a	Carllel					P	MIR	
Form 3160-3		riel CD II.	d O	FORM A	APPRO 0 1004-	VED 9	d AP	ŀ
UNITED STATE	ES 🗸		bbs	Expires: Ja	nuary 3	1.2018		
DEPARTMENT OF THE	INTERIO	BSUT		5. Lease Serial No.			-	
BUREAU OF LAND MAN	AGMENT	рен <u>9-20</u> 18		6 If Indian Allotee	or Tribe	Name	-	
AFFEIGATION FOR FERMIT TO	SUILE OB		n.	0. If Indian, Anotee	01 1110	, runo	-	
Ia. Type of work: Image: Construction of Walt Ib. Type of Walt Image: Construction of Walt	REENTER	RECEIVE		7. If Unit or CA Agr	eement,	Name and No.	-	
Ic. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		8. Lease Name and V	Well No	(322492	-)	
	- [·		202H				
2. Name of Operator MATADOR PRODUCTION COMPANY (2 289)	37)			9. API Well No	-		-	
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 75240	3b. Phone N (972)371-5	lo <i>(include area coa</i> 200	le)	10. Field and Pool, o WILDCAT / WOLF	or Explo CAMP	48297)	
 Location of Well (Report location clearly and in accordance At surface SESW / 330 FSL / 2159 FWL / LAT 32.341 	with any State 18697 / LONG	requirements.*) -103.6469928		11. Sec., T. R. M. or SEC 35 / T22S / R3	Blk. an 32E / N	d Survey or Area		
At proposed prod. zone NENW / 240 FNL / 1650 FWL /	LAT 32.3548	168 / LONG -103.0	648646	1			-	
14. Distance in miles and direction from nearest town or post of	flice*			12. County or Parish		13. State	_	
I5. Distance from proposed* 330 feet	16 No of ac	cres in lease	17. Spac	ing Unit dedicated to th	nis well		-	
property or lease line, ft. (Also to pearest drig, unit line, if any)	320		320					
8. Distance from proposed location*	19. Propose	d Depth	20. BLM	I/BIA Bond No. in file			.	
to nearest well, drilling, completed, 2299 feet applied for, on this lease, ft	12170 feet	/ 16940 feet	FED: N	MB001079				7
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3731 feet	22. Approxi 06/01/2018	mate date work will	start*	23. Estimated duration 90 days	งก		-	, e ⁴
	24. Attac	hments					_	
The following, completed in accordance with the requirements of as applicable)	of Onshore Oil	and Gas Order No.	I, and the	Hydraulie Fracturing ru	ile per 4	13 CFR 3162.3-3		
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the ftem 20 above).	e operatio	ns unless covered by an	existin	g bond on file (see		
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Offic	em Lands, the e).	 5. Operator certific 6. Such other site spectrum BLM. 	eation. pecific info	ormation and/or plans as	may be	requested by the	_	
25. Signature (Electronic Submission)	Name Brian	(Printed/Typed) Wood / Ph: (505)4	66-8120		Date 03/31/	2018	-	
President								
Approved by (Signature) (Electronic Submission)	Name	(Printed/Typed)	224 5050		Date	2018	-	
Title Assistant Field Manager Lands & Minerals	Office CARL	SBAD	234-3939			2010	-	
Application approval does not warrant or certify that the applica applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds legal o	or equitable title to t	iose rights	s in the subject lease wh	nich wo	uld entitle the		
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statements	make it a crime s or representat	e for any person kno ions as to any matter	wingly and within its	d willfully to make to a jurisdiction.	ny depa	irtment or agency	-	
GCP Rec 09/12/18				Kz	ψl	18 ,	_ (¢	1
		TH CONDIT	IONS	0911	÷	()) de	∦
-nni	WED WI					v •	7°	

Approval Date: 08/23/2018

ŕ

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well:

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137). Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

1. SHL: SESW / 330 FSL / 2159 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418697 / LONG: -103.6469928 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 330 FSL / 2159 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418697 / LONG: -103.6469928 (TVD: 0 feet, MD: 0 feet) BHL: NENW / 240 FNL / 1650 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3548168 / LONG: -103.6469466 (TVD: 12170 feet, MD: 16940 feet)

BLM Point of Contact

Name: Sipra Dahal Title: Legal Instruments Examiner Phone: 5752345983 Email: sdahal@blm.gov

1

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood Signed on: 03/31/2018 Title: President Street Address: 37 Verano Loop City: Santa Fe State: NM Zip: 87508 Phone: (505)466-8120 Email address: afmss@permitswest.com **Field Representative Representative Name:** Street Address: Zip: City: State: Phone: Email address:

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: BRAD DYER FEDERAL

Well Type: CONVENTIONAL GAS WELL

Operator Name: MATADOR PRODUCTION COMPANY

APD ID: 10400028976

Well Number: 202H Well Work Type: Drill

Show Final Text

	·····		
Section 1 - Genera	al		
APD ID: 10400028976	Tie to p	revious NOS?	Submission Date: 03/31/2018
BLM Office: CARLSBAD	User: Bi	ian Wood	Title: President
Federal/Indian APD: FED	Is the fi	st lease penetrated for	production Federal or Indian? FED
Lease number: NMNM086150	Lease A	cres : 320	
Surface access agreement in plac	e? Allotted	? Rese	rvation:
Agreement in place? NO	Federal	or Indian agreement:	
Agreement number:			
Agreement name:			
Keep application confidential? NC)		
Permitting Agent? YES	APD Op	erator: MATADOR PRO	DUCTION COMPANY
Operator letter of designation:			
Operator Info Operator Organization Name: MA	TADOR PRODUCTIO	ON COMPANY	
Operator Address: 5400 LBJ Free Operator PO Box:	way, Suite 1500	Zi	p: 75240
Operator City: Dallas	State: TX		
Operator Phone: (972)371-5200			
Operator Internet Address: among	roe@matadorresourc	es.com	
Section 2 - Well In	nformation	· · · · · · · · · · · · · · · · · · ·	
Well in Master Development Plan?	NO	Mater Development Pl	an name:
Well in Master SUPO? NO		Master SUPO name:	
Well in Master Drilling Plan? NO		Master Drilling Plan na	ame:
Well Name: BRAD DYER FEDERAI	-	Well Number: 202H	Well API Number:
Field/Pool or Exploratory? Field ar	nd Pool	Field Name: WILDCAT	Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS, CO2

