				_			Min
		,	Caris	bad I	-		hield
Form 3160-3			ſ) Che C	JEN	OFFE FORM	APPROVED
(March 2012)	LINI	TED STATES	H	JBBY	ahh	CEDMB N Expires O	o. 1004-0137 ctober 31, 2014
	DEPARTMEN BUREAU O	TED STATES NT OF THE INT F LAND MANAG		AUG 06	2018	5. Lease Serial No. NMNM110838	\ .
	APPLICATION FOR F	PERMIT TO DE	RILL OR R	EENTERE	IVED	6. If Indian, Allotee	or Tribe Name
la. Type of work:	DRILL			8.50		7 If Unit or CA Agree	ement, Name and No.
lb Type of Well		Other	Single	Zone Multir	nle Zone 🗸	8. Lease Name and V	Vell No. 322.220
2. Name of Operate			7377)			9. API Well-No.	46046
3a. Address 1111	Bagby Sky Lobby2 Houst	on TX 77002	Phone No. (in 13)651-7000	lude area code)	\wedge	To Field and Pool, or E	Exploratory 98/80
4 Location of Well	(Report location clearly and in	accordance with arry St	ate requirements		<u> </u>	11. Sec. T. R. M. or Bl	k. and Survey or Area
At surface NES	SW / 2153 FSL / 1393 FW	L / LAT 32.114746	8 / LONG -1	/)3.6154056	\nearrow		
At proposed proc	d. zone LOT 4 / 230 FSL / 1	210 FWL / LAT 32	2.0949478 / 1	ONG-103.616	0109	SEC 197 12557 R3	33E / NMP
14. Distance in miles 40 miles	and direction from nearest town	or post office*				12. County or Parish LEA	13. State NM
15 Distance from pro location to neares property or lease (Also to nearest d	posed* t 230 feet line, ft. trig. unit line, if any)	1	6. No. of acres 761.04	in lease	17. Spacin 240	g Unit dedicated to this w	vell
 Distance from pro to nearest well, dr applied for, on thi 	posed location* illing, completed, 880 feet s lease, ft.	1	9 Proposed De 2312 feet / 1	9756 feet	20. BLM/I FED: NI	BIA Bond No. on file M2308	
21. Elevations (Show 3461 feet	w whether DF, KDB, RT, GL, o	etc.) 22	Approximate 08/01/2018	date work will star	rt*	23 Estimated duration 25 days]
· · ·		//	24. Attachm	ents			
The following, comple	ted in accordance with the requ	ifements of Onshore C	hil and Gas Ord	er No.1, must be at	ttached to th	is form:	
 Well plat certified A Drilling Plan. A Surface Use Pla SUPO must be file 	by a registered surveyor. an (if the location is on Nation ed with the appropriate Forest S	al Forest System Lar ervice Office).	ads, the 5.6	Bond to cover the ltem 20 above). Operator certific Such other site	he operation specific info	ns unless covered by an ormation and/or plans as	existing bond on file (see may be required by the
25 Signature			Name (Pri	nted/Typed)		<u> </u>	Date
(Ele	ctronic Submission)		Stan Wa	gner / Ph: (432)	686-3689		02/28/2018
Title Regulatory S	pecialsit						· · · ·
Approved by (Signatur (Elect	e) ronic Submission)		Name (Pr. Cody Lay	inted/Typed) ton / Ph: (575)2	234-5959		Date 06/22/2018
Title			Office				
Application approval conduct operations the	le Resources does not warrant or certify that ereon./ al df any are attached	the applicant holds le	gal or equitable	AD title to those righ	ts in the sub	oject lease which would en	ntitle the applicant to
Title 18 U.S.C. Section States any false, fictiti	v 1001 and Title 43 U.S.C. Sectior ous or fraudulent statements or	1212, make it a crime representations as to a	e for any person ny matter within	h knowingly and v h its jurisdiction.	villfully to n	nake to any department o	r agency of the United
(Continued on p	20 08/08/	18	D WITH	CONDITI	ONS	K# *(Instr \$61.081	ructions on page 2)
		APPKUTE	<i>V</i>	Pm	J	A add AAA	ny Nigh

The second secon

Requiry and

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

The Privacy Act of 1974 and regulation in 43 CFR 2:48(d) provide that you be furnished the following information in connection with information required by this application.

NOTICES

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to-civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: NESW / 2153 FSL / 1393 FWL / TWSP: 25S / RANGE: 33E / SECTION: 19 / LAT: 32.1147468 / LONG: -103.6154056 (TVD: 0 feet, MD: 0 feet) PPP: LOT 3 / 2311 FSL / 1210 FWL / TWSP: 25S / RANGE: 33E / SECTION: 19 / LAT: 32.1151814 / LONG: -103.615999T (TVD: 12268 feet, MD: 12390 feet) BHL: LOT 4 / 230 FSL / 1210 FWL / TWSP: 25S / RANGE: 33E / SECTION: 30 / LAT: 32.0949478 / LONG: -103.6160109 (TVD: 12212) feet, MD: 19756 feet)

BLM Point of Contact

Name: Katrina Ponder Title: Geologist Phone: 5752345969 Email: kponder@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Stan Wagner

