March 2012)	DH(26		FORM OMB N Expires Or 5. Lease Serial No. NMNM122622	APPROVED 0. 1004-0137 ctober 31, 2014	р 4
BUREAU OF LAND MANA	AGEMENT Drill or	REENTERNA	17 LO	NMNM122622	or Tribe Name	
UNITED STATES DEPARTMENT OF THE II BUREAU OF LAND MAN/ APPLICATION FOR PERMIT TO I	R	R	CEN	7. If Unit or CA Agree	ement, Name an	id No.
lb. Type of Well: 🔽 Oil Well 🔲 Gas Well 🗌 Other		gle Zone 🔽 Multip		8. Lease Name and W PEACHTREE 24 FI		72/3 3H
2. Name of Operator EOG RESOURCES INCORPORATED	7371)		9. API Well No. 30-02-5	- 447	44
3a. Address 1111 Bagby Sky Lobby2 Houston TX 77002	3b. Phone No. (713)651-7	(include area code) 000		10. Field and Pool, or E RED HILLS / SAND	· · · ·	980 UPPER
4. Location of Well (Report location clearly and in accordance with any At surface SWSW / 268 FSL / 821 FWL / LAT 32.022421 At proposed prod. zone NENW / 230 FNL / 1356 FWL / LAT	2 / LONG -1	03.5319481	2162	11. Sec., T. R. M. or BI SEC 24 / T26S / R3	•	r Area
 Distance in miles and direction from nearest town or post office* 21 miles 				12. County or Parish LEA	13. S NM	
 Distance from proposed* location to nearest 230 feet property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of ac 1640	eres in lease	17. Spaci 320	ng Unit dedicated to this w	vell	
 Distance from proposed location* to nearest well, drilling, completed, 513 feet applied for, on this lease, ft. 	19. Proposed 12579 feet	Depth / 22673 feet		/BIA Bond No. on file IM2308		
21. Elevations (Show whether DF, KDB, RT, GL. etc.) 3346 feet	22. Approxim	nate date work will star 8	1*	23. Estimated duration 25 days	1	
	24. Attac	hments		·····		
he following, completed in accordance with the requirements of Onshor	e Oil and Gas	Order No.1, must be at	tached to t	his form:		
. Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	ne operati	ons unless covered by an	existing bond o	on file (see
 A Surface Use Plan (if the location is on National Forest System I SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	 Operator certific Such other site BLM. 		formation and/or plans as	may be require	ed by the
25. Signature (Electronic Submission)		(Printed/Typed) Wagner / Ph: (432)	686-368	9	Date 11/16/2017	
Title Regulatory Specialsit						
pproved by (Signature)		(Printed/Typed)			Date	
(Electronic Submission)	Cody Office	Layton / Ph: (575)2	34-5959		04/27/2018	3
itle Supervisor Multiple Resources		SBAD				
xpplication approval does not warrant or certify that the applicant holds onduct operations thereon. Conditions of approval, if any, are attached.	s legal or equit	able title to those righ	ts in the su	bject lease which would e	ntitle the applic	ant to
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr states any false, fictitious or fraudulent statements or representations as t			villfully to	make to any department o	r agency of the	United

43

(Continued on page 2) GCP/OC5/7/18	*(Instructions on page 2)
UNDROVED WITH CONDITIONS	04/10/10
APPROVED WITH COMPACT APPROVAL Date: 04/27/2018	Requires NSL

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 04/27/2018

Additional Operator Remarks

Location of Well

1. SHL: SWSW / 268 FSL / 821 FWL / TWSP: 26S / RANGE: 33E / SECTION: 24 / LAT: 32.0224212 / LONG: -103.5319481 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 330 FSL / 1356 FWL / TWSP: 26S / RANGE: 33E / SECTION: 24 / LAT: 32.0225865 / LONG: -103.5302208 (TVD: 12536 feet, MD: 12665 feet) BHL: NENW / 230 FNL / 1356 FWL / TWSP: 26S / RANGE: 33E / SECTION: ¹/₁3 / LAT: 32.0500732 / LONG: -103.5302162 (TVD: 12579 feet, MD: 22673 feet)

BLM Point of Contact

Name: Sipra Dahal Title: Legal Instruments Examiner Phone: 5752345983 Email: sdahal@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

小臣,公司,公司,官臣,王子,张忠,四位长臣,

Approval Date: 04/27/2018

(Form 3160-3, page 4)

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

05/01/2018

APD ID: 10400024360

Operator Name: EOG RESOURCES INCORPORATED

Well Name: PEACHTREE 24 FED COM

Well Type: OIL WELL

Submission Date: 11/16/2017

Zip: 77002

Well Number: 708H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General		
APD ID: 10400024360	Tie to previous NOS?	Submission Date: 11/16/2017
BLM Office: CARLSBAD	User: Stan Wagner	Title: Regulatory Specialsit
Federal/Indian APD: FED	Is the first lease penetrate	d for production Federal or Indian? FED
Lease number: NMNM122622	Lease Acres: 1640	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreeme	nt:
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? NO	APD Operator: EOG RESO	URCES INCORPORATED
Operator letter of designation:		

Operator Info

Operator Organization Name: EOG RESOURCES INCORPORATED

Operator Address: 1111 Bagby Sky Lobby2

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (713)651-7000

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan na	ime:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: PEACHTREE 24 FED COM	Well Number: 708H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: RED HILLS	Pool Name: SANDERS TANK; UPPER WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Well Name: PEACHTREE 24 FED COM

.

.

						•												
Desc	ribe c	ther	miner	als:														
is th	e prop	osed	well i	in a H	elium	prod	uctio	n area?	N Use E	Existing W	ell Pa	d? NO	Ne	w s	surface o	listur	oance	?
Туре	of W	ell Pa	d: MU	ILTIPL	.E WE	ELL				ple Well P			Nu	ımt	⊳er: 708⊦	1/7091	1/710H	4
Well	Class	: HOF	RIZON	ITAL						HTREE 24 ber of Leg		СОМ						
Well	Work	Туре	: Drill															
Well	Туре	OIL \	WELL															
Desc	ribe \	Nell T	ype:															
Well	sub-1	ype:	INFILI	L														
Desc	ribe s	sub-ty	vpe:															
Dista	ance t	o tow	n: 21	Miles			Dis	tance to	nearest v	well: 513 F	т	Dist	ance t	o le	ease line	: 230	FT	
Rese	ervoir	well s	spacir	ng ass	ignec	l acre	s Me	asurem	ent: 320 A	cres								
Well	plat:	Pe	achtre	e_24	_Fed_	_Com_	_708F	l_signed	1_C_102_2	201711161	54128	.pdf						
Well	work	start	Date:	Ó7/01	/2018				Durat	tion: 25 D/	AYS							
[
	Sec	tion	3 - V	Vell	Loca	atior	ı Tal	ble										
Surv	ey Ty	pe: Rl	ECTA	NGUL	AR													
Desc	ribe S	Survey	у Тур	e:														
Datu	m: NA	D27							Vertic	al Datum		88						
Surv	ey nu	mber:	:															
[5		1			[<u> </u>		_		
}		5		Jo Jo				Лra							her			
	ğ	dicat	g	dicat				t/Lot	e e	nde			au	ype		<u>io</u>		
	VS-Foot	VS Indicator	EW-Foot	EW Indicator	dsw	Range	Section	Aliquot/Lot/Tract	atitude	ongitude	County	State	Meridian	ease Type	ease Number	evation		Q
SHL	2 268	-	ш 821	ш FWL	⊢		ு 24	⋜ Aliquot	<u>ت</u> 32.02242	<u>↓</u>	Ŭ LEA		≥_ NEW	<u> </u>	МИМИ	団 334	0 0	1 0
Leg	200		021		203	JJL	24	SWS	12	- 103.5319			MEXI	1	000296	1	0	
#1								w		481		co	co		5A			
KOP	50	FSL		FWL	26S	33E	24	Aliquot	32.02181		LEA		NEW	F	NMNM	-	121	120
Leg #1			9					SESW	2	103.5303 116	. ·		MEXI CO		000296 5A	874 4	07	90
PPP	330	FSL	135	FWL	26S	33E	24	Aliquot	32.02258		LEA	NEW	NEW	F	NMNM	-	126	125
Leg			6 ·				,	SESW	65	103.5302		MEXI	MEXI		000296		65	36
#1	1 .		1							208		CO	co		5A	0		

Well Number: 708H

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

05/01/2018

APD ID: 10400024360

Operator Name: EOG RESOURCES INCORPORATED

Submission Date: 11/16/2017

Highlighted data reflects the most recent changes

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID '	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	PERMIAN	3346	0	0	ALLUVIUM	NONE	No
2	RUSTLER	2415	931	931	ANHYDRITE	NONE	No
3	TOP OF SALT	2070	1276	1276	SALT	NONE	No .
4	BASE OF SALT	-1568	4914	4914	SALT	NONE	No
5	LAMAR	-1803	5149	5149	LIMESTONE	NONE	No
6	BELL CANYON	-1834	5180	5180	SANDSTONE	NATURAL GAS,OIL	Yes
7	CHERRY CANYON	-2882	6228	6228	SANDSTONE	NATURAL GAS,OIL	Yes
8	BRUSHY CANYON	-4517	7863	7863	SANDSTONE	NATURAL GAS,OIL	Yes
9	BONE SPRING LIME	-6017	9363	9363	LIMESTONE	NONE	No
10	BONE SPRING 1ST	-6971	10317	10317	SANDSTONE	NATURAL GAS,OIL	Yes
11	BONE SPRING 2ND	-7525	10871	10871	SANDSTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8648	11994	11994	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-9070	12416	12416	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Pressure Rating (PSI): 10M

Rating Depth: 12579

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Requesting Variance? YES

Variance request: Variance is requested to use a 5000 psi annular BOP with the 10000 psi BOP stack. Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Centralizers will be placed in the 9-7/8" hole interval at least one every third joint. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10000/ 250 psig and the annular preventer to 5000/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10000/ 250 psig and the annular preventer to 5000/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

Peachtree_24_Fed_Com_707H_10_M_Choke_Manifold_20171116103515.pdf

Peachtree_24_Fed_Com_707H_Co_Flex_Hose_Certification_20171116103515.PDF

Peachtree_24_Fed_Com_707H_Co_Flex_Hose_Test_Chart_20171116103516.pdf

BOP Diagram Attachment:

Peachtree_24_Fed_Com_707H_10_M_BOP_Diagram_20171116103536.pdf

Peachtree_24_Fed_Com_707H_EOG_BLM_10M_Annular_Variance___4_String_20171116103537.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1050	0	1050	3346	2296	1050	J-55	54.5	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4000	0	4000	3346	-654	4000	J-55	40	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	4000	5000	4000	5000	-654	-1654	1000	НСК -55	40	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Ņ

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top`Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	PRODUCTI ON	6.75	5.5	NEW	API	N	0	11000	0	11000	3346	-7654	11000	OTH ER		OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.6
	INTERMED IATE	8.75	7.625	NEW	API	N	0	11500	0	11500	3346	-8154	11500	HCP -110		OTHER - FXL	1.12 5	1.25	BUOY	1.6	BUOY	1.6
1	PRODUCTI ON	6.75	5.5	NEW	API	N	11000	22673	11000	12579	-7654	-9233	11673	OTH ER		OTHER - VAM SFC	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Casing Attachments

Casing ID: 1

String Type:SURFACE

Spec Document:

Inspection Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peachtree_24_Fed_Com_708H_BLM_Plan_20171116122750.pdf

Casing ID: 2 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

See_previously_attached_Drill_Plan_20171116122807.pdf

2

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Casing Attachments

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

See_previously_attached_Drill_Plan_20171116122822.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peachtree_24_Fed_Com_708H_5.500in_20.00_VST_P110EC_DWC_C_IS_MS_Spec_Sheet_20171116122841.pdf See_previously_attached_Drill_Plan_20171116122842.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peachtree_24_Fed_Com_708H_7.625in_29.70_P110HC_FXL_Spec_Sheet_20171116122901.pdf

See_previously_attached_Drill_Plan_20171116122902.pdf

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Casing Attachments

Casing ID: 6

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peachtree_24_Fed_Com_708H_5.500in_20.00_VST_P110EC_VAM_SFC_Spec_Sheet_20171116122918.pdf

See_previously_attached_Drill_Plan_20171116122919.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0	0	0	0

					-					
INTERMEDIATE	Lead	0	0	0	0	0	0	0	0	0

SURFACE	Lead		0	1050	600	1.73	13.5	1038	25	Class C	Lead: Class C + 4.0% Bentonite + 0.6% CD- 32 + 0.5% CaCl2 + 0.25 Ib/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail		1050	1050	200	1.34		268	25	Class C	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
INTERMEDIATE	Lead	1	0	5000	1780	2.2	12.7	3916	25	Class C	11.64 Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C-41P (TOC @ Surface)

Operator Name: EOG RESOURCES INCORPORATED **Well Name:** PEACHTREE 24 FED COM

Well Number: 708H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		5000	5000	200	1.12	16	224	25	Class C	Tail: Class C + 0.13% C-20
INTERMEDIATE	Lead		4500	1150 0	340	2.72	11.5	924	25	Class C	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 + 0.20% D167 (TOC @ 4,500')
INTERMEDIATE	Tail		1150 0	1150 0	210	1.12	16	235	25	Class H	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167 + 0.02% D208 + 0.15% D800
PRODUCTION	Lead		1100 0	2267 3	950	1.26	14.1	1197	25 ,	Class H	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C- 17 (TOC @ 11,000')

Section 5 - Circulating Medium

Circulating Medium Table

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

	 		••									
Ton Denth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	На	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics		-
11: 0	 OIL-BASED MUD	10	14									

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1050	5000	SALT SATURATED	10	10.2							
5000	1150 0	OIL-BASED MUD	8.7	9.4							
0 /	1050	WATER-BASED MUD	8.6	8.8							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 9157

Anticipated Surface Pressure: 9157

77 1

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peachtree 24_Fed_Com_708H_H2S_Plan_Summary_20171116103825.pdf

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Section 8 - Other Information

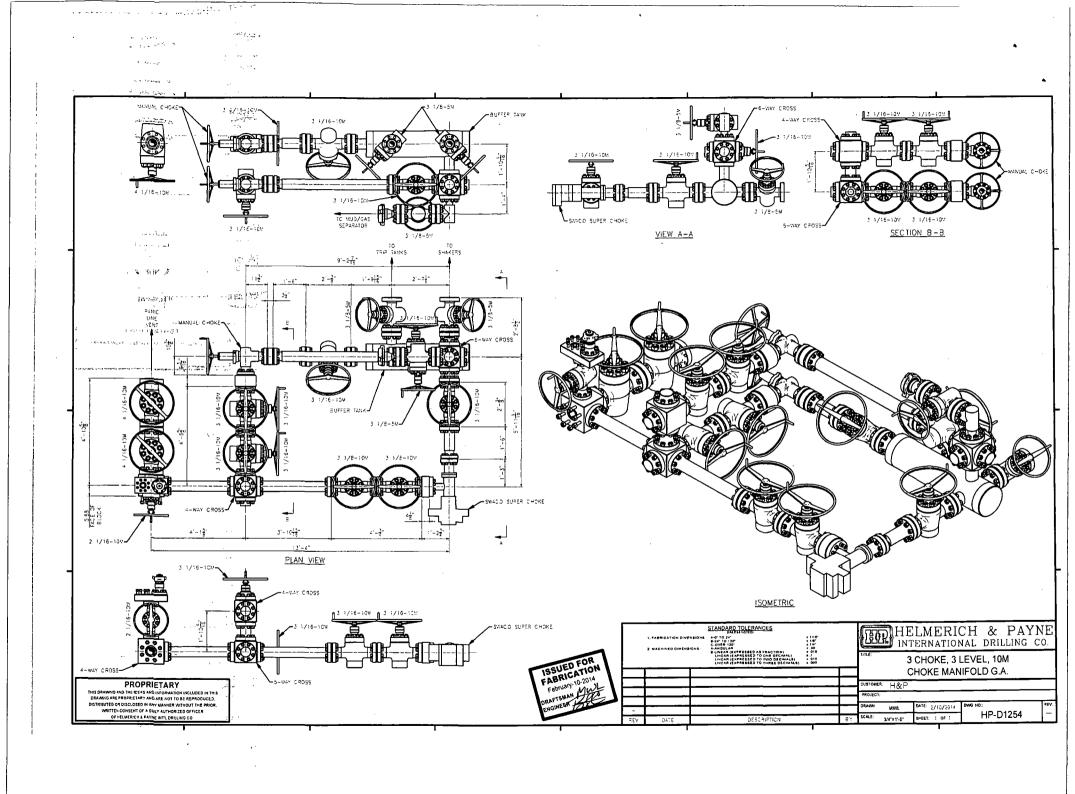
Proposed horizontal/directional/multi-lateral plan submission:

Peachtree_24_Fed_Com_708H_Planning_Report_20171116103855.pdf Peachtree_24_Fed_Com_708H_Wall_Plot_20171116103855.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Peachtree_24_FC_708H_gas_capture_20171114134425.pdf


Peachtree_24_Fed_Com_708H_Proposed_Wellbore_20171116103922.pdf

Peachtree_24_Fed_Com_708H_Rig_Layout_20171116103922.pdf

Peachtree_24_Fed_Com_708H_Wellhead_Cap_20171116103922.pdf

Other Variance attachment:

Peachtree_24_Fed_Com_708H_EOG_BLM_10M_Annular_Variance___4_String_20171116103935.pdf

9

.

۰,

.

.

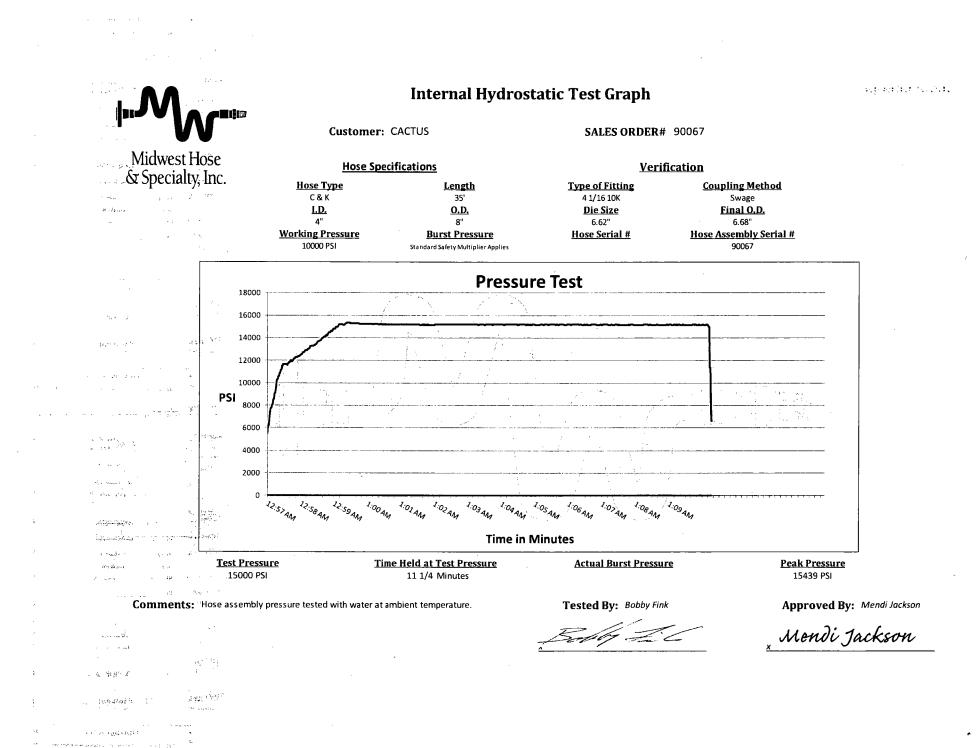
.

ecialty

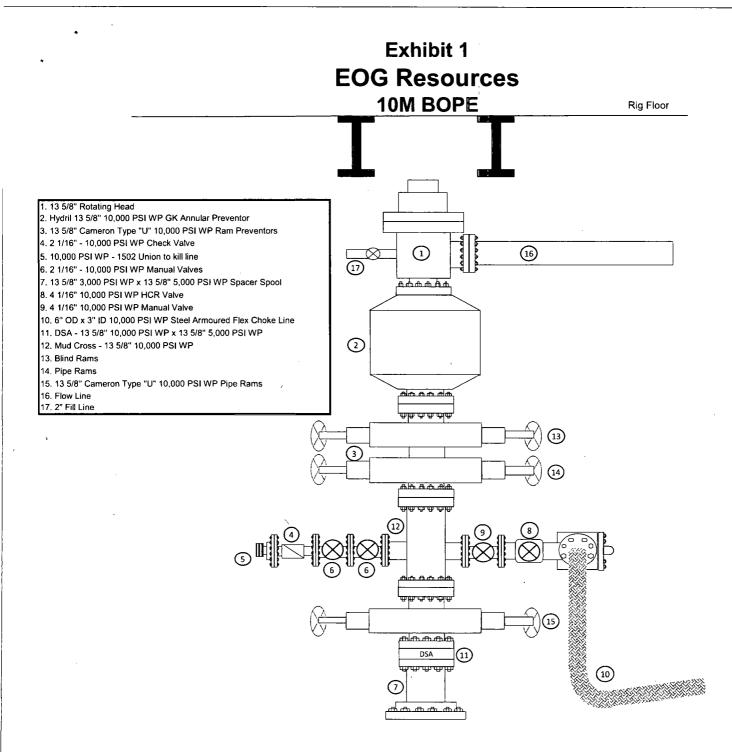
required by manfacturer: No

·

. .


.

. .


Туре:	CHOKE LINE	5		Length:	35'	
I.D.	4"	INCHES	O.D.	8"	INCI	HES
WORKING	PRESSURE	TEST PRESSUR	E	BURST PRES	SURE	
10,000) PSI	15,000	PSI			PSI
		COUP	LINGS			
Type of I	End Fitting 4 1/16 10K F	LANGE				
Type of (Coupling: SWEDGED		MANUFACTI MIDWEST HO		ALTY	
		PROC	EDURE			
		<u>PRESSURE LOSTOCI N</u> TEST PRESSURE	1	<u>int temperature</u> BURST PRESSI		
	1	MIN.			0	PSI
COMMEN	SN#90087 I Hose is cove wraped with	M10761 ered with stain fire resistant v ited for 1500 de	ermiculite coa	ted fibergias	-	
Date:	6/6/2011	Tested By: BOBBY FINK		Approved: MENDI		

. . .

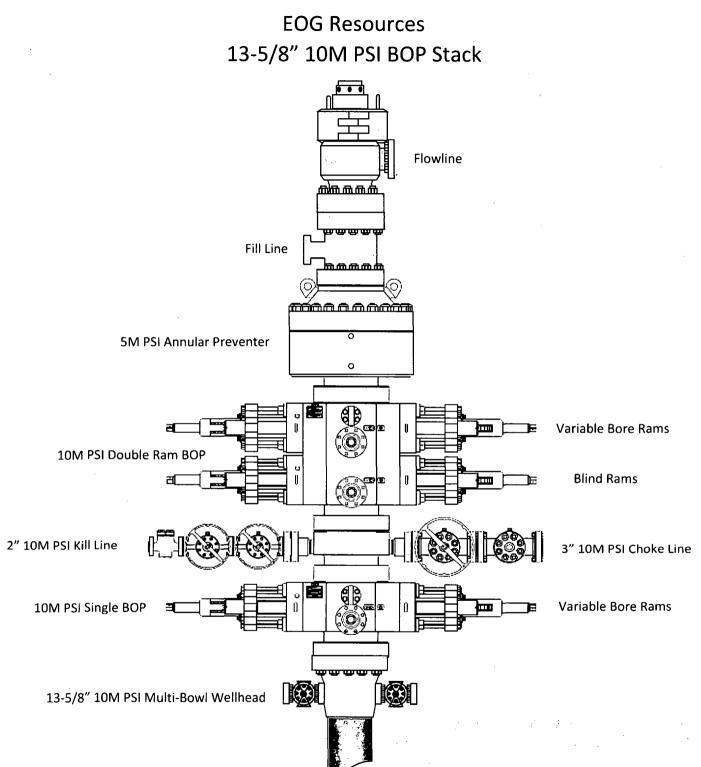
•

10.00

10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables


The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

····	-	Intermediate Hole Se DM psi requirement	ection		
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
DCs and MWD tools	6.500" – 8.000"	Annular	5M	-	-
Mud Motor	8.000" – 9.625"	Annular	5M	-	-
1 st Intermediate casing	9.625″	Annular	5M	-	-
Open-hole	-	Blind Rams	10M	-	-

		Intermediate Hole Se .0M psi requirement	ection		
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M
	4.500"			Lower 3.5 - 5.5" VBR	10M
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
DCs and MWD tools	6.500" – 8.000"	Annular	5M	······································	
Mud Motor	6.750" - 8.000"	Annular	: 5M		
2 nd Intermediate casing	7.625″	Annular	5M	-	
Open-hole	-	Blind Rams	-10M	-	-

		" Production Hole Se 10M psi requirement			
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
HWDP	4.500″	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
DCs and MWD tools	4.750" - 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
Mud Motor	4.750" – 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
Mud Motor	5.500" – 5.750"	Annular	5M	-	-
Production casing	5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M
				Lower 3.5 - 5.5" VBR	10M
Open-hole	-	Blind Rams	10M	-	-

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

See previously attached Drill Plan

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

931' 1,016'
1,276'
4,914'
5,149'
5,149'
5,180'
6,228'
7,863'
9,363'
10,317'
10,544'
10,871'
11,344'
11,994'
12,416'
12,579'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,228'	Oil
Brushy Canyon	7,863'	Oil
1 st Bone Spring Sand	10,317'	Oil
2 nd Bone Spring Shale	10,544'	Oil
2 nd Bone Spring Sand	10,871'	Oil
3 rd Bone Spring Carb	11,344'	Oil `
3 rd Bone Spring Sand	11,994'	Oil
Wolfcamp	12,416'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 13.375" casing at 1,050' and circulating cement back to surface.

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
17.5"	0 – 1,050'	13.375"	54.5#	J55	LTC	1.125	1.25	1.60
12.25"	0-4,000'	9.625"	40#	J55	LTC	1.125	1.25	1.60
12.25"	4,000' – 5,000'	9.625"	40#	HCK55	LTC	1.125	1.25	1.60
8.75"	0 – 11,500'	7.625"	29.7#	HCP- 110	FXL	1.125	1.25	1.60
6.75"	0' - 11,000'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,000'-22,673'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft³/ft	Mix Water Gal/sk	Slurry Description
13-3/8" 1,050'	600	13.5	1.73	9.13	Lead: Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
9-5/8" 5,000'	1780	12.7	2.20	11.64	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C-41P (TOC @ Surface)
	200	16.0	1.12	4.75	Tail: Class C + 0.13% C-20
7-5/8" 11,500'	340	11.5	2.72	15.70	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 + 0.20%*D167 (TOC @ 4,500')
	210	16.0	1.12	4.74	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167 + 0.02% D208 + 0.15% D800
5-1/2" 22,673'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,000')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5,000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,050'	Fresh - Gel	8.6-8.8	28-34	N/c
1,050' - 5,000'	Brine	10.0-10.2	28-34	N/c
5,000' - 11,500'	Oil Base	8.7-9.4	58-68	N/c - 6
11,500' - 22,673'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral			1	

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 9157 psig (based on 14.0 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1000 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

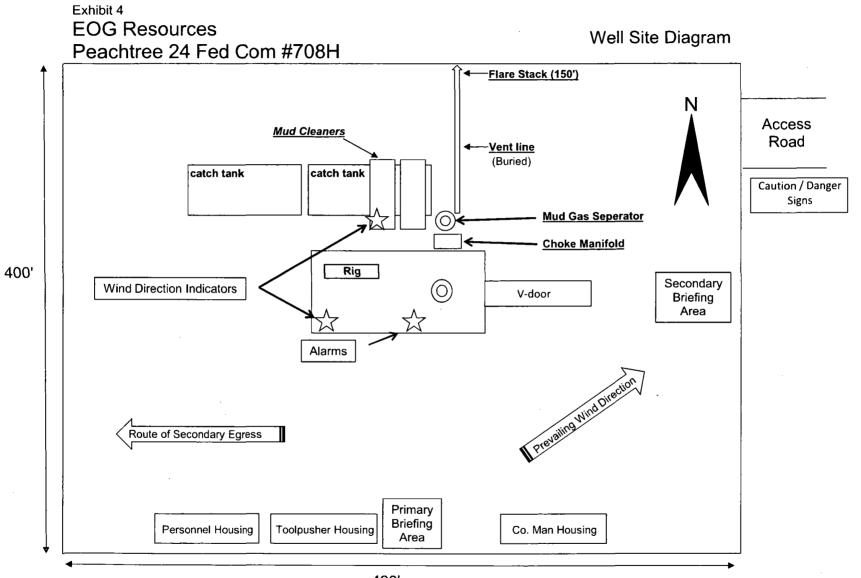
The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

MO-FXL		Page	MCTF		
		Date	3-Nov-1	16	
Connection Data	a Sheet	.			
		Rev.	0		
Geometry	Imperia	<u>I</u>	<u>S.I.</u>		
	P110HC '1	rr	P110HC *1	<u>т</u>	
		in		mm	
				kg/m	
	<u>+</u>			kg/m	
				mm	
				mm	
	· · · · · · · · · · · · · · · · · · ·			-	
· · · · · · · · · · · · · · · · · · ·	the second management of the second second			mm ²	
Dhit Dia.	0.750		171.45		
Connection					
	7.625	in	193.68	mm	
PIN ID	6.875	in	174.63	mm	
Make up Loss	4.219	in	107.16	mm	
		in ²	3686	mm ²	
				%	
Performance					
			<u> </u>	kN	
		psi	74.21	MPa MPa	
Collapse Strength *1	7,360	psi	50.76	IMPA	
	ied Minimum YIE			dy	
M.I.Y.P Minim	lied Minimum YIE 1 Jum Internal Yiek	l Pressu	e of Pipe body	dy	
M.I.Y.P Minim *1 Based on VSB	ied Minimum YIE num Internal Yield P110HC (YS=12	l Pressur 25~140ks	e of Pipe body	dy	
M.I.Y.P. = Minim 1 Based on VSB Performance Properties	ied Minimum YIE oum Internal Yield P110HC (YS=12 for Connectio	l Pressur 25~140ks 9 n	e of Pipe body ii)	dy	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load	ied Minimum YIE oum Internal Yield P110HC (YS=12 for Connectio 747 kips	9 Pressur 25~140ks 0 n (70%	e of Pipe body i) of S.M.Y.S.)	dy	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield	ied Minimum YIE oum Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips	9 Pressur 25~140ks 9 n (70% (70%	e of Pipe body ii) of S.M.Y.S.)	dy	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	ied Minimum YIE oum Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips	Pressur 25~140ks n (70% (70% (80%	e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	dy	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	ied Minimum YIE oum Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips	Pressur 25~140ks n (70% (70% (80% 100% (e of Pipe body ii) of S.M.Y.S.)	dy	
M.I.Y.P. = Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. / 100ft)	ied Minimum YIE oum Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips	Pressur 25~140ks n (70% (70% (80% 100% (e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse S	dy	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure Externat Pressure Max. DLS (deg. / 100ft) Recommended Torque	ied Minimum YIE burn Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi	d Pressur 25~140ks n (70% (70% (80% 100% (4	e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse S 0	trength	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. / 100ft) Recommended Torque Min.	ied Minimum YIE burn Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi	d Pressur 25~140ks on (70% (70% (80% 100% (4 ft-lb	e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse S 0 21,000	trength	
M.I.Y.P Minim 1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure Externat Pressure Max. DLS (deg. / 100ft) Recommended Torque	ied Minimum YIE burn Internal Yiek P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi	d Pressur 25~140ks n (70% (70% (80% 100% (4	e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse S 0	trength	
	Geometry Pipe Body Grade Pipe OD (D) Weight Actual weight Wall Thickness (1) Pipe ID (d) Pipe body cross section Drift Dia. Connection Box OD (W) PIN ID Make up Loss Box Critical Area Joint load efficiency Thread Taper Number of Threads	GeometryImperiaPipe BodyGradeP110HC *1Pipe OD (D)7 5/8Weight29.70Actual weight29.04Wall Thickness (1)0.375Pipe ID (d)6.875Pipe body cross section8.537Drift Dia.6.750Connection6.875Box OD (W)7.625PIN ID6.875Make up Loss4.219Box Critical Area5.714Joint load efficiency70Thread Taper1Number of ThreadsPerformancePerformance Properties for Pipe BodyS.M.Y.S. *11,067	Hev.GeometryImperialPipe BodyGradeP110HC *1Pipe OD (D)7 5/8 inWeight29.70 lb/ftActual weight29.04Wall Thickness (t)0.375 inPipe ID (d)6.875 inPipe body cross section8.537 in²Drift Dia.6.750 inDrift Dia.6.750 inBox OD (W)7.625 inPIN ID6.875 inBox Critical Area5.714 in²Joint load efficiency70 %Thread Taper1 / 10 (1.Number of Threads5PerformancePerformance Properties for Pipe BodyS.M.Y.S. *11.067 kips	Geometry Imperial S.I. Pipe Body Grade P110HC *1 P110HC *1 Pipe OD (D) 7 5/8 in 193.68 Weight 29.70 Ib/ft 44.25 Actual weight 29.04 43.26 Wall Thickness (1) 0.375 in 9.53 Pipe ID (d) 6.875 in 174.63 Pipe body cross section 8.537 in ² 5,508 Drift Dia. 6.750 in 171.45 Connection Box OD (W) 7.625 in 193.68 PIN ID 6.875 in 174.63 Make up Loss 4.219 in 107.16 Box Critical Area 5.714 in ² 3686 Joint load efficiency 70 % 70 Thread Taper 1 / 10 (1.2° per ft) Number of Threads 5 TPI Performance S.M.Y.S. *1 1,067 kips 4,747	


•

~

.

.

Note : Operational Max. torque can be applied for high torque application

490'

8.75" 21.75" 62.06" 21.52" 9.75"	l l	- <u>1/16″ 5M</u>	M FIG 1502
*CONCEPT QUOTE DRAW *DIMENSIONS APE APPR	 BAY 2/22	 Fla	DRAWING NO

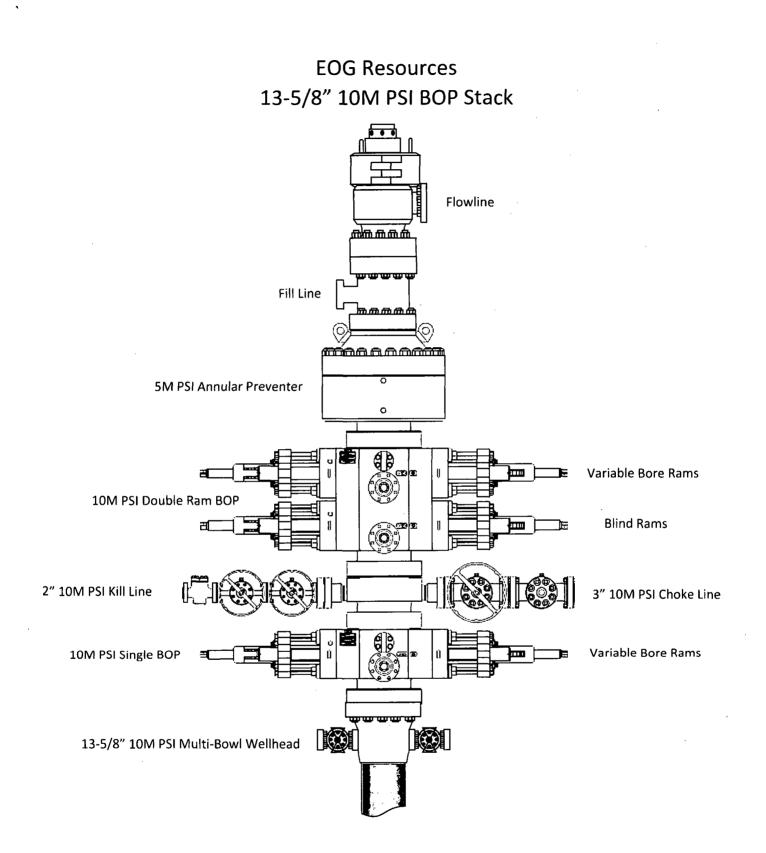
5

.

10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables


12-1/4" Intermediate Hole Section 10M psi requirement							
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP		
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
Jars	6.500″	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
DCs and MWD tools	6.500" – 8.000"	Annular	5M	-	-		
Mud Motor	8.000" – 9.625"	Annular	5M	-	-		
1 st Intermediate casing	9.625″	Annular	5M	-	-		
Open-hole	-	Blind Rams	10M	-	-		

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

8-3/4" Intermediate Hole Section 10M psi requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
DCs and MWD tools	6.500" - 8.000"	Annular	5M	-	-	
Mud Motor	6.750" - 8.000"	Annular	5M	-	-	
2 nd Intermediate casing	7.625″	Annular	5M	-	-	
Open-hole	-	Blind Rams	10M	-	-	

6-3/4" Production Hole Section 10M psi requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
HWDP	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
DCs and MWD tools	4.750" - 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Mud Motor	4.750" – 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Mud Motor	5.500" – 5.750"	Annular	5M	-	-	
Production casing	5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Open-hole	-	Blind Rams	10M	-	-	

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer. confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in

g.

- f. Notify toolpusher/company representative
 - Read and record the following:
 - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400024360

Operator Name: EOG RESOURCES INCORPORATED

Well Name: PEACHTREE 24 FED COM

Submission Date: 11/16/2017

Well Number: 708H Well Work Type: Drill Highlighted data reflects the most recent changes

SUPO Data Report

Show Final Text

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

PEACHTREE24FC708H_vicinity_20171114090040.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

iD:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

PEACHTREE24FC_infrastructure_20171114090104.pdf PEACHTREE24FC708H_padsite_20171114090104.pdf

PEACHTREE24FC708H_wellsite_20171114090105.pdf

New road type: RESOURCE

Length: 1808 Feet Width (ft.): 24

Max slope (%): 2

Max grade (%): 20

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 24

New road access erosion control: Newly constructed or reconstructed roads will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road. We plan to grade and water twice a year. **New road access plan or profile prepared?** NO

Row(s) Exist? NO

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: 6" of Compacted Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: An adequate amount of topsoil/root zone will be stripped by dozer from the proposed well location and stockpiled along the side of the welllocation as depicted on the well site diagram / survey plat. Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: No drainage crossings

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

PEACHTREE24FC708H_radius_20171114090125.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Peachtree 24 Fed Com central battery is located in the SE/4 of section 24-26S-33E **Production Facilities map:**

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

PEACHTREE24FC_infrastructure_20171114090135.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: OTHER

Describe type:

Source latitude:

Source datum:

Water source permit type: WATER RIGHT

Source land ownership: STATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: STATE

Water source volume (barrels): 720000

Source volume (gal): 30240000

Water source and transportation map:

Peachtree Caliche and Water Map 20171109144933.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of	f aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside	e diameter (in.):
New water well casing?	Used casing sour	ce:
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth	(ft.):
Well Production type:	Completion Metho	od:
Water well additional information:		

Water source type: RECYCLED

Source longitude:

Source volume (acre-feet): 92.80303

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche utilized for the drilling pad will be obtained either from an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "Flipping" the well location. A mineral material permit will be obtained from BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad.

Construction Materials source location attachment:

Peachtree_Caliche_and_Water_Map_20171109144951.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility. Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. Human waste and grey water will be properly contained of and disposed of properly. After drilling and completion operations; trash, chemicals, salts, frac sand, and other waste material will be removed and disposed of properly at a state approved disposal facility. **Amount of waste:** 0 barrels

Waste disposal frequency : Daily

Safe containment description: Steel Tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to NMOCD approved disposal facility

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Closed Loop System. Drill cuttings will be disposed of into steel tanks and taken to an NMOCD approved disposal facility. **Cuttings area length (ft.)**

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

PEACHTREE24FC708H padsite 20171114090148.pdf PEACHTREE24FC708H wellsite_20171114090149.pdf Peachtree_24_Fed_Com_708H_Rig_Layout_20171116103952.xls Comments: Wellsite, Padsite, Rig Layout

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PEACHTREE 24 FED COM

Multiple Well Pad Number: 708H/709H/710H

Recontouring attachment:

PEACHTREE24FC708H_reclamation_20171114090202.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

(acres): 4.499541 Road proposed disturbance (acres): 0.996143 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance (acres): 2.479339	1.533517 Road interim reclamation (acres): 0	Well pad long term disturbance (acres): 2.966024 Road long term disturbance (acres): 0.996143 Powerline long term disturbance (acres): 0 Pipeline long term disturbance (acres): 1.487603 Other long term disturbance (acres): 0
Total proposed disturbance: 0	Total interim reclamation: 7.5902667	Total long term disturbance: 5.0799365

Reconstruction method: In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads. Areas planned for interim reclamation will be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts and fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. **Soil treatment:** Re-seed according to BLM standards. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

Existing Vegetation at the well pad: Grass, forbs, and small woody vegetation, such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and respreads evenly on the site following topsoil respreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the road attachment:**

Existing Vegetation Community at the pipeline: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the pipeline attachment:**

Existing Vegetation Community at other disturbances: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at other disturbances attachment:**

Operator Name: EOG RESOURCES INCORPORATED **Well Name:** PEACHTREE 24 FED COM

Well Number: 708H

Non native seed used? NO Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed source:

Source address:

Proposed seeding season:

Total pounds/Acre:

Seed Summary
Seed Type Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Stan

Phone: (432)686-3689

Last Name: Wagner

Email: stan_wagner@eogresources.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds. Weeds will be treated if found. Weed treatment plan attachment:

Monitoring plan description: Reclamation will be completed within 6 months of well plugging. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds.

Monitoring plan attachment:

Success standards: N/A

Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: PEACHTREE 24 FED COM

Well Number: 708H

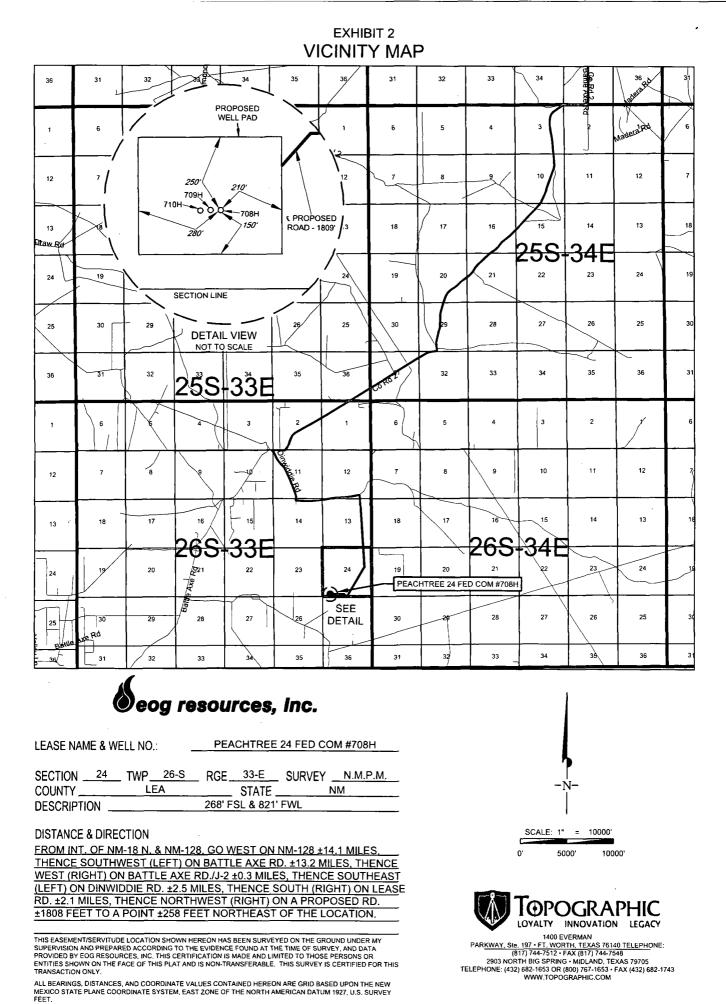
Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications


SUPO Additional Information: OnSite meeting conducted 12/20/16

Use a previously conducted onsite? NO

Previous Onsite information:

Other SUPO Attachment

PEACHTREE24FC708H_location_20171114090234.pdf SUPO_Peachtree_24_Fed_Com_708H_20171114090235.pdf Peachtree24_Fed_Com_708H_deficiency_response_20180411140810.pdf

S:\SURVEY/EOG_MIDLAND/PEACHTREE_24_FED_COM/FINAL_PRODUCTS\LO_PEACHTREE24FEDCOM_708H_REV1.DWG 11/10/2017 10:22:47 AM Istewart

United States Department of the Interior

BUREAU OF LAND MANAGEMENT CARLSBAD FIELD OFFICE 620 E. GREENE ST. CARLSBAD, NM 88220 BLM_NM_CFO_APD@BLM.GOV

In Reply To: 3160 (Office Code) [NMNM0002965A]

03/29/2018

Attn: STAN WAGNER EOG RESOURCES INCORPORATED 1111 BAGBY SKY LOBBY2 HOUSTON, TX: 77002

Re: Receipt and Acceptability of Application for Permit to Drill (APD)

FEDERAL - NMNM0002965A

Well Name / Number:PEACHTREE 24 FED COM / 708HLegal Description:T26S, R33E, SEC 24, SWSWCounty, State:LEA, NMDate APD Received:11/16/2017

Dear Operator:

The BLM received your Application for Permit to Drill (APD), for the referenced well, on 11/16/2017. The BLM reviewed the APD package pursuant to part III.D of Onshore Oil and Gas Order No.1 and it is:

1. Incomplete/Deficient (*The BLM cannot process the APD until you submit the identified items within 45 calendar days of the date of this notice or the BLM will return your APD.*)

	Well Plat		
	Drilling Plan		
\checkmark	Surface Use Plan of Operations (SUPO)		
	Certification of Private Surface Owner Access Agro	eement	
	Bonding		
	Onsite (The BLM has scheduled the onsite to be on)	
	This requirement is exempt of the 45-day timefram deficiencies. This requirement will be satisfied on		e.
	Other		

[Please See Addendum for further clarification of deficiencies]

2. Missing Necessary Information (*The BLM can start, but cannot complete the analysis until you submit the identified items. This is an early notice and the BLM will restate this in a 30-day deferral letter, if you have not submitted the information at that time. You will have two (2) years from the date of the deferral to submit this information or the BLM will deny your APD.*)

[Please See Addendum for further clarification of deficiencies]

NOTE: The BLM will return your APD package to you, unless you correct all deficiencies identified above (item 1) within 45 calendar days.

• The BLM will not refund an APD processing fee or apply it to another APD for any returned APD.

Extension Requests:

- If you know you will not be able to meet the 45-day timeframe for reasons beyond your control, you must submit a written request through email/standard mail for extension prior to the 45th calendar day from this notice, **05/13/2018.**
- The BLM will consider the extension request if you can demonstrate your diligence (providing reasons and examples of why the delay is occurring beyond your control) in attempting to correct the deficiencies and can provide a date by which you will correct the deficiencies. If the BLM determines that the request does not warrant an extension, the BLM will return the APD as incomplete after the 45 calendar days have elapsed.
 - The BLM will determine whether to grant an extension beyond the required 45 calendar days and will document this request in the well file. If you fail to submit deficiencies by the date defined in the extension request, the BLM will return the APD.

APDs remaining Incomplete:

- If the APD is still not complete, the BLM will notify you and allow 10 additional business days to submit a written request to the BLM for an extension. The request must describe how you will address all outstanding deficiencies and the timeframe you request to complete the deficiencies.
 - The BLM will consider the extension request if you can prove your diligence (providing reasons and examples of why the delay is occurring) in attempting to correct the deficiencies and you can provide a date by which you will correct the deficiencies. If the BLM determines that the request does not warrant an additional extension, the BLM will return the APD as incomplete.

If you have any questions, please contact Sipra Dahal at (575) 234-5983.

Sincerely,

Cody Layton Assistant Field Manager

cc: Official File

Clarifications

ADDENDUM - Deficient

Surface Comments

- New and Reconstructed Roads Deficiency: Need Plats for CTB, Power lines, Road, and Flowlines (stating if they are surface or buried)
- Location of Existing and/or Proposed Production Facilities Deficiency: Need Plats for CTB, Power lines, Road, and Flowlines (stating if they are surface or buried)

Attached is the infrastructure plat for the area. All flowlines are buried. Shapefiles have been submitted covering the entire area.

I spoke w/ Jeff Robertson 4/5/18. We were given permission to submit the attached infrastructure plat for these wells with the understanding that additional plats will be needed with future submissions. Bob Ballard concurred.

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM2308

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

05/01/2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Stan Wagner

Title: Regulatory Specialsit

Street Address: 5509 Champions Drive

City: Midland

Phone: (432)686-3689

Email address: Stan_Wagner@eogresources.com

State: TX

State: TX

Field Representative

Representative Name: James Barwis

Street Address: 5509 Champions Drive

City: Midland

Phone: (432)425-1204

Email address: james_barwis@eogresources.com

1 1 1 1 H

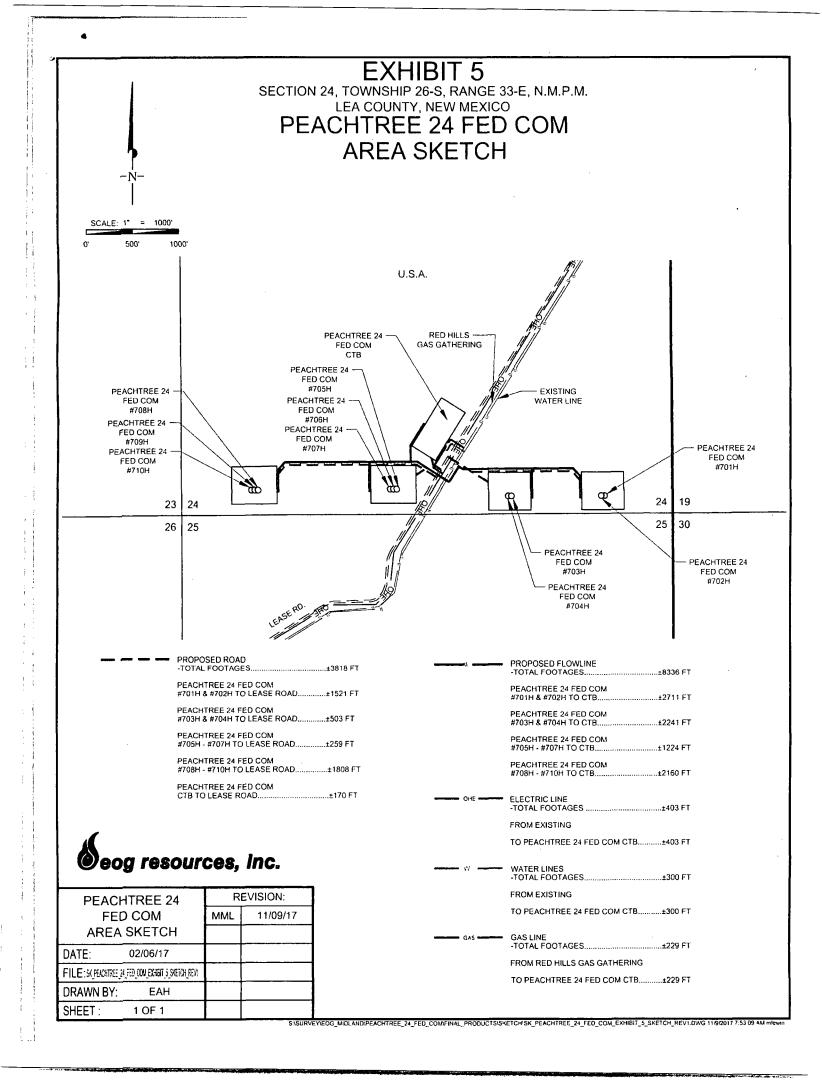
.)

4

Signed on: 10/19/2017

Operator Certification Data Report

05/01/2018

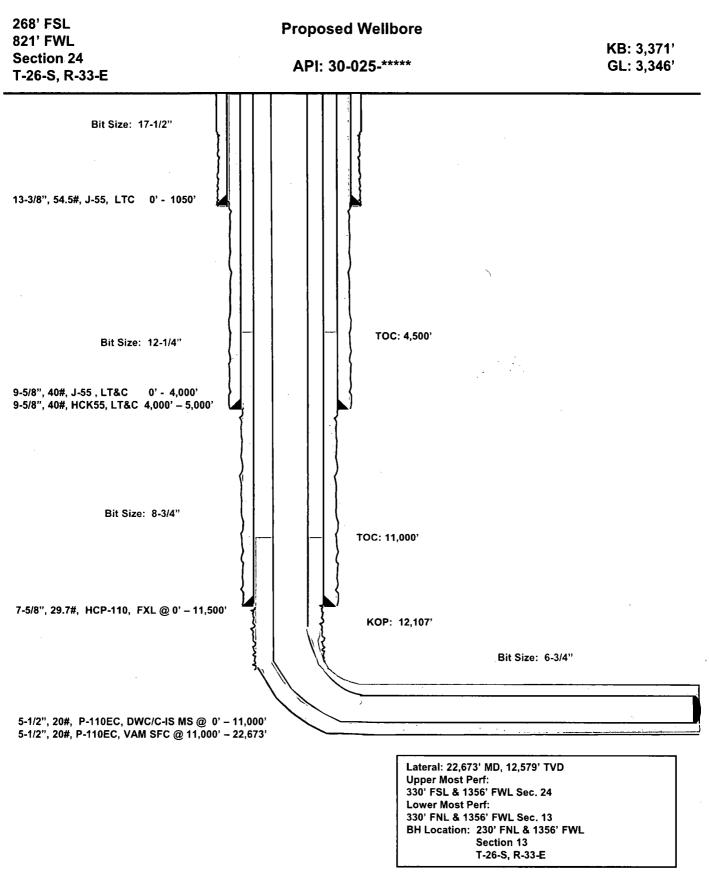

Zip: 79702

Zip: 79706

3 1

2

6 1 1 7


Well Name: PEACHTREE 24 FED COM

Well Number: 708H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
EXIT Leg #1	330	FNL	135 6	FWL	26S	33E	13	Aliquot NENW	32.04979 83	- 103.5302 162	LEA	NEW MEXI CO		F	NMNM 122621	- 923 3	225 73	125 79
BHL Leg #1	230	FNL	135 6	FWL	26S	33E	13	Aliquot NENW	32.05007 32	- 103.5302 162	LEA	1	NEW MEXI CO	F	NMNM 122621	- 923 3	226 73	125 79

Peachtree 24 Fed Com #708H Lea County, New Mexico

.