Application Data Report 08/24/2018 Contractor 1

Submission Date: 03/31/2018

Operator Name: MATADOR PRODUCTION COMPANY **Well Name:** BRAD DYER FEDERAL

Describe other minerals:

Well Number: 202H

Is th	e prop	osed	well	in a H	elium	prod	uctio	n area?	N Use E	Existing W	ell Pa	37 NO	Ne	ew :	surface o	listuri	bance	?
Type Well	of W Class	ell Pa :: HOF	d: ML RIZON	ILTIPL ITAL	.E WE	ELL			Multi DYEF Numi	ple Well P } per of Leg	ad Naı s: 1	ne: BR	AD NI	umt	ber: 202⊦	ł		
Well	Work	Туре	: Drill															
Well	Type	CON	VENT	IONA	L GAS	5 WEI	_L											
Desc	ribe \	Neil T	ype:															
Well	sub-1	уре:	INFILI	L														
Desc	ribe s	sub-ty	pe:															
Dista	ance t	o tow	n : 29	Miles			Dis	tance to	o nearest v	vell: 2299	FT	Dist	ance t	o le	ease line:	: 330	FT	
Rese	ervoir	well s	spacir	ng ass	ignec	d acre	s Me	asurem	ent: 320 A	cres								
Well	plat:	BC)_202	H_Pla	t_Gas	Cap_	Plan_	201807	09143810.	pdf								
Well	work	start	Date:	06/01	/2018				Durat	t ion: 90 DA	AYS							
	^		0 1						1									
· · · · · · · · · · · · · · · · · · ·	Sec	tion	3 - V	vell	LOCa	atior	n i ai	DIE										
Surv	ey Ty _l	pe: RI	ECTAI	NGUL	AR													
Desc	ribe S	Burvey	у Туро	e:														
Datu	m: NA	D83							Vertic	al Datum:	NAVE	88						
Surv	ey nu	mber:	1964	2														
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	330	FSL	215 9	FWL	22S	32E	35	Aliquot SESW	32.34186 97	- 103.6469 928	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	373 1	0	0
KOP Leg #1	330	FSL	215 9	FWL	225	32E	35	Aliquot SESW	32.34186 97	- 103.6469 928	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	- 786 0	116 20	115 91
PPP Leg #1	330	FSL	215 9	FWL	22S	32E	35	Aliquot SESW	32.34186 97	- 103.6469 928	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	373 1	0	0

Operator Name: MATADOR PR STION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT Leg #1	240	FNL	165 0	FWL	22S	32E	35	Aliquot NENW	32.35481 68	- 103.6486 46	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	- 843 9	169 40	121 70
BHL Leg #1	240	FNL	165 0	FWL	225	32E	35	Aliquot NENW	32.35481 68	- 103.6486 46	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 086150	- 843 9	169 40	121 70

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

08/24/2018

APD ID: 10400028976

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

Submission Date: 03/31/2018

Highlighiad data heileets the meet

Show Final Text

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured	· · · · · · · · · · · · · · · · · · ·		Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1		3731	Ô	Ö	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2542	1189	1189		NONE	No
3	SALADO	2066	1665	1667	SALT	NONE	No
4	BASE OF SALT	-1201	4932	4951		NONE	No
5	BELL CANYON	-1203	4934	4953	SANDSTONE	NATURAL GAS,CO2,OIL	No
6	BRUSHY CANYON	-3400	7131	7161	SANDSTONE	NATURAL GAS,CO2,OIL	No
7	BONE SPRING	-4972	8703	8733	LIMESTONE	NATURAL GAS,CO2,OIL	No
8	BONE SPRING 1ST	-6075	9806	9836	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
9	BONE SPRING 1ST	-6097	9828	9857	SANDSTONE	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 2ND	-6430	10161	10191	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-6788	10519	10548	SANDSTONE	NATURAL GAS,CO2,OIL	No
12	BONE SPRING 3RD	-7237	10968	10997	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 3RD	-8022	11753	11784	SANDSTONE	NATURAL GAS,CO2,OIL	No
14	WOLFCAMP	-8310	12041	12138	OTHER : A Carbonate	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Operator Name: MATADOR PRODUCION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

héééuna Railing (PSI): 1000 - Railing Deputus 12000

ionign this A 12,000 (10,000 per CCP stack consisting of Arabia with 2 piperams, 1 bible cam and 1 anauter prevence with a USSI below purpers oneing 16000. Are subsched 1909, checks mainfeld, confex hose, and speed by relidenting. An accondition complying with Onchory Order 2 conformants for the BOP stock prevence reling without prevent. Relating bead all be insulted as invided.

Requesting Variance? YES

Variance segrest: Maladerrequesis a variance for drill this will using a sector fire list with the DOF and shelps manualit. Scatterion for properties of a list have instructed. Manufagoria deconstruction for her take antipacts if the prevision need to retrovalishe, thereine of agreed or light range will be used. Spectrate quasic a valuation is used a Sti need to retrovalishe, thereine of agreed or light range will be used. Spectrate quasic a valuation is used a Sti Annular and need to retrovalishe, thereine of agreed or light range of the mean of the second of the take and the big of the rest to 250 particles and 2000 pet high. Malayar to requesting a variant of the second of the second of the big method of the second of the second second big is a point light to a second of the second of the second of the big method (S Station celling will be 250 pet her and 5000 pet high. Annular will be rectifing to 250 pet her and 2200 pet high before diffic related and her contact states and 5000 pet high. Annular will be rectifing to 250 pet her and 2200 pet high before difficient related and the contact state. The BOPs will not be taked again until the rectifing to 7 with a 7° count onless and 5000 pet high. Annular will be rectifing to 250 pet her and 2200 pet high before do the related the contact state. The BOPs will not be taked again until the rectifing 7 with a 7° count onless and 5000 pet high.

Testing Prozedure, Pressure fasts will be conducted before dufing out from under all cacing shings. BOP will be imperiad and operated as required in Orshare Order 2. Kely tack and sub compared with a full operating value sized to fit the drift pipe and contrast will be confided on the hydrogen in the apen postform. A third party company will test the BOPs. After setting antiples analysis, a minimum SM BOPE system will be installed. Test pressures will be 250 perfective and 5000 per high within any defining to a state of the hydrogen will be installed. Test pressures will be 250 perfective and 5000 per high within any defining to any feat of the approximation of thing below and so and the light within the any defining to a state of the hydrogenet will be installed. Test pressures will be 250 perfective to the high within any defining to a state of the system will be installed. After an fact and the state of the second fact the state to be a state of the perfective for any approximation of the second state and so and so and the second fact the second state where the figure state and the BOP's one removed after a state and the second state a first for the second field with the Mark the figure state and the BOP's end removed after a state and the set of the second for the second state with the figure state and the BOP's end to be a state as a state of the second state the set of the second state when the figure state and the second state as a state of the second state as the second state to be will be marked to a figure state to be a state of the second state as a state of the second state to be a state of the second state to be will be marked to a figure state of the second state will be second as a state of the second state to be state to be set as a state of the second state o

Choke Diagram Attachment:

BD_202H_Choke_10M_20180712142833.pdf

BOP Diagram Attachment:

BD_202H_BOP_20180331122102.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	o	1235	0	1235	3731		1235	J-55	54.5	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4710	0	4692	3731		4710	₽- 110	29.7	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5010	0	4990	3731		5010	J-55	40	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	11400	0	11371	3731		11400	P- 110	20	OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Operator Name: MATADOR PRODUCTION COMPANY Well Name: BRAD DYER FEDERAL

Well Number: 202H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
5	INTERMED IATE	8.75	7.625	NEW	API	Y	4710	11500	4692	11471			6790	P- 110	29.7	OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8
6	INTERMED IATE	8.75	7.0	NEW	API	Y	11500	12420	11471	12155			920	P- 110	29	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	11400	16940	11371	12170			5540	P- 110	13.5	OTHER - BTC/TXP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331122511.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BD_202H_Casing_Design_Assumptions_20180331123219.pdf

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331123229.pdf

Well Number: 202H

Casing Attachments

Casing ID: 3 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331122631.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5in_TXP_Casing_Spec_20180331124841.pdf

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331124855.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7.625in_VAM_Casing_Spec_20180331124107.pdf

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331124145.pdf

Well Number: 202H

Casing Attachments

Casing ID: 6 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BD_202H_Casing_Design_Assumptions_20180331124642.pdf

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331124506.pdf

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.5in_P110_ICY_Casing_Spec_20180331145408.pdf

Casing Design Assumptions and Worksheet(s):

BD_202H_Casing_Design_Assumptions_20180331125224.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1235	700	1.82	12.8	1274	100	Class C	Bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1235	400	1.38	14.8	552	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4710	600	2.36	11.5	1416	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4710	250	1.38	13.2	345	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5010	1070	2.13	12.6	2279	100	Class C	+ Bentonite + 1% CaCl2 + 8% NaCl + LCM

Operator Name: MATADOR PROD. ION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5010	500	1.38	14.8	690	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1140 0	0	0	0	0	0	None	None
PRODUCTION	Tail		0	1140 0	520	1.17	15.8	620	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4710	1150 0	600	2.36	11.5	1416	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4710	1150 0	250	1.38	13.2	345	75	тхі	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1150 0	1242 0	600	2.36	11.5	1416	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1150 0	1242 9	250	1.38	13.2	345	75	тхі	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1140 0	1694 0	0	0	0	0	0	None	None
PRODUCTION	Tail		1140 0	1694 0	530	1.17	15.8	620		Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

	Circ	ulating Medi	um T	able							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics

Operator Name: MATADOR PRODUCTION COMPANY **Well Name:** BRAD DYER FEDERAL

Well Number: 202H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	
0	1235	OTHER : Fresh water spud	8.3	8.3							_	
1235	5010	OTHER : Brine water	10	10								
5010	1242 0	OTHER : Fresh water & cut brine	9	9								
1242 0	1694 0	OIL-BASED MUD	12.5	12.5							_	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 12,420' to TD. No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7600

Anticipated Surface Pressure: 4922.6

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

BD_202H_H2S_Plan_20180331143304.pdf

Operator Name: MATADOR PROL. ION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

BD_202H_Horizontal_Drill_Plan_20180331143437.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

BD_202H_Speedhead_Specs_20180331143517.pdf

BD_202H_General_Drill_Plan_Revised_10M_Choke_20180712142859.pdf

10M_Well_Control_Plan_20180712142916.pdf

Other Variance attachment:

2" Check Valve

2" Manual Valve

2" Manual Valve

4" Manual Valve

4" Hydraulic Valve

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Infor	nation	Hose Specific	ations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"
Hose Assembly Length	10'	Armor (yes/no)	YES
	Fitti	ings	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heot #)	91996	Stem (Heat #)	91996
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heot #)		Connection (Heat #)	
Dies Used	5.37	Dies Used	5.37
	Hydrostatic Tes	t Requirements	
Tast Pressure (asi)	15,000	Hose assembly was tested w	ith ambient water/
lest riessuie (psi)			

MHSI-008 Rev. 2.0 Proprietary

8	Midwest Hose & Specialty, Inc.
Certific	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
SI	pecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-2	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material supplies to the requirements of the purchase order and Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	plied for the referenced purchase order to be true according current industry standards.
Commonte	
Comments:	

÷

* AH *

.....

....

.....

.. ..

Miclwest Hose & Specialty, Inc. Internal Hydrostatic Test Certificate General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Soles Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Vorking Pressure 10000 Sales Order # 236404 Hose Vorking Pressure 10000 Sales Order # 260471 Hose I.D. (Inches) 3" Assembly Length 20' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB <td colspa<="" th=""><th></th><th></th><th></th><th></th></td>	<th></th> <th></th> <th></th> <th></th>				
Specialty, Inc. Internal Hydrostatic Test Certificate General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose O.D. (Inches) 3" Assembly Serial # (Pirck Ticket #) 287918-1 Hose O.D. (Inches) 5.30" Hose Assembly Length 20' Armor (yes/no) YES End A End B Sterm (Part and Revision #) R3.0X64WB Sterm (Part and Revision #) R3.0X64WB Sterm (Heat #) A141420 Sterm (Heat #) A141420 RF:rule (Part and Revision #) RF:3.0 Ferrule (Part and Revision #) RF:3.0 Ferrule (Part and Revision #) RF:3.0 Sterm (Heat #) 37DA5631 Connection (Part #) V3579 Connection (Part #) V3579 Sterm (Heat		Midw	rest Hose		
Internal Hydrostatic Test CertificateGeneral InformationHose SpecificationsCustomerPATTERSON B&EHose Assembly TypeChoke & KillMWH Sales RepresentativeAMY WHITECertificationAPI 7KDate Assembled12/8/2014Hose GradeMUDLocation AssembledOKCHose Working Pressure10000Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESEnd AEnd BStem: (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem: (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Part and Revision #)RF3.0Connection (Part #)41/16 10KConnection (Part #)41/16 10KConnection (Part #)V3579Connection (Part #)V3579Dies Used5.37Dies Used55Hydrostatic Test Requirements		& Spe	cialty, Inc.		
Internation Hourostatic rest certifications General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose O.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-1 Hose O.D. (Inches) 3" Hose Assembly Length 20' Armor (yes/no) YES End A End A End B End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0	Into	rnal Hydroct	atic Tact Cartificata		
Center an informationPATTERSON B&EHose Assembly TypeChoke & KillMWH Sales RepresentativeAMY WHITECertificationAPI 7KDate Assembled12/8/2014Hose GradeMUDLocation AssembledOKCHose Working Pressure10000Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Incat #)37DA5631Ferrule (Incat #)37DA5631Connection (Part #)V3579Connection (Part #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	Conorolinfor	mation	Line Test Certificate	cations	
CostonierPATTERSON BacIndex Assembly TypeCloke & KillMWH Sales RepresentativeAMY WHITECertificationAPI 7KDate Assembled12/8/2014Hose GradeMUDLocation AssembledOKCHose Working Pressure10000Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose J.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R4.141420Stem (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Iteat #)37DA5631Ferrule (Iteat #)37DA5631Connection (Part #)V3579Connection (Part #)V3579Dies Used5.37Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000	General Intol	DATTERSON BRE	Hose Assembly Type		
Inversion RepresentativeAnn winneCertificationArt inDate Assembled12/8/2014Hose GradeMUDLocation AssembledOKCHose Working Pressure10000Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Heat #)37DA5631Ferrule (Part and Revision #)RF3.0Ferrule (Iteat #)37DA5631Ferrule (Heat #)37DA5631Connection (Port #)4.1/16.10KConnection (Port #)4.1/16.10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Test Pressure (psi)15,000Hose assembly was tested with ambient water	MWH Sales Representative	ANAV MULTE	Certification		
Date AssembledOKCHose OrderINIODLocation AssembledOKCHose Working Pressure10000Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R41420Stem (Part and Revision #)R53.0Ferrule (Part and Revision #)R53.0Ferrule (Part and Revision #)R53.0Ferrule (Iteat #)37DA5631Ferrule (Part and Revision #)R53.0Ferrule (Iteat #)Stem (Heat #)Stem (Heat #)A141420Stem (Heat #)A141420Stem (Heat #)A141420Stem (Heat #)Stem (Heat #)Stem (Heat #)A141420Stem (Heat #)A141420Stem (Heat #) <td cols<="" td=""><td>Date Assembled</td><td>12/9/2014</td><td>Hose Grade</td><td></td></td>	<td>Date Assembled</td> <td>12/9/2014</td> <td>Hose Grade</td> <td></td>	Date Assembled	12/9/2014	Hose Grade	
Solution (Social Pressure)Diversity (Pressure)Diversity (Pressure)Sales Order #236404Hose Lot # and Date Code10490-01/13Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R141420Stem (Heat #)A141420Stem (Heat #)A141420Stem (Heat #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Iteat #)37DA5631Ferrule (Iteat #)37DA5631Connection (Part #)V3579Connection (Part #)V3579Dies Used5.37Dies Used5.37Dies Used5.37Dies Used5.37Dies Used5.37Dies Used5.37Dies Used5.37	Location Assembled	0KC	Hose Working Pressure	10000	
Customer Purchase Order #260471Hose Lot # und Date Code15050 01/15Customer Purchase Order #260471Hose I.D. (Inches)3"Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Connection (Part #)41/16 10KConnection (Part #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Fiydrostatic Test RequirementsTest Pressure (psi)15,000	Sales Order #	236404	Hose Lot # and Date Code	10490-01/13	
Assembly Serial # (Pick Ticket #)287918-1Hose O.D. (Inches)5.30"Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Flydirostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	Customer Purchase Order #	260471	Hose I.D. (luches)	3"	
Hose Assembly Length20'Armor (yes/no)YESFittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)41/16 10KConnection (Part #)V3579Dies Used5.37Dies Used5Flydrostatic Test RequirementsTest Pressure (psi)15,000	Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"	
FittingsEnd AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	Hose Assembly Length	20'	Armor (yes/no)	YES	
End AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Iteat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)41/16 10KConnection (Part #)41/16 10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water		Fit	tings		
Stem (Part and Revision #)R3.0X64WBStem (Port and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	End A		End B		
Stem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)41/1610KConnection (Part #)41/1610KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64W8	
Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)41/16 10KConnection (Part #)41/16 10KConnection (Heat #)V3579Connection (Heat #)V3579Dies Used5.37Dies Used5Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient water	Stem (Heol #)	A141420	Stem (Heat #)	A141420	
Ferrule (Ileat #) 37DA5631 Ferrule (Ileat #) 37DA5631 Connection (Part #) 41/1610K Connection (Part #) 41/1610K Connection (Heat #) V3579 Connection (Heat #) V3579 Dies Used 5.37 Dies Used 5 Hydrostatic Test Requirements Hose assembly was tested with ambient water	Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0	
Connection (Part #) 4 1/16 10K Connection (Part #) 4 1/16 10K Connection (Heat #) V3579 Connection (Heat #) V3579 Dies Used 5.37 Dies Used 5 Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient water	Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631	
Connection (Heat #) V3579 Connection (Heat #) V3579 Dies Used 5.37 Dies Used 5 Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient water	Connection (Part #)	4 1/16 10K	Connection (Pon #)	4 1/16 10K	
Dies Used 5.37 Dies Used 5 Flydrostatic Test Requirements Flydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient water	Connection (Heat #)	V3579	Connection (Heat #)	V3579	
Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient water	Dies Used	5.3	7 Dies Used	5.3	
Test Pressure (psi) 15,000 Hose assembly was tested with ambient water		Hydrostatic Te	st Requirements		
	Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water	
Test Pressure Hold Time (minutes)15 1/2temperature.	Test Pressure Hold Time (minutes)	15 1/2	temperatu	ıre.	
Test Pressure Hold Time (minutes) 15 1/2 temperature.	Connection (Heat #) Dies Used Test Pressure (psi) Test Pressure Hold Time (minutes)	V3579 5.3 Hydrostatic Te 15,000 15 1/2	Connection (Heat #) 7 Dies Used st Requirements Hose assembly was tested temperatu	with ambient water	
	Date Tested	Teste	d By A	pproved By	
Date Tested Tested By Approved By	12/9/2014	17/			