Title: Regulatory Specialsit

Street Address: 5509 Champions Drive

City: Midland

Zip: 79702

Operator Certification Data Report

Signed on: 02/28/2018

07/02/2018

Phone: (432)686-3689

Email address: Stan_Wagner@eogresources.com

State: TX

State: TX

Field Representative

Representative Name: James Barwis

Street Address: 5509 Champions Drive

City: Midland

Zip: 79706

Phone: (432)425-1204

Email address: james_barwis@eogresources.com

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

07/02/2018

APD ID: 10400027599

Operator Name: EOG RESOURCES INCORPORATED

Well Name: AUDACIOUS 19 FEDERAL

Well Type: OIL WELL

Well Number: 709H Well Work Type: Drill

Submission Date: 02/28/2018

Show Final Text

Section 1 - General		
APD ID: 10400027599	Tie to previous NOS?	Submission Date: 02/28/2018
BLM Office: CARLSBAD	User: Stan Wagner	Title: Regulatory Specialsit
Federal/Indian APD: FED	Is the first lease penetra	ated for production Federal or Indian? FED
Lease number: NMNM110838	Lease Acres: 1761.04	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agree	ment:
Agreement number:	: :	
Agreement name:		- ···
Keep application confidential? YES		
Permitting Agent? NO	APD Operator: EOG RE	SOURCES INCORPORATED
Operator letter of designation:		
Operator Info		
Operator Organization Name: EOG RESC	OURCES INCORPORATED	
Operator Address: 1111 Bagby Sky Lobby	/2	7
Operator PO Box:		∠ıp: //002

Operator City: Houston State: TX

Operator Phone: (713)651-7000

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan na	ime:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: AUDACIOUS 19 FEDERAL	Well Number: 709H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: RED HILLS	Pool Name: WC-025 S253309A

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

UPPER WOLFCAMP

.

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

			•															
Desc	cribe d	other	miner	als:														
ls th	e prop	osed	well	in a H	elium	prod	uctio	n area?	'N Use E	Existing W	ell Pa	d? NO	Ne	ew s	surface o	listur	bance	?
Туре	e of W	ell Pa	d: MU	ILTIPL	.E WE	ELL				pie Weil P Acious 19		ne: RAI	Nu	umt	ber : 602H	1/708H	1/7091	4
Well	Class	: HOP	RIZON	ITAL					Numl	per of Leg	s: 1							
Well	Work	Туре	: Drill															
Well	Туре	OIL	NELL															
Desc	ribe \	Nell T	ype:															
Well	sub-1	ype:	INFILI	_·														
Desc	ribe s	sub-ty	pe:															
Dista	ance t	o tow	n: 40	Miles			Dist	tance to	nearest v	vell: 880 F	т	Dist	ance t	o le	ase line	: 230	FT	
Rese	Reservoir well spacing assigned acres Measurement: 240 Acres																	
Well	plat:	Au	Idacio	us_19	_Fede	eral_7	09H_	signed_	C_102_20	18022810 ⁻	1627.p	df						
Well work start Date: 08/01/2018 Duration: 25 DAYS																		
[
	Section 3 - Well Location Table																	
Surv	Survey Type: RECTANGULAR																	
Desc	ribe S	Survey	у Туре	e:														
Datu	m: NA	D83					•		Vertic	al Datum	: NAVE	88						
Surv	ey nu	mber:																
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	DVT
SHL Leg #1	215 3	FSL	139 3	FWL	25S	33E	19	Aliquot NESW	32.11474 68	- 103.6154 056	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 110838	346 1	0	0
KOP Leg #1	258 7	FSL	121 7	FWL	258	33E	19	Lot 3	32.11594 39	- 103.6159 686	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 110838	- 835 2	118 24	118 13
PPP Leg #1	231 1	FSL	121 0	FWL	25S	33E	19	Lot 3	32.11518 14	- 103.6159 991	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 110838	- 880 7	123 90	122 68

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD
EXIT	330	FSL	121	FWL	25S	33E	30	Lot	32.09522	-	LEA	NEW	NEW	F	NMNM	-	196	123
Leg			0					4	27	103.6160		MEXI	MEXI		110838	885	56	12
#1										107		co	co			1		
BHL	230	FSL	121	FWL	25S	33E	30	Lot	32.09494	-	LEA	NEW	NEW	F	NMNM	-	197	123
Leg			0					4	78	103.6160		MEXI	MEXI		110838	885	56	12
#1										109		co	со			1		

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Pressure Rating (PSI): 5M

Rating Depth: 12312

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Centralizers will be placed in the 9-7/8" hole interval at least one every third joint. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation. **Testing Procedure:** Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

Audacious_19_Fed_709H_10_M_Choke_Manifold_20180221151335.pdf

Audacious_19_Fed_709H_Co_Flex_Hose_Certification_20180221151336.PDF

Audacious 19 Fed 709H Co Flex Hose Test Chart 20180221151336.pdf

BOP Diagram Attachment:

Section 3 - Casing

Audacious_19_Fed_709H_10_M_BOP_Diagram_20180221151350.pdf

Audacious_19_Fed_709H_EOG_BLM_10M_Annular_Variance___4_String_20180221151350.pdf

					•																	
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1110	0	1110	3461	2351	1110	J-55	54.5	STC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	<u>o</u>	4000	0	4000	3461	-539	4000	J-55	40	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	4000	4800	4000	4800	-539	-1339	800	HCK -55	40	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	10800	0	10800	3461	-7339	10800	OTH ER	20	OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Page 2 of 8

Well Number: 709H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
5	INTERMED IATE	8.75	7.625	NEW	API	N	0	11300	0	11300	3461	-7839	11300	HCP -110	29.7	other - Fxl	1.12 5	1.25	BUOY	1.6	BUOY	1.6
6	PRODUCTI ON	6.75	5.5	NEW	API	N	10800	19775	10800	12312	-7339	-8851	8975	OTH ER	20	OTHER - VAM SFC	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Audacious_19_Fed_709H_BLM_Plan_20180221153708.pdf

Casing ID: 2	String Type: INTERMEDIATE	
Inspection Document:		
Spec Document:		
Tapered String Spec:		
	· · · · · · · · · · · · · · · · · · ·	
Casing Design Assump	itions and Worksheet(s):	
See_previously_at	tached_Drill_Plan_20180221153727.pdf	

Well Number: 709H

Casing Attachments

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

See_previously_attached_Drill_Plan_20180221153741.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Audacious_19_Fed_709H_5.500in_20.00_VST_P110EC_DWC_C_IS_MS_20180221153801.pdf

See_previously_attached_Drill_Plan_20180221153801.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Audacious_19_Fed_709H_7.625in_29.70_P110HC_FXL_20180221153817.pdf

See_previously_attached_Drill_Plan_20180221153818.pdf

Well Number: 709H

Casing Attachments

Casing ID: 6 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Audacious_19_Fed_709H_5.500in_20.00_VST_P110EC_VAM_SFC_20180221153842.pdf

See_previously_attached_Drill_Plan_20180221153842.pdf

Section	4 - C	emen	t							•	
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		0	0	0	0	0	0	0	0	0

PRODUCTION	Lead	0	0	0	0	0	0	. 0	0	0
				}						

SURFACE	Lead	0	1110	600	1.73	13.5	1038	25	Class C	Lead: Class C + 4.0% Bentonite + 0.6% CD- 32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail	1110	1110	200	1.34	14.8	268	25	Class C	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
INTERMEDIATÉ	Lead	0	4800	1780	2.2	12.7	3916	25	Class C	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C- 41P (TOC @ Surface)
INTERMEDIATE	Tail	4800	4800	200	1.12	16	224	25	Class C	Tail: Class C + 0.13% C-20

Well Number: 709H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		4300	1130 0	340	2.72	11.5	924	25	Class C	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 + 0.20% D167 (TOC @ 4,300')
INTERMEDIATE	Tail		1130 0	1130 0	210	1.12	16	235	25	Class H	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167 + 0.02% D208 + 0.15% D800
PRODUCTION	Lead		1080 0	1975 6	950	1.26	14.1	1197	25	Class H	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C- 17 (TOC @ 10,800')

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

	Circ	ulating Mediu	ım Ta	able							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
4800	1130 0	OIL-BASED MUD	8.7	9.4							
0	1110	WATER-BASED MUD	8.6	8.8							

Well Number: 709H

	Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	На	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1	110	4800	SALT SATURATED	10	10.02							
1	130 0	1231 2	OIL-BASED MUD	10	14							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8963

Anticipated Surface Pressure: 6254.36

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Audacious_19_Fed_709H_H2S_Plan_Summary_20180221153952.pdf

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Audacious_19_Federal_709H_Planning_Report_20180221154009.pdf Audacious_19_Federal_709H_Wall_Plot_20180221154009.pdf

.

Other proposed operations facets description:

Other proposed operations facets attachment:

Audacious_19_Fed_709H_Proposed_Wellbore_20180221154029.pdf Audacious_19_Fed_709H_Rig_Layout_20180221154030.pdf Audacious_19_Fed_709H_Wellhead_Cap_20180221154030.pdf Audacious_19_Federal_GCP_20180226153713.pdf

Other Variance attachment:

Audacious_19 Fed_709H_EOG_BLM_10M_Annular_Variance___4_String_20180221154040.pdf

•

Manufacturer: Midwest Hose & Specialty

Serial Number: SN#90067

Length: 35'

Size: OD = 8" ID = 4"

Ends: Flanges Size: 4-1/16*

WP Rating: 10,000 psi Anchors required by manfacturer: No

MIDWEST

.

HOSE AND SPECIALTY INC.

	NTERNAL	- HYDROS1	TATIC TEST	r Repor	т		
Custome	T:			P.O. Numb	er:		
CACTUS				RIG #123			
	Asset # M10761						
		HOSE SPECI	FICATIONS	=			
Туре:	CHOKE LIN	E		Length:	35'		
1.D.	4"	INCHES	O.D.	8"	INCHES		
WORKING	PRESSURE	TEST PRESSUR	E	BURST PRES	SURE		
10,000	PSI	15,000	PSI		PSI		
		COUP	LINGS				
Type of E	ind Fitting 4 1/16 10K F	LANGE					
Type of C	Coupling: SWEDGED		MANUFACTU MIDWEST HOS	IRED BY SE & SPECI/	LTY		
		PROC	EDURE				
	Hoce eesembl	r nassura tastari w	ith water at amhiar	t lamnorshum			
	TIME HELD AT	TEST PRESSURE	ACTUAL E	WRST PRESSU	IRE:		
	1	MIN.			0 psi		
COMMEN	TS:						
	SN#90087	M10761					
	Hose is cov	ered with stain!	ess steel armou	ur cover and			
	wraped with	fire resistant v	ermiculite coat	ed fiberglas	8		
	insulation r	ted for 1500 de	grees complete	e with lifting	eyes		
Date:	6/6/2011	Tested By: BOBBY FINK		Approved: MENDI J	ACKSON		

Comments: Hose assembly pressure tested with water at ambient temperature

Tested By: Bobby Fink

Approved By: Mendi Jackson

2-61 20

Mondi Jackson

10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables

12-1/4" Intermediate Hole Section 10M psi requirement								
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP			
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M			
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M			
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M			
DCs and MWD tools	6.500" - 8.000"	Annular	5M	-	-			
Mud Motor	8.000" - 9.625"	Annular	5M	-	-			
1 st Intermediate casing	9.625″	Annular	5M	-	-			
Open-hole	_	Blind Rams	10M	-	-			

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

8-3/4" Intermediate Hole Section 10M psi requirement								
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP			
Drillpipe	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
	4.500″			Lower 3.5 - 5.5" VBR	10M			
HWDP	5.000" or	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
	4.500"		1	Lower 3.5 - 5.5" VBR	10M			
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
DCs and MWD tools	6.500" - 8.000"	Annular	5M		-			
Mud Motor	6.750" - 8.000"	Annular	5M	-	-			
2 nd Intermediate casing	7.625″	Annular	5M	-	-			
Open-hole	-	Blind Rams	10M	-	-			

6-3/4" Production Hole Section 10M psi requirement								
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP			
Drillpipe	4.500"	Annular .	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
HWDP	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
DCs and MWD tools	4.750" – 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Mud Motor	4.750" - 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Mud Motor	5.500" – 5.750"	Annular	5M	-	-			
Production casing	5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Open-hole	-	Blind Rams	10M	-	-			

•

•

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP

ii. Pit gain

iii. Time

- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

See previously attached Drill Plan

letal One Corp.	MOEVI		Page	MCTI	p
•	MO-FAL		Date	3-Nov-	16
Metal One	Connection Data	Shoot		1	
-	Connection Data	Sheet	Rev. 0		
	Geomeny	Imperia	1	<u>S.I.</u>	
	Pipe Body		-		
	Grade State Providence La	P110HC 1		PAROHOMA	1
	Pipe OD (D)	7 5/8	in	193.68	mm
MO-FXL	Weight	29.70	hb/ft	44.25	*ka/m*
	Actual weight	29.04		43.26	ka/m
	Wall Thickness (t)	0.375	1 din dar	9.53	mm
	Pipe ID (d)	6.875	in	174.63	mm
	Pipe body cross section	8.537	2 m²#	5.508	ma
	Drift Dia.	6.750	in	171.45	mm
	Connection				
	Box OD (W)	7.625	<u>se in as</u>	<u>193.68. </u>	mm
	PIN ID	6.875	in	174.63	mm
	Make up Loss	4,219	4-40n 2-4	4-107.16	a mms
Box	Box Critical Area	5.714	vin. e	Se 3686 2	- mm2
	Joint load efficiency	- 70 - am A	AND A	TATO HA	1 200752
cnuc			New York of	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
area	Thread Taper	1	/ 10 (1.	2" per ft)	
	Thread Taper Number of Threads		/ 10 (1.	2" per ft) TPL:///	A LECT
Make No25	Thread Taper Number of Threads	1 r Pipe Body	/ 10 (1.	2" per ft)	
Make up loss	Thread Taper Number of Threads d Performance Properties for SMASS IN CONTRACTOR	r Pipe Body	/ 10 (1.	2" per ft)	
Make up oss Pin	Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1	r Pipe Body 10,760	/ 10 (1.	2" per ft) IPI () () () () () () () () () (MPa
Make up loss Pin critica	Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Collage Strength Line (1997)	1 r Pipe Body 10,760	/ 10 (1. 5	2" per ft) TPI () () () () () () () () () (MPa
Make up loss Pin critica area	Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified	r Pipe Body 10,760	10 (1. 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2" per ft) IPI (1997) 74.21 ogth of Pipe bo	MPa dy
Make Make Moss Area Area Area	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimun Specified Strength (SSP) 	r Pipe Body 10,760 Minimum YIE In Internal Yield	10 (1. 10 (1.) 10 (1. 10 (1.) 10 (1	2" per ft) IPI (1) 74.21 Igth of Pipe bo e of Pipe body	MPa MPa
Make WD Io55	Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimum *1 Based on VSB Pt	r Pipe Body 10.760 Minimum YIE In Internal Yield 110HC (YS=12	10 (1. 2015 20	2" per ft) 1P1 / 12 / 2 74.21 ngth of Pipe bo e of Pipe body i)	MPa dy
Make up loss	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimum *1 Based on VSB Pt Performance Properties for 	r Pipe Body 10,760 10,760 Minimum YIE n Internal Yield 110HC (YS= 12 pr Connectio	/ 10 (1. 7 10 (1. 7 5 7 5 7 5 7 140ks n	2" per ft) 1P) 74.21 agth of Pipe bo e of Pipe body i)	MPa MPa
Make up loss Pin critica area	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimun *1 Based on VSB Pt Performance Properties for Min Compression Vield 	r Pipe Body 10,760 10,760 Minimum YIE n Internal Yield 110HC (YS=12 pr Connectio	10 (1. 10 (1.) 10 (1. 10 (1.) 10	2" per ft) TPI // // // // // // // // // // // // //	dy
Make up loss Pin critica area	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimun *1 Based on VSB P1 Performance Properties for Min. Compression Yield 	r Pipe Body 10,760 10,760 Minimum YIE n Internal Yield 110HC (YS=12 pr Connectio 747 kips	10 (1. 10 (1.) 10 (1. 10 (1.) 10 (2" per ft) TPI / 2011 TPI / 2011 74.21 of Pipe body i) of S.M.Y.S.)	dy
Make up loss Pin critica area	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimun *1 Based on VSB P1 Performance Properties for Min. Compression Yield Min. Compression Yield 	r Pipe Body 10,760 10,760 Minimum YIE In Internal Yield 10HC (YS=12 or Connectio 747 kips	10 (1. 10 (1.) 10 (2" per ft) TPI / 2014 74.21 rgth of Pipe body i) of S.M.Y.S.) f Collapse S	dy
Make Make	 Thread Taper Number of Threads Performance Properties for SMASS Store Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimum *1 Based on VSB P1 Performance Properties for Performance Properties for Min. Compression Yield Kategorie Properties 	r Pipe Body 10,760 10,760 Minimum YIE In Internal Yield 10HC (YS= 12 pr Connectio 747 kips	10 (1. 10 (1.) 10 (2" per ft) IPI / / / / / / / / / / / / / / / / / /	dy
Make up loss	Thread Taper Number of Threads	1 r Pipe Body 10,760 10,760 Minimum YIE n Internal Yield 10HC (YS=12 pr Connectio 747 kips	10 (1. 10 (1.) 10 (1.)	2" per ft) TPI / 24 74.21 rgth of Pipe body i) of S.M.Y.S.) of Collapse S	MPa MPa dy
Make up loss	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimun *1 Based on VSB Pt Performance Properties for Min. Compression Yield Min. Compression Yield Min. Compression Yield Recommended Torque Opti. 	1 r Pipe Body 10,760 10,760 Minimum YIE n Internal Yield 10HC (YS=12 pr Connectio 747 kips 247 kips 247 kips 247 kips 247 kips	10 (1. 10 (1.) 10 (2" per ft) 2" per ft) 1917 24 74.21 of S.M.Y.S.) of S.M.Y.S.) of Collapse S 0 23.300	MPa MPa dy
Make up loss	 Thread Taper Number of Threads Performance Properties for M.I.Y.P. *1 Note S.M.Y.S.= Specified M.I.Y.P. = Minimum *1 Based on VSB Pt Performance Properties for Min. Compression Yield Min. Compressure Max Diskies Science Recommended Torque Opti. 	1 r Pipe Body 10,760 d Minimum YIE n Internal Yield 10HC (YS=12 or Connectio 747 kips 747 kips 747 kips	10 (1. 10 (1. 10 (1. 10 (1. 5 10 (1.) 5 10 (1	2" per ft) 2" per ft) 2" per ft) 74.21 of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of Collapse S 23,300	MPa MPa dy

Note : Operational Max. torque can be applied for high torque application

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

1,000'
1,327'
4,682'
4,923'
4,923'
4,945'
5,973'
7,519'
9,065'
10,014'
10,242'
10,660'
11,077'
11,733'
12,184'
12,312'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	5,973'	Oil
Brushy Canyon	7,519'	Oil
1 st Bone Spring Sand	10,014'	Oil
2 nd Bone Spring Shale	10,242'	Oil
2 nd Bone Spring Sand	10,660'	Oil
3 rd Bone Spring Carb	11,077'	Oil
3 rd Bone Spring Sand	11,733'	Oil
Wolfcamp	12,184'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 13.375" casing at 1,110' and circulating cement back to surface.

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
17.5"	0 - 1,110'	13.375"	54.5#	J55	LTC	1.125	1.25	1.60
12.25"	0-4,000'	9.625"	40#	J55	LTC	1.125	1.25	1.60
12.25"	4,000' - 4,800'	9.625"	40#	HCK55	LTC	1.125	1.25	1.60
8.75"	0 - 11,300'	7.625"	29.7#	HCP-110	FXL	1.125	1.25	1.60
6.75"	0' - 10,800'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	10,800'-19,756'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive the annular clearance requirements for the 5-1/2" casing by 7-5/8" casing annulus to the proposed top of cement.

Depth	No. Sacks	Wt. ppg	Yld Ft³/ft	Mix Water Gal/sk	Slurry Description
13-3/8" 1,110'	600	13.5	1.73	9.13	Lead: Class C + 4.0% Bentonite + 0.6% CD- $32 + 0.5\%$ CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
9-5/8" 4,800'	1780	12.7	2.20	11.64	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 + 0.75% C-41P (TOC @ Surface)
	200	16.0	1.12	4.75	Tail: Class C + 0.13% C-20
7-5/8" 11,300'	340	11.5	2.72	15.70	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 + 0.20% D167 (TOC @ 4,300')
	210	16.0	1.12	4.74	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167 + 0.02% D208 + 0.15% D800
5-1/2" 19,756'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,800')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5,000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,110'	Fresh - Gel	8.6-8.8	28-34	N/c
1,110' - 4,800'	Brine	10.0-10.2	28-34	N/c
4,800' – 11,300'	Oil Base	8.7-9.4	58-68	N/c - 6
11,300' – 19,756'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions, phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 8963 psig (based on 14.0 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1000 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation, the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

See previously attached Drill Plan

Audacious 19 Fed #709H Lea County, New Mexico

District 1
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 874 0

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87905

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 02/26/2018

⊠ Original

Operator & OGRID No.: _____ EOG Resources, Inc. 7377

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facNity are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Audacious 19 Federal 601H	30-025-****	3-19-25S-33E	2186 FSL & 879 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 60211	30-025-****	K-19-25S-33E	2150 FSL & 459 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 603H	30-025-****	K-19-25S-33E	1832 FSL & 2322 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 706H	30-025-*****	K-19-25S-33E	1832 FSL & 2289 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 707H	30-025-****	K-19-25S-33E	1832 FSL & 2254 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 708H	30-025-****	K-19-25S-33E	2151 FSL & 1426 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 709H	30-025-****	K-19-25S-33E	2153 FSL & 1393 FWL	±3500	None Planned	APD Submission
Audacious 19 Federal 710H	30-025-****	3-19-25S-33E	2186 FSL & 846 FWL	±3200	None Planned	APD Submission
Audacious 19 Federal 711H	30-025-****	3-19-25S-33E	2186 FSL & 811 FWL	±3300	None Planned	APD Submission

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to Lucid Energy and will be connected to EOG Resources low/high pressure gathering system located in Eddy/Lea County, New Mexico. EOG Resources provides (periodically) to Lucid Energy a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, EOG Resources and Lucid Energy have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Lucid Energy Processing Plant located in Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Lucid Energy system at that time. Based on current information, it is EOG Resources' belief the system can take this gas upon completion of the well(s).

Safety requirements during cleano. rations from the use of underbalanced air ut systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables

12-1/4" Intermediate Hole Section 10M psi requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
Jars	6.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M	
DCs and MWD tools	6.500" - 8.000"	Annular	5M		-	
Mud Motor	8.000" – 9.625"	Annular	5M	-	-	
1 st Intermediate casing	9.625″	Annular	5M	-	-	
Open-hole	-	Blind Rams	10M	-	-	

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

8-3/4" Intermediate Hole Section 10M psi requirement							
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP		
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
Jars	6.500″	Annular	5M	Upper 3.5 - 5.5" VBR Lower 3.5 - 5.5" VBR	10M 10M		
DCs and MWD tools	6.500" - 8.000"	Annular	5M	-	-		
Mud Motor	6.750" - 8.000"	Annular	5M	-	-		
2 nd Intermediate casing	7.625"	Annular	5M	-	-		
Open-hole	-	Blind Rams	10M	-	-		

6-3/4" Production Hole Section 10M psi requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
HWDP	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 ~ 5.5" VBR	10M	
DCs and MWD tools	4.750" – 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Mud Motor	4.750" ~ 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Mud Motor	5.500" – 5.750"	Annular	5M	-	-	
Production casing	5.500″	Annular	5M	Upper 3.5 - 5.5" VBR	10M	
				Lower 3.5 - 5.5" VBR	10M	
Open-hole	-	Blind Rams	10M	-	-	

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400027599

Operator Name: EOG RESOURCES INCORPORATED

Well Name: AUDACIOUS 19 FEDERAL

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

AUDACIOUS19FED709H_vicinity_20180226103324.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

AUDACIOUS19FED709H_padsite_20180226103348.pdf

AUDACIOUS19FED709H_wellsite_20180226103349.pdf

AUDACIOUS19FEDCOM_infrastructure_20180226103350.PDF

New road type: RESOURCE

Length: 1479 Feet Width (ft.): 24

Max slope (%): 2

Max grade (%): 20

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 24

New road access erosion control: Newly constructed or reconstructed roads will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road. We plan to grade and water twice a year. **New road access plan or profile prepared?** NO

Well Work Type: Drill

07/02/2018

SUPO Data Report

Row(s) Exist? NO

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: 6" of Compacted Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: An adequate amount of topsoil/root zone will be stripped by dozer from the proposed well location and stockpiled along the side of the welllocation as depicted on the well site diagram / survey plat. **Access other construction information:**

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: No drainage crossings

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

AUDACIOUS19FED709H_radius_20180226103402.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Audacious 19 Fed Com CTB located in NE/4 of section 19

Production Facilities map:

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Water source type: RECYCLED

Source volume (acre-feet): 92.80303

Source longitude:

AUDACIOUS19FEDCOM_infrastructure_20180226103410.PDF

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: OTHER

Describe type:

Source latitude:

Source datum:

Water source permit type: WATER RIGHT

Source land ownership: STATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: STATE

Water source volume (barrels): 720000

Source volume (gal): 30240000

Water source and transportation map:

Audacious_BTL 19 Fed Com_Water_Source_and_Caliche_20180226103520.docx

Water source comments:

New water well? NO

New Water Well Info Well datum: Well latitude: Well Longitude: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: **Aquifer comments:** Aquifer documentation: Well depth (ft): Well casing type: Well casing outside diameter (in.): Well casing inside diameter (in.): New water well casing? Used casing source: **Drilling method:** Drill material: Grout material: Grout depth: Casing length (ft.): Casing top depth (ft.): Well Production type: **Completion Method:** Water well additional information:

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche utilized for the drilling pad will be obtained either from an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "Flipping" the well location. A mineral material permit will be obtained from BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad.

Construction Materials source location attachment:

Audacious__BTL_19_Fed_Com_Water_Source_and_Caliche_20180226103533.docx

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility. Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. Human waste and grey water will be properly contained of and disposed of properly. After drilling and completion operations; trash, chemicals, salts, frac sand, and other waste material will be removed and disposed of properly at a state approved disposal facility. **Amount of waste:** 0 barrels

Waste disposal frequency : Daily

Safe containment description: Steel Tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to NMOCD approved disposal facility

Reserve Pit

Reserve Pit-being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Closed Loop System. Drill cuttings will be disposed of into steel tanks and taken to an NMOCD approved disposal facility. Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Audacious_19_Fed_709H_Rig_Layout_20180221154056.pdf AUDACIOUS19FED709H padsite 20180226103552.pdf AUDACIOUS19FED709H_wellsite_20180226103553.pdf Comments: Wellsite, Padsite, Rig Layout

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: AUDACIOUS 19 FEDERAL

Multiple Well Pad Number: 602H/708H/709H

Recontouring attachment:

AUDACIOUS19FED709H_reclamation_20180226103606.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Well pad proposed disturbance (acres): 4.46281	Well pad interim reclamation (acres): 1.35124	Well pad long term disturbance (acres): 3.11157
Road proposed disturbance (acres): 0.814876	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0.814876
Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance (acres): 4.290634 Other proposed disturbance (acres): 0	Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 1.716253 0 Other interim reclamation (acres): 0	Powerline long term disturbance (acres): 0 Pipeline long term disturbance (acres): 2.57438 Other long term disturbance (acres): 0
Total proposed disturbance: 9.56832	Total interim reclamation: 3.067493	Total long term disturbance: 6.500826

Disturbance Comments: All Interim and Final reclamation is planned to be completed within 6 months. Interim within 6 months of completion and final within 6 months of abandonment plugging. Dual pad operations may alter timing. **Reconstruction method:** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads. Areas planned for interim reclamation will be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts and fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. **Soil treatment:** Re-seed according to BLM standards. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

Existing Vegetation at the well pad: Grass, forbs, and small woody vegetation, such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and respreads evenly on the site following topsoil respreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the road attachment:**

Existing Vegetation Community at the pipeline: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at the pipeline attachment**:

Existing Vegetation Community at other disturbances: All disturbed areas, including roads, pipelines, pads, will be recontoured to the contour existing prior to the initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. **Existing Vegetation Community at other disturbances attachment:**

Well Number: 709H

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management	
Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	
Seed use location:	

PLS pounds per acre:

Proposed seeding season:

Seed St	Total pounds/Acre:	
Seed Type	Pounds/Acre	

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Stan

Phone: (432)686-3689

Last Name: Wagner

Email: stan_wagner@eogresources.com

Seedbed prep:

Seed BMP:

Seed method:

Existing	invasive	species?	NO
----------	----------	----------	----

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds. Weeds will be treated if found. Weed treatment plan attachment:

Monitoring plan description: Reclamation will be completed within 6 months of well plugging. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, erosion is controlled, and free of noxious weeds.

