Form 3160-5 (June 2015)

DEPARTMENT OF THE INTERIOR

UNITED STATES BUREAU OF LAND MANAGEMENT FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018

5.	Lease Serial No.
	NMNM122622

SUNDRY NOTICES AND REPORTS ON WELLS
Do not use this form for proposals to drill or to re-enter an
abandoned well. Use form 3160-3 (APD) for such proposals

abandoned we	II. Use form 3160-3 (API	D) for such proposals.	6. If Indian, Allotte	e or Tribe Name
SUBMIT IN	TRIPLICATE - Other inst	ructions on page 2885	OCD 7. If Unit or CA/Ag	reement, Name and/or No.
1. Type of Well ☐ Gas Well ☐ Oth		JAN 16 20	8. Well Name and N PEACHTREE 2	io. 24 FED COM 701H
Name of Operator EOG RESOURCES INCORPORT	Contact: DRATEDE-Mail: sarah_mito	O . D . I I I I I I I I I I I I I I I I I	0 1 77 777 11 37	-00-X1
3a. Address		3b. Phone No. (include area code) Ph: 432-848-9133	10. Field and Pool RED TANK	or Exploratory Area
MIDLAND, TX 79702		FII. 432-040-9133	REDIANK	
4. Location of Well (Footage, Sec., T	, R., M., or Survey Description		11. County or Paris	h, State
Sec 24 T26S R33E SESE 190 32.022179 N Lat, 103.519905			LEA COUNT	/, NM
12. CHECK THE AI	PPROPRIATE BOX(ES)	TO INDICATE NATURE OI	F NOTICE, REPORT, OR O	THER DATA
TYPE OF SUBMISSION		ТҮРЕ ОР	ACTION	
Notice of Intent	☐ Acidize	□ Deepen	☐ Production (Start/Resume)	☐ Water Shut-Off
_	☐ Alter Casing	☐ Hydraulic Fracturing	□ Reclamation	■ Well Integrity
☐ Subsequent Report	Casing Repair	■ New Construction	☐ Recomplete	⊠ Other
☐ Final Abandonment Notice	☐ Change Plans	Plug and Abandon	□ Temporarily Abandon	Change to Original A PD
	☐ Convert to Injection	☐ Plug Back	■ Water Disposal	
13. Describe Proposed or Completed Op If the proposal is to deepen directions Attach the Bond under which the wor following completion of the involved testing has been completed. Final At determined that the site is ready for final	ally or recomplete horizontally, ik will be performed or provide operations. If the operation re- pandonment Notices must be file	give subsurface locations and measur the Bond No. on file with BLM/BIA sults in a multiple completion or reco	red and true vertical depths of all per Required subsequent reports must impletion in a new interval, a Form 3	tinent markers and zones. be filed within 30 days 160-4 must be filed once
EOG respectfully requests an casing design in accordance v			changes in the	
Attached please find the revise	ed Permit Information and	I revised Wellbore Diagram.		
Estimated spud date for this w	vell is 1/10/19.		ispad Rield O	Pro

SEE ATTACHED FOR CONDITIONS OF APPROVAL

CIU CIIICC OCD Hobbs

14. I hereby certify that the	te foregoing is true and correct. Electronic Submission #447306 verifie For EOG RESOURCES INCOR Committed to AFMSS for processing by PRI	PORAT	ED, sent to the Hobbs	
Name (Printed/Typed)	BEN HOCHER	Title	ENGINEERING ASSOCIATE	
Signature	(Electronic Submission)	Date	12/11/2018	
	THIS SPACE FOR FEDERA	L OR	STATE OFFICE USE	
_Approved By_JEROM\	PORIER	TitleF	PETROLEUM ENGINEER	Date 12/19/2018
certify that the applicant hol	ny, are attached. Approval of this notice does not warrant or ds legal or equitable title to those rights in the subject lease icant to conduct operations thereon.	Office	· Hobbs	
Title 18 U.S.C. Section 100	and Title 43 U.S.C. Section 1212, make it a crime for any pe	erson kno	owingly and willfully to make to any departn	nent or agency of the United