1

ŗ,

•

÷

	Midw	est Hose	
	& Spec	ialty, Inc.	
	Certificate	of Conformity	
Customer: PATTERSON B&E		Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Specif	ications	
Hose Assembly Type: Cl	10ke & Kill		
Assembly Serial # 28	37918-1	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 10	0000	Test Pressure (psi)	15000
We hereby certify that the above m o the requirements of the purchase Supplier: Midwest Hose & Specialty, Inc. 1312 S I-35 Service Rd	aterial supplied fo	or the referenced purchase order at industry standards.	to be true according
Oklahoma City, OK 73129			
Dklahoma City, OK 73129 Comments:			

.

÷

.....

. . . .

	Midw	rest Hose	
	& Spe	cialty, Inc.	
Int	ernal Hydrost	ntic Test Certificate	
General Info	ormation	Hose Specifi	cations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (inches)	3"
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"
Hose Assembly Length	70'	Armor (yes/no)	YES
	Fit	tings	
End /	1	End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heot #)	A141420	Stem (Heat #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.3	7 Dies Used	5.3
	Hydrostatic Te	st Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water
Test Pressure Hold Time (minute	2s) 16 3/4	temperati	ure.
Date Tested	Teste	od Ry	Approved By
12/0/2014			

ı.

jor.		
M & S	idwest Hose Specialty, Inc.	
Certifica	te of Conformity	
Customer: PATTERSON B&E	Customer P.O.# 260471	
Sales Order # 236404	Date Assembled: 12/8/2014	
Spe	cifications	
Hose Assembly Type: Choke & Kill		
Assembly Serial # 287918-3	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi)	15000
We hereby certify that the above material supplie to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City. OK 73129	ed for the referenced purchase order rrrent industry standards.	to be true according
Comments:		

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Issued on: 12 Janv. 2017 by T. DELBOSCO

VRCC 16-1177 Rev02 for Houston Field Service

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

ANG GINE-NIR **Connection Data Sheet**

OD Woight	Mall The Grada AB	T Drift Connection
OD. Weight	Wall I little Glade	I Dialt Connection
7 5/8 in. 29.70 lb/ft	0.375 in. P110 EC 6.7	'50 in. VAM® HTF NR

PIPE PROPE	RTIES
Nontinal OB	7.625. in.
Nominal (D	6.875 in.
Nominal Gross Section Area	8.5,41 sqin.
Grade Type	Enhanced API
Min. Yield Strength	125 ksi.
Max. Yield Strength	140 ksi
Nim Witimate Tensile Strength	1 <u>8</u> 5.ksi
Tensile Yield Strength	1 068 kib
Internal Yield Pressure,	10 760 psi
Collapse pressure	7 360 psi

CONNECTION PERF	ORMANCES
Tensile, Heldistrength	619 ¥ib
Compression Resistance	778 klb
Gompression, with Sealability	3.72) R[b
Internal Yield Pressure	10 760 psi
Egternal Pressure Resistance	7·360) psi
Max. Bending	44 °/100ft
Max, Bending, with Sealability	17° %1000

CONNECTION PRO	PERTIES
Connection Type	Bremium, Integral Flush
Connection OD (nom)	7.701 in.
Sonnection, ID (nonit))	6.782 in.
Make-Up Loss	4.657 In.
Gritical Gross Section	4.97/1 sqin.
Tension Efficiency	58 % of pipe
Iompressión Efficiency	72.7 % of pipe
Compression Efficiency with Sealability	34.8 % of pipe
nfernal Pressure/Efflaiency	100; % of pipe
External Pressure Efficiency	100 % of pipe

TORQUE VALUES	ar s
Mini, Makerupitorque	9 600) ft Hb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torgúe	13-000 (t.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73x000 ft ib

VAM[®] HTF" (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com

- usa@vamfieldservice.com mexico@vamfieldservice.com
- brazil@vamfieldservice.com
- uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM[®] Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

:

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Connection: TenarisXP[™] BTC Casing/Tubing: CAS Coupling Option: REGULAR Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BODY	DATA		
		GEOMET	IRY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
d : d _{ar} na g a a mala ang a da 1 manana ang dan 1 man-10 ang ang a		PERFORM	ANCE		
Body Yield Strength	641 × 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi			~	
	TEN	NARISXP [™] BTC CO	NNECTION D	4та	
		GEOMET	IRY	·····	
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection 1D	4.766 in.
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE	1	····
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ^($\underline{1}$)	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 × 1000 Ibs	Structural Bending ⁽²⁾	92 °/100 ft
External Pressure Capacity	12100 psi				
· · · · · · · · · · · · · · · · · · ·	E	STIMATED MAKE-	UP TORQUES	<u>3</u>)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lb
		OPERATIONAL LI	MIT TORQUES	· · · · · · · · · · · · · · · · · · ·	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
				T	
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Structural Bending ⁽²⁾	127 ° /100 f
External Pressure Capacity	11620 psi				
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
				·····	<u>. </u>

Blanking Dimensions

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

• •• ••••

:

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.

