom. Pipe Body Area	3.338	in²
	1	r

Connection Parameters

5.000	in
4.000	in
3.772	in
3.338	in²
100.0	%
100.0	%
367,000	[:] Ibs
10,700	psi
7,600	psi
	4.000 3.772 3.338 100.0 100.0 367,000 10,700


Make-Up Torques Min. Make-Up Torque 4,800 ft-lbs Opt. Make-Up Torque 5,400 ft-lbs Max. Make-Up Torque 5,900 ft-lbs 8,600 Yield Torque ft-lbs

Printed on: July-29-2014

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Minimum Yield	110,000
Minimum Tensile	125,000
Yield Load	367,000
Tensile Load	417,000
Min. Internal Yield Pressure	10,700
Collapse Pressure	7,600

