Form 3160-5 (June 2015)

1. Type of Well

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

SUBMIT IN TRIPLICATE - Other instructions on page 2

HOBBS OCD

FORM APPROVED OMB NO. 1004-0137 31, 2018

NMNM66927

6. If Indian, Allottee or Tribe Name

Expires: January
Lease Serial No.
NIMANIMAGGOOT

SUNDRY NOTICES AND REPORTS ON WELLS JAN	3 0 2018
Do not use this form for proposals to drill or to re-enter an	A
abandoned well. Use form 3160-3 (APD) for such proposals.	'V /

7. If Ollit of CA/Agreement	, Name and/or No.
8. Well Name and No. TOPAZ 11 FED 701H	/

☑ Oil Well ☐ Gas Well ☐ Other Name of Operator EOG RESOURCES INC

Contact: STAN WAGNER E-Mail: stan_wagner@eogresources.com

API Well No. 30-025-44005-00-X1

3a. Address 1111 BAGBY SKY LOBBY2 HOUSTON, TX 77002

3b. Phone No. (include area code) Ph: 432-686-3689

10. Field and Pool or Exploratory Area HARDIN TANK

4. Location of Well (Footage, Sec., T., R., M., or Survey Description)

Sec 11 T26S R34E NWNW 483FNL 330FWL 32.063877 N Lat, 103.448196 W Lon

11. County or Parish, State LEA COUNTY, NM

12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA

TYPE OF SUBMISSION		TYPE OF	FACTION	
Notice of Intent	☐ Acidize	☐ Deepen	☐ Production (Start/Resume)	☐ Water Shut-Off
	☐ Alter Casing	☐ Hydraulic Fracturing	□ Reclamation	■ Well Integrity
☐ Subsequent Report	☐ Casing Repair	■ New Construction	☐ Recomplete	⊠ Other
☐ Final Abandonment Notice	☐ Change Plans	☐ Plug and Abandon	□ Temporarily Abandon	Drilling Operations
	Convert to Injection	Plug Back	□ Water Disposal	

13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has determined that the site is ready for final inspection.

EOG Resources requests an amendment to our approved APD for this well to reflect a change in casing design as attached.

> Carlsbad Field Office **OCD Hobbs**

SEE ATTACHED FOR CONDITIONS OF APPROVAL

14. I hereby certify that the Name (Printed/Typed)	e foregoing is true and correct. Electronic Submission #400073 verifie For EOG RESOURCES Committed to AFMSS for processing by ZO STAN WAGNER	INC, se	nt to the Hobbs	
Signature	(Electronic Submission)	Date	01/09/2018	
	THIS SPACE FOR FEDERA	L OR	STATE OFFICE USE	
certify that the applicant hole	TEVENS		ETROLEUM ENGINEER Hobbs	Date 01/25/2018
Title 18 U.S.C. Section 1001	and Title 43 U.S.C. Section 1212 make it a crime for any pe	rson kno	wingly and willfully to make to any department or ag	ency of the United

States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

Revised Permit Information 1/9/18:

Well Name: Topaz 11 Fed No. 701H

Location:

SL: 483' FNL & 330' FWL, Section 11, T-26-S, R-34-E, Lea Co., N.M. BHL: 230' FSL & 330' FWL, Section 11, T-26-S, R-34-E, Lea Co., N.M.

Casing Program:

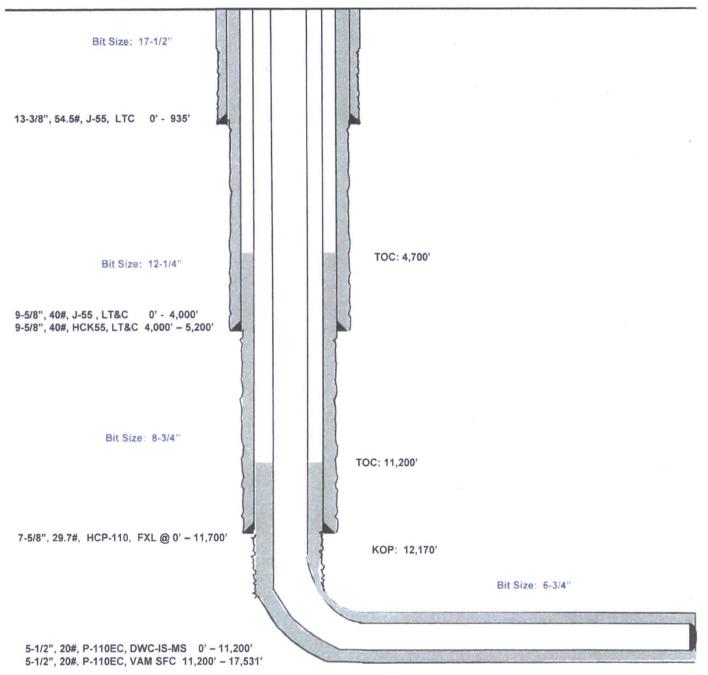
Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
17.5"	0 – 935'	13.375"	54.5#	J55	STC	1.125	1.25	1.60
12.25"	0-4,000	9.625"	40#	J55	LTC	1.125	1.25	1.60
12.25"	4,000' - 5,200'	9.625"	40#	HCK55	LTC	1.125	1.25	1.60
8.75"	0 - 11,700	7.625"	29.7#	HCP110	FXL	1.125	1.25	1.60
6.75"	0 – 11,200°	5.5"	20#	P110EC	DWC CIS MS	1.125	1.25	1.60
6.75"	8°-17.53.1'	5.5"	20#	P110EC	VAM SFC	1.125	1.25	1.60