Ì

ł.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

;

.....

į

i

- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DFb=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

ł

÷

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

£

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.

i

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

VRCC 16-1177 Rev02 for Houston Field Service

ATRY AND **Connection Data Sheet**

	f the second		
OD. Weight	Wall Th.	Grade	Connection
7 5/8 in. 29.70 lb/ft	0.375 in.	9110 EC 6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nominal OB	7,625 in.
Nominal ID	6.875 in.
Nominal Thoss Section Area	8.541 sqin,
Grade Type	Enhanced API
Min. Yield Strength	12,5° ksj.
Max. Yield Strength	140 ksi
Min Witimate Tensile Strength	135: Ksi
Tensile Yield Strength	1 068 klb
Internal Yield Pressure,	10) 760/ psi
Collapse pressure	7 360 psi

CONNECTION PRO	PERTIES
Connection Type	Premium, Integral Flush
Connection OD (пот)	7.701 in.
Connection ID (ino i),	6.782' in.
Make-Up Loss	4.657 in.
Gritical Cross Spation	4.97/1 sqin.
Tension Efficiency	58 % of pipe
Compression Elfiblency	72.7 % of pipe,
Compression Efficiency with Sealability	34.8 % of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe

CONNECTION PERFO	DRMANCES
Tensile, Held/Strength	619 Klb
Compression Resistance	778 klb
Gompression with Sealability	372 Kib
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 360 [°] psį
Max. Bending	44 º/100ft
Max, Benuling, with Sealability?	17°%/100ft

TORQUE VAL	UES
Mîn, Make-upitorque	9 600 A/b
Opti. Make-up torque	11 300 ft.lb
Nax. Nake-up torque	13 0.00 (t. lb
Max. Torque with Sealability	58 500 ft.lb
lax. Torsional Value	73,000 ft+lb

VAM® HTF" (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

Other Connection Data Sheets are available at www.vamservices.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM[®] Specialists available worldwide 24/7 for Rig Site Assistance

:

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Connection: TenarisXP[™] BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BODY	' DATA		
· · · · · · · · · · · · · · · · · · ·	·····	GEOMET	IRY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
			NUCCTON		
<u></u>	167	WARISZP ^M BIC CO	NNECTION D		
		GEOME		-[·
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ⁽²⁾	92 °/100 fi
External Pressure Capacity	12100 psi				
	E	STIMATED MAKE-	UP TORQUES ⁽	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
		OPERATIONAL LI	MIT TORQUES	5	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenacis.com</u>

December 31 2015

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	1 25000 psi
Collapse	11620 psi				
				· · · · · · · · · · · · · · · · · · ·	·····
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3,908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
	<u></u>			Internal Pressure	
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Capacity ⁽¹⁾	1 4100 psi
Structural		Structural		Structural	
Compression	100 %	Compression Strength	479 x 1000 lbs	Bending ⁽²⁾	127 °/100 f
Efficiency				bending-	
External Pressure	11620 nsi				
Capacity					
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
Operating Torque	10500 ft-lbs	Vield Torque	12200 ft.lbs		

Blanking Dimensions

Matador Production Company Brad Dyer Federal 202H SHL 330' FSL & 2159' FWL BHL 240' FNL & 1650' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

DRILLING PROGRAM

1. ESTIMATED TOPS

Formation Name	MD	TVD	Bearing
Quaternary	000′	000′	water
Rustler anhydrite	1189'	1189'	N/A
Salado salt	1667′	1665'	N/A
Base salt	4951'	4932'	N/A
Bell Canyon sandstone	4953'	4934'	hydrocarbons
Brushy Canyon sandstone	7161'	7131'	hydrocarbons
Bone Spring limestone	8733'	8703'	hydrocarbons
1 st Bone Spring carbonate	9836'	9806′	hydrocarbons
1 st Bone Spring sandstone	9857'	9828′	hydrocarbons
2 nd Bone Spring carbonate	10191′	10161'	hydrocarbons
2nd Bone Spring sandstone	10548′	10519'	hydrocarbons
3 rd Bone Spring carbonate	10997'	10968'	hydrocarbon
(КОР	11621′	11591′	hydrocarbons)
3 rd Bone Spring sandstone	11784′	11753′	hydrocarbons
Wolfcamp A carbonate	12138′	12041'	hydrocarbons & goal
TD	16940'	12170′	hydrocarbons

2. NOTABLE ZONES

Wolfcamp A carbonate is the goal. Hole will extend north of the last perforation point to allow for pump installation. All perforations will be \geq 330' from the dedication perimeter. Closest water well (C 02349) is 6556' southwest. Water bearing strata depth were not reported in the 525' deep well.

3. PRESSURE CONTROL

Equipment

A 12,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

Matador Production Company Brad Dyer Federal 202H SHL 330' FSL & 2159' FWL BHL 240' FNL & 1650' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Testing Procedure

Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Variance Request

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Operator requests a variance to use a 5M Annular and test to 250 psi low and 5000 psi high. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached.

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

DRILL PLAN PAGE 3

Matador Production Company Brad Dyer Federal 202H SHL 330' FSL & 2159' FWL BHL 240' FNL & 1650' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

•

Hole O. D.	Set MD	Set TVD	Casing O. D.	Weight (lb/ft)	Grade	Joint	Collapse	Burst	Tension
17.5"	0′ - 1235'	0′ - 1235'	13.375" surface	54.5	J-55	втс	1.125	1.125	1.8
12.25"	0′ - 5010'	0' - 4990'	9.625" inter. 1	40	J-55	втс	1.125	1.125	1.8
8.75"	0′ - 4710'	0′ – 4692′	7.625" inter. 2 top	29.7	P-110	втс	1.125	1.125	1.8
8.75″	4710' - 11500'	4692′ - 11471′	7.625" inter. 2 middle	29.7	P-110	VAM HTF-NR	1.125	1.125	1.8
8.75″	11500' - 12420'	11471' - 12155'	7.000" inter. 2 bottom	29	P-110	втс	1.125	1.125	1.8
6.125″	0' – 11400'	0' – 11371'	5.5" product. top	20	P-110	BTC/TXP	1.125	1.125	1.8
6.125″	11400′ - 16940′	11371' - 12170'	4.5" product. Bottom	13.5	P-110	ВТС/ТХР	1.125	1.125	1.8

Name	Туре	Sacks	Yield	Cu. Ft.	Weight	Blend
Surface	Lead	700	1.82	1274	12.8	Class C + Bentonite + 2% CaCl ₂ + 3% NaCl + LCM
	Tail	400	1.38	552	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exces	55	Centra	lizers per Onshore Order 2.III.B.1f
Intermediate 1	Lead	1070	2.13	2279	12.6	Class C + Bentonite + 1% CaCl ₂ + 8% NaCl + LCM
	Tail	500	1.38	690	14.8	Class C + 5% NaCl + LCM
TOC = GL	TOC = GL		100% Excess		2 on b	tm jt, 1 on 2nd jt, 1 every 4th jt to surface
Intermediate	Lead	600	2.36	1416	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM
2	Tail	250	1.38	345	13.2	TXI + Fluid Loss + Dispersant + Retarder + LCM
TOC = 440	0'	7	75% Exces	s	2 on btr top (m jt, 1 on 2nd jt, 1 every other jt to of tail cement (500' above TOC)
Production	Tail	530	1.17	620	15.8	Class H + Fluid Loss + Dispersant + Retarder + LCM

DRILL PLAN PAGE 4

Matador Production Company Brad Dyer Federal 202H SHL 330' FSL & 2159' FWL BHL 240' FNL & 1650' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

TOC = 11500'	25% Excess	2 on btm jt, 1 on 2nd jt, 1 every third jt to top of curve
--------------	------------	---

5. MUD PROGRAM

An electronic Pason mud monitoring system complying with Onshore Order 1 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water spud	0' - 1235'	8.3	28	NC
brine water	1235' - 5010'	10.0	30-32	NC
fresh water & cut brine	5010' - 12420'	9.0	30-31	NC
ОВМ	12420' - 16940'	12.5	50-60	<10

6. CORES, TESTS, & LOGS

No core or drill stem test is planned.

A 2-person mud logging program will be used from \approx 12,420' to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

7. DOWN HOLE CONDITIONS

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 7600 psi. Expected bottom hole temperature is \approx 160° F.

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring to meet the BLM's minimum requirements for the submission of an "H₂S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Since Matador has an H₂S safety package on all wells, an "H₂S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used.

DRILL PLAN PAGE 5

Matador Production Company Brad Dyer Federal 202H SHL 330' FSL & 2159' FWL BHL 240' FNL & 1650' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

8. OTHER INFORMATION

.

Anticipated spud date is upon approval. It is expected it will take ≈ 3 months to drill and complete the well.

.

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD OD	Preventer	RWP
Drill pipe	4"		
HWDP	4"		
Jars/Agitator	4.75-5"	Lower 3.5-5.5" VBR	1014
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR	
Mud Motor	4.75-5.25"		
Production casing	4.5-5.5"		
ALL	0-13.625"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram with compatible range listed in chart HWDP = Heavy Weight Drill Pipe MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close

Well Control Plan For 10M MASP Section of Wellbore

- 3. Space out drill string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in

g.

Well Control Plan For 10M MASP Section of Wellbore

- f. Notify tool pusher and company representative
 - Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

. . .

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400028976 Operator Name: MATADOR PRODUCTION COMPANY Well Name: BRAD DYER FEDERAL

Well Type: CONVENTIONAL GAS WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

BD_202H_Road_Map_20180331143557.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

BD_202H_New_Road_Map_20180331143631.pdf

New road type: RESOURCE

Length: 1280.7 Feet Width (ft.): 30

Max slope (%): 0

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and dtiched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Row(s) Exist? NO

Well Number: 202H

Well Work Type: Drill

nacionalia di chemica di constanta Relativa di chemica di constanta Relativa chemica di constanta di constanta di constanta di constanta di constanta

08/24/2018

SUPO Data Repor

Show Final Text

Operator Name: MATADOR PRC __TION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information: A 3" O. D. poly surface flowline on the west side of the existing road will be padded.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

BD_202H_Well_Map_20180331143835.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production equipment will be located on the south and west sides of the pad. A 3-phase overhead raptor-safe power line will be built south and east 2,924.64' from an existing power pole at OXY's Red Tank 35 Federal 3 SWD. No pipeline plans have been finalized at this time. **Production Facilities map:**

BD_202H_Production_Facilities_20180331143901.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: MATADOR PRODUCTION C	OMPANY	
Well Name: BRAD DYER FEDERAL	Well Num	ber: 202H
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, S ⁻ CASING Describe type:	TIMULATION, SURFACE	Water source type: GW WELL
Source latitude:		
Source datum:		
Water source permit type: PRIVATE CONT	RACT	
Source land ownership: PRIVATE		
Water source transport method: TRUCKIN	G	
Source transportation land ownership: FE	DERAL	
Water source volume (barrels): 20000		Source volume (acre-feet): 2.577862
Source volume (gal): 840000		
Water source and transportation map:		
BD 202H Water Source Map 2018033114404	42.pdf	
Water source comments: Water will be trucked 00802) is in NWNE 2-21s-33e. New water well? NO	l from an existing water st	ation on private land. Berry's water station (CP
New Water Well Info		
Well latitude: Well	Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of a	aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside o	liameter (in.):
New water well casing?	Used casing source	e:
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth (f	t.):
Well Production type:	Completion Method	:
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

•

Operator Name: MATADOR PRC __TION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled north of the pad. V-door will face south. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Berry) land in E2NE4 35-20s-34e. **Construction Materials source location attachment:**

BD_202H_Construction_Methods_20180331144114.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 1000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM.