States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

Revisions to Operator-Submitted EC Data for Sundry Notice #447306

Operator Submitted

BLM Revised (AFMSS)

Sundry Type:

APDCH

NOI

APDCH NOI

Agreement:

Lease:

NMNM122622

NMNM122622

Operator:

EOG RESOURCES, INC. P.O. BOX 2267 MIDLAND, TX 79707 Ph: 432-848-9133

EOG RESOURCES INCORPORATED

MIDLAND, TX 79702 Ph: 432.686.3689

Admin Contact:

SARAH MITCHELL

REGULATORY CONTRACTOR

E-Mail: sarah_mitchell@eogresources.com

Ph: 432-848-9133

SARAH MITCHELL

REGULATORY CONTRACTOR

E-Mail: sarah_mitchell@eogresources.com

Ph: 432-848-9133

Tech Contact:

BEN HOCHER ENGINEERING ASSOCIATE

E-Mail: ben_hocher@eogresources.com

Ph: 432-686-3623

BEN HOCHER ENGINEERING ASSOCIATE

E-Mail: ben_hocher@eogresources.com

Ph: 432-686-3623

Location:

State: County:

Field/Pool:

NM LEA

RED HILLS/SANDERS TANK

NM LEA

RED TANK

Well/Facility:

PEACHTREE 24 FED COM 701H Sec 24 T26S R33E Mer NMP SESE 190FSL 732FEL 32.022178 N Lat, 103.519900 W Lon

PEACHTREE 24 FED COM 701H Sec 24 T26S R33E SESE 190FSL 732FEL 32.022179 N Lat, 103.519905 W Lon

Revised Permit Information 12/11/18:

Well Name: Peachtree 24 Fed Com No. 701H

Location:

SHL: 190' FSL & 732' FEL, Section 24, T-26-S, R-33-E, Lea Co., N.M. BHL: 230' FNL & 330' FEL, Section 13, T-26-S, R-33-E, Lea Co., N.M.

Casing Program:

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
12.25"	0 – 1,150'	9.625"	40#	J55	LTC	1.125	1.25	1.60
8.75"	0 – 11,600'	7.625"	29.7#	HCP- 110	FXL	1.125	1.25	1.60
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,100'-22,779'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

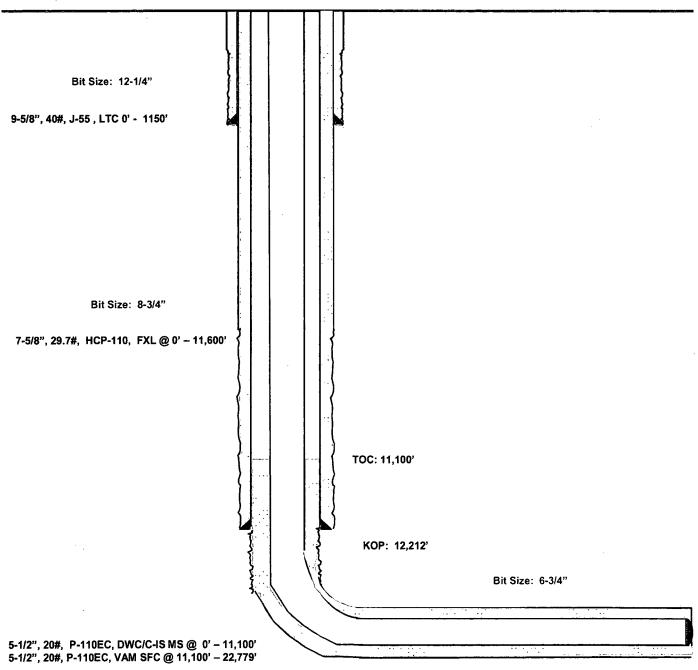
Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Cement Program:

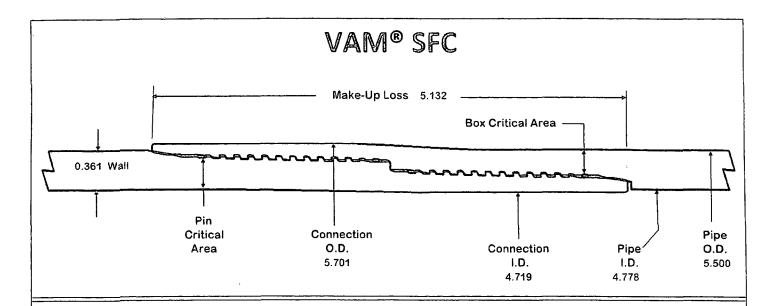
	No.	Wt.	Yld	
Depth	Sacks	ppg	Ft ³ /ft	Slurry Description
9-5/8"	600	13.5	1.73	Lead: Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25
1,150'				lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate
7-5/8"	390	9.0	3.71	Lead: Class C + 5% Salt + 12% HGS-4K28 + 22% B-52 + 0.15%
11,600'				GXT-C + 0.3% CPT-30 + 0.4% CPT-24 (TOC @ Surface)
	175	11	2.54	Middle: Class C + 3% Salt + 1% PreMag-M + 0.15% GXT-C + 0.15%
				CPT-30 + 4 pps Blitz + 0.35% CPT-23
	180	14.2	1.11	Tail: Class H + 5% Salt + 0.2% CD-3 + 0.15% CPT-51A + 0.35%
				CPT-23 + 1% PreMag-M
5-1/2"	950	14.1	1.26	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-
22,779'				17 (TOC @ 11,100')

Mud Program:


Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,150'	Fresh - Gel	8.6-8.8	28-34	N/c
1,150' – 11,600'	Oil Base	8.7-9.4	58-68	N/c - 6
11,600' – 22,779'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

Peachtree 24 Fed Com #701H Lea County, New Mexico

190' FSL 732' FEL Section 24 T-26-S, R-33-E


Proposed Wellbore Revised 12/11/18 API: 30-025-44831

KB: 3,401' GL: 3,376'

Lateral: 22,779' MD, 12,688' TVD Upper Most Perf: 330' FSL & 330' FEL Sec. 24 Lower Most Perf: 330' FNL & 330' FEL Sec. 13 BH Location: 230' FNL & 330' FEL

Section 13 T-26-S, R-33-E

O.D. 5.500 WEIGHT 20.00 WALL 0.361

GRADE VST P110EC

Connection OD

DRIFT 4.653

5.701 in

PIPE BODY PROPERTIES

Material Grade	VST P110EC
Min. Yield Strength	125 ksi
Min. Tensile Strength	135 ksi

Outside Diameter 5.500 in Inside Diameter 4.778 in Nominal Area 5.828 sq.in.

Yield Strength 729 kips
Ultimate Strength 787 kips
Min Internal Yield 14,360 psi
*High Collapse 12,090 psi

Contact: tech.support@vam-usa.com Ref. Drawing: SI-PD 100414 Rev.B

Date: Time: 14-Jun-16 2:31 PM

CONNECTION PROPERTIES

Connection ID	4.719 in
Make up Loss	5.132 in
Box Critical Area	4.083 sq.in.
%PB Section Area	70.1%
Discounting I Asses	4.400
Pin Critical Area	4.123 sq.in.
%PB Section Area	70.7%
Yield Strength	510 kips
Parting Load	551 kips
Min Internal Yield	14,360 psi
*High Collapse	12,090 psi
Wk Compression	357 kips
Max Pure Bending	20 °/100 ft

TORQUE DATA ft-lb

min	opt	max
8,700	9,700	10,700

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was odvised of the possibility of such damages.

TECHNICAL SPECIFICATIONS

These specifications are furnished for general information only and are not intended for design purposes. This information is preliminary and may change subject to a final design by VAM-USA Engineering. This is not a controlled document.

DWC/C-IS MS standard		Casing	5.500" O.D.	20.00 lb./ft.	VST P-110EC
VST P-110EC 125,000 135,000		Material Grade Minimum Yield Streng Minimum Ultimate Stre	, ,, ,		
5.500 4.778 0.361 20.00 19.83 5.828		Pipe Dimensions Nominal Pipe Body O' Nominal Pipe Body ID Nominal Wall Thickne Nominal Weight (lbs./ Plain End Weight (lbs. Nominal Pipe Body Ar	O (in.) ess (in.) (ft.) s./ft.)	Houston, TX Phone: (713 Fax: (713) 4	3) 479-3200
729,000 12,090 14,360 13,100		Pipe Body Performa Minimum Pipe Body Y Minimum Collapse Pr Minimum Internal Yiel Hydrostatic Test Pres	Yield Strength (lbs.) ressure (psi.) Id Pressure (psi.)		
6.115 4.778 4.653 4.13 5.828 100.0		Connection Dimension Connection OD (in.) Connection ID (in.) Connection Drift Diam Make-up Loss (in.) Critical Area (sq. in.) Joint Efficiency (%)			
729,000 26,040 728,000 729,000 12,090 14,360 104.2	(1) (2) (3)	Connection Perform Joint Strength (lbs.) Reference String Len API Joint Strength (lb Compression Rating of API Collapse Pressure API Internal Pressure Maximum Uniaxial Be	ngth (ft.) 1.4 Design os.) (lbs.) re Rating (psi.) e Resistance (psi.)		
16,600 19,100 21,600	(5) (5) (6)	Approximated Field Minimum Final Torque Maximum Final Torque Connection Yield Torque	End Torque Values e (ftlbs.) ue (ftlbs.)	•	

- (1) Joint Strength is the minimum pipe body yield strength multiplied by the connection critical area.
- (2) Reference String Length is the joint strength divided by both the weight in air and the design factor.
- (3) API Joint Strength is for reference only. It is calculated from Formulas 42 and 43 in the API Bulletin 5C3.
- (4) API Internal Pressure Resistance is calculated from Formulas 31, 32, and 35 in the API Bulletin 5C3.
- (5) Torque values are approximated and may be affected by field conditions.
- (6) Connection yield torque is not to be exceeded.

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advite obtain current connection specifications and verify pipe mechanical properties for each application.

etal One Corp.	MO-FXL	,	Page	MCT	
	WO-I AL		Date	3-Nov-	16
Metal O ne	Connection Data Sheet				
		:	Rev.	0	
	Geometry				
	Geonleay	<u>Imperia</u>	1	<u>S.I.</u>	
	Pipe Body				
	Grade:	P110HC 1		PHOHEN	
	Pipe OD (D)	7 5/8	in	193.68	mm
MO-FXL	Weight	29.70	. lb/ft	44.25	kg/m
	Actual weight	29.04		43.26	kg/m
	Wall Thickness (1)	* - 0.075 1	ki in	9:53	mm
	Pipe ID (d)	6.875	in	174.63	mm
	Pipe body cross section	8507	in?	5,508	√mm²
	Drift Dia.	6.750	in	171.45	mm
	0				
CONTRACTOR OF THE PARTY OF THE	Connection Box OD ((W))		TO THE PLANE	a koo co. Co.	
下。20072 人	PIN ID	7.625	in in	174.63	· mm
	Make up Loss	6.875 2-24/219	estina.	174.63 24107£16 ±	mm
	Box Critical Area			4436864	
Box	Joint load efficiency		FLINGAN	3-74470 N	
critical area	Thread Taper	1		2" per ft)	S 4.0 70 77
	Number of Threads			TPI	Arrest and a
1ake	Pedermence				
up 1	The state of the s				
IS SOME	Performance Properties	for Pipe Body			
[VE209n	EINIYISTA	for Pipe Body	[[Block]	Extra 1	
0	SIMIY.S. "\ M.I.Y.P. *1		idles psi	74.21	MPa
(\$500m	SMYAS "I MLYP. I Willers Slengib" I	10,760 7/860	psi	74.21 . (0.7%)	MPa MPa
Pin	SMYAS 1 M.I.Y.P. 1 Pallage Strength 1 Note S.M.Y.S.= Specif	10,760 10,760 7,560 Winimum YIE	psi DSI LD Stre	74.21 SUZ/Singth of Pipe bo	MPa MPa MPa dy
Pin critical	M.I.Y.P. 1 Mote S.M.Y.S.= Specific M.I.Y.P. = Minim	10,760 10,760 77,960 ied Minimum YIE um Internal Yield	psi LD Stree Pressur	74.21 . 6076 ngth of Pipe body e of Pipe body	MPa MPa MPa dy
Pin critical	M.I.Y.P. 1 Note S.M.Y.S.= Specific M.I.Y.P. = Minim 1 Based on VSB	10,760 10,760 17,660 ied Minimum YIE um Internal Yield P110HC (YS=12	psi LD Streat Pressur 5~140ks	74.21 . 6076 ngth of Pipe body e of Pipe body	MPa MPa MPa dy
Pin critical	M.I.Y.P. 1 Note S.M.Y.S.= Specific M.I.Y.P. = Minim 1 Based on VSB Performance Properties	i.037/ 10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi LD Stres Pressur 5~140ks	74.21 (0.76) ngth of Pipe body e of Pipe body ii)	MPa Marea dy
Pin critical	M.L.Y.P. 1 Note S.M.Y.S.= Specifi M.L.Y.P. = Minim 1 Based on VSB Performance Properties	i.037 10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi LD Stres I Pressur 5~140ks n	74.21 G076 ngth of Pipe body e of Pipe body ii)	MPa Marea dy
Pin critical	MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties [[6] [6] [6] [6] [6] Min. Compression Yield	10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi LD Strest Pressur 5~140ks n (70%	74.21 GUITS ngth of Pipe body ii) Of S.M.Y.S.)	MPa MPa dy
Pin critical	MILY.P. 1 MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. 2000 100 100 100 100 100 100 100 100 10	10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi LD Strest Pressur 5~140ks n (70%	74.21 GUTS agth of Pipe body ii) Of S.M.Y.S.)	MPa
Pin critical	M.L.Y.P. 1 M.L.Y.P. 2 Note S.M.Y.S.= Specific M.L.Y.P. = Minim 1 Based on VSB Performance Properties [[618]] Y.[618] [C.63] Min. Compression Yield [618] [618] [618] [618] External Pressure	10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi 10 Stres 1 Pressur 5~140ks n (70% 100% (74.21 GUZS agth of Pipe body ii) of S.M.Y.S.) GUZUSZE	MPa
Pin critical	MILY.P. 1 MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. 2000 100 100 100 100 100 100 100 100 10	10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi 10 Stres 1 Pressur 5~140ks n (70% 100% (74.21 GUTS agth of Pipe body ii) Of S.M.Y.S.)	MPa
Pin critical	MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. Compression Yield External Pressure Max. DUS (deg. // (001))	10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi 10 Stres 1 Pressur 5~140ks n (70% 100% (74.21 GUZS agth of Pipe body ii) of S.M.Y.S.) GUZUSZE	MPa
Pin critical	MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. Compression Yield External Pressure Max. PUS (deg. /1001i) Recommended Torque	i.067/ 10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	psi LD Stres I Pressur 5~140ks n (70% (70%	74.21 GO/76 ngth of Pipe body ie of Pipe body ii) of S.M.Y.S.)	MPa dy
Pin critical	MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. Compression Yield External Pressure Max. DUS (deg. / (001)) Recommended Torque	i.032/ 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 81510 P3	psi 08 LD Strest Pressure 5~140ks n (70% (30% 100% (74.21 GUTS The period of Pipe body and of Pipe body and of S.M.Y.S. The collapse S The collapse S The collapse S	MPa WIPA dy
Pin critical	M.L.Y.P. 1 Note S.M.Y.S.= Specific M.L.Y.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. Compression Yield External Pressure Max. DUS (deg. / (001)) Recommended Torque Min. Opti.	i.032/ 10,760 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 81510 54 17,200	psi 08 LD Strest Pressure 5~140ks n (70% (70% (100%) (44) (100%) (44)	74.21 GOLTO nogth of Pipe body ii) of S.M.Y.S.) of Collapse S 23,300	MPa MPA dy
Pin critical	MILY.P. 1 Note S.M.Y.S.= Specific M.LY.P. = Minim 1 Based on VSB Performance Properties Min. Compression Yield Min. Compression Yield External Pressure Max. DUS (deg. / (001)) Recommended Torque	i.032/ 10,760 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 81510 P3	psi 08 LD Strest Pressure 5~140ks n (70% (30% 100% (74.21 GUTS The period of Pipe body and of Pipe body and of S.M.Y.S. The collapse S The collapse S The collapse S	MPa WIPA dy

Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	40.00	J	55	LTC	11.30	4.89	0.7	1,150	46,000
"B"				LTC				0	0
w/8.4#/	g mud, 30min Sfc	Csg Test psig:	1,500	Tail Cmt	does not	circ to sfc.	Totals:	1,150	46,000
omparison o	f Proposed to	Minimum Re	equired Ceme	nt Volumes				•	•
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Rea'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpig
OITO				403	224	8.80	3112	5M.	0.81

75/8	casing in	side the	95/8	= 0	70000000	Design	Factors *	INTERI	MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	29.70	PHC	110	FXL	2.17	1.3	1.17	11,600	344,520
"B"				FXL				0	0
w/8.4#/	g mud, 30min Sf	c Csg Test psig:					Totals:	11,600	344,520
Th	e cement volu	ume(s) are in	tended to ac	hieve a top of	0	ft from s	urface or a	1150	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	. Mud Wt	MASP	BOPE	Hole-Cpig
8 3/4	0.1005	745	2095	1186	77	9.40	6436	10M	0.56
Class 'H' tail cm	t yld > 1.20						MASP is withi	in 10% of 50	00psig, need

5 1/2	casing ins		7 5/8	. —	-	Design Fac	CLOIS	PROD	UCTION
Segment:	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	20.00	PEC	יכ 110	WC C IS M	2.87	1.5	1.56	11,100	222,000
"B"	20.00	PEC	110	VAM SFC	6.31	1.22	1.56	11,679	233,580
w/8.4#/	g mud, 30min Sfo	: Csg Test psig:	2,442				Totals:	22,779	455,580
Th	e cement volu	me(s) are in	tended to ach	nieve a top of	11100	ft from su	rface or a	500	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
6 3/4	0.0835	950	1197	986	21	14.00		r - · ·	0.32
lass 'H' tail cm	t yld > 1.20					• •			

Carlsbad Field Office 12/19/2018

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | **EOG Resources**

LEASE NO.: NM122622

WELL NAME & NO.: | Peachtree 24 FED COM 701H

SURFACE HOLE FOOTAGE: 190' FSL & 732' FEL BOTTOM HOLE FOOTAGE 230' FNL & 330' FEL

LOCATION: | Section 24, T. 26 S., R 33 E., NMPM

COUNTY: | Lea County, New Mexico

Potash	• None	Secretary	↑ R-111-P
Cave/Karst Potential	€ Low	↑ Medium	← High
Variance	None	Flex Hose	Other
Wellhead	Conventional	• Multibowl	
Other	☐4 String Area	□Capitan Reef	□WIPP

All Previous COAs still apply, except for the following:

A. CASING

- 1. The 9 5/8 inch surface casing shall be set at approximately 1150 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 7 5/8 inch intermediate casing, which shall be set at 11600 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

- 3. The minimum required fill of cement behind the 5 1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification. Excess calculates to 21% additional cement may be required.

B. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).

2.

Option 1:

i. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5M Annular which shall be tested to 5000 psi.

Option 2:

- i. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10000 (10M) psi. Variance is approved to use a 5M Annular which shall be tested to 5000 psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

JJP 121918

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ∠ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 2. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 3. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 4. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

- plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.