Variance is requested for annular clearance of the 5-1/2" x 7-5/8" to the top of cement.

Cement Program:

Depth	No. Sacks	Wt. lb/gal	Yld Ft ³ /ft	Slurry Description
935'	697	13.5	1.74	Lead: Class 'C' + 4.00% Bentonite + 2.00% CaCl2
				(TOC @ Surface)
	333	14.8	1.35	Tail: Class 'C' + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%
				Sodium Metasilicate + 2.0% KCl (1.06 lb/sk)
5,200'	692	12.7	2.22	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 +
				0.75% C-41P (TOC @ Surface)
	303	14.8	1.32	Tail: Class C + 0.13% C-20
11,700	375	10.8	3.67	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 +
		-		0.20% D167 (TOC @ 4,700')
	400	14.8	2.38	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167
				+ 0.02% D208 + 0.15% D800
17,531	950	14.8	1.31	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 +
				0.40% C-17 (TOC @ 11,200')

Mud Program:


Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 - 935	Fresh - Gel	8.6-8.8	28-34	N/c
935' - 5,200'	Brine	10.0-10.2	28-34	N/c
5,200'-11,700'	Oil Base	8.7-9.4	58-68	N/c - 6
11,700'- 17,531'	Oil Base	10.0-11.5	58-68	3 - 6
Lateral				

Topaz 11 Fed #701H Lea County, New Mexico

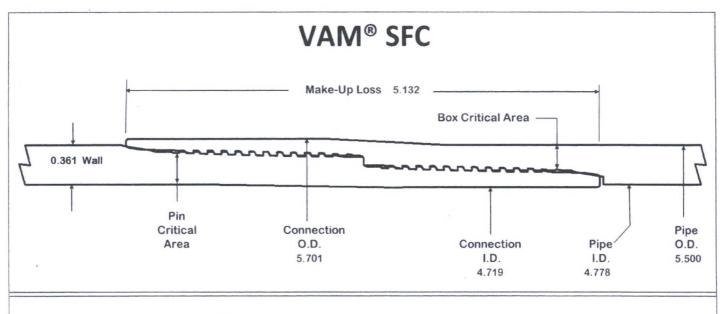
483' FNL 330' FWL Section 11 T-26-S, R-34-E

Proposed Wellbore Revised 1/9/18 API: 30-025-44005

KB: 3,345' GL: 3,320'

Lateral: 17,531' MD, 12,764' TVD
Upper Most Perf:
330' FNL & 330' FWL Sec. 11
Lower Most Perf:
330' FSL & 330' FWL Sec. 11
BH Location: 230' FSL & 330' FWL
Section 11

T-26-S, R-34-E


TECHNICAL SPECIFICATIONS

These specifications are furnished for general information only and are not intended for design purposes. This information is preliminary and may change subject to a final design by VAM-USA Engineering. This is not a controlled document.