Monitoring plan attachment:

Success standards: N/A

Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information: OnSite meeting conducted 12/20/17

Use a previously conducted onsite? NO

Previous Onsite information:

Other SUPO Attachment

AUDACIOUS19FED709H_location_20180226103636.pdf SUPO_Audacious_19_Federal_709H_20180226103655.pdf Audacious_19_Federal_GCP_20180226153730.pdf

EOG Resources, Inc.	
Audacious 19 Federal 7	09Н

SHL: 2153 FSL & 1393 FWL, Section: 19, T.25S., R.33E. BHL: 230 FSL & 1210 FWL, Section: 30, T.25S., R.33E.

Surface Use Plan of Operations

Introduction

The following surface use plan of operations will be followed and carried out once the APD is approved. No other disturbance will be created other than what was submitted in this surface use plan. If any other surface disturbance is needed after the APD is approved, a BLM approved sundry notice or right of way application will be acquired prior to any new surface disturbance.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soils storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are disturbed or knocked down, they will be replaced before construction proceeds.

If terms and conditions are attached to the approved APD and amend any of the proposed actions in this surface use plan, we will adhere to the terms and conditions.

1. Existing Roads

a. The existing access road route to the proposed project is depicted on Audacious 19 Federal 709H vicinity map. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.

b. The existing access road route to the proposed project does not cross lease or unit boundaries, so a BLM rightof-way grant will not be acquired for this proposed road route.

c. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattleguards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.

d. We will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

2. New or Reconstructed Access Roads

a. An access road will be needed for this proposed project. See the survey plat for the location of the access road.

b. The length of access road needed to be constructed for this proposed project is about 1479 feet.

c. The maximum driving width of the access road will be 24 feet. The maximum width of surface disturbance when constructing the access road will not exceed 25 feet. All areas outside of the driving surface will be revegetated.

d. The access road will be constructed with 6 inches of compacted caliche.

e. When the road travels on fairly level ground, the road will be crowned and ditched with a 2% slope from the tip of the road crown to the edge of the driving surface. The ditches will be 3 feet wide with 3:1 slopes. See Road Cross Section diagram below.

SHL: 2153 FSL & 1393 FWL, Section: 19, T.25S., R.33E. BHL: 230 FSL & 1210 FWL, Section: 30, T.25S., R.33E.

- f. The access road will be constructed with a ditch on each side of the road.
- g. The maximum grade for the access road will be 2 percent.
- h. No turnouts will be constructed on the proposed access road.
- i. No cattleguards will be installed for this proposed access road.
- j. No BLM right-of-way grant is needed for the construction of this access road.
- k. No culverts will be constructed for this proposed access road.
- 1. No low water crossings will be constructed for the access road.
- m. Since the access road is on level ground, no lead-off ditches will be constructed for the proposed access road.

n. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.

3. Location of Existing Wells

a. Audacious 19 Federal 709H radius map of the APD depicts all known wells within a one mile radius of the proposed well.

b. There is no other information regarding wells within a one mile radius.

4. Location of Existing and/or Proposed Production Facilities

a. All permanent, lasting more than 6 months, above ground structures including but not limited to pumpjacks, storage tanks, barrels, pipeline risers, meter housing, etc. that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.

b. If any type of production facilities are located on the well pad, they will be strategically placed to allow for maximum interim reclamation, recontouring, and revegetation of the well location.

c. Production from the proposed well will be transported to the production facility named Audacious BTL 19 Fed Com CTB. The location of the facility is as follows: NE/4 of 19-25S-33E.

d. A pipeline to transport production will be installed from the proposed well to the existing production facility.

i. We plan to install a 4 inch buried flex steel pipeline from the proposed well to the offsite production facility. The proposed length of the pipeline will be 3738 feet. The working pressure of the pipeline will be about 125 psi. A 50 feet wide work area will be needed to install the buried pipeline. In areas where

blading is allowed, topsoil will be stockpiled and separated from the excavated trench mineral material. Final reclamation procedures will match the procedures in Plans for Surface Reclamation. When the excavated soil is backfilled, it will be compacted to prevent subsidence. No berm over the pipeline will be evident.

ii. Audacious BTL 19 Fed Com infrastructure sketch depicts the proposed production pipeline route from the well to the existing production facility.

iii. The proposed pipeline does not cross lease boundaries, so a right of way grant will not need to be acquired from the BLM.

If any plans change regarding the production facility or other infrastructure (pipeline, electric line, etc.), we will submit a sundry notice or right of way (if applicable) prior to installation or construction.

Additional Pipeline(s)

We propose to install 1 additional pipeline(s):

1. Buried gas lift gas pipeline:

a. We plan to install a 4 inch buried flex steel pipeline from the proposed well to the central tank battery. The proposed length of the pipeline will be 3738 feet. The working pressure of the pipeline will be about 125 psi. A 50 feet wide work area will be needed to install the buried pipeline. We will need an extra 10 foot wide area near corners to safely install the pipeline. In areas where blading is allowed, topsoil will be stockpiled and separated from the excavated trench mineral material. Final reclamation procedures will match the procedures in Plans for Surface Reclamation. When the excavated soil is backfilled, it will be compacted to prevent subsidence. No berm over the pipeline will be evident.

b. Audacious BTL 19 Fed Com infrastructure sketch depicts the proposed gas lift gas pipeline route.

c. The proposed pipeline does not cross lease boundaries, so a right of way grant will not need to be acquired from the BLM.

Electric Line(s)

a. No electric line will be applied for with this APD.

5. Location and Types of Water

a. The source and location of the water supply are as follows: Water will be supplied from the frac pond as shown on the attached water source map This location will be drilled using a combination of water mud systems (outlined in the drilling program) The water will be obtained from commercial water stations in the area or recycled treated water and hauled to location by trucks or poly pipelines using existing and proposed roads depicted on the proposed existing access road maps In these cases where a poly pipeline is used to transport fresh water for drilling purposes_ proper authorizations will be secured by the contractor.

b. Audacious BTL 19 Fed Com Water Source and Caliche map depicts the proposed route for a 12 inch poly temporary (<90 days) water pipeline supplying water for drilling operations.

6. Construction Material

a. Caliche will be supplied from pits shown on the attached caliche source map.

Caliche utilized for the drilling pad will be obtained either from an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "Flipping" the

well location. A mineral material permit will be obtained from BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "Flipping" a well location is as follows:

-An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the well site diagram/survey plat. -An area will be used within the proposed well site dimensions to excavate caliche.

Subsoil will be removed and stockpiled within the surveyed well pad dimensions.

-Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.

-Then, subsoil will be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).

-Neither caliche, nor subsoil will be stock piled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in the Well Site Layout or survey plat.

* 🗌

In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

7. Methods for Handling Waste

a. Drilling fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility.

b. Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.

c. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.

d. After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

e. The well will be drilled utilizing a closed loop system. Drill cutting will be properly disposed of into steel tanks and taken to an NMOCD approved disposal facility.

8. Ancillary Facilities

a. No ancillary facilities will be needed for this proposed project.

9. Well Site Layout

a. The following information is presented in the well site survey plat or diagram:

i. reasonable scale (near 1":50')

ii. well pad dimensions

iii. well pad orientation

- iv. drilling rig components
- v. proposed access road
- vi. elevations of all points

vii. topsoil stockpile

viii. reserve pit location/dimensions if applicable

ix. other disturbances needed (flare pit, stinger, frac farm pad, etc.)

x. existing structures within the 600' x 600' archaeoligical surveyed area (pipelines, electric lines, well pads, etc

b. The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.

c. A title of a well site diagram is Audacious 19 Federal 709H rig layout. This diagram depicts the rig layout.

d. Topsoil Salvaging

i. Grass, forbs, and small woody vegetation, such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and respread evenly on the site following topsoil respreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

10. Plans for Surface Reclamation

Reclamation Objectives

i. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil; control erosion; and minimize habitat and forage loss, visual impact, and weed infestation, during the life of the well or facilities.

ii. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

iii. The BLM will be notified at least 3 days prior to commencement of any reclamation procedures.

iv. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on the location has been completed or plugged. We will gain written permission from the BLM if more time is needed.

v. Interim reclamation will be performed on the well site after the well is drilled and completed. Audacious 19 Federal 709H reclamation depicts the location and dimensions of the planned interim reclamation for the well site.

Interim Reclamation Procedures (If performed)

1. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.

2. In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.

3. The areas planned for interim reclamation will then be recontoured to the original contour if feasible,

or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

4. Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

5. Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.

6. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation (well pad, buried pipelines, etc.)

1. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.

2. All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.

3. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be recontoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

4. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

5. Proper erosion control methods will be used on the entire area to control erosion, runoff and siltation of the surrounding area.

6. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.

7. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

11. Surface Ownership

a. The surface ownership of the proposed project is federal.

12. Other Information

a. An onsite meeting was conducted 12/20/17.

We plan to use 2, 12-inch lay flat hoses to transport water with an option to use 7, 4-inch poly lines for drilling

EOG Resources, Inc. Audacious 19 Federal 709H

SHL: 2153 FSL & 1393 FWL, Section: 19, T.25S., R.33E. BHL: 230 FSL & 1210 FWL, Section: 30, T.25S., R.33E.

and frac operations.

We are asking for 2 associated pipelines all depicted on the attached Audacious BTL 19 Fed Com infrastructure sketch:

One 4-inch flex steel gas lift line per well

One 4-inch flex steel production flowline per well

The well is planned to be produced using gas lift as the artificial lift method.

Produced water will be transported via pipeline to the EOG produced water gathering system.

13. Maps and Diagrams

Audacious 19 Federal 709H vicinity map - Existing Road Audacious 19 Federal 709H radius map - Wells Within One Mile Audacious BTL 19 Fed Com infrastructure sketch - Production Pipeline Audacious BTL 19 Fed Com infrastructure sketch - gas lift gas Pipeline Audacious 19 Federal Water Source and Caliche map - Drilling Water Pipeline Audacious 19 Federal 709H rig layout - Well Site Diagram Audacious 19 Federal 709H reclamation - Interim Reclamation

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

07/02/2018

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name:

Injection well API number:

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM2308

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 07/02/2018

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400027599

•

Drilling Plan Data Report

Submission Date: 02/28/2018

Operator Name: EOG RESOURCES INCORPORATED

Well Name: AUDACIOUS 19 FEDERAL

Well Number: 709H

07/02/2018

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation		: ::	True Vertical	Measured			Producing
ID .	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	PERMIAN	3461	0	Ō	ALLUVIUM	NONE	No
2	RUSTLER	2461	1000	1000	ANHYDRITE	NONE	No
3	TOP OF SALT	2134	1327	1327	SALT	NONE	No
4	BASE OF SALT	-1221	4682	4682	SALT	NONE	No
5	LAMAR	-1462	4923	4923	LIMESTONE	NONE	No
6	BELL CANYON	-1484	4945	4945	SANDSTONE	USEABLE WATER	No
7	CHERRY CANYON	-2512	5973	5973	SANDSTONE	NATURAL GAS,OIL	No
8	BRUSHY CANYON	-4058	7519	7519	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING LIME	-5604	9065	9065	LIMESTONE	NONE	No
10	BONE SPRING 1ST	-6553	10014	10014	SANDSTONE	NATURAL GAS, OIL	No
11	BONE SPRING 2ND	-7199	10660	10660	SANDSTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8272	11733	11733	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-8723	12184	12184	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention