Carisbad Field Office

Form 3160-3 (June 2015)

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

MIN F

UNITED STATES DEPARTMENT OF THE INTERIO

DEPARTMENT OF TH BUREAU OF LAND MA APPLICATION FOR PERMIT TO	E INTERIOR ANAGEMENT	SEP 12 2	810	5. Lease Serial No. NMNM086150	
APPLICATION FOR PERMIT TO	DRILL OR	RECE!	VED	6. If Indian, Allotee or Tr	ibe Name
Ia. Type of work:	REENTER	Kee		7. If Unit or CA Agreeme	ent, Name and No.
1b. Type of Well: ☐ Oil Well ☑ Gas Well ☐	Other			8. Lease Name and Well	No.
Ic. Type of Completion: ☐ Hydraulic Fracturing ☐	Single Zone	Multiple Zone		BRAD DYER FEDERA 205H	32243
2. Name of Operator MATADOR PRODUCTION COMPANY (228)	737)			9. API Well No.	45195
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 75240	34. Phone N (972)371-5	io (include area coa <mark>200</mark>	le)	10. Field and Pool, or Ex WILDCAT / WOLFCAM	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. Location of Well (Report location clearly and in accordant	nce with any State	requirements.*)		11. Sec., T. R. M. or Blk.	and Survey or Area
At surface SWSW / 329 FSL / 899 FWL / LAT 32.3	418541 / LONG	-103.6510726		SEC 35 / T22S / R32E	/ NMP
At proposed prod. zone NWNW / 240 FNL / 990 FWL	. / LAT 32.3548	I / LONG -103.651	0726		
14. Distance in miles and direction from nearest town or post	office*			12. County or Parish	13. State
15. Distance from proposed* location to nearest 329 feet	16 No of ac	cres in lease	17. Spacin	ng Unit dedicated to this w	ell
property or lease line, ft. (Also to nearest drig, unit line, if any)	320		320		
18 Distance from proposed location*	19. Propose	d Depth	20. BLM/	BIA Bond No. in file	
to nearest well, drilling, completed, applied for, on this lease, it.	12370 feet	/ 17119 feet	FED: NM	IB001079	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3734 feet	22. Approxi 06/01/2018	mate date work will	start*	23. Estimated duration 90 days	
07041000	24. Attac			Too days	
The following, completed in accordance with the requiremen as applicable)	ts of Onshore Oil	and Gas Order No.	I, and the I	lydraulic Fracturing rule po	er 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		Item 20 above).	·	s unless covered by an exis	ting bond on file (see
A Surface Use Plan (if the location is on National Forest Sy SUPO must be filed with the appropriate Forest Service Of the Company of the Property of the		5. Operator certific 6. Such other site s BLM.		mation and/or plans as may	be requested by the
25. Signature (Electronic Submission)		(Printed/Typed) Wood / Ph: (505)4	66-8120	Date 04/ 1	11/2018
Fitte President					
Approved by (Signature) (Electronic Submission)	l l	<i>(Printed/Typed)</i> Layton / Ph: (575):	234-5959	Date 08/2	23/2018
Fitle Assistant Field Manager Lands & Minerals	Office CARL				
Application approval does not warrant or certify that the appl applicant to conduct operations thereon. Conditions of approval, if any, are attached.	icant holds legal (or equitable title to t	hose rights	in the subject lease which v	would entitle the
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 121 of the United States any false, fictitious or fraudulent stateme				-	epartment or agency
Gep Rec 09/12/18		ru condit	10NS	KZIVI	18
	111E	LH MANA,		• • •	

(Continued on page 2)

Approval Date: 08/23/2018

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

1. SHL: SWSW / 329 FSL / 899 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418541 / LONG: -103.6510726 (TVD: 0 feet, MD: 0 feet)

PPP: SWSW / 329 FSL / 899 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418541 / LONG: -103.6510726 (TVD: 0 feet, MD: 0 feet)

BHL: NWNW / 240 FNL / 990 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.35481 / LONG: -103.6510726 (TVD: 12370 feet, MD: 17119 feet)

BLM Point of Contact

Name: Sipra Dahal

Title: Legal Instruments Examiner

Phone: 5752345983 Email: sdahal@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Tellor Certification Data Report 08/24/2018

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood		Signed on: 04/11/2018
Title: President		
Street Address: 37 Vera	ano Loop	
City: Santa Fe	State: NM	Zip: 87508
Phone: (505)466-8120		
Email address: afmss@	permitswest.com	
Field Represe	<u> </u>	
Representative Name) :	
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report 08/24/2018

APD ID: 10400029318 Submission Date: 04/11/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Show Final Text

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400029318

Tie to previous NOS?

Submission Date: 04/11/2018

BLM Office: CARLSBAD

User: Brian Wood

Title: President

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM086150

Lease Acres: 320

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? YES

APD Operator: MATADOR PRODUCTION COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Zip: 75240

Operator PO Box:

Operator City: Dallas

State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WILDCAT

Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS,CO2,OIL

Well Name: BRAD DYER FEDERAL Well Number: 205H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: BRAD Number: 205H

DYER

Well Class: HORIZONTAL Number of Legs: 1

Well Work Type: Drill

Well Type: CONVENTIONAL GAS WELL

Describe Well Type: Well sub-Type: INFILL

Describe sub-type:

Distance to town: 29 Miles Distance to nearest well: 1950 FT Distance to lease line: 329 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: BD_205H_Plat_20180411083925.pdf

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 19642

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	329	FSL	899	FWL	228	32E	35	Aliquot SWS W	32.34185 41	- 103.6510 726	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	373 4	0	0
KOP Leg #1	329	FSL	899	FWL	228	32E	35	Aliquot SWS W	32.34185 41	- 103.6510 726	EDD Y	l	NEW MEXI CO	F	NMNM 086150	- 805 7	118 01	117 91
PPP Leg #1	329	FSL	899	FWL	228	32E	35	Aliquot SWS W	32.34185 41	- 103.6510 726	EDD Y		NEW MEXI CO	F	l	373 4	0	0

Well Name: BRAD DYER FEDERAL

Well Number: 205H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
EXIT Leg #1	240	FNL	990	FWL	228	32E	35	Aliquot NWN W	32.35481	- 103.6510 726	LEA	NEW MEXI CO		ĺ	NMNM 086150	- 863 6	171 19	123 70
BHL Leg #1	240	FNL	990	FWL	228	32E	35	Aliquot NWN W	32.35481	- 103.6510 726	LEA	NEW MEXI CO		F	NMNM 086150	- 863 6	171 19	123 70

Brad Dyer Fed Com #222H	30-015- ****	UL-N Sec 35 T22S R32E	330' FSL 2189' FWL	+/- 2,000	~30 days	Flare ~30 flowback be	,
						into TB.	i i
						connect as cleanup.	nd well

Gathering System and Pipeline Notification

The wells will be connected to production facilities after flowback operations are complete so long as the gas transporter system is in place. The gas produced from the production facilities should be connected to a Lucid Energy Delaware, LLC gathering system. It will require ~6,000' of pipeline to connect each facility to the Lucid Energy Delaware, LLC gathering system. Matador Production Company periodically provides a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future to Lucid Energy Delaware, LLC. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify Lucid Energy Delaware, LLC. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing.

Flowback Strategy

After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts flowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well.

Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared.
 - O Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.
- Compressed Natural Gas On lease
 - o Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On lease
 - NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

08/24/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL Well Number: 205H

Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
∷∃D	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1		3734	Ö	Ö	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2541	1190	1191		NONE	No
3	SALADO	2069	1662	1665	SALT	NONE	No
4	BASE OF SALT	-1201	4932	4953		NONE	No
5	BELL CANYON	-1209	4940	4962	SANDSTONE	NATURAL GAS,CO2,OIL	No
6	BRUSHY CANYON	-3389	7120	7149	SANDSTONE	NATURAL GAS,CO2,OIL	No
7	BONE SPRING	-4967	8698	8727	LIMESTONE	NATURAL GAS,CO2,OIL	No
8	BONE SPRING 1ST	-6061	9795	9805	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
9	BONE SPRING 1ST	-6095	9829	9839	SANDSTONE	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 2ND	-6413	10147	10157	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-6777	10511	10522	SANDSTONE	NATURAL GAS,CO2,OIL	No
12	BONE SPRING 3RD	-7230	10964	10974	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 3RD	-8011	11745	11755	SANDSTONE	NATURAL GAS,CO2,OIL	No
14	WOLFCAMP	-8285	12019	12036	OTHER : A Carbonate	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Well Name: BRAD DYER FEDERAL Well Number: 205H

Resenct Pather (CS): 1604 Extra Capa Relates and Explanation of Paper Lead And Explanation and Language with Equipment A Refer to the Society of the Society

Requesting Variance? YES

valurate to the large of the sheet is a trained. Manufacturer to the implication for the period and englishment in the state of the sheet is a trained. Manufacturer to the engine of the large to be another at thines of the source of the sheet is a subject of the sheet in the source of the sheet in the source of the sheet in the source of the sheet in the sheet in the same of the source of the sheet in the sheet in the source of the sheet in the source of the sheet in the sheet of the sheet in t

Choke Diagram Attachment:

BD_205H_Choke_10M_20180712143219.pdf

BOP Diagram Attachment:

BD_205H_BOP_20180411100232.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1215	0	1214	3734		1215	J-55	1	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4690	0	4682	3734		4690	P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4990	0	4981	3734		4990	J-55	1	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
1	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	o	11600	0	11590	3734		11600	P- 110		OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1 '	INTERMED IATE	8.75	7.625	NEW	API	Υ	4690	11700	4682	11690			7010	P- 110		OTHER - VAM HTF- NR	_	1.12 5	DRY	1.8	DRY	1.8
	INTERMED IATE	8.75	7.0	NEW	API	Y	11700	12601	11690	12355			901	P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	11600	17919	11590	12370			6319	P- 110	1	OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BD_205H_Casing_Design_Assumptions_20180411100540.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BD_205H_Casing_Design_Assumptions_20180411100738.pdf

Casing Design Assumptions and Worksheet(s):

BD_205H_Casing_Design_Assumptions_20180411101126.pdf

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Casing A	Attach	ments
----------	--------	-------

Casing ID: 3

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $BD_205H_Casing_Design_Assumptions_20180411100625.pdf$

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5in TXP Casing Spec 20180411101202.pdf

Casing Design Assumptions and Worksheet(s):

BD_205H_Casing_Design_Assumptions_20180411101219.pdf

Casing ID: 5

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7.625in_VAM_Casing_Spec_20180411101017.pdf

Casing Design Assumptions and Worksheet(s):

BD_205H_Casing_Design_Assumptions_20180411101537.pdf

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Casing Attachments

Casing ID: 6

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BD_205H_Casing_Design_Assumptions_20180411101108.pdf

Casing Design Assumptions and Worksheet(s):

BD_205H_Casing_Design_Assumptions_20180411101603.pdf

Casing ID: 7

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.5in_P110_ICY_Casing_Spec_20180411101249.pdf

Casing Design Assumptions and Worksheet(s):

 $BD_205H_Casing_Design_Assumptions_20180411101309.pdf$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1215	700	1.82	12.8	1274	100	Class C	Bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1215	400	1.38	14.8	552	100	Class C	5% NaCI + LCM
INTERMEDIATE	Lead	Ü	0	4690	600	2.36	11.5	1416	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4690	250	1.38	13.2	345	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	4990	1070	2.13	12.6	2279	100	Class C	+ Bentonite + 1% CaCl2 + 8% NaCl + LCM

Well Name: BRAD DYER FEDERAL Well Number: 205H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail	<u></u>	0	4990	500	1.38	14.8	690	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1160 0	0	0	0	0	0	None	None
PRODUCTION	Tail		0	1160 0	530	1.17	15.8	620	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4690	1170 0	600	2.36	11.5	1416	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4690	1170 0	250	1.38	13.2	345	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1170 0	1260 1	600	2.36	11.5	1416	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1170 0	1260 1	250	1.38	13.2	345	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1160 0	1791 9	0	0	0	0	0	None	None
PRODUCTION	Tail		1160 0	1791 9	530	1.17	15.8	620		Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Circulating Medium Table

Bottom Depth Mud Type Max Weight (lbs/gal) Density (lbs/cu ft) Gel Strength (lbs/100 sqft) Viscosity (CP) Salinity (ppm) Filtration (cc)
a Type Meight (lbs/gal) Weight (lbs/gal) Strength (lbs/100 Strength (lbs/100 ation (cc)
Weight (lbs/gal) Weight (lbs/gal) Isity (lbs/cu ft) Strength (lbs/100 anity (ppm) ation (cc)
Weight (lbs/gal) sity (lbs/cu ft) Strength (lbs/100 cosity (CP) nity (ppm) ation (cc)
Strength (lbs/cu ft) Strength (lbs/100 cosity (CP) inity (ppm)
Strength (lbs/100 cosity (CP) inity (ppm)
Hiscosity (C
iscosity (C
alinity (ppr
iltration (o
Additional Characteristics

Well Name: BRAD DYER FEDERAL

Well Number: 205H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	PH	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1215	OTHER : Fresh water spud	8.3	8.3							
1215	4990	OTHER : Brine water	10	10							
4990	1260 1	OTHER : Fresh water & cut brine	9	9							·
1260 1	1791 9	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 12,420' to TD. No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL.GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7600

Anticipated Surface Pressure: 4878.6

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

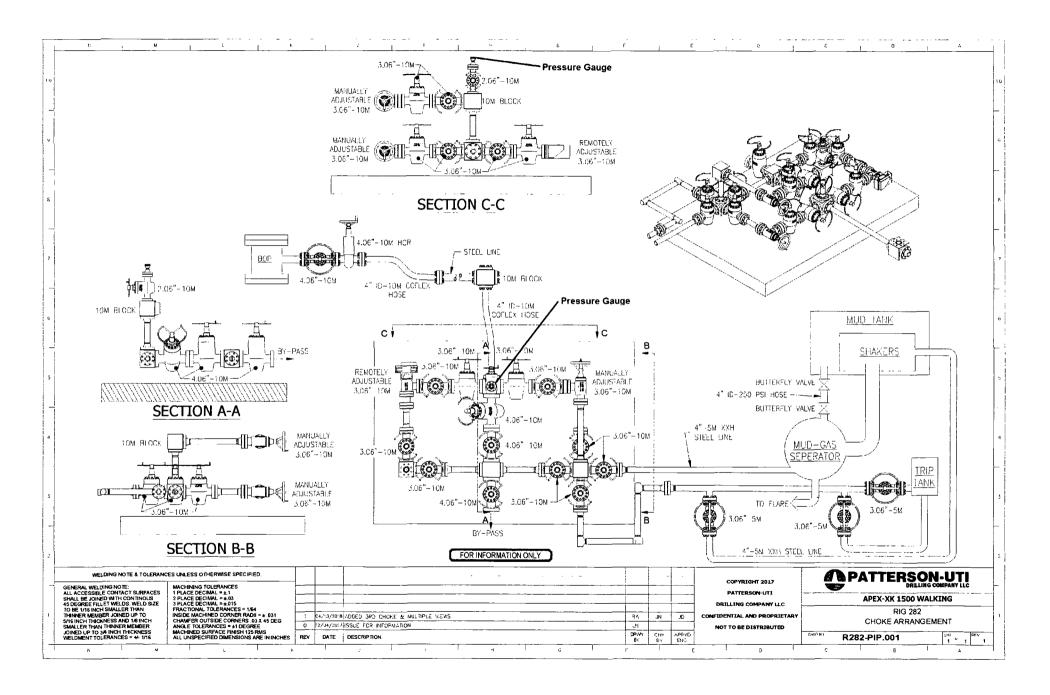
Hydrogen sulfide drilling operations plan:

BD_205H_H2S_Plan_20180411102936.pdf

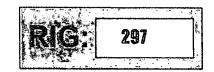
Well Name: BRAD DYER FEDERAL Well Number: 205H

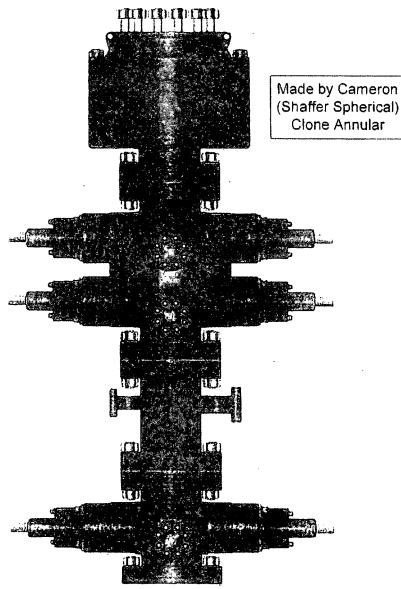
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


BD_205H_Horizontal_Drill_Plan_20180411103007.pdf

Other proposed operations facets description:


Other proposed operations facets attachment:


BD_205H_Speedhead_Specs_20180411103127.pdf
BD_205H_General_Drill_Plan_Revised_10MChoke_20180712143236.pdf
10M_Well_Control_Plan_20180712143249.pdf

Other Variance attachment:

PATTERSON-UTI # PS2-628

STYLE: New Shaffer Spherical

BORE 13 5/8" PRESSURE 5,000

HEIGHT: 48 ½" WEIGHT: 13,800 lbs

PATTERSON-UTI # PC2-128

STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000

RAMS: TOP 5" Pipe BTM Blinds

HEIGHT: 66 5/8" WEIGHT: 24,000 lbs

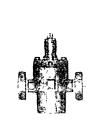
Length 40" Outlets 4" 10M

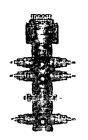
DSA 4" 10M x 2" 10M

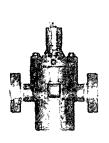
PATTERSON-UTI # PC2-228

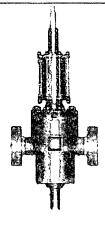
STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000


RAMS: 5" Pipe


HEIGHT: 41 5/8" WEIGHT: 13,000 lbs


WING VALVES



2" Check Valve

2" Manual Valve

2" Manual Valve

4" Manual Valve

4" Hydraulic Valve

Internal Hydrostatic Test Graph

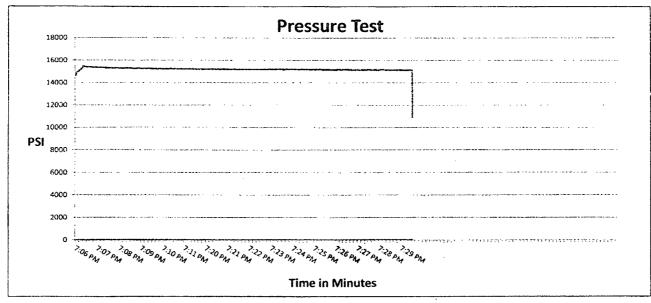
Customer: Patterson

Pick Ticket #: 284918

Hose Specifications

Hose Type LD. **Working Pressure** 10000 PSI

Length Q.D. 4.79" **Burst Pressure** Standard Safety Multiplier Applies **Verification**


Type of Fitting 4-1/15 10K Die Size 5.37" Hose Serial # 10490

Final O.D. 5.37" Hose Assembly Serial #

284918-2

Coupling Method

Swage

Test Pressure 15000 PSI

Time Held at Test Pressure 15 2/4 Minutes

Actual Burst Pressure

Peak Pressure 15732 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler H

Approved By: Ryan Ad

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Infor	mation	Hose Specific	ations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (inches)	3"
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"
Hose Assembly Length	10'	Armor (yes/no)	YES
	Fitt	ings	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	91996	Stem (Heat #)	91996
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Pan #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat#)		Connection (Heat #)	
Dies Used	5.37	7 Dies Used	5.3
	Hydrostatic Te	st Requirements	
		Hose assembly was tested w	vith ambient water
rest Pressure (psi)		temperatui	

Midwest Hose & Specialty, Inc.

Certificate of Conformity

Customer: PATTERSON	B&E	Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Spe	cifications	
Hose Assembly Type:	Choke & Kill		
Assembly Serial #	287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
Fan Alana	12/9/2014

December 9, 2014

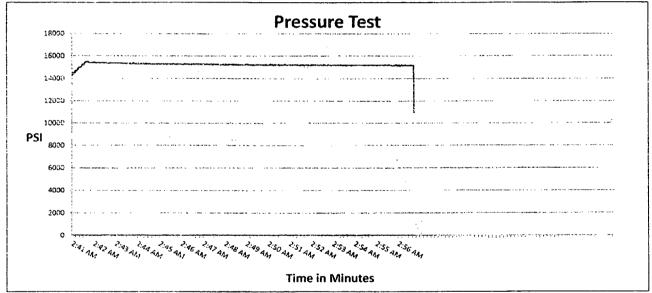
Internal Hydrostatic Test Graph

Customer: Patterson

Pick Ticket #: 284918

Verification

Hose Specifications


Hose Type Ck LD.

Length 20' O.D. 4.77"

Type of Fitting 4-1/16 10K Die Size 5.37"

Coupling Method Final O.D. 5.40"

Working Pressure Hose Assembly Serial # **Burst Pressure** Hose Serial # 10000 PSi 284918-1 10490 Standard Safety Multiplier Applies

Test Pressure 15000 PSI

Time Held at Test Pressure 15 2/4 Minutes

Actual Burst Pressure

Peak Pressure 15893 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: Ryan Adams

Midwest Hose & Specialty, Inc.

4

Customer PATTER MWH Sales Representative AMY W Date Assembled 12/8/20	The second secon		
	uc	Hase Spi	Hose Specifications
	PATTERSON B&E	Hose Assembly Type	Choke & Kill
	AMY WHITE	Certification	API 7K
	12/8/2014	Hose Grade	MUD
		Hose Working Pressure	10000
Sales Order # 236404		Hose Lot# and Date Code	10490-01/13
Customer Purchase Order # 260471		Hose I.D. (inches)	3"
Assembly Serial # (Pick Ticket #) 287918-1		Hose O.D. (inches)	5.30"
Hose Assembly Length 20'		Armor (yes/no)	YES
	Fittings	sat.	
End A		Ē	End B
Stem (Part and Revision #) R3.0)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #) A141420		Stem (Heat #)	A141420
Ferrule (Part and Revision #) RF3.0		Ferrule (Part and Revision #)	1#) RF3.0
	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #) 4 1/1	4 1/16 10K	Connection (Pan #)	4 1/16 10K
Connection (Heat #) V3579		Connection (Heat #)	V3579
Dies Used	5.37	5.37 Dies Used	5.37
МH.	drostatic Test	Hydrostatic Test Requirements 🧢	
Test Pressure (psi) 15,000	. 00	Hose assembly was te	Hose assembly was tested with ambient water
Test Pressure Hold Time (minutes) 15 1/2	7,	tempi	temperature.
Date Tested	Tested By	Зу	Approved By
12/9/2014	Jan		Fran Mano

Midwest Hose & Specialty, Inc.

Customer:	PATTERSON E	1&E	Customer P.O.# 260471	
Sales Order#	236404		Date Assembled: 12/8/2014	
		Spe	cifications	
Hose Asser	nbly Type:	Choke & Kill		
Assembly	y Serial #	287918-1	Hose Lot # and Date Code	10490-01/13
Hose Working	Pressure (psi)	10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
Fan Alaus	12/9/2014

Internal Hydrostatic Test Graph

Customer: Patterson

Pick Ticket #: 284918

Hose Specifications

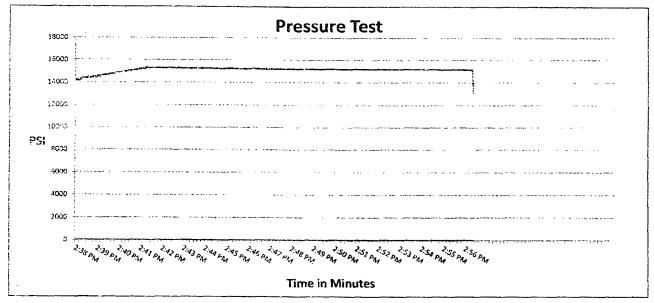
 Hose Type
 Length

 Mud
 70°

 LD.
 O.D.

 3"
 4.79"

 Working Pressure
 Burst Pressure


 10000 PSI
 Standard Salety Wulkigher Applies

Verification

Type of Fitting
4 1/16 10K
Die Size
5.37"
Hose Serial #
10490

Coupling Method
Swage
Final O.D.
5.37"

Hose Assembly Serial # 284918-3

Test Pressure 15000 PSI Time Held at Test Pressure 16 3/4 Minutes Actual Burst Pressure

Peak Pressure 15410 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Aler Hill

Approved By: Ryan Agams

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

		tic Test Certificate			
General Infor	nation	Hose Specific	ations		
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill		
MWH Sales Representative	AMY WHITE	Certification	API 7K		
Date Assembled	12/8/2014	Hose Grade	MUD		
Location Assembled	ОКС	Hose Working Pressure	10000		
Sales Order#	236404	Hose Lot # and Date Code	10490-01/13		
Customer Purchase Order#	260471	Hose I.D. (Inches)	3"		
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"		
Hose Assembly Length	70'	Armor (yes/no)	YES		
	Fitt	ings			
End A		End B			
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB		
Stem (Heat#)	A141420	Stem (Heal #)	A141420		
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0		
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631		
Connection (Part #)	4 1/16 10K	Connection (Part#)	4 1/16 10K		
Connection (Heat #).		Connection (Neot #)			
Dies Used	5.37	Dies Used	5.37		
	Hydrostatic Tes	t Requirements			
Test Pressure (psi)	15,000	Hose assembly was tested with ambient water			
Test Pressure Hold Time (minutes) 16 3/4		temperature.			

Midwest Hose & Specialty, Inc.