DWC/C-IS MS standard	Casing	5.500" O.D.	20.00 lb./ft.	VST P-110EC
VST P-110EC 125,000 135,000	Material Grade Minimum Yield Stren Minimum Ultimate St		V	
5.500 4.778 0.361 20.00 19.83 5.828	Pipe Dimensions Nominal Pipe Body I Nominal Wall Thickn Nominal Weight (Ibs Plain End Weight (Ibs Nominal Pipe Body I	D (in.) less (in.) ./ft.) s./ft.)	Houston, TX 77 Phone: (713) 479 Fax: (713) 479	479-3200
729,000 12,090 14,360 13,100	Pipe Body Perform Minimum Pipe Body Minimum Collapse P Minimum Internal Yie Hydrostatic Test Pre	Yield Strength (lbs.) Pressure (psi.) eld Pressure (psi.)		
6.115 4.778 4.653 4.13 5.828 100.0	Connection Dimens Connection OD (in.) Connection ID (in.) Connection Drift Dia Make-up Loss (in.) Critical Area (sq. in.) Joint Efficiency (%)	meter (in.)		
26,040 (728,000 (729,000 12,090	API Joint Strength (I Compression Rating API Collapse Pressur API Internal Pressur	ngth (ft.) 1.4 Design F bs.) (lbs.) ire Rating (psi.)		
19,100 (5) Minimum Final Torqu 5) Maximum Final Torqu 6) Connection Yield To	ue (ftlbs.)		

- (1) Joint Strength is the minimum pipe body yield strength multiplied by the connection critical area.
- (2) Reference String Length is the joint strength divided by both the weight in air and the design factor.
- (3) API Joint Strength is for reference only. It is calculated from Formulas 42 and 43 in the API Bulletin 5C3.
- (4) API Internal Pressure Resistance is calculated from Formulas 31, 32, and 35 in the API Bulletin 5C3.
- (5) Torque values are approximated and may be affected by field conditions.
- (6) Connection yield torque is not to be exceeded.

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades voltained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advited obtain current connection specifications and verify pipe mechanical properties for each application.

O.D. 5.500 WEIGHT 20.00

WALL 0.361

GRADE VST P110EC DRIFT 4.653

PIPE BODY PROPERTIES

CONNECTION PROPERTIES

Material Grade Min. Yield Strength Min. Tensile Strength	VST P110EC 125 ksi 135 ksi	Connection OD Connection ID Make up Loss	5.701 in 4.719 in 5.132 in
Outside Diameter Inside Diameter Nominal Area	5.500 in 4.778 in 5.828 sq.in.	Box Critical Area %PB Section Area Pin Critical Area %PB Section Area	4.083 sq.in. 70.1% 4.123 sq.in. 70.7%
Yield Strength Ultimate Strength Min Internal Yield *High Collapse	729 kips 787 kips 14,360 psi 12,090 psi	Yield Strength Parting Load Min Internal Yield *High Collapse Wk Compression Max Pure Bending	510 kips 551 kips 14,360 psi 12,090 psi 357 kips 20 °/100 ft

Contact: tech.support@vam-usa.com

Date:

Ref. Drawing: SI-PD 100414 Rev.B

14-Jun-16

Time:

2:31 PM

TORQUE DATA ft-lb

min opt max 8,700 9,700 10,700

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof, and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

MCTP Metal One Corp. Page MO-FXL 3-Nov-16 Date Metal One Connection Data Sheet Rev. Geometry Imperial S.I. Pipe Body P110HC *1 Grade P110HC *1 Pipe OD (D) 7 5/8 193.68 in mm Weight MO-FXL 29.70 lb/ft 44.25 kg/m Actual weight 29.04 43.26 kg/m Wall Thickness (t) 0.375 in 9.53 mm Pipe ID (d) 6.875 174.63 in mm Pipe body cross section 8.537 in² 5,508 mm² Drift Dia. 6.750 171.45 in mm Connection Box OD (W) 7.625 193.68 mm PIN ID 6.875 174.63 mm in Make up Loss 4.219 107.16 in mm Box Critical Area 5.714 3686 in² mm² Joint load efficiency 70 critical Thread Taper 1 / 10 (1.2" per ft) area Number of Threads Make Performance up Performance Properties for Pipe Body loss S.M.Y.S. *1 1,067 4.747 kN kips M.I.Y.P, *1 MPa 10,760 74.21 psi Pin Collapse Strength *1 50.76 MPa 7,360 psi critical S.M.Y.S.= Specified Minimum YIELD Strength of Pipe body M.I.Y.P. = Minimum Internal Yield Pressure of Pipe body *1 Based on VSB P110HC (YS=125~140ksi) Performance Properties for Connection Tensile Yield load 747 kips (70% of S.M.Y.S.) Min. Compression Yield 747 kips (70% of S.M.Y.S.) Internal Pressure 8,610 psi (80% of M.I.Y.P. External Pressure 100% of Collapse Strength Max. DLS (deg./100ft) Recommended Torque Min. 15,500 ft-lb 21,000 N-m Opti. 17,200 ft-lb 23.300 N-m

Max.

Operational Max.

18,900

23,600

Note: Operational Max. torque can be applied for high torque application

ft-lb

ft-lb

25,600

32,000

N-m

N-m

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | EOG RESOURCES INC

LEASE NO.: | NMNM66927

WELL NAME & NO.: | TOPAZ 11 FED 701H

SURFACE HOLE FOOTAGE: 483' FNL & 330' FWL BOTTOM HOLE FOOTAGE 230' FSL & 330' FWL

LOCATION: Section 11, T. 26 S., R 34 E., NMPM

COUNTY: | **Eddy County, New Mexico**

COA

All pervious COAs still apply expect the following:

H2S	r Yes	© No	
Potash	• None	Secretary	C R-111-P
Cave/Karst Potential	€ Low	← Medium	^C High
Variance	None	Flex Hose	Other
Wellhead	Conventional	Multibowl	Both
Other	☐ 4 String Area	Capitan Reef	□ WIPP

A. Hydrogen Sulfide

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 935 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Additional cement maybe required. Excess calculates to 14%.
- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:

Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

Variance was approved for annular clearance for the 5 $\frac{1}{2}$ x 7 5/8.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 100' into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 1st intermediate casing shoe shall be 5000 (5M) psi.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM-engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE.

If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

ZS 012518

13 3/8		csg in a	17 1/2	inch hole.		Design	THE PARTY OF THE P	SUR	RFACE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	54.50		55	ST&C	10.09	2.64	0.99	935	50,958
"B"								0	0
	mud, 30min Sfo			Tail Cmt	does not	circ to sfc.	Totals:	935	50,958
				ement Volume		-			
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
17 1/2	0.6946	1030	1662	704	136	8.80	1611	2M	1.56
Burst Frac Grad	dient(s) for Se	gment(s) A,	B = , b All :	> 0.70, OK.					
05/0	casing in	cido tho	122/0			Docion	Eactors	INTED	MEDIATE
9 5/8 Segment	#/ft	Grade	13 3/8	Coupling	Joint	Collapse	Factors Burst	A STATE WARRANT CO.	
"A"	40.00		1 55	LT&C	2.50	1.21		Length	Weight
"B"	40.00	нск		LT&C	13.56		0.69 1.66	4,000	160,000
77.00				LIGO	13.50	2.86	V	1,200	48,000
	mud, 30min Sfo			ious s ton of	0	ft from our	Totals:	5,200	208,000
	Annular	* *		nieve a top of	0		urface or a	935	overlap.
Hole		1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt		% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
12 1/4	0.3132	995	1936	1694	14	10.20	3133	5M	0.81
Assumed 1/3 F				0 1 1					
Burst Frac Grad All > 0.70, OK.		gment(s): A	, B, C, D = 0.9	19, b, c, d					
Tail cmt									
7 5/8	casing in		9 5/8		-	Design Fa	produce and the		MEDIATE
Segment	#/ft	Grade	3.1.	Coupling	Joint	Collapse	Burst	Length	a decidence of the second
Segment "A" "B"	#/ft 29.70	100	110	LT&C	Joint 2.15	1.29	Burst 1.13	11,700 0	a description of the way of
"A"	70.00	HCF				Charles and the second and the first		11,700	347,490 0
"A" "B"	29.70	HCF				Charles and the second and the first	1.13	11,700 0	347,490 0
"A" "B" w/8.4#/g	29.70 mud, 30min Sfo	HCF	: 932			1.29	1.13	11,700 0	347,490 0
"A" "B" w/8.4#/g	29.70 mud, 30min Sfo	HCF	: 932	LT&C	2.15	1.29	1.13 Totals:	11,700 0 11,700	347,490 0 347,490 overlap.
"A" "B" w/8.4#/g	29.70 mud, 30min Sfo	HCF CSg Test psig	: 932	LT&C	2.15	1.29	1.13 Totals:	11,700 0 11,700	347,490 0 347,490 overlap. Min Dist
"A" "B" w/8.4#/g The c Hole	29.70 mud, 30min Sfo	HCF c Csg Test psig e(s) are inte 1 Stage	: 932 ended to ach 1 Stage	LT&C	2.15 5000 1 Stage	1.29 ft from so	1.13 Totals: urface or a Calc	11,700 0 11,700 200 Req'd	347,490 0 347,490 overlap. Min Dist
"A" "B" w/8.4#/g The c Hole Size 8 3/4	29.70 mud, 30min Sfo	HCF c Csg Test psig ne(s) are inte 1 Stage Cmt Sx	ended to ach 1 Stage CuFt Cmt 2328	LT&C nieve a top of Min Cu Ft	5000 1 Stage % Excess 239	ft from so Drilling Mud Wt 9.40	1.13 Totals: urface or a Calc MASP	11,700 0 11,700 200 Req'd BOPE	347,490 0 347,490 overlap. Min Dist Hole-Cplg
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm	29.70 mud, 30min Sfo	HCF c Csg Test psig ne(s) are inte 1 Stage Cmt Sx 775	ended to ach 1 Stage CuFt Cmt 2328	LT&C nieve a top of Min Cu Ft 686	5000 1 Stage % Excess 239	ft from so Drilling Mud Wt 9.40 exrta equip?	1.13 Totals: urface or a Calc MASP 4817	11,700 0 11,700 200 Req'd BOPE 5M	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm	29.70 mud, 30min Sfo	HCF c Csg Test psig ne(s) are inte 1 Stage Cmt Sx 775	ended to ach 1 Stage CuFt Cmt 2328	LT&C nieve a top of Min Cu Ft 686	5000 1 Stage % Excess 239	ft from so Drilling Mud Wt 9.40 exrta equip?	1.13 Totals: urface or a Calc MASP	11,700 0 11,700 200 Req'd BOPE 5M	347,490 0 347,490 overlap. Min Dist Hole-Cplg
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm	29.70 mud, 30min Sfo	HCF c Csg Test psig ne(s) are inte 1 Stage Cmt Sx 775	ended to ach 1 Stage CuFt Cmt 2328 MASP is with	LT&C nieve a top of Min Cu Ft 686	5000 1 Stage % Excess 239	ft from so Drilling Mud Wt 9.40 exrta equip?	1.13 Totals: urface or a Calc MASP 4817	11,700 0 11,700 200 Req'd BOPE 5M	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2	29.70 mud, 30min Sfo	HCF c Csg Test psig se(s) are into 1 Stage Cmt Sx 775	ended to ach 1 Stage CuFt Cmt 2328 MASP is with	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50	5000 1 Stage % Excess 239 00psig, need of	ft from so Drilling Mud Wt 9.40 exrta equip?	1.13 Totals: urface or a Calc MASP 4817	11,700 0 11,700 200 Req'd BOPE 5M	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment	29.70 mud, 30min Sformud, 30min Sfor	HCF c Csg Test psig se(s) are into 1 Stage Cmt Sx 775 side the Grade	ended to ach 1 Stage CuFt Cmt 2328 MASP is with	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50	5000 1 Stage % Excess 239 00psig, need of	ft from so Drilling Mud Wt 9.40 exrta equip?	1.13 Totals: urface or a Calc MASP 4817 Factors Burst	11,700 0 11,700 200 Req'd BOPE 5M	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B"	29.70 mud, 30min Sformud, 30min Sfor	HCF c Csg Test psig e(s) are into 1 Stage Cmt Sx 775 side the Grade	ended to ach 1 Stage CuFt Cmt 2328 MASP is wit	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50	5000 1 Stage % Excess 239 00psig, need of	ft from so Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81	1.13 Totals: urface or a Calc MASP 4817 Factors Burst 1.88	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 224,000 126,620
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	ement volum Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00	HCF c Csg Test psig e(s) are into 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig	ended to ach 1 Stage CuFt Cmt 2328 MASP is wit 7 5/8	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50 Coupling BUTT BUTT	5000 1 Stage % Excess 239 00psig, need of	ft from so Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81	1.13 Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88	200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531	347,490 0 347,490 overlap. Min Dist Hole-Cplo 0.56 Weight 224,000 126,620 350,620
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	29.70 mud, 30min Sformud, 30min Sfo	HCF c Csg Test psig se(s) are inte 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig gn Factors	ended to ach 1 Stage CuFt Cmt 2328 MASP is wit 7 5/8	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50 Coupling BUTT BUTT	5000 1 Stage % Excess 239 00psig, need 6 5.20	ft from so Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81 1.48	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals:	200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531	347,490 0 347,490 overlap. Min Dist Hole-Cplo 0.56 UCTION Weight 224,000 126,620 350,620
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	ement volum Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 mud, 30min Sfc	HCF c Csg Test psig se(s) are inte 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig gn Factors	ended to ach 1 Stage CuFt Cmt 2328 MASP is with 7 5/8 110 110 2,464 would be:	LT&C nieve a top of Min Cu Ft 686 thin 10% of 500 Coupling BUTT BUTT	5000 1 Stage % Excess 239 00psig, need 6 5.20	ft from so Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81 1.48	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals: if it were a vi	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531 ertical wellb	347,490 0 347,490 overlap. Min Dist Hole-Cpls 0.56 UCTION Weight 224,000 126,620 350,620 oore.
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pill	29.70 mud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 40min Sfo	HCF c Csg Test psig e(s) are inte 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig gn Factors	rended to ach 1 Stage CuFt Cmt 2328 MASP is with 7 5/8 110 110 2,464 would be: MTD 17531	LT&C nieve a top of Min Cu Ft 686 thin 10% of 500 Coupling BUTT BUTT	5000 1 Stage % Excess 239 00psig, need 6 5.20 16.30 Csg VD	ft from se Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81 1.48 1.59 Curve KOP 12170	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals: if it were a very Doglege	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531 ertical wellb Severity°	347,490 0 347,490 overlap. Min Dist Hole-Cpls 0.56 UCTION Weight 224,000 126,620 350,620 overlap. MEOC 13103
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pill	29.70 mud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 30min Sformud, 40min Sfo	HCF c Csg Test psig ne(s) are into 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig gn Factors nned ne(s) are into	### 1932 ### 1932 ### 2328 MASP is wiff 7 5/8 ### 110 ### 110 ### 2,464 ### would be: MTD 17531 #### 17531 #### 17531	LT&C nieve a top of Min Cu Ft 686 thin 10% of 500 Coupling BUTT BUTT Max VTD 12764	2.15 5000 1 Stage % Excess 239 00psig, need of 2.86 5.20 16.30 Csg VD 12764 11500	ft from so Drilling Mud Wt 9,40 exrta equip? Design Collapse 1.81 1.48 1.59 Curve KOP 12170 ft from so	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals: if it were a very polytem of the color o	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531 ertical wellb Severity ^o 10 200	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56 Weight 224,000 126,620 350,620 oore.
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/g No Pill The c Hole	ement volum Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 mud, 30min Sforegment Designot Hole Planement volum Annular	HCF c Csg Test psig e(s) are inte 1 Stage Cmt Sx 775 side the Grade F c Csg Test psig gn Factors nned e(s) are inte 1 Stage	ended to ach 1 Stage CuFt Cmt 2328 MASP is with 7 5/8 110 110 2,464 would be: MTD 17531 ended to ach 1 Stage	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50 Coupling BUTT BUTT Max VTD 12764 nieve a top of	2.15 5000 1 Stage % Excess 239 00psig, need of 5.20 16.30 Csg VD 12764	ft from se Drilling Mud Wt 9.40 exrta equip? Design Collapse 1.81 1.48 1.59 Curve KOP 12170 ft from se Drilling	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals: if it were a very population of the color of the colo	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531 ertical wellb Severity ^o 10 200 Req'd	overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 224,000 126,620 350,620 oore. MEOC 13103 overlap. Min Dist
"A" "B" w/8.4#/g The c Hole Size 8 3/4 Class 'H' tail cm 5 1/2 Segment "A" "B" w/8.4#/g No Pill The c	29.70 mud, 30min Sformud, 30min Sfo	HCF c Csg Test psig ne(s) are into 1 Stage Cmt Sx 775 side the Grade F C Csg Test psig gn Factors nned ne(s) are into	### 1932 ### 1932 ### 2328 MASP is wiff 7 5/8 ### 110 ### 110 ### 2,464 ### would be: MTD 17531 #### 17531 #### 17531	LT&C nieve a top of Min Cu Ft 686 thin 10% of 50 Coupling BUTT BUTT Max VTD 12764 nieve a top of Min	5000 1 Stage % Excess 239 00psig, need 6 5.20 16.30 Csg VD 12764 11500 1 Stage	ft from so Drilling Mud Wt 9,40 exrta equip? Design Collapse 1.81 1.48 1.59 Curve KOP 12170 ft from so	Totals: urface or a Calc MASP 4817 Factors Burst 1.88 1.88 Totals: if it were a very polytem of the color o	11,700 0 11,700 200 Req'd BOPE 5M PROD Length 11,200 6,331 17,531 ertical wellb Severity ^o 10 200	347,490 0 347,490 overlap. Min Dist Hole-Cplg 0.56 Weight 224,000 126,620 350,620 oore. MEOC 13103 overlap.