· · · · · · · · · · · · · · · · · · ·	Reserve Pit	······································
Reserve Pit being used? NC)	
Temporary disposal of prod	uced water into reserve pi	1?
Reserve pit length (ft.)	Reserve pit width (ft.)	
Reserve pit depth (ft.)		Reserve pit volume (cu. yd.)
Is at least 50% of the reserve	e pit in cut?	
Reserve pit liner		
Reserve pit liner Reserve pit liner specification	ons and installation descri	ption
Reserve pit liner Reserve pit liner specificatio	ons and installation descri	ption
Reserve pit liner Reserve pit liner specificatio	ons and installation descri Cuttings Area	ption
Reserve pit liner Reserve pit liner specificatio Cuttings Area being used? I	ons and installation descri Cuttings Area NO	ption
Reserve pit liner Reserve pit liner specificatio Cuttings Area being used? I Are you storing cuttings on	ons and installation descri Cuttings Area NO location? YES	ption
Reserve pit liner Reserve pit liner specificatio Cuttings Area being used? I Are you storing cuttings on Description of cuttings loca	ons and installation descri Cuttings Area NO Iocation? YES tion Steel tanks on pad	ption
Reserve pit liner Reserve pit liner specificatio Cuttings Area being used? I Are you storing cuttings on Description of cuttings loca Cuttings area length (ft.)	ons and installation descri Cuttings Area NO Iocation? YES tion Steel tanks on pad	ption

Operator Name: MATADOR PRODUCTION COMPANY Well Name: BRAD DYER FEDERAL

Well Number: 202H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BD_202H_Well_Site_Layout_20180331144335.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: BRAD DYER

Multiple Well Pad Number: 202H

Recontouring attachment:

BD_202H_Recontour_Plat_20180331144408.pdf BD_202H_Interim_Reclamation_Diagram_20180331144421.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 3.65	Well pad interim reclamation (acres): 0.45	Well pad long term disturbance (acres): 3.2
Road proposed disturbance (acres):	Road interim reclamation (acres): 0	Road long term disturbance (acres):
Powerline proposed disturbance (acres): 1.01	Powerline interim reclamation (acres): 1.01 Pipeline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0
(acres): 0	Other interim reclamation (acres): 0	(acres): 0
Other proposed disturbance (acres): 0	Total interim reclamation: 1.46	Other long term disturbance (acres): 0
lotal proposed disturbance: 5.54		lotal long term disturbance: 4.08

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 12% (0.45 acre) by removing caliche and reclaiming a 140' x 140' area in the southeast corner of the pad. This will leave 3.20 acres for production equipment (e. g., tank battery, heater-treaters, separators,

Operator Name: MATADOR PRC.	JTION COMPANY
-----------------------------	---------------

Well Name: BRAD DYER FEDERAL

Well Number: 202H

flare/CBU, pump jacks), and tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owners' requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 1280.7' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

			•				•	 					-	-						-			,		••••		•					4
	\$ S	e	è	e	è	(N	l	ć	2	1	r	۱	г	1	ç	I	(e	r	r	1	(e	1	n	ľ	t		
																		_	Ξ.												 	

Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	

Operator Name: MATADOR PRODUCTION COMPA Well Name: BRAD DYER FEDERAL	ANY Well Number: 202H					
Seed use location:						
PLS pounds per acre:	Proposed seeding season:					
Seed Summary	Total pounds/Acre:					
Seed Type Pounds/Acre						
Seed reclamation attachment:						
Operator Contact/Responsible Offic	ial Contact Info					
First Name:	Last Name:					
Phone:	Email:					
Seedbed prep:						
Seed BMP:						
Seed method:						
Existing invasive species? NO						
Existing invasive species treatment description:						
Existing invasive species treatment attachment:						
Weed treatment plan description: To BLM standards						
Weed treatment plan attachment:						
Monitoring plan description: To BLM standards						
Monitoring plan attachment:						
Success standards: To BLM satisfaction	· · · · ·					
Pit closure description: No pit						
Pit closure attachment:						
Section 11 - Surface Ownership						
Disturbance type: WELL PAD						
Describe:						
Surface Owner: BUREAU OF LAND MANAGEMENT						
Other surface owner description:						
BIA Local Office:						

COE Local Office:

DOD Local Office:

Operator Name: MATADOR PROL STION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

565 5			
· 动态论:《 广场运输》(合理的系统》			
COE Local Office:			
DOD Local Office:			
NPS Local Office:			
State Local Office:			
Military Local Office:			
USFWS Local Office:			
Other Local Office:			
USFS Region:			

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: OTHER **Describe:** Powerline Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:**

 Operator Name: MATADOR PRODUCTION COMPANY

 Well Name: BRAD DYER FEDERAL

 Well Number: 202H

COE Local Office:		
DOD Local Office:		
NPS Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	

Disturbance	type:	EXISTING ACCESS ROAD	
Distance	ypc.		

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

DÖR Lecst Cittes:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

,

Operator Name: MATADOR PRC. JTION COMPANY

Well Name: BRAD DYER FEDERAL

Well Number: 202H

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on November 13, 2017. Lone Mountain will file an archaeology report.

Other SUPO Attachment

BD_202H_General_SUPO_20180331144919.pdf

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name:

Injection well API number:

PWD disturbance (acres):
FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Build Info Data Report

08/24/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: