		, 1			· • • ·
					GURT
Form SOCO HOBBS (March 20 D HOBBS (March 20 D HOBBS UNITED STATE DEPARTMENT OF THE BUREAU OF LAND MA				FORM A	PPROVED
(March Bo BODDS				OMB No. Expires Oct	1004-0137 ober 31, 2014
DEPARTMENT OF THE		ł		5. Lease Serial No.	•
BUREAU OF LAND MA				NMNM113418	• •
COPPLICATION FOR PERMIT TO	DRILL O	R REENTER		6. If Indian, Allotee on	i ribe Name
la. Type of work: DRILL REEN	ΓER			7 If Unit or CA Agreen	nent, Name and No.
Ib. Type of Well: Oil Well Gas Well Other		ingle Zone 🚺 Multi	ple Zone	8. Lease Name and We CARL MOTTEK FED	
2. Name of Operator MATADOR PRODUCTION COMPAN		8937)		9. API Well No. 30-025 - 4	4919
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 752	(972)371-			10. Field and Pool, or Ex ANTELOPE RIDGE;	WOLFCAMP
4. Location of Well (Report location clearly and in accordance with a				11. Sec., T. R. M. or Blk.	and Survey or Area
At surface NWNW / 326 FNL / 500 FWL / LAT 32.2239 At proposed prod. zone SWSW / 240 FSL / 986 FWL / LA			7749	SEC 17 / T24S / R34	E / NMP
14. Distance in miles and direction from nearest town or post office*				12. County or Parish LEA	13. State
15. Distance from proposed*	16. No. of	acres in lease	17. Spaci	ing Unit dedicated to this we	
location to nearest 326 feet property or lease line, ft. (Also to nearest drig. unit line, if any)	640		160		
 Distance from proposed location* to nearest well, drilling, completed, 883 feet applied for, on this lease, ft. 	19. Propos 12100 fee	ed Depth et / 16855 feet		/BIA Bond No. on file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3578 feet	22. Approx 07/01/20	imate date work will sta 18	 rt*	23. Estimated duration 90 days	
· · · · · · · · · · · · · · · · · · ·	24. Atta	chments			
The following, completed in accordance with the requirements of Onsh	ore Oil and Gas	order No.1, must be a	ttached to t	his form:	
 Well plat certified by a registered surveyor. A Deilling Plan 		4. Bond to cover t Item 20 above).	he operati	ons unless covered by an ex	isting bond on file (see
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office). 	n Lands, the	5. Operator certific		formation and/or plans as m	ay be required by the
25. Signature		e (Printed/Typed)		_	ate
(Electronic Submission)	Bria	n Wood / Ph: (505)4	66-8120		03/13/2018
President					
Approved by (Signature)		e (Printed/Typed)			Date
(Electronic Submission)	Offic	/ Layton / Ph: (575)2	234-5959		06/13/2018
Supervisor Multiple Resources	1	RLSBAD			
Application approval does not warrant or certify that the applicant ho conduct operations thereon. Conditions of approval, if any, are attached.	lds legal or equ	itable title to those righ	ts in the su	bject lease which would enti	tle the applicant to
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations a	crime for any j s to any matter	person knowingly and within its jurisdiction.	villfully to	make to any department or a	agency of the United
(Continued on page 2)				*(Instru	ctions on page 2)
					-
GCM ALC DEPART					
GCA ALC 06/27/18		TH CONDITI	ANG	16/28/1	ð

1

PM,

Double day

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: NWNW / 326 FNL / 500 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2239329 / LONG: -103.4988757 (TVD: 0 feet, MD: 0 feet) PPP: NWNW / 326 FNL / 500 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2239329 / LONG: -103.4988757 (TVD: 0 feet, MD: 0 feet) BHL: SWSW / 240 FSL / 986 FWL / TWSP: 24S / RANGE: 34E / SECTION: 17 / LAT: 32.2109803 / LONG: -103.4972748 (TVD: 12100 feet, MD: 16855 feet)

BLM Point of Contact

Name: Katrina Ponder Title: Geologist Phone: 5752345969 Email: kponder@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 06/13/2018

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT **Application Data Report**

APD ID: 10400028342

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Type: OIL WELL

Well Number: 215H Well Work Type: Drill

Submission Date: 03/13/2018

in all and the second

06/18/2018

nellagie Grennost recent Chinises

Show Final Text

Section 1 - General		
APD ID: 10400028342	Tie to previous NOS?	Submission Date: 03/13/2018
BLM Office: CARLSBAD	User: Brian Wood	Title: President
Federal/Indian APD: FED	Is the first lease penetra	ted for production Federal or Indian? FED
Lease number: NMNM113418	Lease Acres: 640	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreen	nent:
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? YES	APD Operator: MATADO	R PRODUCTION COMPANY
Operator letter of designation:	· · ·	
Operator Info]	
Operator Organization Name: MATADO	R PRODUCTION COMPANY	
Operator Address: 5400 LBJ Freeway, S		Zip : 75240

Operator City: Dallas State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: CARL MOTTEK FEDERAL

Field/Pool or Exploratory? Field and Pool

Mater Development Plan name:

Master SUPO name:

Master Drilling Plan name:

Well Number: 215H

Well API Number:

Field Name: ANTELOPE RIDGE; Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CARL MOTTEK FEDERAL

•

Well Number: 215H

Desc	ribe a	ther i	miner	als:														
Is the	e prop	osed	well i	in a H	elium	prod	uctio	n area?	N Use E	Existing W	ell Pa	d? NO	Ne	w :	surface o	listur	bance	?
	of Wo			ILTIPL ITAL	E WE	ELL			MOT	ple Well P FEK per of Leg	I.	ne: CA	RL Nu	ımt	ber: 101⊦	ł		
Well	Work	Туре	: Drill															
Well	Type:	OIL	NELL															
Desc	ribe V	Vell T	ype:															
Well	sub-T	ype:	INFILI	L														
Desc	ribe s	ub-ty	pe:															
Dista	ince to	o tow	n: 19	Miles			Dist	tance to	o nearest v	veli: 883 F	т	Dist	ance t	o le	ase line	: 326	FT	
Rese	ervoir	well s	pacin	ıg ass	ignec	l acre	s Mea	asurem	ent : 160 A	cres								
Well	plat:	CN	/_215	H_Pla	t_MD	_0514	18_2	018051	4160350.p	df								
<u>VP</u> CIII:	wolfs.	Skaft (<u>Q</u> ina	0624061	<u>Roja</u>	[Durat	t ion: 90 D/	AYS							
						· · · · · · · · · · · · · · · · · · ·		•										
	Sec	tion	3 - V	Vell	Loca	ation	Tat	ble										
Surv	еу Тур	pe: RE	ECTAI	NGUL	AR													
Desc	ribe S	Survey	у Туре	Ð:														·
Datu	m: NA	D83							Vertic	al Datum:		88						
Surv	ey nui	mber:	1964	2														
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	326	FNL	500	FWL	24S	34E	17	Aliquot	32.22393		LEA	NEW		F	NMNM	357	0	0
Leg #1					·			NWN W	29	103.4988 757		CO	MEXI CO		113418	8		
кор	326	FNL	500	FWL	24S	34E	17	Aliquot	32.22393		LEA		NEW	F	NMNM	-	115	115
Leg * #1								NWN W	29	103.4988 757		MEXI CO	MEXI CO		113418	793 8	40	16
PPP	326	FNL	500	FWL	24S	34E	17	Aliquot	32.22393	 -	LEA		NEW	F	NMNM	357	0	0
Leg								NWN	29	103.4988		MEXI	MEXI		113418			
#1								W		757		со	со					

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

06/18/2018

APD ID: 10400028342

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Submission Date: 03/13/2018

Section 1 - Geologic Formations

Formation			True Vertical	Measured	• • •		Producing
ID .	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
. 1		3578	0	Ō	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2310	1268	1268		NONE	No
3	SALADO	1780	1798	1800	OTHER : Top Salt	NONE	No
4	SÁLADO	-1701	5279	5293	OTHER : Base Salt	NONE	No
5	BELL CANYON	-1732	5310	5324	SANDSTONE	NATURAL GAS,CO2,OIL	No
6	BRUSHY CANYON	-3944	7522	7536	SANDSTONE	NATURAL GAS,CO2,OIL	No
7	BONE SPRING LIME	-5344	8922	8934		NATURAL GAS,CO2,OIL	No
8	AVALON SAND	-5572	9150	9162		NATURAL GAS,CO2,OIL	No
9	BONE SPRING 1ST	-6209	9787	9799	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 1ST	-6398	9976	9989	SANDSTONE	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-6863	10441	10472	OTHER : Carbonate	CO2,OIL	No
12	BONE SPRING 2ND	-7014	10592	10660	SANDSTONE	NATURAL GAS,CO2,OIL	Yes
13	BONE SPRING 3RD	-7985	11563	11566	OTHER : Carbonate	NATURAL GAS,OIL	No
14	WOLFCAMP	-8303	11881	11921		NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Rating Depth: 12000

Requesting Variance? YES

Wind

Entitle allowing opposed to obtain his seen a structure of the end of the structure operation of the second back with a province of a structure of the structure of the second of the structure of the second of the structure of the second of

Choke Diagram Attachment:

CM_215H_Choke_20180514160317.pdf

BOP Diagram Attachment:

CM_215H_BOP_20180313121701.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1300	0	1300	3578		1300	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4300	0	4300	3573		4300	P- 110		OTHER - BTC		1.12 5	DRY	1.8	DRY	1.8
1 -	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5300	0	5300	3578		5300	J-55		OTHER - BTC		1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	10700	0	10700			10700	P- 105		OTHER - BTC/TXP		1.12 5	DRY	1.8	DRY	1.8
_	INTERMED IATE	8.75	7.625	NEW	API	Y	4300	11000	4300	11000			6700	P- 110				1.12 5	DRY	1.8	DRY	1.8

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	INTERMED IATE	8.75	7.0	NEW	API	Y	11000	12330	11000	12330			1330	P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	10700	16845	10700	12100			6145	P- 110		OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122119.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_215H_7.625IN_Casing_Spec_20180313122216.PDF

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122522.pdf

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Casing Attachments

Casing ID: 3

String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122153.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

CM_215H_5.5IN_Casing_Spec_20180514160704.PDF

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122513.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_215H_7.625IN_Casing_Spec_20180313122249.PDF

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122505.pdf

Operator Name: MATADOR PRODUCTION COMPANY **Well Name:** CARL MOTTEK FEDERAL

Well Number: 215H

Casing Attachments

Casing ID: 6 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CM_215H_Casing_Design_Assumptions_20180313122302.pdf

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122456.pdf

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

CM_215H_4.5IN_Casing_Spec_20180313122333.pdf

Casing Design Assumptions and Worksheet(s):

CM_215H_Casing_Design_Assumptions_20180313122342.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1300	740	1.82	12.8	1346	100	Class C	bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1300	330	1.38	14.8	455	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4300	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4300	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5300	1110	2.09	12.6	2319	100	Class C	Bentonite + 1% CaCl2 + 8% NaCl + LCM

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

											· · · · · · · · · · · · · · · · · · ·
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5300	540	1.38	14.8	745	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1070 0	0	0	0	0	0	N/A	N/A
PRODUCTION	Tail		0	1070 0	600	1.17	15.8	702	20	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4300	1100 0	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4300	1100 0	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1100 0	1233 0	600	2.21	11.5	1320	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1100 0	1233 0	375	1.37	13.2	376	60	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1070 0	1685 5	0	0	0	0	0	N/A	N/A
PRODUCTION	Tail		1070 0	1685 5	600	1.17	15.8	702	20	ТХІ	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

 	Circ	ulating Medi	um Ta	able							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	
1233 0	1685 5	OIL-BASED MUD	12.5	12.5								
0	1300	OTHER : Fresh water spud	8.3	8.3								
1300	5300	OTHER : Brine water	10	10								
 5300	1233 0	OTHER : Fresh water & cut brine	9	9								

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 5300' to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7250

Anticipated Surface Pressure: 4588

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan:

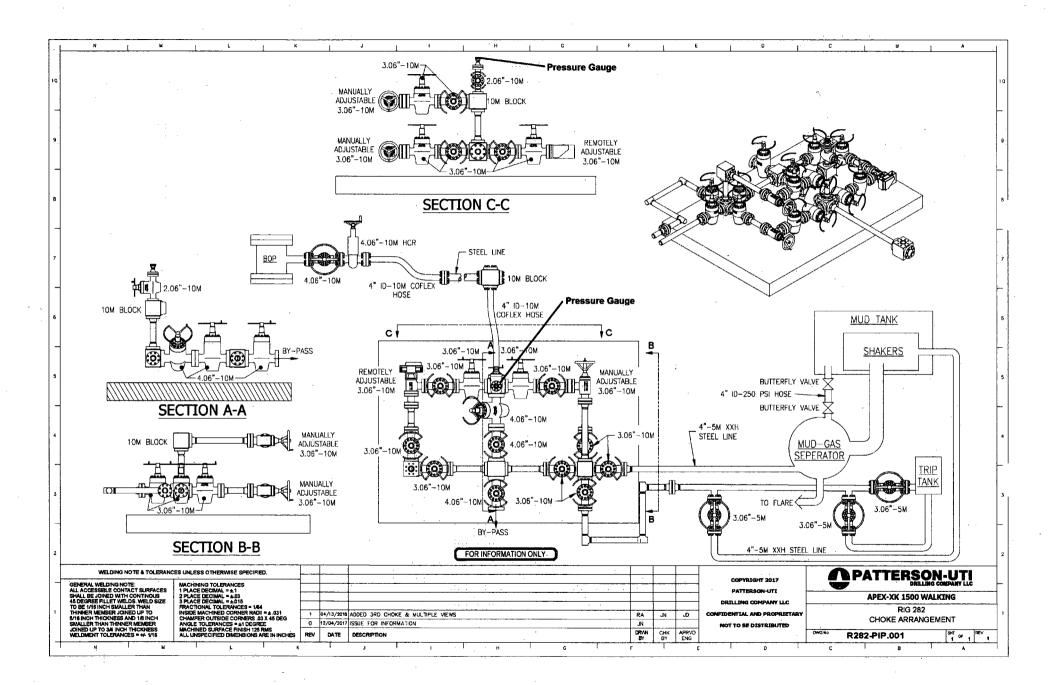
Well Name: CARL MOTTEK FEDERAL

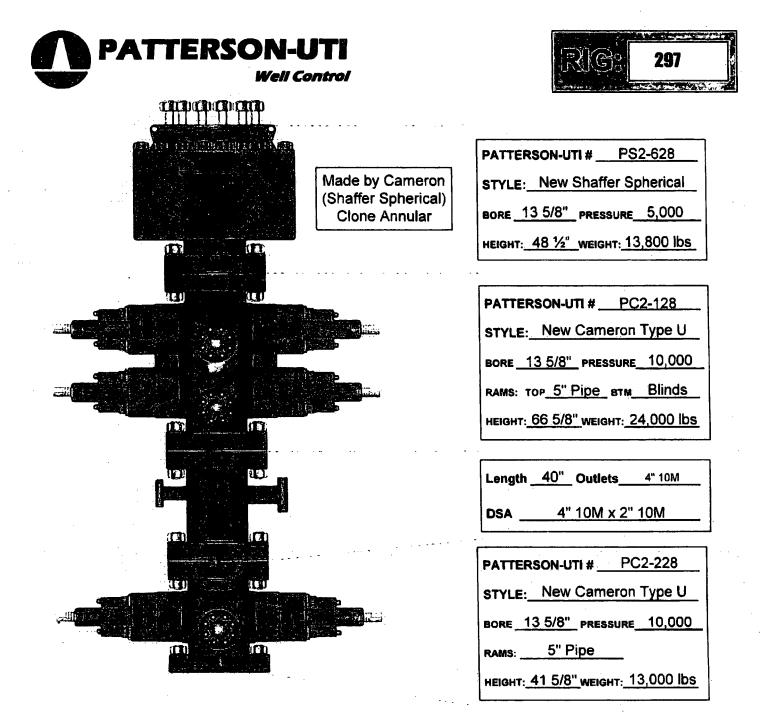
Well Number: 215H

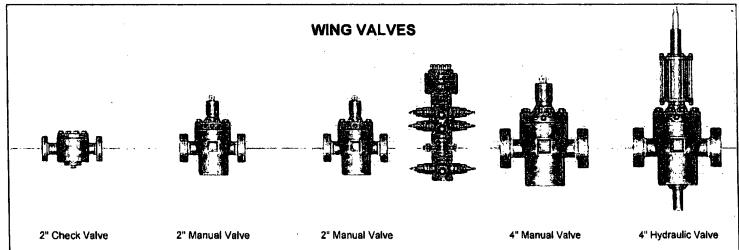
CM_215H_H2S_Plan_20180313122924.pdf

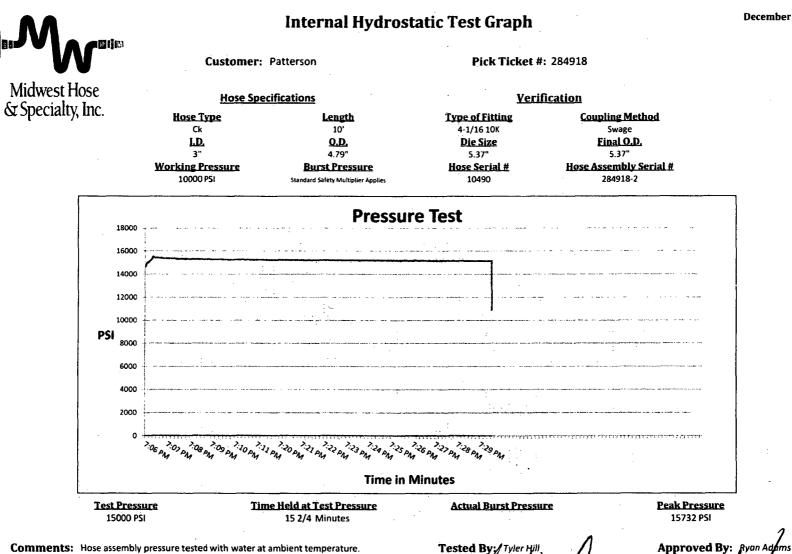
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

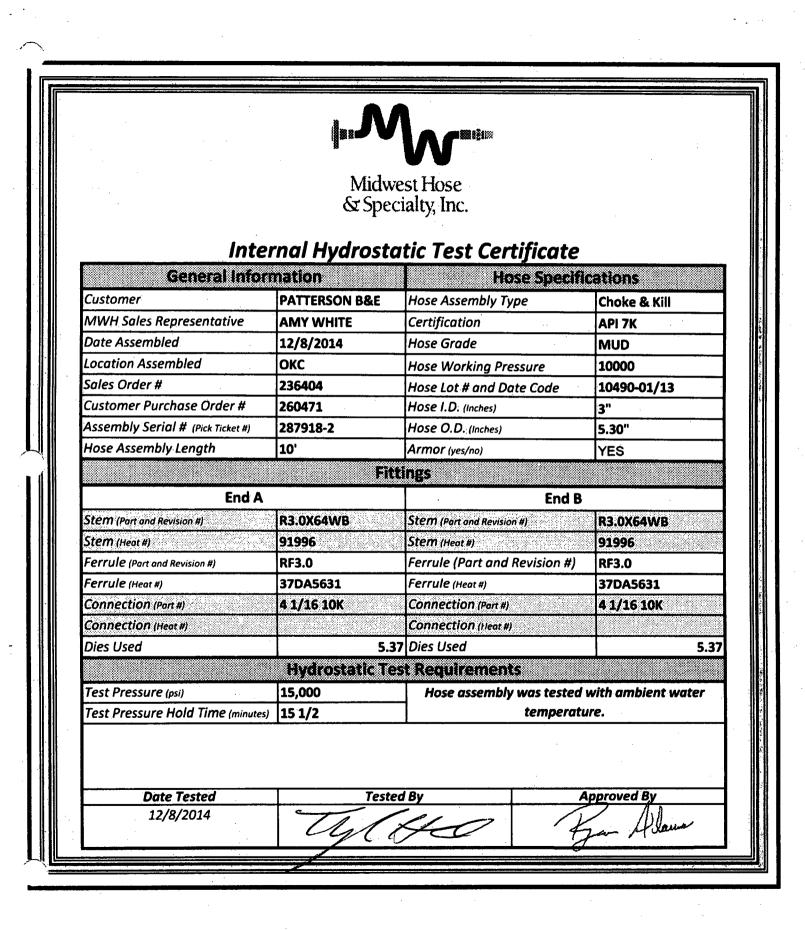

CM_215H_Horizontal_Drill_Plan_20180313122936.pdf

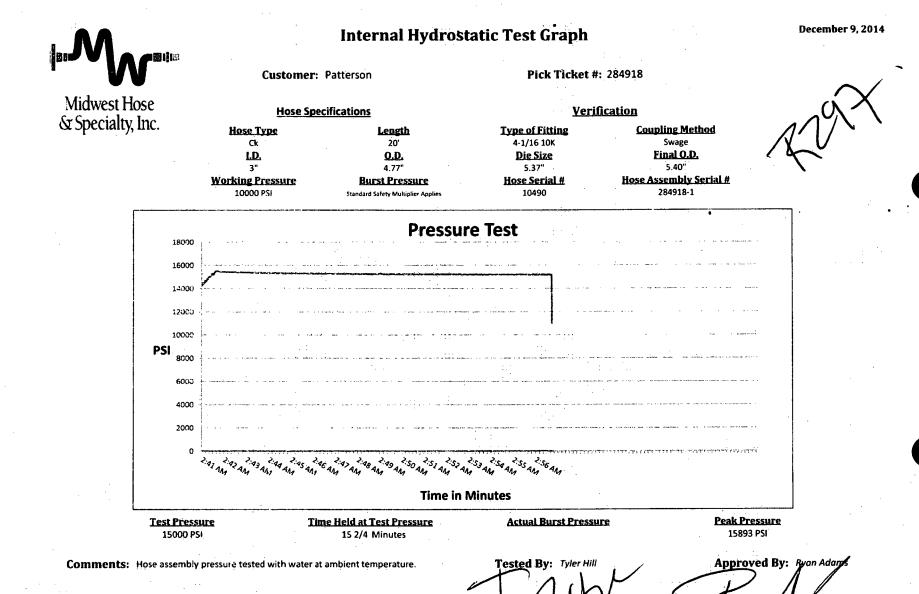

Other proposed operations facets description:


Other proposed operations facets attachment:


CM_215H_Speedhead_Specs_4strings_20180313122955.pdf CM_215H_General_Drill_Plan_20180514160054.pdf CM_215H_10M_Well_Control_Plan_20180514160105.pdf

Other Variance attachment:




December 8, 2014

MHSI-008 Rev. 2.0 Proprietary

	idwest Hose Specialty, Inc.
Certificat	te of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Spe	cifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-2	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material supplie to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	ed for the referenced purchase order to be true according irrent industry standards.
Comments:	
Approved By	Date 12/9/2014

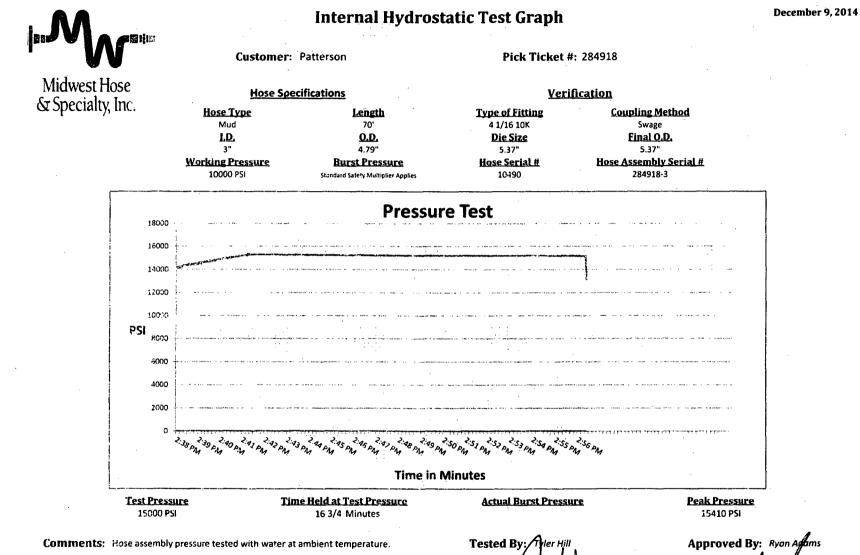
MHSI-009 Rev.0.0 Proprietary

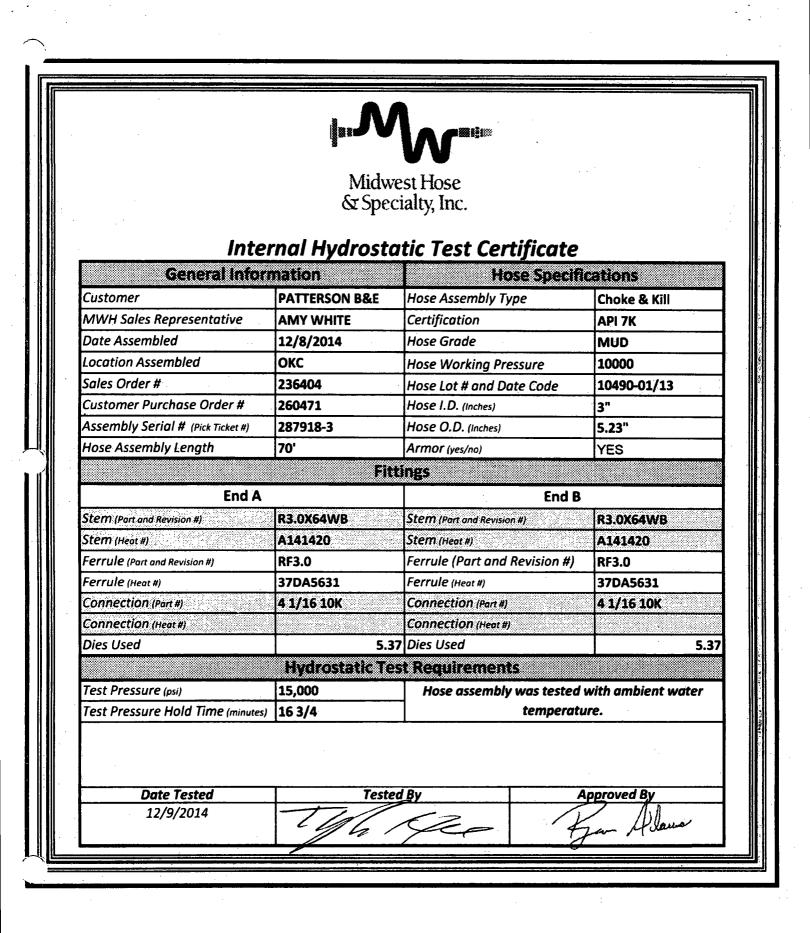
TAU

Internal Hydrostatic Test Certificate

General Infor	1	Hose Specifi	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative		Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"
Hose Assembly Length	20'	Armor (yes/no)	YES
	Fitt	ings	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heot #)	A141420	Stem (Heat #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrulé (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)	V3579	Connection (Heat #)	V3579
Dies Used	5.37	Dies Used	5.37
	Hydrostatic Tes	t Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested v	with ambient water
Test Pressure Hold Time (minutes)	15 1/2	temperatu	re.

	fidwest Hose Specialty, Inc.
	te of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Sp	ecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-1	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material suppl to the requirements of the purchase order and c	lied for the referenced purchase order to be true according urrent industry standards.
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	
Oklahoma City, OK 73129	
Comments:	
	Date


.


.

•

ł.

۰.

	west Hose
	ecialty, Inc.
Certificate	of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Spec	ifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-3	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
o the requirements of the purchase order and curre Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	for the referenced purchase order to be true according ent industry standards.
Oklahoma City, OK 73129 Comments:	
Approved By	Date

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI PD-101836 P&B

VRCC 16-1177 Rev02 for Houston Field Service

	ATT	ZNR
Co	onnection	Data Sheet

Premium Integral Flus

CONNECTION PROPERTIES

1	OD	Weight	Wall Th.	Grade	API Drift	Connection
	7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR
L					•	

Connection Type

/ PIPE PROPERTIES		
Nominal OD	7.625 in,	
Nominal ID	6.875 in.	
Nominal Cross Section Area	8.541 sqin.	
Grade Type	Enhanced API	
Min. Yield Strength	125 ksi	
Max. Yield Strength	140 ksi	
Min. Ultimate Tensile Strength	135 ksi	
Tensile Yield Strength	1 068 klb	
Internal Yield Pressure	10 760 psi	
Collapse pressure	7 360 psi	

in.	Connection OD (nom)	7.701	in.
sqin.	Connection ID (nom)	6.782	in.
	Make-Up Loss	4.657	in.
ksi	Critical Cross Section	4.971	sqin.
ksi	Tension Efficiency	58	% of pipe
ksi	Compression Efficiency	72.7	% of pipe
kib	Compression Efficiency with Sealability	34.8	% of pipe
psi	Internal Pressure Efficiency	100	% of pipe
psi	External Pressure Efficiency	100	% of pipe
	TORQUE VALUES		

CONNECTION PERFO	DRMANCES
Tensile Yield Strength	619 klb
Compression Resistance	778 klb
Compression with Sealability	372 kib
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 360 psi
Max. Bending	44 º/100f
Max. Bending with Sealability	17 °/100f

TORQUE VA	LUES
Min, Make-up torque	9 600 ft.lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM® HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

BASED ON SI_PD-101836 P&B OD Weight Wall Th. 7 5/8 in. 29.70 lb/ft 0.375 in.

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY.

Th.	Grade	API Drift	Connection
in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPERTI	ES
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Cross Section Area	8,541 sqin.
Grade Type E	Enhanced API
Min, Yield Strength	125 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	135 ksł
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10 760 psi
Collapse pressure	7 360 psi

CONNECTION PERF	DRMANCES	
Tensile Yield Strength	619	klb
Compression Resistance	778	klb
Compression with Sealability	372	klb
nternal Yield Pressure	10 760	psi
External Pressure Resistance	7 360	psi
Max. Bending	44	°/100ft
Max. Bending with Sealability	17	°/100ft

CONNECTION PROPERTIES					
Connection Type	Premium Integral Flush				
Connection OD (nom)	7.701 in.				
Connection ID (nom)	6.782 in.				
Make-Up Loss	4.657 in,				
Critical Cross Section	4.971 sqin.				
Tension Efficiency	58 % of pipe				
Compression Efficiency	72.7 % of pipe				
Compression Efficiency with Sealability	34.8 % of pipe				
Internal Pressure Efficiency	100 % of pipe				
External Pressure Efficiency	100 % of pipe				

TORQUE VALUES	
Min. Make-up torque	9 600 ft.ib
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM[●] HTF[™] (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

ANG HITF-RIR"

VRCC 16-1177 Rev02 for Houston Field Service

Connection Data Sheet

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Connection: TenarisXP[™] BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BODY	DATA		
		GEOMET	R Y		······································
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				·
	********************************	PERFORM	ANCE		
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
	TER	NARISXP™ BTC CO		ΔΤΑ	
		GEOME			
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4 .766 in.
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
	<u> </u>	PERFORM	ANCE	J,	
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92 °/100 ft
External Pressure Capacity	12100 psi				
	. E	STIMATED MAKE-	UP TORQUES	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
······		OPERATIONAL LI	MIT TORQUES	3	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

http://premiumconnectiondata.tenaris.com/tsh_print.php?hWall=0.361&hSize=5.500&hGr... 7/15/2015

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

http://premiumconnectiondata.tenaris.com/tsh_print.php?hWall=0.361&hSize=5.500&hGr... 7/15/2015

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR **Size**: 4.500 in. **Wall**: 0.290 in. **Weight**: 13.50 lbs/ft **Grade**: P110-ICY **Min. Wall Thickness**: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	1 1620 psi				
Connection OD Critical Section Area	5.000 in. 3.836 sq. in.	Coupling Length Threads per in.	9.075 in. 5.00	Connection ID Make-Up Loss	3.908 in. 4.016 in.
		· · · · · · · · · · · · · · · · · · ·			
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Structural Bending ⁽²⁾	127 ° /100 fi
External Pressure Capacity	11620 psi				
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
				·	

Blanking Dimensions

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be fun (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a
- more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

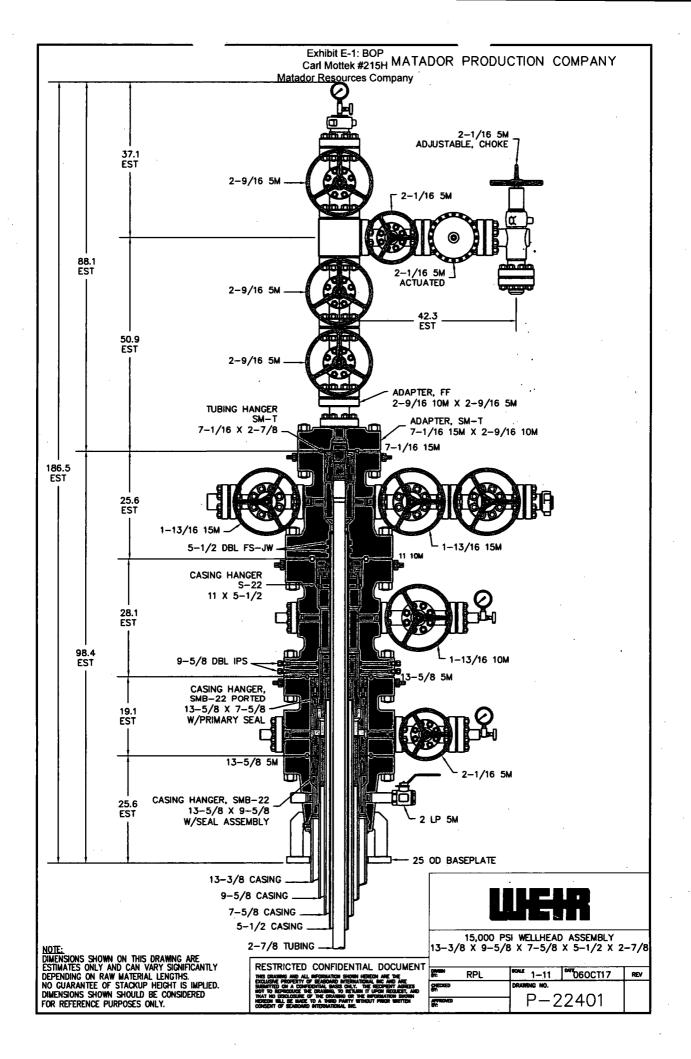
- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125


- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Matador Production Company Carl Mottek Federal 215H SHL 326' FNL & 500' FWL BHL 240' FSL & 986' FWL Sec. 17, T. 24 S., R. 34 E., Lea County, NM

Drilling Program

1. ESTIMATED TOPS

Formation	TVD	MD	Bearing
Quaternary	000′	000′	water
Rustler anhydrite	1268'	1268'	N/A
Salado (top) salt	1798′	1800'	N/A
Salado (base) salt	5279'	5293'	N/A
Bell Canyon sandstone	5310′	5324'	hydrocarbons
Brushy Canyon sandstone	7522′	7536'	hydrocarbons
Bone Spring limestone	8922'	8934'	hydrocarbons
Avalon shale	9150′	9162'	hydrocarbons
1 st Bone Spring Carb	9787′	9799'	hydrocarbons
1 st Bone Spring Sand	9976'	9989'	hydrocarbons
2 nd Bone Spring Carb	10441'	10472'	hydrocarbons
2 nd Bone Spring Sand	10592'	10660'	hydrocarbons
КОР	11516'	11540'	
3 rd Bone Spring Carb	11563′	11566'	hydrocarbons
Wolfcamp A	11881′	11921′	hydrocarbons
TD	12100'	16855'	

2. NOTABLE ZONES

Wolfcamp A is the goal. Hole will extend south of the last perforation point to allow for pump installation. All perforations will be \geq 330' from the dedication perimeter. Closest water well (C 03932) is 766' northwest. No depth to water was reported in this well. Ground water depth estimated at 220'.

3. PRESSURE CONTROL

A 12,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

Matador Production Company Carl Mottek Federal 215H SHL 326' FNL & 500' FWL BHL 240' FSL & 986' FWL Sec. 17, T. 24 S., R. 34 E., Lea County, NM

An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Testing Procedure

Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, and before drilling below the surface casing shoe, BOPE will be tested to 250 psi low and 2000 psi high. Annular will be tested to 250 psi low and 1000 psi high. After setting 9-5/8" casing, pressure tests will be made to 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi high. Annular will tested to 250 psi low and 5000 psi high. Annular will be made to 250 psi low and 2500 psi high. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Variance Request

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Operator requests a variance to use a 5M Annular and test to 250 psi low and 5000 psi high. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached.

Matador Production Company Carl Mottek Federal 215H SHL 326' FNL & 500' FWL BHL 240' FSL & 986' FWL Sec. 17, T. 24 S., R. 34 E., Lea County, NM

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

Hole O. D.	Set MD	Set TVD	Casing O. D.	Weight (lb/ft)	Grade	Joint	Collaps e	Burst	Tension
17.5"	0′ -1300'	0′ - 1300'	Surface 13.375"	54.5	J-55	втс	1.125	1.125	1.8
12.25"	0′ - 5300'	0′ - 5300'	Inter. 1 9.625"	40	J-55	втс	1.125	1.125	1.8
8.75"	0' - 4300'	0′ – 4300′	Inter. 2 7.625"	29.7	P-110	втс	1.125	1.125	1.8
8.75"	4300' - 11000'	4300' - 11000'	Inter. 2 7.625"	29.7	P-110	VAM HTF-NR	1.125	1.125	1.8
8.75"	11000' – 12330'	11000' - 12330'	Inter. 2 7"	29	P-110	втс	1.125	1.125	1.8
6.125"	0' – 10700'	0' - 10700	Product. 5.5"	20	P-110	ВТС/ТХР	1.125	1.125	1.8
6.125″	10700' - 16855'	10700' - 12100'	Product. 4.5"	13.5	P-110	втс/тхр	1.125	1.125	1.8

Casing Name	Туре	Sacks	Yield	Cu. Ft.	Weight	Blend
Surface	Lead	740	1.82	1346	12.8	Class C + bentonite + 2% CaCl ₂ + 3% NaCl + LCM
	Tail	330	1.38	455	14.8	Class C + 5% NaCl + LCM
TOC = GL	•	1	100% Excess		Centralizers per Onshore Order 2	
Intermediate 1	Lead	1110	2.09	2319	12.6	Class C + Bentonite + 1% CaCl ₂ + 8% NaCl + LCM
	Tail	540	1.38	745	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exce	SS	2 on btm jt, 1 on 2nd jt, 1 every 4th jt to	
·Intermediate 2	Lead	600	2.21	1320	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM

Matador Production Company Carl Mottek Federal 215H SHL 326' FNL & 500' FWL BHL 240' FSL & 986' FWL Sec. 17, T. 24 S., R. 34 E., Lea County, NM

	Tail	375	1.37	376	1 <u>3.2</u>	TXI + Fluid Loss + Dispersant + Retarder + LCM
TOC = 430	0'	6	50% Exces	5		tm jt, 1 on 2nd jt, 1 every 4th jt to of tail cement (500' above TOC)
Production	Tail	600	1.17	702	15.8	TXI + Fluid Loss + Dispersant + Retarder + LCM
TOC = 1050	00'	2	20% Exces	S	2 on bti	m jt, 1 on 2nd jt, 1 every other jt to top of curve

5. MUD PROGRAM

An electronic Pason mud monitoring system complying with Onshore Order 1 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water spud	0' - 1300'	8.3	28	NC
brine water	1300' - 5300'	10.0	30-32	NC
fresh water & cut brine	5300' - 12330'	9.0	30-32	NC
OBM	12330' - 16855'	12.50	50-60	<10

6. <u>CORES, TESTS, & LOGS</u>

No core or drill stem test is planned.

Testing, Logging & Coring Program:

- Mud Logging Program: 2 man unit from 5300 TD
- Electric Logging Program: No electric logs are planned at this time. GR will be collected through the MWD tools from 1st Inter. Csg to TD
- No DSTs or cores are planned at this time
- CBL w/ CCL from as far as gravity will let it fall to TOC

Matador Production Company Carl Mottek Federal 215H SHL 326' FNL & 500' FWL BHL 240' FSL & 986' FWL Sec. 17, T. 24 S., R. 34 E., Lea County, NM

7. DOWN HOLE CONDITIONS

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 7250 psi. Expected bottom hole temperature is \approx 180° F.

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring to meet the BLM's minimum requirements for the submission of an " H_2S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Since Matador has an H_2S safety package on all wells, an " H_2S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. OTHER INFORMATION

Anticipated spud date is upon approval. It is expected it will take \approx 3 months to drill and complete the well.

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drill pipe	4"		
HWDP	4"	7	
Jars/Agitator	4.75-5"	Lower 3.5-5.5" VBR	• 10M
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR	TOIVI
Mud Motor	4.75-5.25"	-	
Production casing	4.5-5.5"		
ALL	0-13.625"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram with compatible range listed in chart HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close

Well Control Plan For 10M MASP Section of Wellbore

- 3. Space out drill string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in

Well Control Plan For 10M MASP Section of Wellbore

- f. Notify tool pusher and company representative
- g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400028342

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Type: OIL WELL

Submission Date: 03/13/2018

Row(s) Exist? NO

Well Number: 215H

Well Work Type: Drill

rendes the most

06/18/2018

SUPO Data Report

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CM_215H_Road_Map_20180313123040.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CM_215H_New_Road_Map_20180313123112.pdf

New road type: RESOURCE

Length: 579.49 Feet

Max slope (%): 0

Max grade (%): 1

Width (ft.): 30

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information: COG's anchors will be marked.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CM_215H_Well_Map_20180313123131.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Pipeline and power line plans have not been finalized. Production equipment will be on the north side of the pad. **Production Facilities map:**

CM 215H Production Facilities 20180313123142.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Well Name: CARL MOTTEK FEDERA	L	Well Number: 215H
Water source use type: DUST COM INTERMEDIATE/PRODUCTION CA CASING		Water source type: GW WELL N, SURFACE
Describe type:		Source longitude:
Source latitude:		
Source datum:		
Water source permit type: WATER	WELL	
Source land ownership: PRIVATE		
Water source transport method: T	RUCKING	
Source transportation land owner	ship: PRIVATE	
Water source volume (barrels): 20	000	Source volume (acre-feet): 2.577862
Source volume (gal): 840000		
Vater source and transportation map):	
M_215H_Water_Source_Map_20180		
later source comments:	•	
ew water well? NO		
New Water Well I	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est t	hickness of aquifer:
Aquifer comments:		
Aquifer documentation:		
Vell depth (ft):	Well ca	sing type:
Vell casing outside diameter (in.):	Well ca	sing inside diameter (in.):
lew water well casing?	Used c	asing source:
rilling method:	Drill ma	aterial:
rout material:	Grout	lepth:
aning longth (ft.).	Casing	top depth (ft.):
asing length (n.):		
asing length (ft.): Vell Production type:	Comple	etion Method:
	Comple	etion Method:

Additional information attachment:

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the pad. Pipe racks will face north. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Madera) land in SENW 6-25s-35e. **Construction Materials source location attachment:**

CM_215H_Construction_Methods_20180313123319.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Reserve pit volume (cu. yd.)

Cuttings area volume (cu. yd.)

Page 4 of 10

Well Number: 215H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CM_215H_Well_Site_Layout_20180313123338.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CARL MOTTEK

Multiple Well Pad Number: 101H

Recontouring attachment:

CM_215H_Recontour_Plat_20180313123503.pdf CM_215H_Interim_Reclamation_Diagram_20180313123511.pdf Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 3.65	Well pad interim reclamation (acres): 0.85	Well pad long term disturbance (acres): 2.8
Road proposed disturbance (acres): 0.4	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0.4
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres):	Powerline long term disturbance
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 0 Other proposed disturbance (acres): (Other interim reclamation (acres): 0	(acres): 0 Other long term disturbance (acres): 0
Total proposed disturbance: 4.05	Total interim reclamation: 0.85	Total long term disturbance: 3.2

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 23% (0.85 acre) by removing caliche and reclaiming a 100' wide swath on the east side. This will leave 2.80 acres for producing 5 wells and tractor-trailer turn around. Disturbed areas will be contoured to match pre-

Page 5 of 10

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the land owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 600.8' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed source:

Source address:

Well Number: 215H

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Su	Total pounds/Acre:	
Seed Type	Pounds/Acre	

Seed reclamation attachment:

Operator Contact/Responsible Official C	ontact Info
First Name: Las	t Name:
Phone: Ema	ail:
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? NO	
Existing invasive species treatment description:	
Existing invasive species treatment attachment:	
Weed treatment plan description: To BLM standards	
Weed treatment plan attachment:	
Monitoring plan description: To BLM standards	
Monitoring plan attachment:	
Success standards: To BLM satisfaction	
Pit closure description: No pit	
Pit closure attachment:	

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD
Describe:
Surface Owner: PRIVATE OWNERSHIP
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
·

Well Number: 215H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	

USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office:

Well Number: 215H

BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information: Well pad and that portion of the new road in Sec. 17 will be on private surface owned by Billie McKandles Fortner, 1033 Park Center St., Benbrook TX 76126. That portion of the new road in Section 18 will be on private land owned by Rubert Madera, PO Box 2795, Ruidoso NM 88355. **Use a previously conducted onsite?** YES

Previous Onsite information: On-site inspection held with Vance Wolf.

Other SUPO Attachment

CM_215H_General_SUPO_20180313123536.pdf

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

06/18/2018

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report

06/18/2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood

Title: President

Street Address: 37 Verano Loop

City: Santa Fe

State: NM

State:

Phone: (505)466-8120

Email address: afmss@permitswest.com

Field Representative

Representative Name:

Street Address:

City:

Phone:

Email address:

Zip:

verator Certification Data Report

Signed on: 03/13/2018

Zip: 87508

06/18/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CARL MOTTEK FEDERAL

Well Number: 215H

:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	TVD
EXIT Leg #1	240	FSL	986	FWL	24S	34E	17	Aliquot SWS W	32.21098 03	- 103.4972 748			NEW MEXI CO	F .	NMNM 113418	- 852 2	168 55	121 00
BHL Leg #1	240	FSL	986	FWL	24S	34E	17	Aliquot SWS W	32.21098 03	- 103.4972 748		NEW MEXI CO	NEW MEXI CO	F	NMNM 113418	- 852 2	168 55	121 00