		• • "			M//
Form 3160-3 (March 2012) HOBBS 21 2018 UNITED STATE DEPARTMENT OF THE		•			MII GU,
Form 3160-3			•]	FORM	PPROVED
(March 2012) HOBBS 218 UNITED STATE UPPARTMENT OF THE UN 27 DEPARTMENT OF THE		•		OMB No	1004-0137 tober 31, 2014
LOP 2018 UNITED STATE			-	5. Lease Serial No.	
DEPARTMENT OF THE	INTERIOR	 Р	1	NMNM113418	
APPLICATION FOR PERMIT TO			· [6. If Indian, Allotee of	r Tribe Name
APPROVININ FOR PERMIT TO		n RECIVIEN			
la. Type of work: DRILL REENI	TÉR			7. If Unit or CA Agree	nent, Name and No.
				0 I N 1W	11 (zait
lb. Type of Well: 🔽 Oil Well 🔲 Gas Well 💭 Other	Si	ingle Zone 🚺 Multip	ple Zone	8. Lease Name and W CARL MOTTEK FEI	
2. Name of Operator MATADOR PRODUCTION COMPANY		937)	·	9 API Well No.	14918-
3a. Address	4	0. (include area code)	•	10. Field and Pool, or Ex	ploratory 22
5400 LBJ Freeway, Suite 1500 Dallas TX 752	(972)371 -	5200		ANTELOPE RIDGE	
4. Location of Well (Report location clearly and in accordance with a	•		1	11. Sec., T. R. M. or Blk	and Survey or Area
At surface NWNW / 326 FNL / 380 FWL / LAT 32.2239	339 / LONG	-103.4992637		SEC 17 / T24S / R34	4E / NMP
At proposed prod. zone SWSW / 240 FSL / 330 FWL / LA	T 32.210980	6 / LONG -103.499		:	· · ·
14. Distance in miles and direction from nearest town or post office* 19 miles				12. County or Parish LEA	13. State NM
15 Distance from proposed*	16 No. of a	acres in lease	L	Unit dedicated to this we	
location to nearest 326 feet	640	acres in rease	17. Spacing 160	Child Boaldared to and w	
property or lease line, ft. (Also to nearest drig. unit line, if any)					
18. Distance from proposed location*	19. Propose	ed Depth	20. BLM/BI	A Bond No. on file	
to nearest well, drilling, completed, 766 feet applied for, on this lease, ft.	12100 fee	et / 16845 feet	FED: NM	B001079	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22 Approxi	imate date work will sta	<u> </u> rt* :	23. Estimated duration	· · ·
3578 feet	07/01/20	18		90 days	
· · · · · · · · · · · · · · · · · · ·	24. Atta	chments			
The following, completed in accordance with the requirements of Onshe	ore Oil and Gas	Order No.1, must be a	ttached to this	form:	· ·
1. Well plat certified by a registered surveyor.		4. Bond to cover t	he operations	unless covered by an e	xisting bond on file (
2. A Drilling Plan.	·	Item 20 above).		·····, ···,	
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	n Lands, the	5. Operator certific		mation and/or plans as r	
SOFO must be med with the appropriate rolest service office).	•	BLM.	specific fillon	mation and/or plans as i	hay be required by th
25 Signature		(Printed/Typed)		1	Date
(Electronic Submission)	Briar	1 Wood / Ph: (505)4	66-8120		03/13/2018
Title President					:
Approved by (Signature)	Name	(Printed/Typed)	<u> </u>		Date
(Electronic Submission)	1	Layton / Ph: (575)2	234-5959		06/13/2018
Title	Office	· .		I	· · · · ·
Supervisor Multiple Resources					
Application approval does not warrant or certify that the applicant hol conduct operations thereon. Conditions of approval, if any, are attached.	lds legal or equi	itable title to those righ	its in the subje	ct lease which would en	ittle the applicant to
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a	crime for any p	person knowingly and w	willfully to ma	ke to any department or	agency of the United
States any false, fictitious or fraudulent statements or representations as	s to any matter v	within its jurisdiction.			· · · · · · · · · · · · · · · · · · ·
	•			/*(Instru	ictions on page
(Continued on page 2)					· ·
ECP dec 06/27/18				K2 I	1.
ECP dec 06/27/18		TH CONDIT	INS	K# 66/28/1	6

APPROVED PM. Approval Date: 06/13/2018

10

F

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: NWNW / 326 FNL / 380 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2239339 / LONG: -103.4992637 (TVD: 0 feet, MD: 0 feet) PPP: NWNW / 326 FNL / 380 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2239339 / LONG: -103.4992637 (TVD: 0 feet, MD: 0 feet) BHL: SWSW / 240 FSL / 330 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2109806 / LONG: -103.4993951 (TVD: 12100 feet, MD: 16845 feet)

BLM Point of Contact

Name: Katrina Ponder

Title: Geologist

Phone: 5752345969

Email: kponder@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 06/13/2018

(Form 3160-3, page 4)

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report 06/19/2018

1

APD ID: 10400028331

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Type: OIL WELL

Well Number: 211H

Submission Date: 03/13/2018

Well Work Type: Drill

ikini kata is his files IN GIGINGES

Show Final Text

Section 1 - General	······	·
APD ID: 10400028331	Tie to previous NOS?	Submission Date: 03/13/2018
BLM Office: CARLSBAD	User: Brian Wood	Title: President
Federal/Indian APD: FED	Is the first lease penetrate	ed for production Federal or Indian? FED
Lease number: NMNM113418	Lease Acres: 640	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	ent:
Agreement number:	· · · · ·	
Agreement name:		
Keep application confidential? NO		
Permitting Agent? YES	APD Operator: MATADOR	R PRODUCTION COMPANY
Operator letter of designation:	· .	· · · · · ·
Operator Info		
Operator Organization Name: MATADOR	PRODUCTION COMPANY	
Operator Address: 5400 LBJ Freeway, St	uite 1500	
Operator PO Box:		Zip : 75240
Operator City: Dallas Stat	e: TX	
Operator Phone: (972)371-5200	· · ·	
Operator Internet Address: amonroe@m	atadorresources.com	·
Section 2 - Well Inform	ation	
Well in Master Development Plan? NO	Mater Developm	ent Plan name:
Well in Master SUPO? NO	Master SUPO na	me:
Well in Master Drilling Plan? NO	Master Drilling F	Plan name:
Well Name: CARL MOTTEK FEDERAL	Well Number: 21	1H Well API Number:
Field/Pool or Exploratory? Field and Pool	WOLFCAMP	ELOPE RIDGE; Pool Name:
Is the proposed well in an area containin	g other mineral resources? US	SEABLE WATER, NATURAL GAS, CO2, OIL

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H	
-------------------	--

	·								· · ·									
Deee	riha a	thar	miner	alay				2	•									
					olium	prod	uctio	n araa?	N Use E	ivicting W	oll Da	42 NO	Ne	33A7 6	surface o	lietur	hance	2
							uciio	ii area r		ble Well P							Jance	
						LL			MOTT		au Nai	ne. 04				1		
weii		: HOF	RIZUN	HAL					Numb	per of Leg	s: 1					•		
Well	Work	Туре	: Drill			•			• ,							•		
Well	Type:	OIL	NELL															
Desc	ribe V	Veil T	ype:					•										
Well	sub-T	ype:	INFILI	<u> </u>														
Desc	ribe s	ub-ty	pe:															
Dista	ncet	o tow	n: 19	Miles			Dis	tance to	nearest v	vell : 766 F	т	Dist	ance t	o le	ase line	: 326	FT	
Rese	rvoir	weli s	pacin	ıg ass	ignec	l acre	s Me	asurem	ent: 160 A	cres								
Well	plat:	CN	/_211	H_Pla	t_201	8051	\$1558	352.pdf										
Well	work	start	Date:	07/01	/2018				Durat	ion: 90 DA	AYS							
(
	Sec	tion	3 - V	Vell	Loca	ation	Tal	ble										
Surve	ey Tyj	pe: Ri	ECTAI	NGUL	AR			•										
Desc	ribe S	Survey	/ Туре	e:	• •													
Datur	m: NA	D83	•		•			· · ·	Vertic	al Datum:		88						
Surve	ey nu	mber:	1964	2														
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	326	FNL	380	FWL	24S	34E	17	Aliquot	32.22393		LEA	NEW			NMNM		0	0
Leg								NWN W	39	103.4992 637		MEXI CO	MEXI CO		113418	8		
#1 KOP	326	FNL	380	FWL	24S	34E	17	<u> </u>	32.22393	·	LEA	NEW		F	NMNM	-	115	115
Leg #1									39	103.4992 637	1	MEXI CO				793 8	28	16
—	326	FNL	380	FWL	24S	34E	17		32.22393 39	- 103.4992 637	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 113418	1	0	0

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Drilling Plan Data Report

. A pui 06/19/2018

APD ID: 10400028331

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Submission Date: 03/13/2018

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured	1		Producing
ID .	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1		3578	0	0	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2310	1268	1268		NONE	No
3	SALADO	1780	1798	1800	OTHER : Top Salt	NONE	No
4	SALADO	-1701	5279	5293	OTHER : Base Salt	NONE	No
5	BELL CANYON	-1732	5310	5324	SANDSTONE	NATURAL GAS,CO2,OIL	No
6	BRUSHY CANYON	-3944	7522	7536	SANDSTONE	NATURAL GAS,CO2,OIL	No
7	BONE SPRING LIME	-5344	8922	8934		NATURAL GAS,CO2,OIL	No
8	AVALON SAND	-5572	9150	9162	· · · · · · · · · · · · · · · · · · ·	NATURAL GAS,CO2,OIL	No
9	BONE SPRING 1ST	-6209	9787	9799	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 1ST	-6398	9976	9989	SANDSTONE	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-6863	10441	10472	OTHER : Carbonate	CO2,OIL	No
12	BONE SPRING 2ND	-7014	10592	10660	SANDSTONE	NATURAL GAS,CO2,OIL	Yes
13	BONE SPRING 3RD	-7985	11563	11566	OTHER : Carbonate	NATURAL GAS,OIL	No
14	WOLFCAMP	-8303	11881	11921		NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Pressure Rating (PSI): 10M

Rating Depth: 12000

Equipment: A 12,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Van presing ast Netan Agnesis a spin action of this well being a contextible between the BOP and choice manifol Received for the propersed of the base to shadned. Non-decimentation and the mile between to be a schoold. This specifies take is not five helder, failer chosing as the digits, telling with a used. Clanator as mediene to be a schoold Manular and best 16/20 point and 5000 point provident to request the used. Clanator as medies of the association to be to be a state of the school point of the base of the state of the school of the school of the association of the school of the school point of the school of the Notice of the school of the Notice of the school of the Notice of the school of the school

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting surface casing; and before drilling below the surface casing shoe, BOPE will be tested to 250 psi low and 2000 psi high. Annular will be tested to 250 psi low and 1000 psi high. After setting 9-5/8" casing, pressure tests will be made to 250 psi low and 2000 psi high. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 2000 psi high.

Choke Diagram Attachment:

CM_211H_Choke_20180514155302.pdf

BOP Diagram Attachment:

CM 211H BOP 20180313103214.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	Ň	0	1300	Ó	1300	3578		1300	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4300	0 .	4300	3573			P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3		12.2 5	9.625	NEW	API	N	0	5300	0	5300	3578		5300	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	10700	0	10700			10700	P- 105		OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8
5	INTERMED	8.75	7.625	NEW	API	Y	4300	11000	4300	11000				P- 110		OTHER - VAM HTF- NR	_	1.12 5	DRY	1.8	DRY	1.8

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
6	INTERMED IATE	8.75	7.0	NEW	API	Y	11000	12330	11000	12330			1	P- 110				1.12 5	DRY	1.8	DRY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	10700	16845	10700	12100	·		6145	₽- 110		OTHER - BTC/TXP	·	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313103338.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_211H_7.625IN_Casing_Spec_20180313103528.PDF

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313104211.pdf

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Casing Attachments

Casing ID:	3	String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313103408.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

CM_211H_5.5IN_Casing_Spec_20180313105031.PDF

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313105233.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_211H_7.625IN_Casing_Spec_20180313104420.PDF

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313104455.pdf

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Casing Attachments

 Casing ID:
 6
 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_211H_Casing_Design_Assumptions_20180313104710.pdf Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313104716.pdf

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

CM_211H_4.5IN_Casing_Spec_20180313105150.pdf

Casing Design Assumptions and Worksheet(s):

CM_211H_Casing_Design_Assumptions_20180313105220.pdf

Section	Section 4 - Cement														
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives				
SURFACE	Lead		0	1300	740	1:82	12.8	1346	100	Class C	bentonite + 2% CaCl2 + 3% NaCl + LCM				
SURFACE	Tail		0	1300	330	1.38	14.8	455	100	Class C	5% NaCI + LCM				
INTERMEDIATE	Lead		0	4300	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM				
INTERMEDIATE	Tail		0	4300	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM				
INTERMEDIATE	Lead		0	5300	1110	2.09	12.6	2319	100	Class C	Bentonite + 1% CaCl2 + 8% NaCl + LCM				

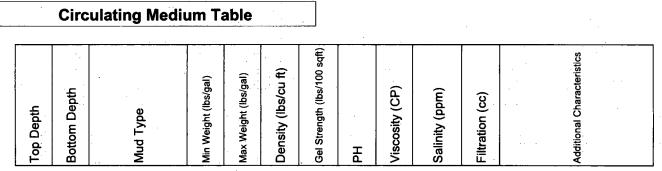
Well Name: CARL MOTTEK FEDERAL

Well	Num	ber:	21	1H	
------	-----	------	----	----	--

String Type	_ead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	ı Ft	Excess%	Cement type	Additives
	·	n n n						S	<u>↓ </u>		
INTERMEDIATE	Tail		0	5300	540	1.38	14.8	745	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1070 0	0	0	0	0	0	N/A	N/A
PRODUCTION	Tail		0	1070 0	600	1.17	15.8	702	20	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4300	1100 0	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail	.:	4300	1100 0	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1100 0	1233 0	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1100 0	1233 0	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1070 0	1684 5	0	0	0.	0	0	N/A	N/A
PRODUCTION	Tail	•	1070 0	1684 5	600	1.17	15.8	702	20	ТХІ	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed


Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	H	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1233 0	1684 5	OIL-BASED MUD	12.5	12.5							
0	1300	OTHER : Fresh water spud	8.3	8.3							
1300	5300	OTHER : Brine water	10	10							
5300	1233 0	OTHER : Fresh water & cut brine	9	9				<u>.</u>			

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 5300' to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7250

Anticipated Surface Pressure: 4588

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan:

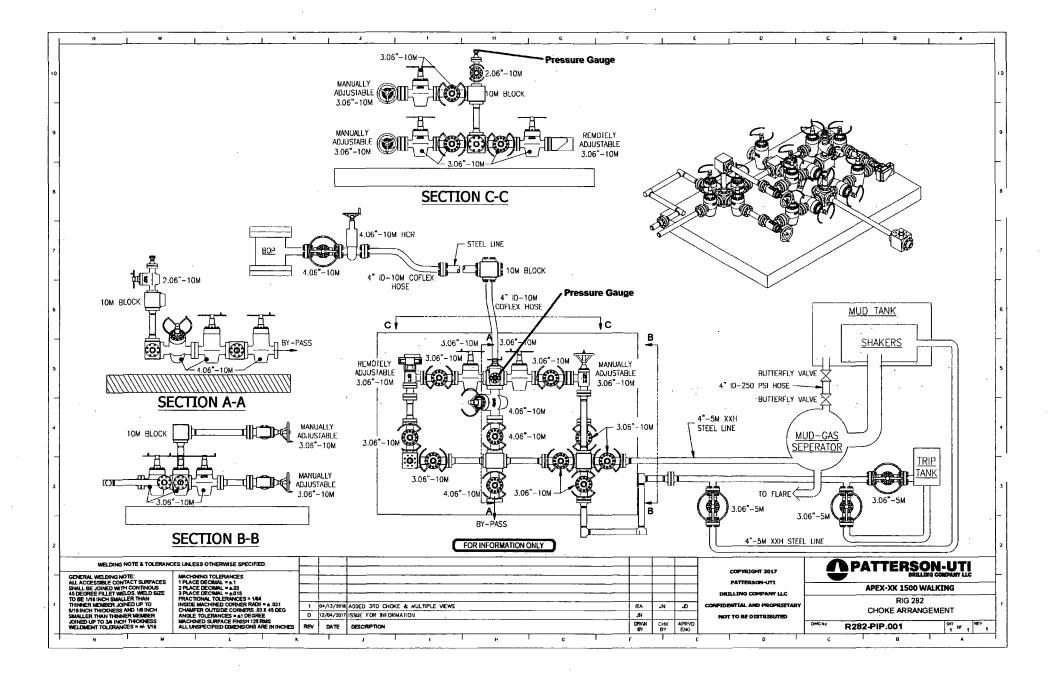
Well Name: CARL MOTTEK FEDERAL

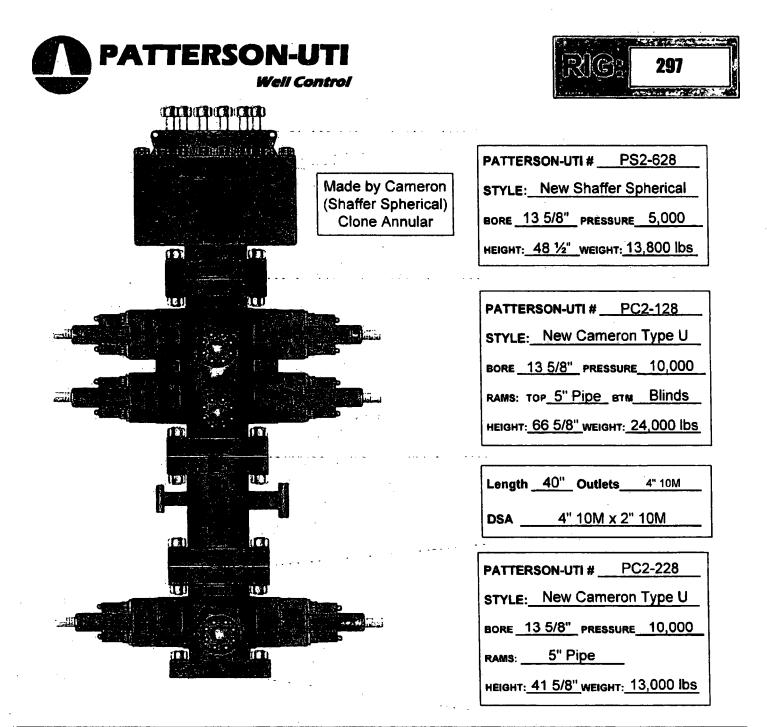
Well Number: 211H

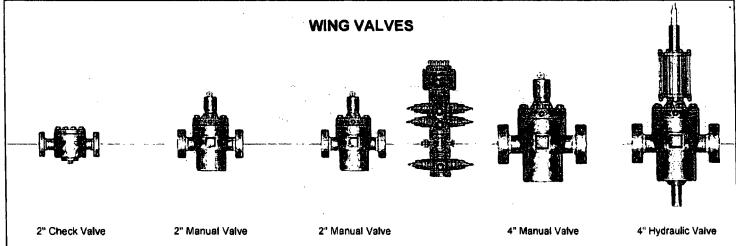
CM_211H_H2S_Plan_20180313114716.pdf

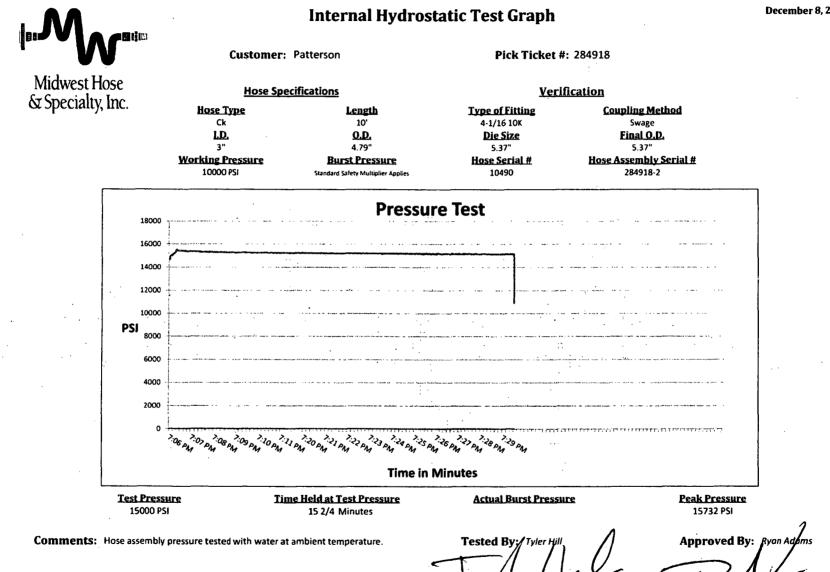
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

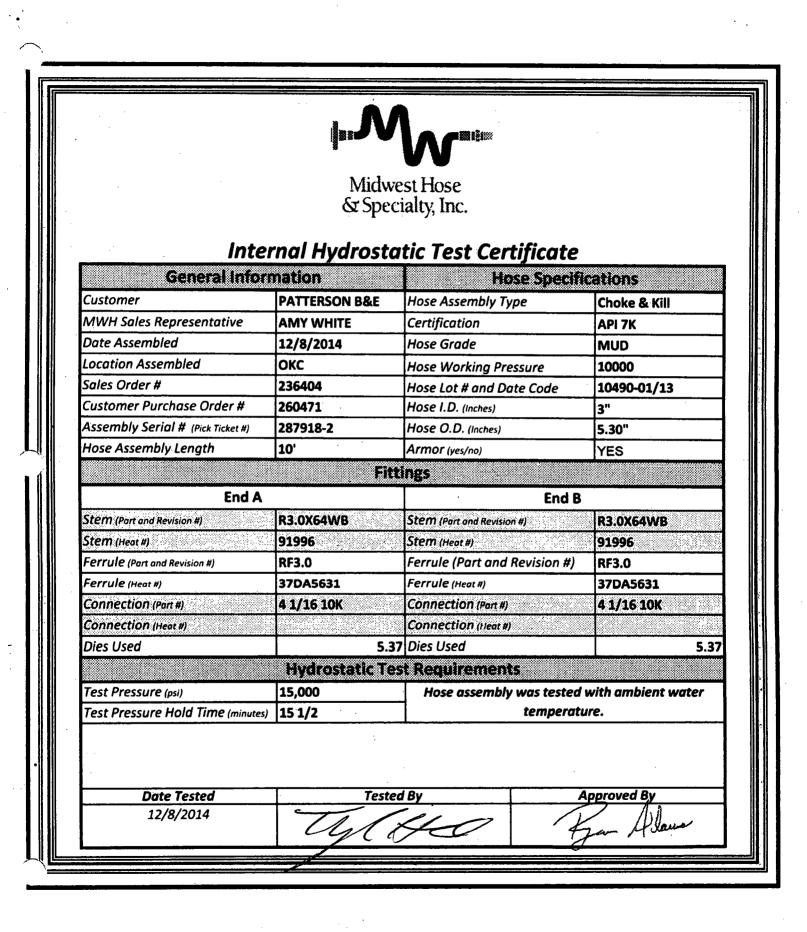

CM_211H_Horizontal_Drill_Plan_20180313114727.pdf

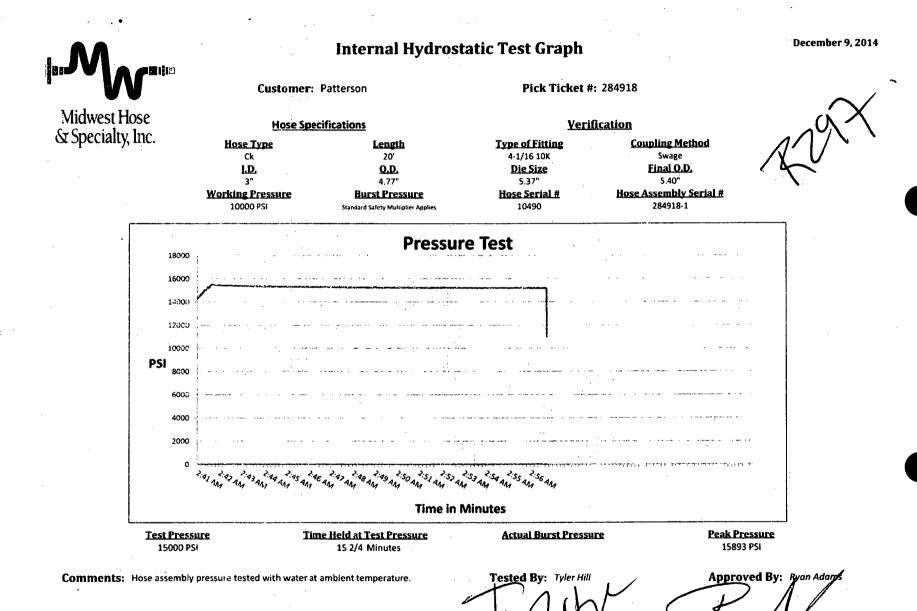

Other proposed operations facets description:

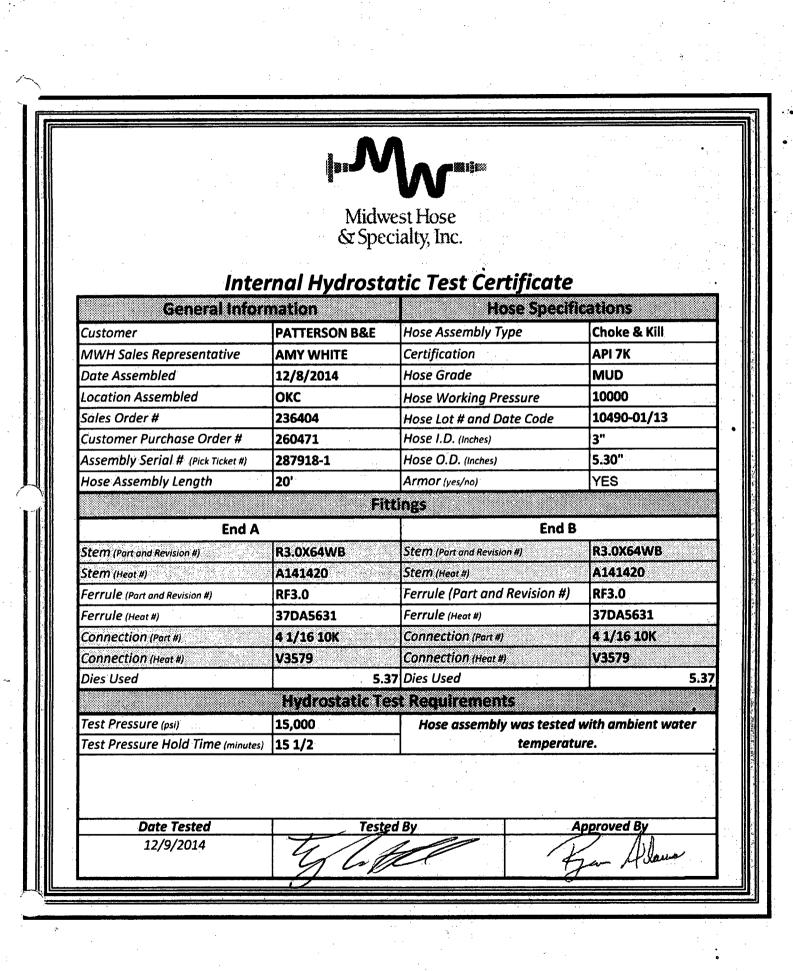

Other proposed operations facets attachment:


CM_211H_Speedhead_Specs_4string_20180313114756.pdf CM_211H_10M_Well_Control_Plan_20180514154305.pdf CM_211H_General_Drill_Plan_20180522083530.pdf

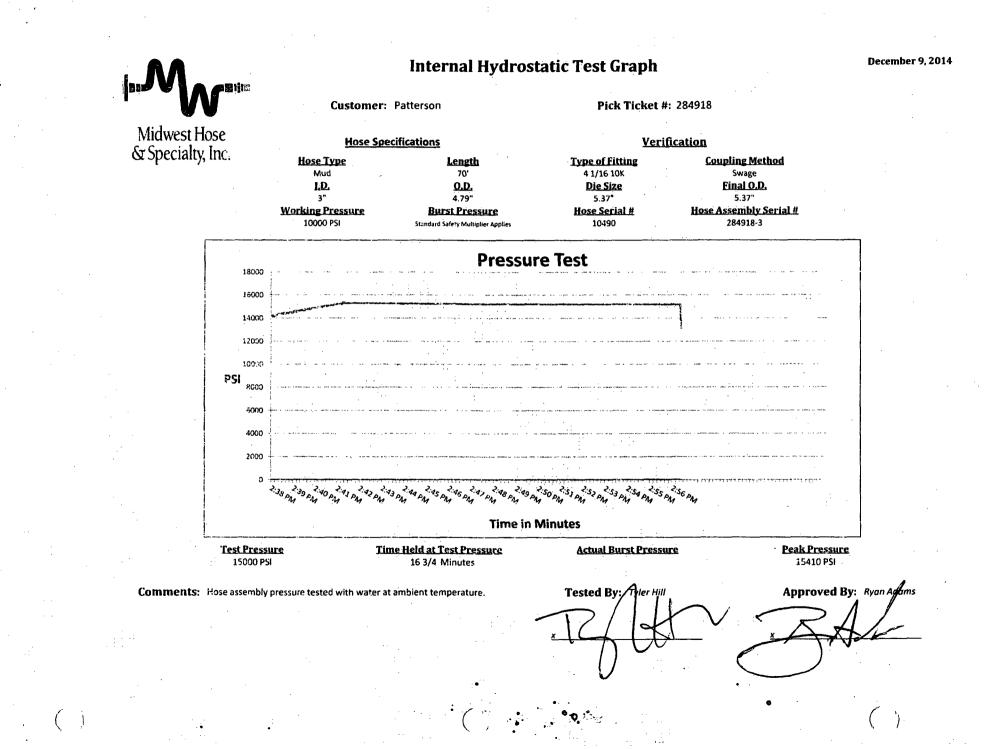
Other Variance attachment:







December 8, 2014


	Midwest Hose Specialty, Inc.
Certific	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
S	pecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-2	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
	• • •
We hereby certify that the above material sup to the requirements of the purchase order and Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	plied for the referenced purchase order to be true according current industry standards.
Comments:	
Approved By	Date
Han Alama	12/9/2014

	JN		
		est Hose cialty, Inc.	
	Certificate (of Conformity	
Customer: PATTERSON B&E		Customer P.O.# 260471	· · · · · · · · · · · ·
Sales Order # 236404	····	Date Assembled: 12/8/2014	
	Specif	fications	
Hose Assembly Type: Cho	oke & Kill		· · ·
Assembly Serial # 287	7918-1	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 100	000	Test Pressure (psi)	15000
			· · · ·
	•		
	,		
We hereby certify that the above ma to the requirements of the purchase			r to be true according
Supplier:	••		
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd			
Oklahoma City, OK 73129		······································	·
Comments:			
Approved By		Date	· · · · · · · · · · · · · · · · · · ·
Fran Ala	electron and a second s	12/9/20	14

MHSI-009 Rev.0.0 Proprietary

		vest Hose cialty, Inc.	
Into General Info	ernal Hydrosto	atic Test Certificate	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	OKC	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (inches)	3"
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"
Hose Assembly Length	70'	Armor (yes/no)	YES
End #		End I	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heot #)	A141420	Stem (Heat #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used		7 Dies Used	5.37
		st Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	
Test Pressure Hold Time (minute	rs) 163/4	tempera	ture.
Date Tested	Teste	ed By	Approved By
12/9/2014	-+1/		Fran Alaus

	dwest Hose
&r S	pecialty, Inc.
Certificat	e of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Spe	cifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-3	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
	······
· · · · · · · · · · · · · · · · · · ·	
We hereby certify that the above material supplie to the requirements of the purchase order and cu	ed for the referenced purchase order to be true according rrent industry standards.
	······································
C	
Supplier: Midwest Hose & Specialty, Inc.	
3312 S I-35 Service Rd	
Oklahoma City, OK 73129	·
Comments:	
Approved By	Date 12/0/2014
Frank James	12/9/2014
Then to car	

.. .

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

VRCC 16-1177 Rev02 for Houston Field Service

OD	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR
L					

PIPE PROPERT	TIES	
Nominal OD	7.625	in,
Nominal ID	6.875	in.
Nominal Cross Section Area	8.541	sqin.
Grade Type	Enhanced API	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi
Tensile Yield Strength	1 068	klb
Internal Yield Pressure	10 760	psi
Collapse pressure	7 360	psi

CONNECTION PERF	ORMANCES
Tensile Yield Strength	619 klb
Compression Resistance	778 klb
Compression with Sealability	372 kib
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 360 psi
Max. Bending	44 °/100f
Max. Bending with Sealability	17 °/100f

CONNECTION PROPERTIES					
Connection Type Premium Integral Flu					
Connection OD (nom)	7.701 in.				
Connection ID (nom)	6.782 in.				
Make-Up Loss	4.657 in.				
Critical Cross Section	4.971 sqin.				
Tension Efficiency	58 % of pipe				
Compression Efficiency	72.7 % of pipe				
Compression Efficiency with Sealability	34.8 % of pipe				
Internal Pressure Efficiency	100 % of pipe				
External Pressure Efficiency	100 % of pipe				

TORQUE VALUES	
Min. Make-up torque	9 600 ft.lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM[●] HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance
Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B VRCC 16-1177 Rev02 for Houston Field Service

Connection Data Sheet

OD	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR
	IPE PROPERTI	ES	Č	ONNECTION PR	OPERTIES
Nominal OD		7.625 in.	Connection Type		Premium Integral Flu
Nominal ID		6.875 in.	Connection OD (n	om)	7.701 in.
Nominal Cross Secti	ion Area	8.541 sqin,	Connection ID (no	om)	6.782 in.
Grade Type	E	nhanced API	Make-Up Loss		4.657 in.
Min. Yield Strength		125 ksi	' Critical Cross Sect	tion	4.971 sqin.
Max. Yield Strength		140 ksi	Tension Efficiency		58 % of pip
Min. Ultimate Tensil	le Strength	135 ksi	Compression Effic	iency	72,7 % of pip
Tensile Yield Streng	th	1 068 klb	Compression Effic	iency with Sealability	34.8 % of pip
Internal Yield Press	ure	10 760 psi	Internal Pressure	Efficiency	100 % of pip
Collapse pressure		7 360 psi	External Pressure	Efficiency	100 % of pip
CONNEC	TION PERFOR	MANCES		TORQUE VA	LUES
Tensile Yield Streng	th	619 kłb	Min. Make-up toro	jue	9 600 ft.lb
Compression Resist	ance	778 klb	Opti, Make-up tor	que	11 300 ft.lb
Compression with S	ealability	372 kłb	Max. Make-up tor	que	13 000 ft.lb
Internal Yield Press	ure	10 760 psi	Max. Torque with	Sealability	58 500 ft.lb
External Pressure R	esistance	7 360 psi	Max. Torsional Va	lue	73 000 ft.lb

VAM[●] HTF[™] (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM® ...

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com

brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

44 º/100ft

17 º/100ft

Vallourec Group

Max. Bending

Max, Bending with Sealability

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Connection: TenarisXP[™] BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BODY	DATA		
		GEOMET	RY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
·					
	TE	NARISXP [™] BTC CO	NNECTION D		
		GEOMET	IRY		
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE	1	
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92 °/100 ft
External Pressure Capacity	12100 psi				
	E	STIMATED MAKE-	UP TORQUES	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
		OPERATIONAL LI	MIT TORQUES	6	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		
				- I	

http://premiumconnectiondata.tenaris.com/tsh_print.php?hWall=0.361&hSize=5.500&hGr... 7/15/2015

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	. 4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft		· · · · · · · · · · · · · · · ·		
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
		·	<u> </u>		
·····		- <u></u>		· · · · · · · · · · · · · · · · · · ·	
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Structural Compression Efficiency	100 %	. Structural Compression Strength	479 x 1000 ibs	Structural Bending ⁽²⁾	127 ° /100 ft
External Pressure Capacity	11620 psi				
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
		- I		L	
Operating Torque	10500 ft-lbs	Yield Torque	12200 ft-lbs		

Blanking Dimensions

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

•

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information: COG's anchors will be marked.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CM_211H_Well_Map_20180313114950.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Pipeline and power line plans have not been finalized. Production equipment will be on the north side of the pad. **Production Facilities map:**

CM_211H_Production_Facilities_20180313115002.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING

Describe type:

Source latitude:

Source datum:

Water source permit type: WATER WELL

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: PRIVATE

Water source volume (barrels): 20000

Source volume (gal): 840000

Water source and transportation map:

CM_211H_Water_Source_Map_20180313115030.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude:

Well target aquifer:

Est. depth to top of aquifer(ft):

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing outside diameter (in.):

New water well casing?

Drilling method:

Grout material:

Casing length (ft.):

Well Production type:

Water well additional information:

State appropriation permit:

Additional information attachment:

Water source type: GW WELL

Source longitude:

Source volume (acre-feet): 2.577862

Well datum:

Est thickness of aquifer:

Well casing type:

Well casing inside diameter (in.):

Used casing source:

Drill material:

Well Longitude:

Grout depth:

Casing top depth (ft.):

Completion Method:

Page 3 of 10

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the pad. Pipe racks will face north. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Madera) land in SENW 6-25s-35e. **Construction Materials source location attachment:**

CM_211H_Construction_Methods_20180313115438.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Reserve pit volume (cu. yd.)

Cuttings area volume (cu. yd.)

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CM_211H_Well_Site_Layout_20180313115457.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CARL MOTTEK

Multiple Well Pad Number: 101H

Recontouring attachment:

CM_211H_Recontour_Plat_20180313115512.pdf

CM_211H_Interim_Reclamation_Diagram_20180313115521.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 3.65	Well pad interim reclamation (acres): 0.85	Well pad long term disturbance (acres): 2.8
Road proposed disturbance (acres): 0.4	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0.4
Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance	Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0
(acres): 0 Other proposed disturbance (acres): (Other interim reclamation (acres): 0	(acres): 0 Other long term disturbance (acres): 0
Total proposed disturbance: 4.05	Total interim reclamation: 0.85	Total long term disturbance: 3.2

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 23% (0.85 acre) by removing caliche and reclaiming a 100' wide swath on the east side. This will leave 2.80 acres for producing 5 wells and tractor-trailer turn around. Disturbed areas will be contoured to match pre-

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the land owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 600.8' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO Seed harvest description: Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed source:

Source address:

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office:

DOD Local Office:

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

NPS Local Office:	
State Local Office:	
Military Local Office:	· .
USFWS Local Office:	
Other Local Office:	· ·
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office:

Well Name: CARL MOTTEK FEDERAL

BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: USFS Region:

USFS Forest/Grassland:

Well Number: 211H

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information: Well pad and that portion of the new road in Sec. 17 will be on private surface owned by Billie McKandles Fortner, 1033 Park Center St., Benbrook TX 76126. That portion of the new road in Section 18 will be on private land owned by Rubert Madera, PO Box 2795, Ruidoso NM 88355. **Use a previously conducted onsite?** YES

Previous Onsite information: On-site inspection held with Vance Wolf.

Other SUPO Attachment

CM_211H_General_SUPO_20180313115616.pdf

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

06/19/2018

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

j.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report

06/19/2018

Well Name: CARL MOTTEK FEDERAL

Well Number: 211H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	TVD
EXIT Leg #1	240	FSL	330	FWL	24S	34E	17	Aliquot SWS W	32.21098 06	- 103.4993 951	LEA		NEW MEXI CO	F	NMNM 113418	- 852 2	168 45	121 00
BHL Leg #1	240	FSL	330	FWL	24S	34E	17	Aliquot SWS W	32.21098 06	- 103.4993 951	LEA	1	NEW MEXI CO	F	NMNM 113418	- 852 2	168 45	121 00