7.0	Certificate	of Conformity					
Customer: PATTERSON E	&E	Customer P.O.# 260471					
Sales Order # 236404		Date Assembled: 12/8/2014					
	Specif	ications					
Hose Assembly Type:	Choke & Kili						
Assembly Serial #	287918-3	Hose Lot # and Date Code	10490-01/13				
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000				
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.							
to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd							
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd			to be true according				
Supplier: Midwest Hose & Specialty, Inc.			to be true according				
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129			to be true according				
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	ase order and currer		to be true according				

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

December 31 2015

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

Size: 4.500 in. **Wall**: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
		<u> </u>			
		<u> </u>		1	
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Structural		Joint Yield Strength Structural			·
·	100 %		479 x 1000 lbs 479 x 1000 lbs	Capacity ⁽¹⁾	·
Structural Compression		Structural		Capacity ⁽¹⁾ Structural	14100 psi 127 °/100 f
Structural Compression Efficiency External Pressure	100 %	Structural		Capacity ⁽¹⁾ Structural	·
Structural Compression Efficiency External Pressure	100 %	Structural		Capacity ⁽¹⁾ Structural	·

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

OD	Wall Th. Grade	API Drift Connection
	[M] (B) (2) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(2007年) 1975年 - 1975
7 5/8 in. 29.70 lb/ft	0.375 in. P110 EC	6.750 in. VAM® HTF NR
ing the property of the contract of the contra		

	Black and the second
PIPE PROPERT	TIES
Nominal OB	7.625 in.
Nominal ID	6.875 in.
Nominal Gross Section Area	8.541 sqin,
Grade Type	Enhanced API
Min: Yield Strength	125 Ksi
Max. Yield Strength	140 ksi
Min, witimate Tensile Strengthi	135 ksj.
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10/760/psi
Collapse pressure	7 360 psi

CONNECTION PER	FORMANCES
Tensile, Yield/Strength	619 Kib
Compression Resistance	778 klb
Compression, with Sealability	37.2°. Klb
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7: 3 <u>60</u>) psi
Max. Bending	44 °/100ft
Max Bending with Sealability	17 V100ft

Gonnection Type	Premlym Integral Flu
Connection OD (nom)	7.701 in.
Connection ID (mocr)	6.7,82 in:
Make-Up Loss	4.657 in.
Gntical Gross Section	4,97/i sqin.
Tension Efficiency	58 % of pig
Görnpressjón Efficiency	72.7 % of pit
Compression Efficiency with Sealability	34.8 % of pig
Internal Pressure Efficiency	100) % of pir
External Pressure Efficiency	100 % of plp

TORQUE VALUES	
Min. Nakerup torque	9, 6 00), ft.Jb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 (t.16
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	781000 (t-16,

VAM® HTF" (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com : usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

uk@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Casing/Tubing: CAS

Connection: TenarisXP™ BTC

Size: 5.500 in. Wall: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

Tenaris

		PIPE BODY	DATA		
		GEOMET	RY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diarneter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		VI WELL TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
		GEOMET	ry		
		GEOMET	TRY	- _F	
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000	Internal Pressure Capacity(1)	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1.000 lbs	Structural Bending ⁽²⁾	92 °/100 fi
External Pressure Capacity	12100 psi				
	E	STIMATED MAKE-	UP TORQUES	(3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-II
		OPERATIONAL LI	4IT TORQUES	5	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

BLANKING DIMENSIONS

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: $DF_c=1.125$

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing
 will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
 internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Size: 5.500 in. **Wall**: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

= ienaris

Casing/Tubing: CAS

Connection: TenarisXP™ BTC

Coupling Option: REGULAR

-,		GEOMET	.b.A	· · · · · · · · · · · · · · · · · · ·	
Nominal OD	5.500 in.		20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
	121	NARISXP™ BTC CO GEOMET		A I A	
		GEOMET	'RY		
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92 °/100 fi
External Pressure Capacity	12100 psi				
	Ε	STIMATED MAKE-L	JP TORQUES	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-ll
		OPERATIONAL LIN	IT TORQUES	;	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

DATA ARE INFORMATIVE ONLY. **BASED ON SI PD-101836 P&B**

OD Weight	Wall Th	Grade	API Drift	Connection
	I Fatt Militt die .			
7.5/8 in. 29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nominal QD	7.625 in
Nominal ID	6.875 in.
Nominal Cross Section Area	8 544 sqin
Grade Type	Enhanced API
Min. Yield/Strength	.125 ksi
Max. Yield Strength	140 ksi
Min. Ultimate:Tensile Strength	135 ks/
Tensile Yield Strength	1 068 klb
Internal Wald Pressure	10,760 psi
Collapse pressure	7 360 psi

CONNECTION PROPERTI	iES:	1 3 C
Connection Type Pren	nlum Integr	al Flush
Connection OD (nom)	7.701 in.	
Connection ID (nom)	6.782 in	
Make-Up Loss	4.657 in.	
Gritical Cross Section	4.971 sq	n.
Tension Efficiency	58 %	of pipe
Gompression Efficiency	72,7.46	of pipe
Compression Efficiency with Sealability	34.8 %	of pipe
(j)ternal Pressure Efficiency	100:%	of pipe
External Pressure Efficiency	100 %	

CONNECTION PERFORM	ANCES
Tensile Yield Strength	ena gió
Compression Resistance	778 klb
Gompression with Sealability	37/2) : kiệt
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 360.ps
Max. Bending	44 º/100ft
Max, Bending with Sealability;	1.71 9/1/00ft

TORQUE VALUE	E S
Min Make up torque	9 600 ft (b
Opti. Make-up torque	11 300 ft.lb
Max, Make-up/torgue	13) 000) fc(b)
Max. Torque with Sealability	58 500 ft.lb
Māx, Torslonaļ Vālue;	73 000 felb

VAM® HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com

uk@vamfieldservice.com usa@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com brazil@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

BLANKING DIMENSIONS

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

December 31 2015

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

Size: 4.500 in. **Wall**: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY

Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
_ -				Jana Barana	
Tension Efficiency Structural Compression	100 %	Joint Yield Strength Structural	479 x 1000 lbs	Internal Pressure Capacity(1) Structural	14100 psi 127 °/100 f
Structural	100 %			Capacity ⁽¹⁾	14100 psi 127 °/100 f
Structural Compression Efficiency		Structural		Capacity ⁽¹⁾ Structural	
Structural Compression Efficiency External Pressure	100 %	Structural		Capacity ⁽¹⁾ Structural	

DRILLING PROGRAM

1. ESTIMATED TOPS

Formation Name	MD	TVD	Bearing
Quaternary	000'	000′	water
Rustler anhydrite	1191'	1190′	N/A
Salado salt	1665′	1662′	N/A
Base salt	4953'	4932'	N/A
Bell Canyon sandstone	4962'	4940'	hydrocarbons
Brushy Canyon sandstone	7149'	7120′	hydrocarbons
Bone Spring limestone	8727'	8698'	hydrocarbons
1 st Bone Spring carbonate	9805'	9795'	hydrocarbons
1 st Bone Spring sandstone	9839'	9829'	hydrocarbons
2 nd Bone Spring carbonate	10157'	10147'	hydrocarbons
2nd Bone Spring sandstone	10522'	10511'	hydrocarbons
3 rd Bone Spring carbonate	10974'	10964'	hydrocarbon
3 rd Bone Spring sandstone	11755'	11745'	hydrocarbons
(KOP	11,801'	11791'	hydrocarbons)
Wolfcamp A carbonate	12036'	12019'	hydrocarbons & goal
TD	17919'	12370′	hydrocarbons

2. NOTABLE ZONES

Wolfcamp A carbonate is the goal. Hole will extend north of the last perforation point to allow for pump installation. All perforations will be ≥ 330 ' from the dedication perimeter. Closest water well (C 02349) is 5507' southwest. Water bearing strata depth was not reported in the 525' deep well.

3. PRESSURE CONTROL

Equipment

A 12,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Testing Procedure

Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Variance Request

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Operator requests a variance to use a 5M Annular and test to 250 psi low and 5000 psi high. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached.

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

Hole O. D.	Set MD	Set TVD	Casing O. D.	Weight (lb/ft)	Grade	Joint	Collapse	Burst	Tension
17.5"	0′ - 1215'	0′ - 1215'	13.375" surface	54.5	J-55	втс	1.125	1.125	1.8
12.25"	0' - 4990'	0′ - 4981'	9.625" inter. 1	40	J-55	втс	1.125	1.125	1.8
8.75"	0' - 4690'	0′ - 4682′	7.625" inter. 2 top	29.7	P-110	втс	1.125	1.125	1.8
8.75"	4690' - 11700'	4682' - 11690'	7.625" inter. 2 middle	29.7	P-110	VAM HTF-NR	1.125	1.125	1.8
8.75"	11700' - 12601'	11690' - 12355'	7.000" inter. 2 bottom	29	P-110	втс	1.125	1.125	1.8
6.125"	0' - 11600'	0' - 11590'	5.5" product. top	20	P-110	BTC/TXP	1.125	1.125	1.8
6.125"	11600' - 17919'	11590' - 12370'	4.5" product. Bottom	13.5	P-110	втс/тхр	1.125	1.125	1.8

Name	Туре	Sacks	Yield	Cu. Ft.	Weight	Blend
Surface	Lead	700	1.82	1274	12.8	Class C + Bentonite + 2% CaCl ₂ + 3% NaCl + LCM
	Tail	400	1.38	552	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exces	ss	Centra	lizers per Onshore Order 2.III.B.1f
Intermediate 1	Lead	1070	2.13	2279	12.6 Class C + Bentonite + 1% CaC 8% NaCl + LCM	
	Tail	500	1.38	690	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exces	SS	2 on b	tm jt, 1 on 2nd jt, 1 every 4th jt to surface
Intermediate	Lead	600	2.36	1416	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM
2	Tail	250	1.38	345	13.2	TXI + Fluid Loss + Dispersant + Retarder + LCM
TOC = 430	0'	7	75% Exces	s	2 on btm jt, 1 on 2nd jt, 1 every other jt top of tail cement (500' above TOC)	
Production	Tail	530	1.17	620	15.8 Class H + Fluid Loss + Dispersa Retarder + LCM	

Т	OC = 11700'	25% Excess	2 on btm jt, 1 on 2nd jt, 1 every third jt to top of curve
---	-------------	------------	--

5. MUD PROGRAM

An electronic Pason mud monitoring system complying with Onshore Order 1 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water spud	0' - 1215'	8.3	28	NC
brine water	1215' - 4990'	10.0	30-32	NC
fresh water & cut brine	4990' - 12601'	9.0	30-31	NC
ОВМ	12601' - 17919'	12.5	50-60	<10

6. CORES, TESTS, & LOGS

No core or drill stem test is planned.

A 2-person mud logging program will be used from \approx 12,402' to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

7. DOWN HOLE CONDITIONS

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 7600 psi. Expected bottom hole temperature is \approx 160° F.

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H₂S from the surface to the Bone Spring to meet the BLM's minimum requirements for the submission of an "H₂S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Since Matador has an H₂S safety package on all wells, an "H₂S Drilling

DRILL PLAN PAGE 5

Matador Production Company Brad Dyer Federal 205H SHL 329' FSL & 899' FWL BHL 240' FNL & 990' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. OTHER INFORMATION

Anticipated spud date is upon approval. It is expected it will take \approx 3 months to drill and complete the well.

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drill pipe	4"		
HWDP	4"	Lower 3.5-5.5" VBR	
Jars/Agitator	4.75-5"		4004
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR	10M
Mud Motor	4.75-5.25"		
Production casing	4.5-5.5"]	ļ
ALL	0-13.625"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram with compatible range listed in chart

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - · Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close

Matador

Well Control Plan For 10M MASP Section of Wellbore

- 3. Space out drill string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in

Matador (Note to Contract

Well Control Plan For 10M MASP Section of Wellbore

- f. Notify tool pusher and company representative
- g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400029318

Submission Date: 04/11/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL

Well Type: CONVENTIONAL GAS WELL

Well Number: 205H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

BD 205H Road Map 20180411103213.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

BD_205H_New_Road_Map_20180411103234.pdf

New road type: RESOURCE

Length: 2600.78

Feet

Width (ft.): 30

Max slope (%): 0

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and dtiched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: BRAD DYER FEDERAL Well Number: 205H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information: A 3" O. D. poly surface flowline on the west side of the existing road will be padded.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

BD_205H_Well_Map_20180411103257.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production equipment will be located on the south and west sides of the pad. A 3-phase overhead raptor-safe power line will be built south 1,799.14' from an existing power pole at OXY's Red Tank 35 Federal 3 SWD. No pipeline plans have been finalized at this time.

Production Facilities map:

BD_205H_Production_Facilities_20180411103323.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Well Name: BRAD DYER FEDERAL Well Number: 205H

Water source use type: DUST CONTROL,

INTERMEDIATE/PRODUCTION CASING,

INTERMEDIATE/PRODUCTION CASING, STIMULATION,

STIMULATION, SURFACE CASING, SURFACE CASING

Describe type:

Source longitude:

Water source type: GW WELL

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000 Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

BD_205H_Water_Source_20180411103429.pdf

Water source comments: Water will be trucked from an existing water station on private land. Berry's water station (CP

00802) is in NWNE 2-21s-33e.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Well Name: BRAD DYER FEDERAL Well Number: 205H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled north of the pad. V-door will face south. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Berry) land in E2NE4 35-20s-34e.

Construction Materials source location attachment:

BD 205H Construction Methods 20180411103519.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 1000

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Well Name: BRAD DYER FEDERAL Well Number: 205H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BD_205H_Well_Site_Layout_20180411103543.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Multiple Well Pad Name: BRAD DYER Type of disturbance: New Surface Disturbance

Multiple Well Pad Number: 205H

Recontouring attachment:

BD 205H Interim Reclamation Diagram 20180411103601.pdf

BD_205H_Recontour_Plat_20180411103609.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance

(acres): 3.95

Road proposed disturbance (acres):

1.79

Powerline proposed disturbance

(acres): 0.62

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 6.36

Well pad interim reclamation (acres): Well pad long term disturbance

0.99

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.99

(acres): 2.96

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): 0

Total long term disturbance: 4.75

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 25% (0.99 acre) by removing caliche and reclaiming a 100' x 430' swath on the south side of the pad. This will leave 2.96 acres for production equipment (e.g., tank battery, heater-treaters, separators, flare/CBU, pump

Page 5 of 10

Well Name: BRAD DYER FEDERAL

Well Number: 205H

jacks), and tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with BLM requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 2600.78' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

Seed Management	
Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	

Well Name: BRAD DYER FEDERAL Well Number: 205H

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

COE Local Office:

DOD Local Office:

Well Name: BRAD DYER FEDERAL	Well Number: 205H
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: NEW ACCESS ROAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: OTHER	
Describe: Powerline	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	

BIA Local Office:

Well Name: BRAD DYER FEDERAL Well Number: 205H BOR Local Clines **COE Local Office: DOD Local Office: NPS Local Office:** State Local Office: Military Local Office: **USFWS Local Office: Other Local Office: USFS Region: USFS** Forest/Grassland: **USFS Ranger District:** Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** BOR Local Office: **COE Local Office: DOD Local Office: NPS Local Office: State Local Office:** Military Local Office: **USFWS Local Office:** Other Local Office: **USFS Region: USFS Forest/Grassland: USFS Ranger District:**

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL Well Number: 205H

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on November 13, 2017. Lone Mountain will file an archaeology report.

Other SUPO Attachment

BD_205H_General_SUPO_20180411103743.pdf

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report 08/24/2018

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

PWD surface owner:

Produced Water Disposal (PWD) Location:

Would you like to utilize Unlined Pit PWD options? $\ensuremath{\mathsf{NO}}$

Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment	:
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dissonth that of the existing water to be protected?	olved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Injection PWD discharge volume (bbl/day):	
Injection well mineral owner:	

PWD disturbance (acres):

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	
Have other regulatory requirements been met?	
Other regulatory requirements attachment:	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report 08/24/2018

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: