						F/P
Form 3160-3 June 2015) UNITED STATES	HOB	BS OCD		FORM OMB No Expires: Ja	o. 1004-0)137
DEPARTMENT OF THE IN BUREAU OF LAND MANA			f .	5. Lease Serial No. NMNM023199		
APPLICATION FOR PERMIT TO D	_			6. If Indian, Allotee	or Tribe	Name
a. Type of work: 🖌 DRILL 🗌 RI	EENTER			7. If Unit or CA Agr	eement,	Name and No.
b. Type of Well: 🚺 Oil Well 🔲 Gas Well 🛄 Oi	ther			8. Lease Name and	Well No.	
c. Type of Completion: Hydraulic Fracturing I Si		CAMELLIA FED C 101H	ом 26 : З 2	^{36 21} 5400)		
Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No. 30-025	-4	5918
a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX		lo. <i>(include area cod</i> 700	e)	10. Field and Pool, o JAL / WOLFCAMP	•	ratory 982
. Location of Well (Report location clearly and in accordance w	•	•		11. Sec., T. R. M. or		
At surface LOT M / 283 FSL / 230 FWL / LAT 32.02229	949 / LONG	-103.2778497		SEC 21 / T26S / R	36E / NI	MP
At proposed prod. zone LOT D / 50 FNL / 200 FWL / LAT	7 32.05041 /	LONG -103.27796	i			
 Distance in miles and direction from nearest town or post offi i miles 	ce*	12. Cour LEA) 	13. State NM
5. Distance from proposed• location to nearest property or lease line, ft.	16. No of ac 320	eres in lease	ng Unit dedicated to tl	nis well		
(Also to nearest drig. unit line, if any) 8. Distance from proposed location*	19 Propose	Proposed Depth 20. BLM/BIA B				_
to nearest well, drilling, completed, 760 feet applied for, on this lease, ft.		45 feet / 21826 feet FED: NMB001478				
1. Elevations (Show whether DF, KDB, RT, GL, etc.) 2923 feet	22. Approxi 03/15/2019	mate date work will	23. Estimated durati 90 days	on		
	24. Attac	hments		•		
he following, completed in accordance with the requirements of as applicable)	Onshore Oil	and Gas Order No. 1	, and the H	lydraulic Fracturing n	ule per 4	3 CFR 3162.3-3
. Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover th Item 20 above).	e operation	s unless covered by ar	existing	bond on file (see
A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office)		 Operator certific Such other site sp BLM. 		mation and/or plans as	may be r	equested by the
5. Signature		(Printed/Typed)			Date	
(Electronic Submission)	Christi	e Hanna / Ph: (737	7)300-472	3	04/27/2	2018
itle Senior Engineering Technician						
pproved by <i>(Signature)</i> Electronic Submission)		Name (Printed/Typed) Date Cody Layton / Ph: (575)234-5959 05/03/2019				2019
itle Assistant Field Manager Lands & Minerals		SBAD				
application approval does not warrant or certify that the applican pplicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds legal o	or equitable title to th	iose rights	in the subject lease wh	nich wou	ld entitle the
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m f the United States any false, fictitious or fraudulent statements c					ny depar	tment or agency

GCP Rec of		K.	54/09/19
(Continued on page 2)	APPROVED WITH CONDITIONS		
(Continued on page 2)	APPROVED WITH COMPANY		

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 05/03/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

 SHL: LOT M / 283 FSL / 230 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.0222949 / LONG: -103.2778497 (TVD: 0 feet, MD: 0 feet) PPP: LOT D / 50 FNL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27796 (TVD: 11969 feet, MD: 22775 feet) BHL: LOT D / 50 FNL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27796 (TVD: 11845 feet, MD: 21826 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 05/03/2019

(Form 3160-3, page 4)

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

Camellia Federal Com 26 36 21 81H:

Surface Hole Location: 283' FSL & 290' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 660' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 91H:

Surface Hole Location: 283' FSL & 310' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 660' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 101H:

Surface Hole Location: 283' FSL & 230' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 111H:

Surface Hole Location: 283' FSL & 250' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 121H:

Surface Hole Location: 283' FSL & 270' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 16 S., R. 36 E.

Page 1 of 23

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Lesser Prairie-Chicken Timing Stipulations
Timing Limitation Exception
Ground-level Abandoned Well Marker
Hydrology
⊠ Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
Interim Reclamation
Final Abandonment & Reclamation

Page 2 of 23

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 3 of 23

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

Timing Limitation Exceptions:

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

<u>Ground-level Abandoned Well Marker to avoid raptor perching</u>: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Hydrology

- The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.
- Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

Page 4 of 23

- Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.
- Automatic shut off, check values, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.
- A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Page 5 of 23

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 6 of 23

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

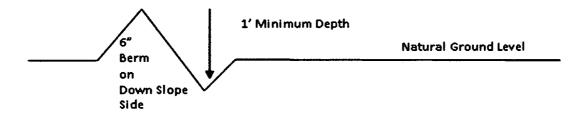
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 7 of 23

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

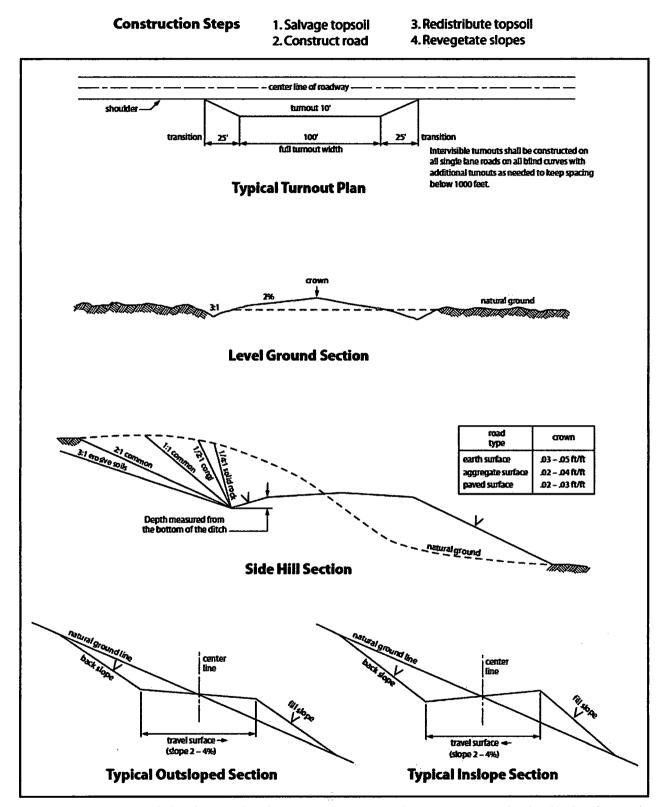
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 8 of 23

Page 9 of 23

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 10 of 23

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the application (Grant, Sundry Notice, APD) and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. The holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. The holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of the holder including, but not limited to construction, operation, maintenance, and termination of the facility.
- b. Activities of other parties including, but not limited to:
 - (1) Land clearing.
 - (2) Earth-disturbing and earth-moving work.
 - (3) Blasting.
 - (4) Vandalism and sabotage.
- c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of the holder, regardless of fault. Upon failure of the holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve the holder of any responsibility as provided herein.

6. All construction and maintenance activity will be confined to the authorized right-ofway width of <u>20</u> feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline must be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline must be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity will be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation will be allowed unless approved in writing by the Authorized Officer.

Page 12 of 23

8. The holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline will be "snaked" around hummocks and dunes rather then suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will

Page 13 of 23

be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines must be less than or equal to 4 inches and a working pressure below 125 psi.

18. Special Stipulations:

- a. <u>Lesser Prairie-Chicken:</u> Oil and gas activities will not be allowed in lesser prairiechicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted.
- b. This authorization is subject to your Certificate of Participation and/or Certificate of Inclusion under the New Mexico Candidate Conservation Agreement. Because it involves surface disturbing activities covered under your Certificate, your Habitat Conservation Fund Account with the Center of Excellence for Hazardous Materials Management (CEHMM) will be debited according to Exhibit B Part 2 of the Certificate of Participation.

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

Page 14 of 23

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq.</u> (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-of-way.

6. The pipeline will be buried with a minimum cover of $\underline{36}$ inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (Blading is defined as the complete removal of brush and ground vegetation.)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
- The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)

8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately $__{6}__{}$ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

Page 16 of 23

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
() seed mixture 2	() seed mixture 4
(X) seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-ofway and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps,

Page 17 of 23

ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.
- 19. Special Stipulations:

Lesser Prairie-Chicken

Oil and gas activities will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b.

Page 18 of 23

A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply

Page 19 of 23

with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

Timing Limitation Stipulation/Condition of Approval for Lesser Prairie-Chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

VIII. INTERIM RECLAMATION

Page 20 of 23

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 21 of 23

Page 22 of 23

Seed Mixture for LPC Sand/Shinnery Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed shall be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. Seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	<u>lb/acre</u>
Plains Bristlegrass	5lbs/A
Sand Bluestem	5lbs/A
Little Bluestem	3lbs/A
Big Bluestem	6lbs/A
Plains Coreopsis	2lbs/A
Sand Dropseed	1lbs/A

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

Page 23 of 23

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie HannaSigned on: 04/04/2019Title: Senior Engineering TechnicianStreet Address: 5707 Southwest Parkway, Building 1, Suite 275City: AustinState: TXZip: 78735Phone: (737)300-4723Email address: channa@ameredev.comField RepresentativeRepresentative Name: Zachary BoydStreet Address: 5707 Southwest Parkway, Building 1, Suite 275City: AustinState: TXZip: 78735

Phone: (432)385-6996

Email address: zboyd@ameredev.com

Operator Certification Data Report

05/06/2019

VAFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

- F ;

APD ID: 10400029847

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 101H Well Work Type: Drill

Submission Date: 04/27/2018

Zip: 78735

High igh bold laca rolhood in oir io c Locht of an geo Show Final Text

Section 1 - General						
APD ID: 10400029847	Tie to previous NOS?	Submission Date: 04/27/2018				
BLM Office: CARLSBAD	User: Christie Hanna	Title: Senior Engineering Technician				
Federal/Indian APD: FED	Is the first lease penetrated	for production Federal or Indian? FED				
Lease number: NMNM023199	Lease Acres: 320					
Surface access agreement in place?	Allotted? Reservation:					
Agreement in place? NO	Federal or Indian agreeme	nt:				
Agreement number:						
Agreement name:						
Keep application confidential? NO						
Permitting Agent? NO	APD Operator: AMEREDEV	OPERATING LLC				
Operator letter of designation:						

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

Operator PO Box:

Operator City: Austin

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plar	Master Development Plan name:					
Well in Master SUPO? NO	Master SUPO name:						
Well in Master Drilling Plan? NO	Master Drilling Plan name	e:					
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 101H	Well API Number:					
Field/Pool or Exploratory? Field and Pool	Field Name: JAL	Pool Name: WOLFCAMF WEST					

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Operator Name: AMEREDEV OPERATING LLC
Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Describe oth	er minerals:				
Is the propos	ed well in a Helium produ	ction area? N	Use Existing Well Pad?	New surface disturbance?	
Type of Well	Pad: MULTIPLE WELL		Multiple Well Pad Name	Number: 1N	
Well Class: ⊦	IORIZONTAL		CAM/AZE Number of Legs: 1		
Well Work Ty	/pe: Drill				
Well Type: O	IL WELL				
Describe We	li Туре:				
Well sub-Typ	e: INFILL				
Describe sub	o-type:				
Distance to t	own: 5 Miles	Distance to nea	arest well: 760 FT	Distanc	e to lease line: 230 FT
Reservoir we	Il spacing assigned acres	Measurement:	320 Acres		
Well plat:	CAMELLIA_FED_COM_26	_36_21_101H	_EXH_2AB_2019031408	5827.pdf	
	CAMELLIA_FED_COM_26	_36_21_101H	_VICINITY_MAP_201903	1408582	27.pdf
	CAMELLIA_FED_COM_26	_36_21_101H	GAS_CAPTURE_PLAN	_201903	14085838.pdf
	CAMELLIA_FED_COM_26	_36_21_101H	_C_102_SIG_201903140	90032.p	df
	CAMELLIA_FED_COM_26	_36_21_101H	_BLM_LEASE_MAP_201	9031409	00257.pdf
Well work sta	art Date: 03/15/2019		Duration: 90 DAYS		

Section 3 - Well Location Table

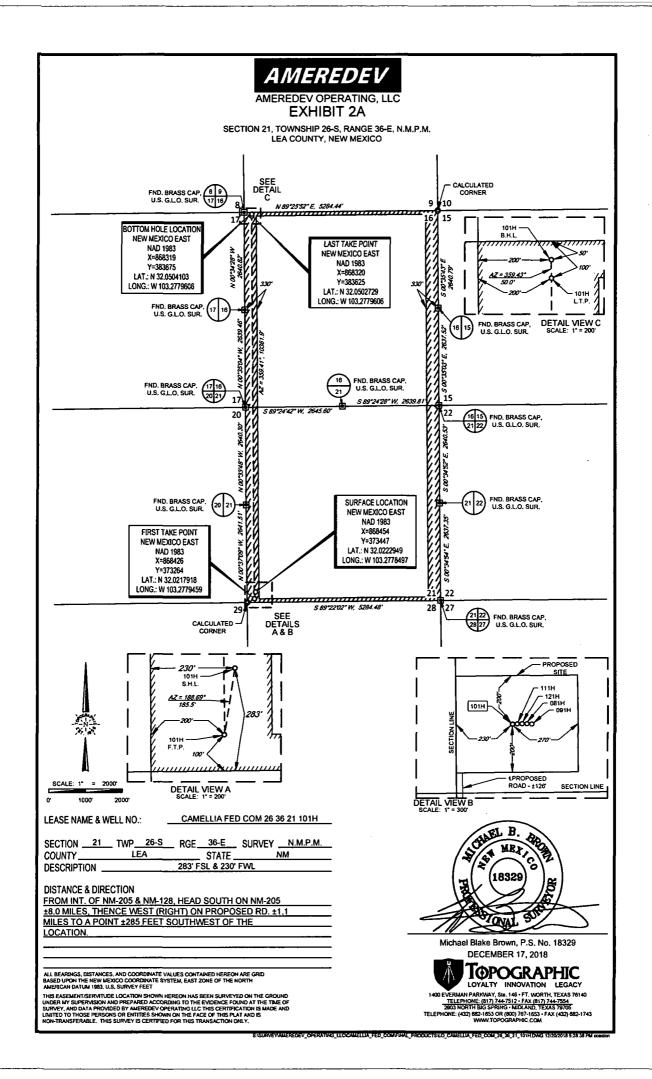
Survey Type: RECTANGULAR

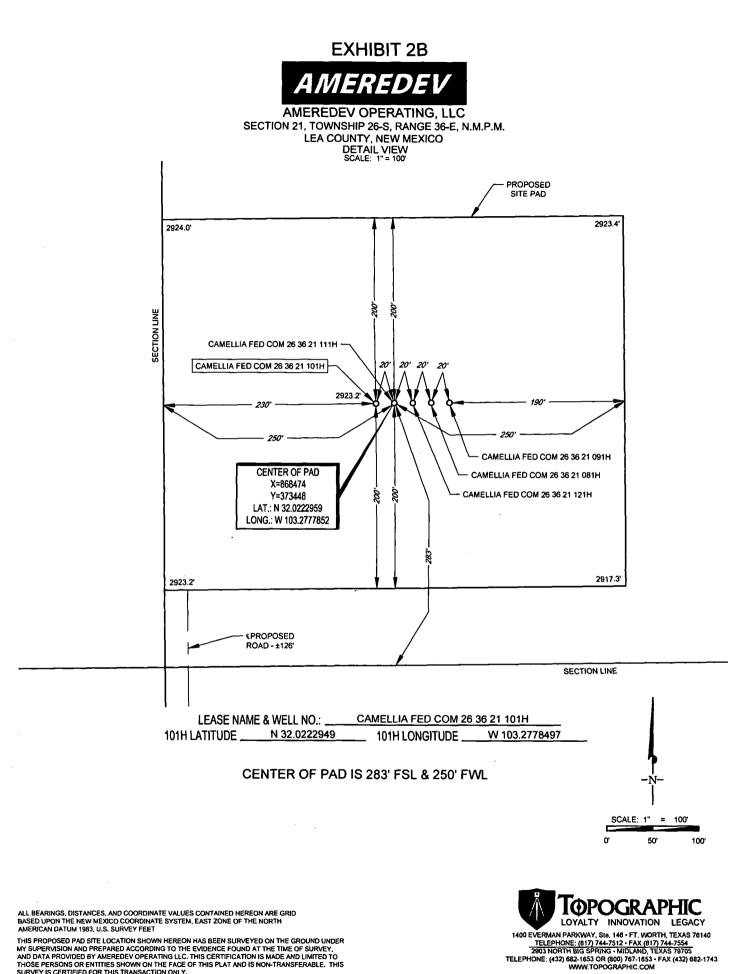
Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 18329

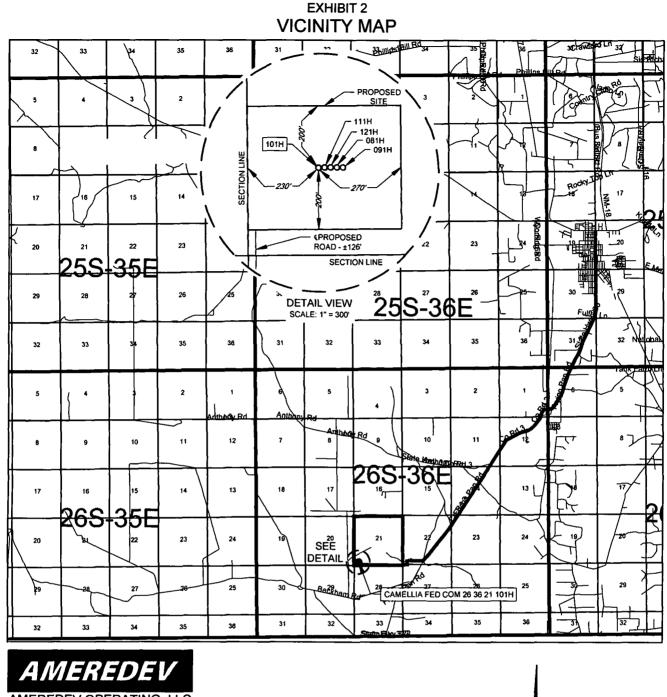

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL	283	FSL	230	FWL	26S	36E	21	Lot	32.02229	-	LEA	NEW	NEW	F	NMNM	292	0	0
Leg		Ì						м	49	103.2778		MEXI			023199	3		
#1										497		co	co					


Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
KOP Leg #1	409	FNL	78	FEL	26S	36E	29	Aliquot NENE	32.0204	- 103.2788 6	LEA	NEW MEXI CO	NEW MEXI CO	s	STATE	- 847 7	114 39	114 00
PPP Leg #1	50	FNL	200	FWL	26S	36E	16	Lot Đ	32.05041	- 103.2779 6	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 904 6	227 75	119 69
EXIT Leg #1	50	FNL	200	FWL	26S	36E	16	Lot D	32.05041	- 103.2779 6	LEA	NEW MEXI CO	NEW MEXI CO	s	STATE	- 904 6	227 75	119 69
BHL Leg #1	50	FNL	200	FWL	26S	36E	16	Lot D	32.05041	- 103.2779 6	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 892 2	218 26	118 45



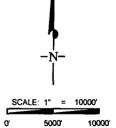
AMERICAN DATION 1993, U.S. SURVEY FEET THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY. AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ORIGINAL DOCUMENT SIZE: 8.5" X 11"

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COM/FINAL_PRODUCTS/LO_CAMELLIA_FED_COM_26_36_21_101H.DWG 12/20/2018 5/28:39 PM ccaston

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.: CAMELLIA FED COM 26 36 21 101H


SECTION 21		RGE <u>36-</u> E	SURVEYN.M.P.M
COUNTY	LEA	STATE	NM
DESCRIPTION		283' FSL & 230'	FWL

DISTANCE & DIRECTION

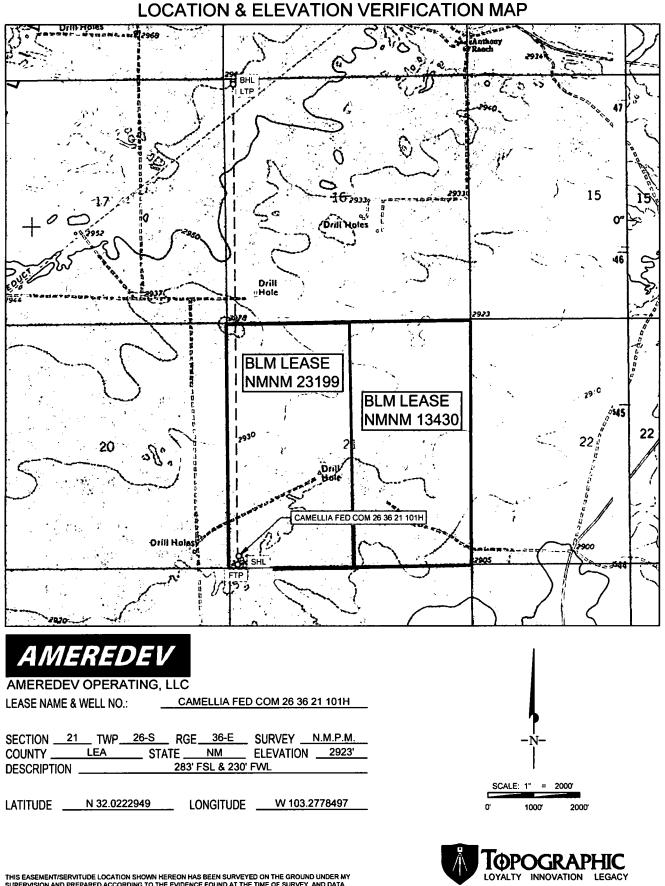
FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205	
±8.0 MILES, THENCE WEST (RIGHT) ON PROPOSED RD. ±1.1	
MILES TO A POINT ±285 FEET SOUTHWEST OF THE	_
LOCATION.	

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

 Toppographic

 1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140


 TELEPHONE: (417) 744-7534

 2803 NORTH BIG SPRING • MIDLAND, TEXAS 76705

 TELEPHONE: (42) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743

 WW. TOPOGRAPHIC.COM

S:SURVEYAMEREDEV_OPERATING_LLC:CAMELLIA_FED_COMFINAL_PRODUCTS/LO_CAMELLIA_FED_COM_26_36_21_101H.DWG 12/20/2018 5:28:38 PM cceston

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET. LOYALTY INNOVATION LEGACY 1400 EVERMAN PARKWAY, Site, 146 - FT, WORTH, TEXAS 76140 TELEPHONE: (617) 744-7512 - FAX (617) 744-7554 2003 NORTH BIG SPRING - MIDLAND, TEXAS 76705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 - FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

S:\SURVEYAMEREDEV_OPERATING_LLC:CAMELLIA_FED_COMFINAL_PRODUCTS\LO_CAMELLIA_FED_COM_26_36_21_101H.DWG 12/20/2018 5:28:37 PM ccaston

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

States F

.- - -

APD ID: 10400029847

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Submission Date: 04/27/2018

Well Type: OIL WELL

Well Work Type: Drill

Stoph groot subsub-out subconstruction of sub-Show Final Text

- × - S

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER ANHYDRITE	1054	1876	1876	ANHYDRITE	NONE	No
2	SALADO	-1170	2224	2224	SALT	NONE	No
3	TANSILL	-2152	3206	· 3206	LIMESTONE	NONE	No
4	CAPITAN REEF	-2567	3621	3621	LIMESTONE	USEABLE WATER	No
5	LAMAR	-3898	4952	4952	LIMESTONE	NONE	No
6	BELL CANYON	-4032	5086	5086	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-6051	7105	7105	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-7075	8129	8129	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-8577	9631	9631	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-9221	10275	10275	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-9752	10806	10806	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-10468	11522	11522	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-10701	11755	11755	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Pressure Rating (PSI): 10M Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. **Requesting Variance?** YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190314091827.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190314091844.pdf

5M_BOP_System_20190314091844.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190314091845.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190314091922.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	2001	0	2001	2923		2001	J-55		OTHER - BTC	4.59	0.65	DRY	6.72	DRY	7.86
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10931	0	10931	2923		10931	HCL -80		OTHER - BTC	1.26	1.22	DRY	2.14	DRY	2.15
-	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22775	0	11969	2923		22775	HCP -110		OTHER - BTC	1.72	1.85	DRY	2.74	DRY	3.04

Casing Attachments

Well Number: 101H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_54.50_J55_SEAH_20190314092112.pdf

 $Camellia_Fed_Com_26_36_21_101H__Wellbore_Diagram_and_CDA_20190404094442.pdf$

Casing ID: 2 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

9.625_40_SeAH80HC_4100_Collapse_20190314092327.pdf

Camellia_Fed_Com_26_36_21_101H___Wellbore_Diagram_and_CDA_20190404094458.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.5_20_P110HP_Eagle_SFH_20190314092446.pdf

Camellia_Fed_Com_26_36_21_101H___Wellbore_Diagram_and_CDA_20190404094525.pdf

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Section 4 - Cement											
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1615	1031	1.76	13.5	1815. 28	50	CLASS C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		1615	2001	200	1.34	14.8	268	100	CLASS C	Salt
INTERMEDIATE	Lead	5002	0	4152	684	2.47	11.9	1690. 63	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		4152	5002	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5002	0	9675	1572	2.47	11.9	3882. 88	25	Class H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		9675	1093 1	300	1.24	14.5	371.1	25	Class H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2277 5	4863	1.34	14.2	6516. 23	25	CLASS H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Semi-Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	2001	WATER-BASED MUD	8.4	8.6							
2001	1093 1	OTHER : Diesel Brine Emulsion	8.5	9.4							
1093 1	1196 9	OIL-BASED MUD	10.5	12.5							

Section 6 - Test, Logging, Coring

.

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2366.82

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180427144330.pdf

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

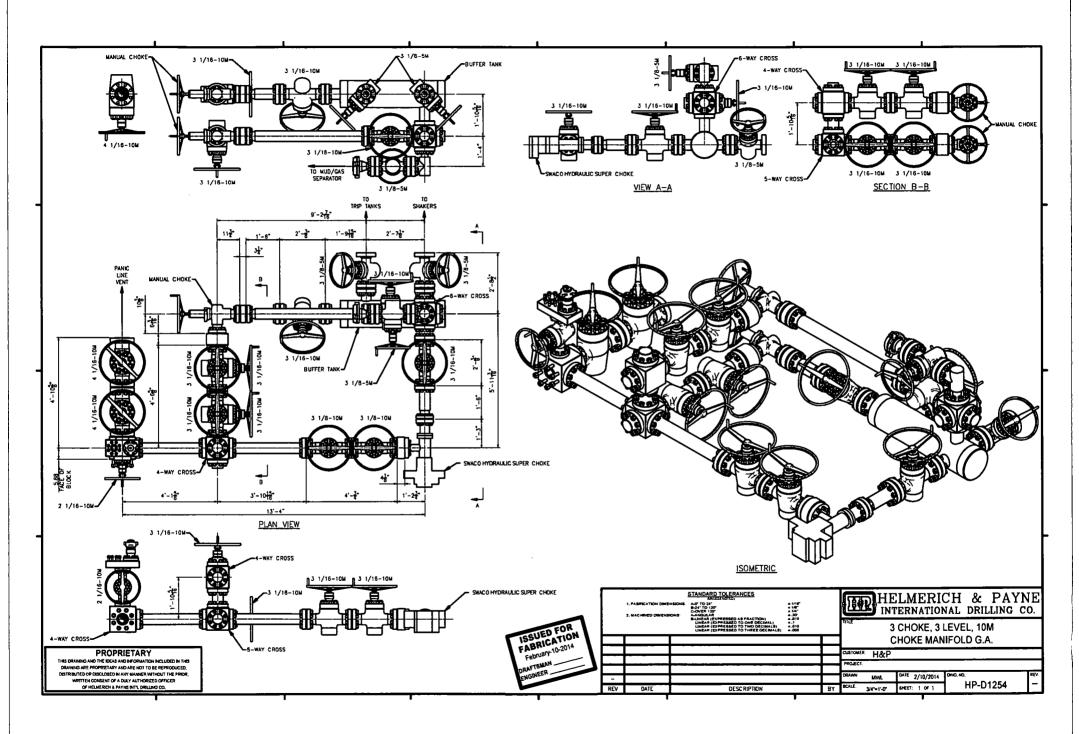
Cam101_DR_20190314093424.pdf

Cam101_LLR_20190314093425.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190314093440.pdf

Pressure Control Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190314093441.pdf

Other proposed operations facets description:


4_String contingency plan attached

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190314093455.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190314093555.pdf Requested_Exceptions___3_String_Revised_01312019_20190314093556.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
- 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Upper Pipe Rams Upper Pipe Rams	Lower Pipe Rams
Upper Pipe Rams	Lower Pine Rams
	Lotter ripe humo
Upper Pipe Rams	Lower Pipe Rams
Upper Pipe Rams	Lower Pipe Rams
Blind Rams	
l	Upper Pipe Rams

WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

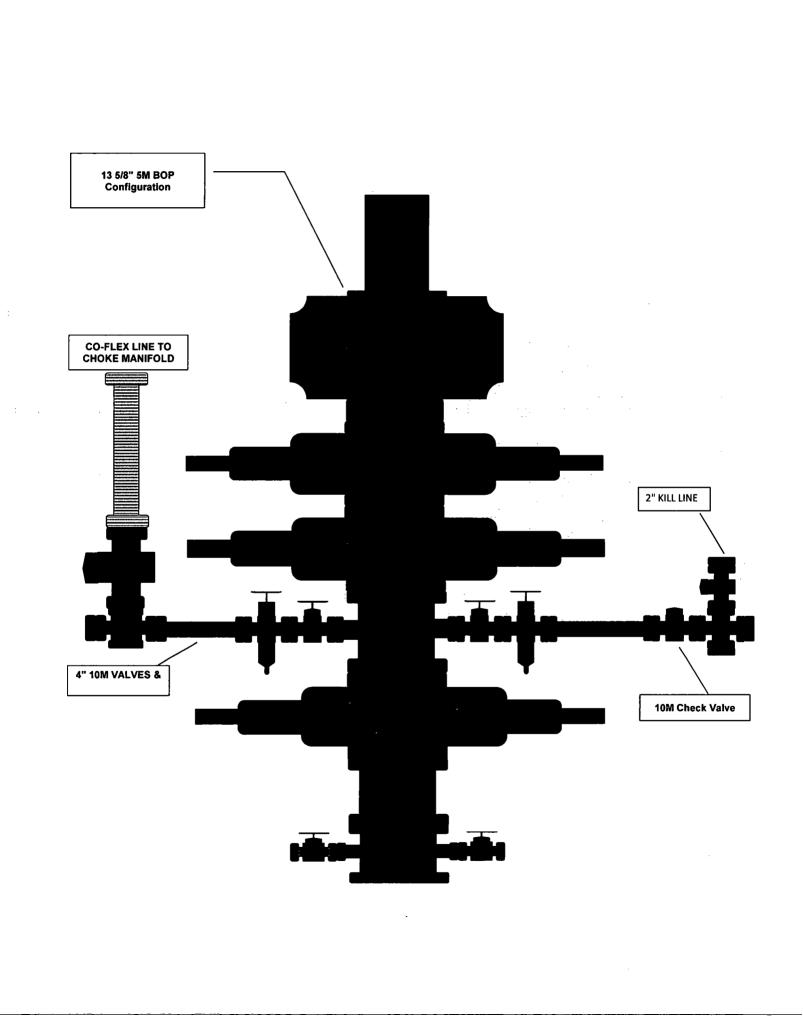
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

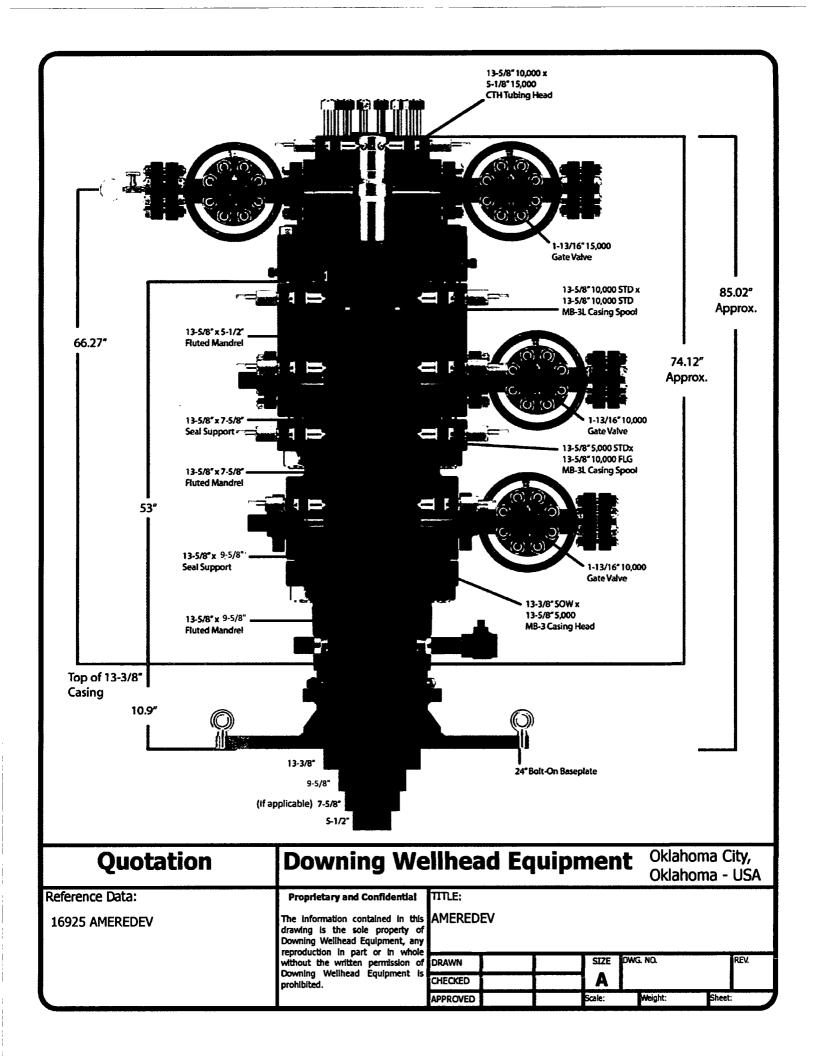
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

<u>13-3/8" 54.50# .380 J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI
BTC	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 101H	Co. Well ID:	XXXXXXX
SHL:	Sec. 21 26S-36E 283' FSL & 230' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,969'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,775'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cement	Mud Weight
17.5"		Rustler	1,876'		1,231 Sacks TOC 0'	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,001'		1,231 TOC	<u>5</u> co
		Salado	2,224'			
		Tansill	3,206'			
		Capitan Reef	3,621'		S	
		Lamar	4,952'		884 Sacks TOC 0'	mulsi
		DV Tool	5,002'		884 Sac TOC 0'	
12.25"		Bell Canyon	5,086'			- 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,105'			og Die
		Bone Spring Lime	8,129'			9.4 pp
		First Bone Spring	9,631'			8.5 -
		Second Bone Spring	10,275'		s s	2 2
		Third Bone Spring Upper	10,806'		1,723 Sacks TOC 0'	
		9.625" 40# L-80HC BTC	10,931'		1,723 S TOC 0' 50% Ev	
8.5"		Third Bone Spring	11,522'			. 2
12° Build		Wolfcamp A	11,755'			10.5 - 12.5 ppg OBM
@ 11,438' MD						2 bt
thru	5.5" 2	20# P-110CYHP BTC	22,775'		cks	- 12
12,363' MD	Target W	olfcamp A 11969 TVD // 2277	'5 MD		Sa o.a	10.5
L					4,863 Sacks TOC 0'	

Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	2,001'	13.375	68	J-55	BTC				
Intermediate	12.25	10,931'	9.625	40	HCL-80	BTC				
Prod Segment A	8.5	11,438'	5.5	20	CYHP-110	BTC				
Prod Segment B	8.5	22,775'	5.5	20	CYHP-110	BTC				

Casing Design and Safety Factor Check

	Chec	k Surface	Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
Safety Factors								
1.56	7.86	6.72	4.59	0.65				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
Safety Factors								
2.31	2.15	2.14	1.26	1.22				
Check Prod Casing, Segment A								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.04	2.74	1.72	1.85				
	Check Pro	od Casing,	Segment B					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	68.55	61.68	1.64	1.85				

<u>9.625" 40# .395"</u>

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
BTC	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 101H	Co. Well ID:	XXXXXX
SHL:	Sec. 21 26S-36E 283' FSL & 230' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,969'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,775'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops		Logs Cement	Mud Weight
17.5"	Rustler	1,876'	1,231 Sacks TOC 0' 100% Excess	8.4-8.6 ppg WBM
4	13.375" 68# J-55 BTC	2,001'	1.1	
	Salado	2,224'		
	Tansill	3,206'		
	Capitan Reef	3,621'	ess	5
	Lamar	4,952'	884 Sacks TOC 0' 50% Excess	imulsi
	DV Tool	5,002'	884 TO	Ш Ц
12.25"	Bell Canyon	5,086'		8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon	7,105'		pg Die
	Bone Spring Lime	8,129'		9.4 pl
	First Bone Spring	9,631'		8.5 -
	Second Bone Spring	10,275'	icks ess	
	Third Bone Spring Upper	10,806'	1,723 Sacks TOC 0' 50% Excess	
	9.625" 40# L-80HC BTC	10,931'	1,7 TO 50 ⁰	
8.5"	Third Bone Spring	11,522'		Σ
12° Build	Wolfcamp A	11,755'		10.5 - 12.5 ppg OBM
@ 11,438' MD				2 bi
thru	5.5" 20# P-110CYHP BTC	22,775'	s ss	- 12
12,363' MD	Target Wolfcamp A 11969 TVD // 227	75 MD	0, Sac	10.5
			4,863 Sacks TOC 0' 25% Excess	

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,001'	13.375	68	J-55	BTC
Intermediate	12.25	10,931'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	11,438'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	22,775'	5.5	20	CYHP-110	BTC

Casing Design and Safety Factor Check

	Chec	k Surface	Casing		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
14.375	1,069	915	4,100	3,450	
	S	afety Facto	ors		
1.56	7.86	6.72	4.59	0.65	
	Check I	ntermedia	te Casing		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
7.625	940	558	6700	9460	
	S	afety Facto	ors		
2.31	2.15	2.14	1.26	1.22	
	Check Pro	od Casing,	Segment A		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
5.777	728	655	12780	14360	
	S	afety Facto	ors		
1.36	3.04	2.74	1.72	1.85	
Check Prod Casing, Segment B					
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
5.777	728	655	12780	14360	
	S	afety Facto	ors		
1.36	68.55	61.68	1.64	1.85	

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
ECHANICAL PROPERTIES		· · · ·	
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
INTENETONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

1) Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

- Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area. 2)
- Uniaxial bending rating shown is structural only, and equal to compression efficiency. 3)
- Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up 4) torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor. 5)
- 6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

> U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120

1-877-893-9461 connections@uss.com Houston, TX 77064 www.usstubular.com

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 101H	Co. Well ID:	XXXXXX
SHL:	Sec. 21 26S-36E 283' FSL & 230' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,969'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,775'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	<u></u>	Formation Tops		Logs	Cement	Mud Weight
17.5"		Rustler	1,876'		1,231 Sacks TOC 0'	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,001'		1,231 TOC	8.4
		Salado	2,224'			
		Tansill	3,206'			
		Capitan Reef	3,621'		S	χ E
		Lamar	4,952'		884 Sacks TOC 0'	e Emulsion
		DV Tool	5,002'		884 Sad TOC 0'	ine E
12.25"		Bell Canyon	5,086'			8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,105'			og Die
		Bone Spring Lime	8,129'			9.4 pi
		First Bone Spring	9,631'			8.5 -
		Second Bone Spring	10,275'		s S	n N
		Third Bone Spring Upper	10,806'		1,723 Sacks TOC 0'	
		9.625" 40# L-80HC BTC	10,931'		1,72 100	Ôc
8.5"		Third Bone Spring	11,522'			Σ
12° Build		Wolfcamp A	11,755'			10.5 - 12.5 ppg OBM
@ 11,438' MD	L					5 pp
thru	5.5"	20# P-110CYHP BTC	22,775'		cks	- 12
12,363' MD	Target V	Volfcamp A 11969 TVD // 2277	'5 MD		a Sa	10.5
L					4,863 Sacks TOC 0'	10.5 - 1

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,001'	13.375	68	J-55	BTC
Intermediate	12.25	10,931'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	11,438'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	22,775'	5.5	20	CYHP-110	BTC

Casing Design and Safety Factor Check

	Chec	k Surface	Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.375	1,069	915	4,100	3,450			
	Safety Factors						
1.56	7.86	6.72	4.59	0.65			
	Check I	ntermedia	te Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
Safety Factors							
2.31	2.15	2.14	1.26	1.22			
	Check Pro	od Casing,	Segment A				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
1.36	3.04	2.74	1.72	1.85			
Check Prod Casing, Segment B							
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777 728 655 12780 14360							
	S	afety Facto	ors				
1.36	68.55	61.68	1.64	1.85			

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - **b.** Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- **b.** Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. Breathing Apparatus:

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. <u>Auxiliary Rescue Equipment:</u>

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- **b.** Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

AMEREDEV

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.
- 8. <u>Mud program:</u>
 - a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.
- 9. Metallurgy:
 - a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
 - b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
 - Have received training in the:
 - $\circ \quad \text{Detection of } H_2S \text{ and} \\$
 - o Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799					
Key Personnel:					
Name	Title	Office	Mobile		
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810		
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996		
Blake Estrada	Construction Foreman		432-385-5831		

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

CAM/AZ CAM/AZ #1N Camellia 101H

Weilbore #1

Plan: Design #1

Standard Planning Report

16 January, 2019

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	EDM5000 Ameredev Opera CAM/AZ CAM/AZ #1N Camellia 101H Weilbore #1 Design #1	nting, LLC.		Local Co-ordia TVD Reference MD Reference North Referen Survey Calcul	9: : Ce:	KB @ KB @ Grid	Camellia 101H) 2951.0usft) 2951.0usft num Curvature	
Project	CAM/AZ							
Map System: Geo Datum: Map Zone:	US State Plane 198 North American Dat New Mexico Easter	tum 1983		System Datum:		Mean S	ea Level	
Site	CAM/AZ #1N							
Site Position: From: Position Uncertainty:	Lat/Long	0.0 usft	Northing: Easting: Slot Radius:	373,448. 868,493. 13	.74 usft Lo	titude: ngitude: id Convergence	:	32° 1' 20.266 N 103° 16' 39.795 V 0.56 °
Well	Camellia 101H				·····			
Well Position Position Uncertainty	+N/-S +E/-W	-0.8 usft -39.9 usft 0.0 usft	Northing: Easting: Wellhead Elev	8	73,447.48 us 58,453.80 us		le:	32° 1' 20.262 N 103° 16' 40.259 W 2,924.0 usf
	Wellbore #1	0.0 431	Weinieau Lie			Ground		2,024.0 03
Wellbore		-						
Magnetics	Model Name		Sample Date	Declination (°)		Dip Angle (°)		Field Strength (nT)
	IGRF2	015	1/11/2019		6.63		59.90	47,691.05418696
Design	Design #1			······		·····		
Audit Notes: Version:			Phase:	PROTOTYPE	Tie Or	Depth:	0.0	
Vertical Section:			rom (TVD) isft)	+N/-S (usft)	+E/-W (usft)		Direction (°)	
······································	· · · · · · · · · · · · · · · · · · ·).0	0.0	0.0		359.25	
Plan Survey Tool Pro	gram Da	a te 1/16/2	2019		· · ·			· · · · · · · · · · · · · · · · · · ·
Depth From (usft)	Depth To (usft) Sur	vey (Wellb	ore)	Tool Name	I	Remarks		
1 0.0	22,774.7 Des	ign #1 (We	libore #1)	MWD				

Planning Report

Databasa:	EDM5000	Lecel Co-ordinate References	Well Camellia 101H
Company:	Ameredev Operating, LLC.	TVD References	KB @ 2951.0usft
Projact:	CAM/AZ	MD References	KB @ 2951.0usft
Sila:	CAM/AZ #1N	North References	Grid
Wall:	Camellia 101H	Survey Calculation Mathods	Minimum Curvature
Wellborer Destjur	Wellbore #1 Design #1	edite) etienneennee	

Plan Sections

Measured Depth (usit)	lacilaciica (f)	Azlauth (9)	Vərilcel Depili (USA)	-1114-S (112611)	-34W (iieu)	Dogleg Refo (74001164)	Evilid Refo (FAOOUEGI)	TUTA Refo (FICOUSII)	HO (P)	Tenget
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	204.00	2,299.5	-14.3	-6.4	2.00	2.00	0.00	204.00	
6,724.8	6.00	204.00	6,700.0	-436.9	-194.5	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-451.2	-200.9	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	-451.2	-200.9	0.00	0.00	0.00	0.00	
8,825.3	6.00	204.00	8,799.5	-465.5	-207.3	2.00	2.00	0.00	204.00	
11,038.0	6.00	204.00	11,000.0	-676.8	-301.3	0.00	0.00	0.00	0.00	
11,338.0	0.00	0.00	11,299.5	-691.2	-307.7	2.00	-2.00	0.00	180.00	
11,438.6	0.00	0.00	11,400.0	-691.2	-307.7	0.00	0.00	0.00	0.00	
11,764.5	39.24	60.25	11,701.0	-637.9	-214.5	12.04	12.04	0.00	60.25	
12,362.8	90.00	359.42	11,969.0	-183.3	-28.0	12.04	8.48	-10.17	-66.63	Cam101 FTP
22,774.7	90.00	359.42	11,969.0	10,228.0	-134.3	0.00	0.00	0.00	0.00	Cam101 BHL

Planning Report

gruph of the second				=;
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 101H	1
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2951.0usft	7
Project:	CAM/AZ	MD Reference:	KB @ 2951.0usft	
Site:	CAM/AZ #1N	North Reference:	Grid	2
Well:	Camellia 101H	Survey Calculation Method:	Minimum Curvature	÷
Wellbore:	Weilbore #1			
Design:	Design #1			

Planned Survey

0.0 0.00 0.00 0.0 0.0 0.00 0.	Measured Depth (usft)		Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate {°/100usft)
100.0 0.00 100.0 0.0 0.0 0.00 0.00 0.00 300.0 0.00 0.00 300.0 0.0 0.00 0			· · · ·							· - · · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
300.0 0.00 300.0 0.0 0.0 0.0 0.00 0.00 500.0 0.00 0.00 500.0 0.0 0.00 0.										
440.0 0.00 400.0 0.0 0.0 0.00 0.00 0.00 560.0 0.00 560.0 0.00 560.0 0.00 <td< td=""><td>200.0</td><td>0.00</td><td>0.00</td><td>200.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
50.0 0.00 0.00 50.0 0.0 0.0 0.00 0.00 900.0 0.00 0.00 900.0 0.00 0.	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0 100 000 </td <td>400.0</td> <td>0.00</td> <td>0.00</td> <td>400.0</td> <td>0.0</td> <td>0.0[.]</td> <td>0.0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	400.0	0.00	0.00	400.0	0.0	0.0 [.]	0.0	0.00	0.00	0.00
700.0 0.00 <t< td=""><td>500.0</td><td>0.00</td><td>0.00</td><td>500.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0 0.00 <t< td=""><td>600.0</td><td>0.00</td><td>0.00</td><td>600.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0 0.00 0.00 900.0 0.00 <	700.0					0.0	0.0		0.00	
900.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,000.0 0.00 1,000.0 0.00										
1,100.0 0.00 0.00 1,100.0 0.0 0.00										
1,100.0 0.00 0.00 1,100.0 0.0 0.0 0.00 0.00 1,300.0 0.00 0.00 1,300.0 0.0 0.00	1 000 0	0.00	0.00	1 000 0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0 0.00 0.00 1,200.0 0.0 0.0 0.00 0.00 1,400.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,600.0 0.00 0.00 1,600.0 0.00 0.00 0.00 0.00 0.00 1,600.0 0.00 1,600.0 0.00										
				•						
1,400.0 0.00 1,600.0 0.00 0.00 0.00 0.00 0.00 0.00 1,560.0 0.00 0.00 1,600.0 0.0 0.00				•						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•						
1.600.0 0.00 1.600.0 0.00										
1,700.0 0.00 1,700.0 0.0 0.00				•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				•						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
2,300,0 6,00 204,00 2,299,5 -14.3 -64 -14.3 2,00 2,00 0,00 2,400,0 6,00 204,00 2,498,4 -33.4 -14.9 -33.2 0,00 0,00 0,00 2,600,0 6,00 204,00 2,498,4 -33.4 -14.9 -33.2 0,00 0,00 0,00 2,600,0 6,00 204,00 2,597,8 -43.0 -19.1 -42.7 0,00 0,00 0,00 2,600,0 6,00 204,00 2,766,7 -62.1 -27.6 61.7 0,00 0,00 0,00 0,00 2,600,0 6,00 204,00 2,986,6 -81.2 -36.1 -80.7 0,00 0,00 0,00 0,00 3,000,0 6,00 204,00 3,095.1 -90.7 -40.4 -90.2 0,00 <td>2,100.0</td> <td>2.00</td> <td>204.00</td> <td>2,100.0</td> <td>-1.6</td> <td>-0.7</td> <td>-1.6</td> <td>2.00</td> <td>2.00</td> <td>0.00</td>	2,100.0	2.00	204.00	2,100.0	-1.6	-0.7	-1.6	2.00	2.00	0.00
2,400.0 6.00 204.00 2,398.9 -23.9 -10.6 -23.7 0.00 0.00 0.00 2,500.0 6.00 204.00 2,498.4 -33.4 -14.9 -33.2 0.00 0.00 0.00 2,600.0 6.00 204.00 2,597.8 -43.0 -19.1 -42.7 0.00 0.00 0.00 2,600.0 6.00 204.00 2,597.8 -52.2 -23.4 -52.2 0.00 0.00 0.00 2,600.0 6.00 204.00 2,597.8 -52.1 -27.6 -61.7 0.00 0.00 0.00 3,000.0 6.00 204.00 3,995.1 -90.7 -40.4 -90.2 0.00 0.00 0.00 3,000.0 6.00 204.00 3,981.4 -119.4 -53.2 -118.7 0.00 0.00 0.00 3,500.0 6.00 204.00 3,983.4 -119.4 -53.2 -118.7 0.00 0.00 0.00 3,500.0	2,200.0	4.00	204.00	2,199.8	-6.4	-2.8	-6.3	2.00	2.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,300.0	6.00	204.00	2,299.5	-14.3	-6.4	-14.3	2.00	2.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,400.0	6.00	204.00	2,398.9	-23.9	-10.6	-23.7	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,500.0	6.00	204.00	2,498.4	-33.4	-14.9	-33.2	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,600.0	6.00	204.00	2,597.8	-43.0	-19.1	-42.7	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,700.0	6.00	204.00	2,697.3	-52.5	-23.4	-52.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,800.0	6.00	204.00	2,796.7	-62.1	-27.6	-61.7	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,900.0	6.00	204.00	2,896.2	-71.6	-31.9	-71.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,000.0	6.00	204.00	2,995.6	-81.2	-36.1	-80.7	0.00	0.00	0.00
3,300.0 6.00 204.00 3,294.0 -109.8 -48.9 -109.2 0.00 0.00 0.00 3,400.0 6.00 204.00 3,393.4 -119.4 -53.2 -118.7 0.00 0.00 0.00 3,500.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,600.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,700.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,800.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,989.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,000.0 6.00 204.00 4,286.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,400.0	3,100.0	6.00	204.00	3,095.1	-90.7	-40.4	-90.2	0.00	0.00	0.00
3,300.0 6,00 204.00 3,294.0 -109.8 -48.9 -109.2 0.00 0.00 0.00 3,400.0 6.00 204.00 3,393.4 -119.4 -53.2 -118.7 0.00 0.00 0.00 0.00 3,500.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,600.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,700.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,800.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,189.0 -195.8 -87.2 -194.6 0.00 0.00 0.00 <t< td=""><td>3,200.0</td><td>6.00</td><td>204.00</td><td>3,194.5</td><td>-100.3</td><td>-44.6</td><td>-99.7</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	3,200.0	6.00	204.00	3,194.5	-100.3	-44.6	-99.7	0.00	0.00	0.00
3,400.0 6.00 204.00 3,393.4 -119.4 -53.2 -118.7 0.00 0.00 0.00 3,500.0 6.00 204.00 3,492.9 -128.9 -57.4 -128.2 0.00 0.00 0.00 3,600.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,700.0 6.00 204.00 3,691.8 -148.0 -65.9 -147.1 0.00 0.00 0.00 3,800.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 3,900.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,288.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,400.0										
3,600.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,700.0 6.00 204.00 3,691.8 -148.0 -65.9 -147.1 0.00 0.00 0.00 3,800.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,800.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,288.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,300.0 6.00 204.00 4,387.9 -214.9 -95.7 -213.6 0.00 0.00 0.00 4,600.0 6.00 204.00 4,487.4 -224.4 -99.9 -223.1 0.00 </td <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				•						
3,600.0 6.00 204.00 3,592.3 -138.5 -61.7 -137.7 0.00 0.00 0.00 3,700.0 6.00 204.00 3,691.8 -148.0 -65.9 -147.1 0.00 0.00 0.00 3,800.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,800.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,288.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,300.0 6.00 204.00 4,387.9 -214.9 -95.7 -213.6 0.00 0.00 0.00 4,600.0 6.00 204.00 4,487.4 -224.4 -99.9 -223.1 0.00 </td <td>3,500.0</td> <td>6.00</td> <td>204.00</td> <td>3,492.9</td> <td>-128.9</td> <td>-57.4</td> <td>-128.2</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	3,500.0	6.00	204.00	3,492.9	-128.9	-57.4	-128.2	0.00	0.00	0.00
3,700.0 6.00 204.00 3,691.8 -148.0 -65.9 -147.1 0.00 0.00 0.00 3,800.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,900.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,189.0 -195.8 -87.2 -194.6 0.00 0.00 0.00 4,300.0 6.00 204.00 4,387.9 -214.9 -95.7 -213.6 0.00 0.00 0.00 4,400.0 6.00 204.00 4,487.4 -224.4 -99.9 -223.1 0.00 0.00 0.00 4,600.0 6.00 204.00 4,586.9 -234.0 -104.2 -232.6 0.00<				•						
3,800.0 6.00 204.00 3,791.2 -157.6 -70.2 -156.6 0.00 0.00 0.00 3,900.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,100.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,189.0 -195.8 -87.2 -194.6 0.00 0.00 0.00 4,300.0 6.00 204.00 4,288.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,400.0 6.00 204.00 4,387.9 -214.9 -95.7 -213.6 0.00 0.00 0.00 4,600.0 6.00 204.00 4,487.4 -224.4 -99.9 -223.1 0.00 0.00 0.00 4,600.0 6.00 204.00 4,586.9 -234.0 -104.2 -232.6 0.00<				•						
3,900.0 6.00 204.00 3,890.7 -167.1 -74.4 -166.1 0.00 0.00 0.00 4,000.0 6.00 204.00 3,990.1 -176.7 -78.7 -175.6 0.00 0.00 0.00 4,000.0 6.00 204.00 4,089.6 -186.2 -82.9 -185.1 0.00 0.00 0.00 4,200.0 6.00 204.00 4,189.0 -195.8 -87.2 -194.6 0.00 0.00 0.00 4,300.0 6.00 204.00 4,288.5 -205.3 -91.4 -204.1 0.00 0.00 0.00 4,400.0 6.00 204.00 4,387.9 -214.9 -95.7 -213.6 0.00 0.00 0.00 4,600.0 6.00 204.00 4,487.4 -224.4 -99.9 -223.1 0.00 0.00 0.00 4,600.0 6.00 204.00 4,586.9 -234.0 -104.2 -232.6 0.00 0.00 0.00 4,600.										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,000.0	6.00	204.00	3,990.1	-176.7	-78.7	-175.6	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
4,400.06.00204.004,387.9-214.9-95.7-213.60.000.000.004,500.06.00204.004,487.4-224.4-99.9-223.10.000.000.004,600.06.00204.004,586.9-234.0-104.2-232.60.000.000.004,700.06.00204.004,686.3-243.5-108.4-242.10.000.000.004,800.06.00204.004,785.8-253.1-112.7-251.60.000.000.004,900.06.00204.004,885.2-262.6-116.9-261.10.000.000.005,000.06.00204.004,984.7-272.2-121.2-270.50.000.000.005,000.06.00204.005,084.1-281.7-125.4-280.00.000.000.005,200.06.00204.005,183.6-291.3-129.7-289.50.000.000.00										
4,500.06.00204.004,487.4-224.4-99.9-223.10.000.000.004,600.06.00204.004,586.9-234.0-104.2-232.60.000.000.004,700.06.00204.004,686.3-243.5-108.4-242.10.000.000.004,800.06.00204.004,785.8-253.1-112.7-251.60.000.000.004,900.06.00204.004,885.2-262.6-116.9-261.10.000.000.005,000.06.00204.004,984.7-272.2-121.2-270.50.000.000.005,100.06.00204.005,084.1-281.7-125.4-280.00.000.000.005,200.06.00204.005,183.6-291.3-129.7-289.50.000.000.00										
4,600.0 6.00 204.00 4,586.9 -234.0 -104.2 -232.6 0.00 0.00 0.00 4,700.0 6.00 204.00 4,686.3 -243.5 -108.4 -242.1 0.00 0.00 0.00 4,800.0 6.00 204.00 4,785.8 -253.1 -112.7 -251.6 0.00 0.00 0.00 4,900.0 6.00 204.00 4,885.2 -262.6 -116.9 -261.1 0.00 0.00 0.00 5,000.0 6.00 204.00 4,984.7 -272.2 -121.2 -270.5 0.00 0.00 0.00 5,100.0 6.00 204.00 5,084.1 -281.7 -125.4 -280.0 0.00 0.00 0.00 5,200.0 6.00 204.00 5,183.6 -291.3 -129.7 -289.5 0.00 0.00 0.00										
4,700.06.00204.004,686.3-243.5-108.4-242.10.000.000.004,800.06.00204.004,785.8-253.1-112.7-251.60.000.000.004,900.06.00204.004,885.2-262.6-116.9-261.10.000.000.005,000.06.00204.004,984.7-272.2-121.2-270.50.000.000.005,100.06.00204.005,084.1-281.7-125.4-280.00.000.000.005,200.06.00204.005,183.6-291.3-129.7-289.50.000.000.00	•									
4,800.0 6.00 204.00 4,785.8 -253.1 -112.7 -251.6 0.00 0.00 0.00 4,900.0 6.00 204.00 4,885.2 -262.6 -116.9 -261.1 0.00 0.00 0.00 5,000.0 6.00 204.00 4,984.7 -272.2 -121.2 -270.5 0.00 0.00 0.00 5,100.0 6.00 204.00 5,084.1 -281.7 -125.4 -280.0 0.00 0.00 0.00 5,200.0 6.00 204.00 5,183.6 -291.3 -129.7 -289.5 0.00 0.00 0.00										
4,900.06.00204.004,885.2-262.6-116.9-261.10.000.000.005,000.06.00204.004,984.7-272.2-121.2-270.50.000.000.005,100.06.00204.005,084.1-281.7-125.4-280.00.000.000.005,200.06.00204.005,183.6-291.3-129.7-289.50.000.000.00										
5,000.06.00204.004,984.7-272.2-121.2-270.50.000.000.005,100.06.00204.005,084.1-281.7-125.4-280.00.000.000.005,200.06.00204.005,183.6-291.3-129.7-289.50.000.000.00										
5,100.0 6.00 204.00 5,084.1 -281.7 -125.4 -280.0 0.00 0.00 0.00 0.00 5,200.0 6.00 204.00 5,183.6 -291.3 -129.7 -289.5 0.00 0.00 0.00 0.00										
5,200.0 6.00 204.00 5,183.6 -291.3 -129.7 -289.5 0.00 0.00 0.00				•						
5,300.0 6.00 204.00 5,283.0 -300.8 -133.9 -299.0 0.00 0.00 0.00	5,300.0	6.00	204.00	5,283.0	-300.8	-133.9	-299.0	0.00	0.00	0.00

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 101H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2951.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2951.0usft	
Site:	CAM/AZ #1N	North Reference:	Grid	
Well:	Camellia 101H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			

Planned Survey

	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
-	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	5,400.0	6.00	204.00	5,382.5	-310.4	-138.2	-308.5	0.00	0.00	0.00
	5,500.0	6.00	204.00	5,481.9	-319.9	-142.4	-318.0	0.00	0.00	0.00
	5,600.0	6.00	204.00	5,581.4	-329.5	-146.7	-327.5	0.00	0.00	0.00
	5,700.0	6.00	204.00	5,680.8	-339.0	-150.9	-337.0	0.00	0.00	0.00
	5,800.0	6.00	204.00	5,780.3	-348.6	-155.2	-346.5	0.00	0.00	0.00
	5,900.0	6.00	204.00	5,879.7	-358.1	-159.4	-356.0	0.00	0.00	0.00
	6,000.0	6.00	204.00	5,979.2	-367.7	-163.7	-365.5	0.00	0.00	0.00
	6,100.0	6.00	204.00	6,078.6	-377.2	-167.9	-375.0	0.00	0.00	0.00
	6,200.0	6.00	204.00	6,178.1	-386.8	-172.2	-384.5	0.00	0.00	0.00
	6,300.0	6.00	204.00	6,277.5	-396.3	-176.4	-394.0	0.00	0.00	0.00
	6,400.0	6.00	204.00	6,377.0	-405.9	-180.7	-403.4	0.00	0.00	0.00
	6,500.0	6.00	204.00	6,476.4	-415.4	-184.9	-412.9	0.00	0.00	0.00
	6,600.0	6.00	204.00	6,575.9	-425.0	-189.2	-422.4	0.00	0.00	0.00
	6,700.0	6.00	204.00	6,675.3	-434.5	-193.5	-431.9	0.00	0.00	0.00
	6,724.8	6.00	204.00	6,700.0	-436.9	-194.5	-434.3	0.00	0.00	0.00
	6,800.0	4.50	204.00	6,774.9	-443.2	-197.3	-440.5	2.00	-2.00	0.00
	6,900.0	2.50	204.00	6,874.7	-448.7	-199.8	-446.1	2.00	-2.00	0.00
	7,000.0	0.50	204.00	6,974.7	-451.1	-200.8	-448.4	2.00	-2.00	0.00
	7,024.8	0.00	0.00	6,999.5	-451.2	-200.9	-448.5	2.00	-2.00	0.00
	7,100.0	0.00	0.00	7,074.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,200.0	0.00	0.00	7,174.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,300.0	0.00	0.00	7,274.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,400.0	0.00	0.00	7,374.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,500.0	0.00	0.00	7,474.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,600.0	0.00	0.00	7,574.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,700.0	0.00	0.00	7,674.7	-451.2	-200. 9	-448.5	0.00	0.00	0.00
	7,800.0	0.00	0.00	7,774.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	7,900.0	0.00	0.00	7,874.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,000.0	0.00	0.00	7,974.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,100.0	0.00	0.00	8,074.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,200.0	0.00	0.00	8,174.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
Ì	8,300.0	0.00	0.00	8,274.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,400.0	0.00	0.00	8,374.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,500.0	0.00	0.00	8,474.7	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,525.3	0.00	0.00	8,500.0	-451.2	-200.9	-448.5	0.00	0.00	0.00
	8,600.0	1.49	204.00	8,574.7	-452.1	-201.3	-449.4	2.00	2.00	0.00
	8,700.0	3.49	204.00	8,674.6	-456.1	-203.1	-453.4	2.00	2.00	0.00
	8,800.0	5.49	204.00	8,774.2	-463.2	-206.2	-460.5	2.00	2.00	0.00
	8,825.3	6.00	204.00	8,799.5	-465.5	-207.3	-462.8	2.00	2.00	0.00
	8,900.0	6.00	204.00	8,873.7	-472.7	-210.4	-469.9	0.00	0.00	0.00
	9,000.0	6.00	204.00	8,973.2	-482.2	-214.7	-479.4	0.00	0.00	0.00
	9,100.0	6.00	204.00	9,072.6	-491.8	-218.9	-488.9	0.00	0.00	0.00
	9,200.0	6.00	204.00	9,172.1	-501.3	-223.2	-498.3	0.00	0.00	0.00
	9,300.0	6.00	204.00	9,271.5	-510.9	-227.5	-507.8	0.00	0.00	0.00
	9,400.0	6.00	204.00	9,371.0	-520.4	-231.7	-517.3	0.00	0.00	0.00
	9,500.0	6.00	204.00	9,470.4	-530.0	-236.0	-526.8	0.00	0.00	0.00
	9,600.0	6.00	204.00	9,569.9	-539.5	-240.2	-536.3	0.00	0.00	0.00
	9,700.0	6.00	204.00	9,669.3	-549.1	-244.5	-545.8	0.00	0.00	0.00
	9,800.0	6.00	204.00	9,768.8	-558.6	-248.7	-555.3	0.00	0.00	0.00
	9,900.0	6.00	204.00	9,868.2	-568.2	-253.0	-564.8	0.00	0.00	0.00
	10,000.0	6.00	204.00	9,967.7	-577.7	-257.2	-574.3	0.00	0.00	0.00
i	10,100.0	6.00	204.00	10,067.1	-587.3	-261.5	-583.8	0.00	0.00	0.00
	10,100.0	6.00	204.00 204.00	10,067.1	-587.3 -596.8	-261.5 -265.7	-583.8 -593.3	0.00	0.00	0.00
	10,200.0	6.00	204.00	10,166.0	-596.6 -606.4	-265.7 -270.0	-602.8	0.00	0.00	0.00
	10,000.0	0.00	204.00	10,200.0	-300.4	-210.0	-302.0	0.00	0.00	0.00

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Carnellia 101H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2951.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2951.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 101H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		· · · · · · · · · · · · · · · · · · ·

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400.0	6.00	204.00	10,365.5	-615.9	-274.2	-612.3	0.00	0.00	0.00
10,400.0	6.00	204.00	10,464.9	-625.5	-274.2	-621.7	0.00	0.00	0.00
			•						
10,600.0	6.00	204.00	10,564.4	-635.0	-282.7	-631.2	0.00	0.00	0.00
10,700.0	6.00	204.00	10,663.8	-644.6	-287.0	-640.7	0.00	0.00	0.00
10,740.0	6.00	204.00	10,703.6	-648.4	-288.7	-644.5	0.00	0.00	0.00
Sec 28									
10,800.0	6.00	204.00	10,763.3	-654.1	-291.2	-650.2	0.00	0.00	0.00
10,900.0	6.00	204.00	10,862.8	-663.7	-295.5	-659.7	0.00	0.00	0.00
11,000.0	6.00	204.00	10,962.2	-673.2	-299.7	-669.2	0.00	0.00	0.00
11,038.0	6.00	204.00	11,000.0	-676.8	-299.7	-672.8	0.00	0.00	0.00
11,100.0	4.76	204.00	11,061.7	-682.1	-303.7	-678.1	2.00	-2.00	0.00
11,100.0	2.76	204.00	11,161.5	-688.1	-305.7	-684.0	2.00	-2.00	0.00
11,200.0	0.76	204.00	11,261.4	-690.9	-307.6	-686.8	2.00	-2.00	0.00
11,500.0									
11,338.0	0.00	0.00	11,299.5	-691.2	-307.7	-687.1	2.00	-2.00	0.00
11,400.0	0.00	0.00	11,361.4	-691.2	-307.7	-687.1	0.00	0.00	0.00
11,438.6	0.00	0.00	11,400.0	-691.2	-307.7	-687.1	0.00	0.00	0.00
11,500.0	7.40	60.25	11,461.3	-689.2	-304.3	-685.1	12.04	12.04	0.00
11,600.0	19.44	60.25	11,558.4	-677.7	-284.2	-673.9	12.04	12.04	0.00
11,700.0	31.48	60.25	11,648.5	-656.4	-246.9	-653.1	12.04	12.04	0.00
11,764.5	39.24	60.25	11,701.0	-637.9	-214.5	-635.0	12.04	12.04	0.00
11,800.0	41.10	54.28	11,728.2	-625.5	-195.3	-622.9	12.04	5.22	-16.83
11,900.0	47.72	39.85	11,799.8	-577.8	-144.7	-575.8	12.04	6.62	-14.42
12,000.0	55.78	28.43	11,861.7	-512.8	-101.2	-511.4	12.04	8.06	-11.42
12,100.0	64.71	19.11	11,911.4	-433.4	-66.6	-432.5	12.04	8.93	-9.32
12,144.1	68.83	15.45	11,928.8	-394.7	-54.5	-393.9	12.04	9.33	-8.29
Sec 21									
12,200.0	74.15	11.10	11,946.5	-343.1	-42.4	-342.5	12.04	9.52	-7.78
12,300.0	83.85	3.82	11,965.6	-246.0	-29.8	-245.6	12.04	9.70	-7.28
12,362.8	90.00	359.42	11,969.0	-183.3	-28.0	-182.9	12.04	9.79	-7.02
Cam101 FTP									
12,400.0	90.00	359.42	11,969.0	-146.1	-28.4	-145.8	0.00	0.00	0.00
12,400.0	90.00	359.42	11,969.0	-46.1	-20.4	-45.8	0.00	0.00	0.00
12,500.0	90.00	359.42	11,969.0	53.9	-29.4	-45.0	0.00	0.00	0.00
12,700.0	90.00	359.42	11,969.0	153.8	-31.5	154.2	0.00	0.00	0.00
12,800.0	90.00	359.42	11,969.0	253.8	-32.5	254.2	0.00	0.00	0.00
12,900.0	90.00	359.42	11,969.0	353.8	-33.5	354.2	0.00	0.00	0.00
13,000.0	90.00	359.42	11,969.0	453.8	-34.5	454.2	0.00	0.00	0.00
13,100.0	90.00	359.42	11,969.0	553.8	-35.6	554.2	0.00	0.00	0.00
13,200.0	90.00	359.42	11,969.0	653.8	-36.6	654.2	0.00	0.00	0.00
13,300.0	90.00	359.42	11,969.0	753.8	-37.6	754.2	0.00	0.00	0.00
13,400.0	90.00	359.42	11,969.0	853.8	-38.6	854.2	0.00	0.00	0.00
13,500.0	90.00	359.42	11,969.0	953.8	-39.6	954.2	0.00	0.00	0.00
13,600.0	90.00	359.42	11,969.0	1,053.8	-40.7	1,054.2	0.00	0.00	0.00
13,700.0	90.00	359.42	11,969.0	1,153.8	-41.7	1,154.2	0.00	0.00	0.00
13,800.0	90.00	359.42	11,969.0	1,253.8	-42.7	1,254.2	0.00	0.00	0.00
13,900.0	90.00	359.42	11,969.0	1,353.8	-43.7	1,354.2	0.00	0.00	0.00
14,000.0	90.00	359.42	11,969.0	1,453.8	-44.7	1,454.2	0.00	0.00	0.00
14,100.0	90.00	359.42	11,969.0	1,553.8	-45.8	1,554.2	0.00	0.00	0.00
14,200.0	90.00	359.42	11,969.0	1,653.8	-46.8	1,654.2	0.00	0.00	0.00
14,300.0	90.00	359.42	11,969.0	1,753.8	-47.8	1,754.2	0.00	0.00	0.00
14,400.0	90.00	359.42	11,969.0	1,853.8	-48.8	1,854.2	0.00	0.00	0.00
14,500.0	90.00	359.42	11,969.0	1,953.8	-49.8	1,954.2	0.00	0.00	0.00
14,600.0	90.00	359.42	11,969.0	2,053.7	-50.9	2,054.2	0.00	0.00	0.00

1/16/2019 9:13:10AM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 101H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2951.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2951.0usft	
Site:	CAM/AZ #1N	North Reference:	Grid	
Well:	Camellia 101H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
							· · ·		
14,700.0	90.00	359.42	11,969.0	2,153.7	-51.9	2,154.2	0.00	0.00	0.00
14,800.0	90.00	359.42	11,969.0	2,253.7	-52.9	2,254.2	0.00	0.00	0.00
14,900.0	90.00	359.42	11,969.0	2,353.7	-53.9	2,354.2	0.00	0.00	0.00
15,000.0	90.00	359.42	11,969.0	2,453.7	-55.0	2,454.2	0.00	0.00	0.00
15,100.0	90.00	359.42	11,969.0	2,553.7	-56.0	2,554.2	0.00	0.00	0.00
15,200.0	90.00	359.42	11,969.0	2,653.7	-57.0	2,654.2	0.00	0.00	0.00
15,300.0	90.00	359.42	11,969.0	2,753.7	-58.0	2,754.2	0.00	0.00	0.00
15,400.0	90.00	359.42	11,969.0	2,853.7	-59.0	2,854.2	0.00	0.00	0.00
15,500.0	90.00	359.42	11,969.0	2,953.7	-60.1	2,954.2	0.00	0.00	0.00
15,600.0	90.00	359.42	11,969.0	3,053.7	-61.1	3,054.2	0.00	0.00	0.00
15,700.0	90.00	359.42	11,969.0	3,153.7	-62.1	3,154.2	0.00	0.00	0.00
15,800.0	90.00	359.42	11,969.0	3,253.7	-63.1	3,254.2	0.00	0.00	0.00
15,900.0	90.00	359.42	11,969.0	3,353.7	-64.1	3,354.2	0.00	0.00	0.00
16,000.0	90.00	359.42	11,969.0	3,453.7	-65.2	3,454.2	0.00	0.00	0.00
16,100.0	90.00	359.42	11,969.0	3,553.7	-66.2	3,554.2	0.00	0.00	0.00
16,200.0	90.00	359.42	11,969.0	3,653.7	-67.2	3,654.2	0.00	0.00	0.00
16,300.0	90.00	359.42	11,969.0	3,753.7	-68.2	3,754.2	0.00	0.00	0.00
16,400.0	90.00	359.42	11,969.0	3,853.7	-69.2	3,854.2	0.00	0.00	0.00
16,500.0	90.00	359.42	11,969.0	3,953.6	-70.3	3,954.2	0.00	0.00	0.00
16,600.0	90.00	359.42	11,969.0	4,053.6	-71.3	4,054.2	0.00	0.00	0.00
16,700.0	90.00	359.42	11,969.0	4,153.6	-72.3	4,154.2	0.00	0.00	0.00
16,800.0	90.00	359.42	11,969.0	4,253.6	-73.3	4,254.2	0.00	0.00	0.00
16,900.0	90.00	359.42	11,969.0	4,353.6	-74.3	4,354.2	0.00	0.00	0.00
17,000.0	90.00	359.42	11,969.0	4,453.6	-75.4	4,454.2	0.00	0.00	0.00
17,100.0	90.00	359.42	11,969.0	4,553.6	-76.4	4,554.2	0.00	0.00	0.00
17,200.0	90.00	359.42	11,969.0	4,653.6	-77.4	4,654.2	0.00	0.00	0.00
17,300.0	90.00	359.42	11,969.0	4,753.6	-78.4	4,754.2	0.00	0.00	0.00
17,500.0									
17,400.0	90.00	359.42	11,969.0	4,853.6	-79.5	4,854.2	0.00	0.00	0.00
17,500.0	90.00	359.42	11,969.0	4,953.6	-80.5	4,954.2	0.00	0.00	0.00
17,544.4	90.00	359.42	11,969.0	4,998.0	-80.9	4,998.7	0.00	0.00	0.00
Sec 16									
17,600.0	90.00	359.42	11,969.0	5,053.6	-81.5	5,054.2	0.00	0.00	0.00
17,700.0	90.00	359.42	11,969.0	5,153.6	-82.5	5,154.2	0.00	0.00	0.00
17,800.0	90.00	359.42	11,969.0	5,253.6	-83.5	5,254.2	0.00	0.00	0.00
17,900.0	90.00	359.42	11,969.0	5,353.6	-84.6	5,354.2	0.00	0.00	0.00
17,900.0	90.00	359.42	11,969.0	5,353.6 5,453.6	-85.6	5,354.2 5,454.2	0.00	0.00	0.00
18,000.0	90.00	359.42	11,969.0	5,453.6 5,553.6	-85.6 -86.6	5,454.2 5,554.2	0.00	0.00	0.00
18,100.0 18,200.0	90.00	359.42 359.42	11,969.0	5,553.6 5,653.6	-87.6	5,554.2 5,654.2	0.00	0.00	0.00
18,300.0	90.00	359.42	11,969.0	5,753.6	-88.6	5,754.2	0.00	0.00	0.00
18,400.0	90.00	359.42	11,969.0	5,853.5	-89.7	5,854.2	0.00	0.00	0.00
18,500.0	90.00	359.42	11,969.0	5,953.5	-90.7	5,954.2	0.00	0.00	0.00
18,600.0	90.00	359.42	11,969.0	6,053.5	-91.7	6,054.2	0.00	0.00	0.00
18,700.0	90.00	359.42	11,969.0	6,153.5	-92.7	6,154.2	0.00	0.00	0.00
18,800.0	90.00	359.42	11,969.0	6,253.5	-93.7	6,254.2	0.00	0.00	0.00
			11,969.0	6,353.5	-93.7 -94.8	6,254.2	0.00	0.00	0.00
18,900.0	90.00	359.42						0.00	0.00
19,000.0	90.00	359.42	11,969.0	6,453.5	-95.8	6,454.2	0.00		
19,100.0	90.00	359.42	11,969.0	6,553.5	-96.8	6,554.2	0.00	0.00	0.00
19,200.0	90.00	359.42	11,969.0	6,653.5	-97.8	6,654.2	0.00	0.00	0.00
19,300.0	90.00	359.42	11,969.0	6,753.5	-98.9	6,754.2	0.00	0.00	0.00
19,400.0	90.00	359.42	11,969.0	6,853.5	-99.9	6,854.2	0.00	0.00	0.00
19,500.0	90.00	359.42	11,969.0	6,953.5	-100.9	6,954.2	0.00	0.00	0.00
19,600.0	90.00	359.42	11,969.0	7,053.5	-101.9	7,054.2	0.00	0.00	0.00
19,700.0	90.00	359.42	11,969.0	7,153.5	-102.9	7,154.2	0.00	0.00	0.00

i.

Ameredev Operating, LLC

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 101H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2951.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2951.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 101H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	х.
Design:	Design #1	2 	

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,800.0	90.00	359.42	11,969.0	7,253.5	-104.0	7,254.2	0.00	0.00	0.00
19,900.0	90.00	359.42	11,969.0	7,353.5	-105.0	7,354.2	0.00	0.00	0.00
20,000.0	90.00	359.42	11,969.0	7,453.5	-106.0	7,454.2	0.00	0.00	0.00
20,100.0	90.00	359.42	11,969.0	7,553.5	-107.0	7,554.2	0.00	0.00	0.00
20,200.0	90.00	359.42	11,969.0	7,653.5	-108.0	7,654.2	0.00	0.00	0.00
20,300.0	90.00	359.42	11,969.0	7,753.5	-109.1	7,754.2	0.00	0.00	0.00
20,400.0	90.00	359.42	11,969.0	7,853.4	-110.1	7,854.2	0.00	0.00	0.00
20,500.0	90.00	359.42	11,969.0	7,953.4	-111.1	7,954.2	0.00	0.00	0.00
20,600.0	90.00	359.42	11,969.0	8,053.4	-112.1	8,054.2	0.00	0.00	0.00
20,700.0	90.00	359.42	11,969.0	8,153.4	-113.1	8,154.2	0.00	0.00	0.00
20,800.0	90.00	359.42	11,969.0	8,253.4	-114.2	8,254.2	0.00	0.00	0.00
20,900.0	90.00	359.42	11,969.0	8,353.4	-115.2	8,354.2	0.00	0.00	0.00
21,000.0	90.00	359.42	11,969.0	8,453.4	-116.2	8,454.2	0.00	0.00	0.00
21,100.0	90.00	359.42	11,969.0	8,553.4	-117.2	8,554.2	0.00	0.00	0.00
21,200.0	90.00	359.42	11,969.0	8,653.4	-118.2	8,654.2	0.00	0.00	0.00
21,300.0	90.00	359.42	11,969.0	8,753.4	-119.3	8,754.2	0.00	0.00	0.00
21,400.0	90.00	359.42	11,969.0	8,853.4	-120.3	8,854.2	0.00	0.00	0.00
21,500.0	90.00	359.42	11,969.0	8,953.4	-121.3	8,954.2	0.00	0.00	0.00
21,600.0	90.00	359.42	11,969.0	9,053.4	-122.3	9,054.2	0.00	0.00	0.00
21,700.0	90.00	359.42	11,969.0	9,153.4	-123.4	9,154.2	0.00	0.00	0.00
21,800.0	90.00	359.42	11,969.0	9,253.4	-124.4	9,254.2	0.00	0.00	0.00
21,900.0	90.00	359.42	11,969.0	9,353.4	-125.4	9,354.2	0.00	0.00	0.00
22,000.0	90.00	359.42	11,969.0	9,453.4	-126.4	9,454.2	0.00	0.00	0.00
22,100.0	90.00	359.42	11,969.0	9,553.4	-127.4	9,554.2	0.00	0.00	0.00
22,200.0	90.00	359.42	11,969.0	9,653.4	-128.5	9,654.2	0.00	0.00	0.00
22,300.0	90.00	359.42	11,969.0	9,753.3	-129.5	9,754.2	0.00	0.00	0.00
22,400.0	90.00	359.42	11,969.0	9,853.3	-130.5	9,854.2	0.00	0.00	0.00
22,500.0	90.00	359.42	11,969.0	9,953.3	-131.5	9,954.2	0.00	0.00	0.00
22,600.0	90.00	359.42	11,969.0	10,053.3	-132.5	10,054.2	0.00	0.00	0.00
22,700.0	90.00	359.42	11,969.0	10,153.3	-133.6	10,154.2	0.00	0.00	0.00
Cam101 LTP					•				
22,774.7	90.00	359.42	11,969.0	10,228.0	-134.3	10,228.9	0.00	0.00	0.00
Cam101 BHL									

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	EDM5000 Ameredev Operating, LLC. CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1				Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:		Well Camellia 101H KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvature		
Design Targets		***						<u>, , , , , , , , , , , , , , , , , , , </u>	·····
Torrest Name									
Target Name - hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
Sec 28	0.00	0.00	10,236.0	-5.569.3	-174.8	367.878.13	868,279.00	32° 0' 25.171 N	103° 16' 42.920 W
 plan misses targe Polygon 						· · · · · · · · · · · · · · · · · · ·	000,270.00		
Point 1			10,236.0	0.0	0.0	367,878.13	868,279.00		
Point 2			10,236.0	5,283.8	-52.1	373,161.93	868,226.90		
Point 3			10,236.0	5,342.2	5,232.0	373,220.33	873,511.00		
Point 4			10,236.0	60.2	5,286.0	367,938.33	873,565.00		
Sec 21 - plan misses targe	0.00 t center by 260	0.00 4usft at 121.	11,767.0 29.1usft MD	-285.5 (11923.2 TVI	-226.9), -408.1 N, -5	373,161.95 8.4 E)	868,226.87	32° 1' 17.458 N	103° 16' 42.927 W
- Polygon									
Point 1			11,767.0	0.0	0.0	373,161.95	868,226.87		
Point 2			11,767.0	5,281.5	-54.5	378,443.45	868,172.37		
Point 3			11,767.0	5,336.0	5,230.6	378,497.95	873,457.47		
Point 4			11,767.0	58.4	5,284.2	373,220.35	873,511.07		
Sec 16	0.00	0.00	11,767.0	4,996.0	-281.4	378,443.47	868,172.36	32° 2' 9.723 N	103° 16' 42.961 W
 plan misses targe Polygon 	et center by 284	.6usft at 175	44.4usft MD	(11969.0 TVE), 4998.0 N, -8	80.9 E)			
Point 1			11,767.0	0.0	0.0	378,443.47	868,172.36		
Point 2			11,767.0	5,280.0	-53.4	383,723.47	868,118.96		
Point 3			11,767.0	5,332.5	5,230.8	383,775.97	873,403,16		
Point 4			11,767.0	54.4	5,285.1	378,497.87	873,457.46		
Cam101 LTP	0.00	0.00	11,969.0	10,178.0	-133.8	383,625.46	868,319.96	32° 3' 0.982 N	103° 16' 40.658 W
- plan misses targe - Point	et center by 24.7	7usft at 2270	0.0usft MD (11969.0 TVD,	10153.3 N, -1	33.6 E)			
Cam101 FTP - plan hits target ce - Point	0.00 enter	0.00	11,969.0	-183.3	-28.0	373,264.16	868,425.77	32° 1' 18.450 N	103° 16' 40.605 W
Cam101 BHL - plan hits target ce - Point	0.00 enter	0.00	11,969.0	10,228.0	-134.3	383,675.45	868,319.47	32° 3' 1.477 N	103° 16' 40.658 W

Ameredev Operating, LLC.

CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Footages

16 January, 2019

Ameredev Operating, LLC

Component					L	in sta Dafananaa	Mall Complia 101	
	Ameredev Operating, L CAM/AZ	LU.				inate Reference:	Well Camellia 101H	
					TVD Referen		KB @ 2951.0usft	
	CAM/AZ #1N				MD Referenc		KB @ 2951.0usft	
	Camellia 101H				North Refere		Grid	
	Wellbore #1				=	lation Method:	Minimum Curvature	
Design:	Design #1				Database:		EDM5000	
Project	CAM/AZ	·····	· · · ·	· ·		~		
Map System:	US State Plane 198	3			System Date	um:	Mean Sea Level	
Geo Datum:	North American Dat	um 1983						
Map Zone:	New Mexico Eastern	n Zone						<u></u>
Site	CAM/AZ #*	1N						
Site Position:			Northing:		373,448.30 usft	Latitude:		32° 1' 20.266 N
From:	Lat/Long		Easting:		868,493.74 usft	Longitude:		103° 16' 39.795 W
Position Uncertain	•	.0 usft	Slot Radi	US:	13-3/16 "	Grid Conve	rgence:	0.56 °
								······
Well	Camellia 1	01H					· · · · · · · · · · · · · · · · · · ·	
Well Position	+N/-S	0.0 usft	Northing:		373,447.48 usft	L	_atitude:	32° 1' 20.262 N
	+E/-W	0.0 usft	Easting:		868,453.80 usft	I	.ongitude:	103° 16' 40.259 W
Position Uncertain	ity	0.0 usft	Wellhead El	evation:	usft		Ground Level:	2,924.0 usft
Wellbore	Weilbore #	1						
Magnetics	Model Name	Sample Date	Declination	Dic	Angle Fi	eld Strength		
			(°)		(°)	(nT)		
	IGRF20	015 1/11/2019	6	63	59.90	47,691.05418696		
·····						· · · ·		
Design	Design #1		·			······		
						·····		
Design Audit Notes: Version:		Phase:	PROTOTYPE	Tie On Depth:	0.0			
			PROTOTYPE +N/-S	Tie On Depth: +E/-W	0.0 Direction			
Audit Notes: Version:		Phase:				······		
Audit Notes: Version:		Phase: Depth From (TVD)	+N/-S	+E/-W	Direction			
Audit Notes: Version: Vertical Section:	Design #1	Phase: Depth From (TVD) {usft) 0.0	+N/-S (usft)	+E/-W (usft)	Direction (°)			
Audit Notes: Version: Vertical Section: Survey Tool Progr	Design #1 am Date 1/1	Phase: Depth From (TVD) {usft) 0.0	+N/-S (usft)	+E/-W (usft)	Direction (°)			
Audit Notes: Version:	Design #1 am Date 1/10 To	Phase: Depth From (TVD) (usft) 0.0 6/2019	+N/-S (usft)	+E/-W (usft) 0.0	Direction (°)			
Audit Notes: Version: Vertical Section: Survey Tool Progr From	Design #1 am Date 1/10 To (usft) Sur	Phase: Depth From (TVD) {usft) 0.0	+N/-S (usft) 0.0	+E/-W (usft) 0.0	Direction (°) 359.25			

- -- ----

Ameredev Operating, LLC

ompany: roject: te: 'ell: 'ellbore: esign:	Ameredev CAM/AZ CAM/AZ # Camellia 1 Wellbore # Design #1	I01H #1	LC.		<u>-</u>		Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calculat Database:	e:	Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000	
anned Surve MD	-	nc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)		(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	0.0	0.00	0.00	0.0	282.2	230.1	0.0	0.00	0.00	0.00
1	00.0	0.00	0.00	100.0	282.2	230.1	0.0	0.00	0.00	0.00
2	200.0	0.00	0.00	200.0	282.2	230.1	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	300.0	282.2	230.1	0.0	0.00	0.00	0.00
4	100.0	0.00	0.00	400.0	282.2	230.1	0.0	0.00	0.00	0.00
5	500.0	0.00	0.00	500.0	282.2	230.1	0.0	0.00	0.00	0.00
6	0.00	0.00	0.00	600.0	282.2	230.1	0.0	0.00	0.00	0.00
7	00.0	0.00	0.00	700.0	282.2	230.1	0.0	0.00	0.00	0.00
8	300.0	0.00	0.00	800.0	282.2	230.1	0.0	0.00	0.00	0.00
9	0.00	0.00	0.00	900.0	282.2	230.1	0.0	0.00	0.00	0.00
1,0	0.00	0.00	0.00	1,000.0	282.2	230.1	0.0	0.00	0.00	0.00
1,1	00.0	0.00	0.00	1,100.0	282.2	230.1	0.0	0.00	0.00	0.00
1,2	200.0	0.00	0.00	1,200.0	282.2	230.1	0.0	0.00	0.00	0.00
1,3	300.0	0.00	0.00	1,300.0	282.2	230.1	0.0	0.00	0.00	0.00
1,4	100.0	0.00	0.00	1,400.0	282.2	230.1	0.0	0.00	0.00	0.00
1.5	500.0	0.00	0.00	1,500.0	282.2	230.1	0.0	0.00	0.00	0.00
	500.0	0.00	0.00	1,600.0	282.2	230.1	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	1,700.0	282.2	230.1	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	1,800.0	282.2	230.1	0.0	0.00	0.00	0.00
1,9	900.0	0.00	0.00	1,900.0	282.2	230.1	0.0	0.00	0.00	0.00
20	0.00	0.00	0.00	2,000.0	282.2	230.1	0.0	0.00	0.00	0.00
	100.0	2.00	204.00	2,000.0	282.2	230.1	-1.6	2.00	2.00	0.00
	200.0	4.00	204.00	2,100.0	275.8	227.2	-6.3	2.00	2.00	0.00
	300.0	6.00	204.00	2,299.5	267.8	223.7	-14.3	2.00	2.00	0.00
	400.0	6.00	204.00	2,398.9	258.3	219.4	-23.7	0.00	0.00	0.00
2,5	500.0	6.00	204.00	2,498.4	248.7	215.2	-33.2	0.00	0.00	0.00
	500.0	6.00	204.00	2,597.8	239.2	210.9	-42.7	0.00	0.00	0.00

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Ameredev (CAM/AZ CAM/AZ #1 Camellia 10 Wellbore #1 Design #1	01H	LC.	:			Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcula Database:	e:	Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvature EDM5000	
Planned Surve	у .		• • • • • •		•			• •		
MD (usft)	ln (*	ic ')	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
2,7	00.0	6.00	204.00	2,697.3	229.6	206.7	-52.2	0.00	0.00	0.00
2,8	800.0	6.00	204.00	2,796.7	220.1	202.4	-61.7	0.00	0.00	0.00
2,9	0.00	6.00	204.00	2,896.2	210.5	198.2	-71.2	0.00	0.00	0.00
3,0	0.00	6.00	204.00	2,995.6	201.0	193.9	-80.7	0.00	0.00	0.00
3,1	00.0	6.00	204.00	3,095.1	191.4	189.7	-90.2	0.00	0.00	0.00
	200.0	6.00	204.00	3,194.5	181.9	185.4	-99.7	0.00	0.00	0.00
3,3	800.0	6.00	204.00	3,294.0	172.3	181.2	-109.2	0.00	0.00	0.00
3,4	00.0	6.00	204.00	3,393.4	໌ 162.8	176.9	-118.7	0.00	0.00	0.00
3.5	600.0	6.00	204.00	3,492.9	153.2	172.7	-128.2	0.00	0.00	0.00
-	600.0	6.00	204.00	3,592.3	143.7	168.4	-137.7	0.00	0.00	0.00
	00.0	6.00	204.00	3,691.8	134.1	164.1	-147.1	0.00	0.00	0.00
-	800.0	6.00	204.00	3,791.2	124.6	159.9	-156.6	0.00	0.00	0.00
3,9	0.00	6.00	204.00	3,890.7	115.0	155.6	-166.1	0.00	0.00	0.00
4.0	00.0	6.00	204.00	3,990.1	105.5	151.4	-175.6	0.00	0.00	0.00
	100.0	6.00	204.00	4,089.6	96.0	147.1	-185.1	0.00	0.00	0.00
-	200.0	6.00	204.00	4,189.0	86.4	142.9	-194.6	0.00	0.00	0.00
-	800.0	6.00	204.00	4,288.5	76.9	138.6	-204.1	0.00	0.00	0.00
-	100.0	6.00	204.00	4,387.9	67.3	134.4	-213.6	0.00	0.00	0.00
A 6	500.0	6.00	204.00	4,487.4	57.8	130.1	-223.1	0.00	0.00	0.00
	500.0 500.0	6.00	204.00	4,487.4	48.2	125.9	-223.1	0.00	0.00	0.00
	700.0	6.00	204.00	4,566.3	48.2 38.7	123.9	-232.0	0.00	0.00	0.00
	300.0	6.00	204.00	4,785.8	29.1	117.4	-251.6	0.00	0.00	0.00
	900.0	6.00	204.00	4,885.2	19.6	113.1	-261.1	0.00	0.00	0.00
				•						
	00.0	6.00	204.00	4,984.7	10.0	108.9	-270.5	0.00	0.00	0.00
-	100.0	6.00	204.00	5,084.1	0.5	104.6	-280.0	0.00	0.00	0.00
	200.0	6.00	204.00	5,183.6	-9.1	100.4	-289.5	0.00	0.00	0.00
5,3	300.0	6.00	204.00	5,283.0	-18.6	96.1	-299.0	0.00	0.00	0.00

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Amereda CAM/AZ CAM/AZ Camellia Wellbore Design #	#1N 101H #1	LC.		. <u></u>	· · · · · · · · · · · · · · · · ·	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatu EDM5000	н
Planned Surve	Υ.	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)	00.0	(°) 6.00	(°) 204.00	(usft) 5,382.5	(usft) -28.2	(usft) 91.9	(usft) -308.5	(°/100usft) 0.00	(°/100usft) 0.00	(°/100usft) 0.00
	500.0	6.00	204.00	5,481.9	-37.7	87.6	-318.0	0.00	0.00	0.00
	600.0	6.00	204.00	5,581.4	-47.3	83.4	-327.5	0.00	0.00	0.00
	00.0	6.00	204.00	5,680.8	-56.8	79.1	-337.0	0.00	0.00	0.00
	800.0	6.00	204.00	5,780.3	-66.4	74.9	-346.5	0.00	0.00	0.00
5,9	0.00	6.00	204.00	5,879.7	-75.9	70.6	-356.0	0.00	0.00	0.00
6,0	0.00	6.00	204.00	5,979.2	-85.5	66.4	-365.5	0.00	0.00	0.00
6,1	00.0	6.00	204.00	6,078.6	-95.0	62.1	-375.0	0.00	0.00	0.00
6,2	200.0	6.00	204.00	6,178.1	-104.6	57.9	-384.5	0.00	0.00	0.00
6,3	300.0	6.00	204.00	6,277.5	-114.1	53.6	-394.0	0.00	0.00	0.00
6,4	00.0	6.00	204.00	6,377.0	-123.7	49.4	-403.4	0.00	0.00	0.00
6,5	500.0	6.00	204.00	6,476.4	-133.2	45.1	-412.9	0.00	0.00	0.00
6,6	500.0	6.00	204.00	6,575.9	-142.8	40.9	-422.4	0.00	0.00	0.00
6,7	/00.0	6.00	204.00	6,675.3	-152.3	36.6	-431.9	0.00	0.00	0.00
6,7	24.8	6.00	204.00	6,700.0	-154.7	35.5	-434.3	0.00	0.00	0.00
6,8	300.0	4.50	204.00	6,774.9	-161.0	32.8	-440.5	2.00	-2.00	0.00
6.9	900.0	2.50	204.00	6,874.7	-166.5	30.3	-446.1	2.00	-2.00	0.00
	000.0	0.50	204.00	6,974.7	-168.9	29.2	-448.4	2.00	-2.00	0.00
)24.8	0.00	0.00	6,999.5	-169.0	29.2	-448.5	2.00	-2.00	0.00
	100.0	0.00	0.00	7,074.7	-169.0	29.2	-448.5	0.00	0.00	0.00
	200.0	0.00	0.00	7,174.7	-169.0	29.2	-448.5	0.00	0.00	0.00
	300.0 100.0	0.00 0.00	0.00	7,274.7	-169.0 -169.0	29.2	-448.5 -448.5	0.00 0.00	0.00 0.00	0.00 0.00
	500.0	0.00	0.00	7,374.7		29.2	-448.5 -448.5	0.00	0.00	0.00
	500.0 500.0	0.00	0.00 0.00	7,474.7 7,574.7	-169.0 -169.0	29.2 29.2	-448.5 -448.5	0.00	0.00	0.00
	700.0	0.00	0.00	7,574.7	-169.0	29.2	-448.5	0.00	0.00	0.00
7,8	300.0	0.00	0.00	7,774.7	-169.0	29.2	-448.5	0.00	0.00	0.00

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operat CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1	ing, LLC.		: : :			Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	ə:	Well Camellia 101F KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvature EDM5000		
Planned Surve	у							- M. L		· · · ·	}
MD (usft)	Inc (°)		rimuth) °)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
7,9	00.0	0.00	0.00	7,874.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
8,0	00.0	0.00	0.00	7,974.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
8,1	00.0	D.00	0.00	8,074.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
8,2	:00.0	0.00	0.00	8,174.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
8.3	00.0	0.00	0.00	8,274.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
		0.00	0.00	8,374.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
-		0.00	0.00	8,474.7	-169.0	29.2	-448.5	0.00	0.00	0.00	
		0.00	0.00	8,500.0	-169.0	29.2	-448.5	0.00	0.00	0.00	
8,6	00.0	1.49	204.00	8,574.7	-169.9	28.8	-449.4	2.00	2.00	0.00	
87	00.0	3.49	204.00	8,674.6	-173.9	27.0	-453.4	2.00	2.00	0.00	
-		5.49	204.00	8,774.2	-181.0	23.8	-460.5	2.00	2.00	0.00	
		6.00	204.00	8,799.5	-183.4	22.8	-462.8	2.00	2.00	0.00	
-		6.00	204.00	8,873.7	-190.5	19.6	-469.9	0.00	0.00	0.00	
		6.00	204.00	8,973.2	-200.0	15.4	-479.4	0.00	0.00	0.00	
9.1	00.0	6.00	204.00	9,072.6	-209.6	11.1	-488.9	0.00	0.00	0.00	
		6.00	204.00	9,172.1	-219.1	6.9	-498.3	0.00	0.00	0.00	
		6.00	204.00	9,271.5	-228.7	2.6	-507.8	0.00	0.00	0.00	
		6.00	204.00	9,371.0	-238.2	-1.7	-517.3	0.00	0.00	0.00	
9,5	600.0	6.00	204.00	9,470.4	-247.8	-5.9	-526.8	0.00	0.00	0.00	
9,6	600.0	6.00	204.00	9,569.9	-257.3	-10.2	-536.3	0.00	0.00	0.00	
9,7	00.0	6.00	204.00	9,669.3	-266.9	-14.4	-545.8	0.00	0.00	0.00	
9,8	800.0	6.00	204.00	9,768.8	-276.4	-18.7	-555.3	0.00	0.00	0.00	
9,9	900.0	6.00	204.00	9,868.2	-286.0	-22.9	-564.8	0.00	0.00	0.00	
10,0	000.0	6.00	204.00	9,967.7	-295.5	-27.2	-574.3	0.00	0.00	0.00	
10.1	00.0	6.00	204.00	10,067.1	-305.1	-31.4	-583.8	0.00	0.00	0.00	
		6.00	204.00	10,166.6	-314.6	-35.7	-593.3	0.00	0.00	0.00	
		6.00	204.00	10,266.0	-324.2	-39.9	-602.8	0.00	0.00	0.00	

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating, LLC. CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1			Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcular Database:	e:	Well Camellia 101H KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvature EDM5000			
Planned Survey	,								
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
10,40	0.0 6.0	0 204.00	10,365.5	-333.7	-44.2	-612.3	0.00	0.00	0.00
10,50	0.0 6.0	0 204.00	10,464.9	-343.3	-48.4	-621.7	0.00	0.00	0.00
10,60	0.0 6.0	0 204.00	10,564.4	-352.8	-52.7	-631.2	0.00	0.00	0.00
10,70		0 204.00	10,663.8	-362.4	-56.9	-640.7	0.00	0.00	0.00
10,74	10.0 6.0	0 204.00	10,703.6	-366.2	-58.6	-644.5	0.00	0.00	0.00
Sec 28									
10,80	0.0 6.0	0 204.00	10,763.3	-371.9	-61.2	-650.2	0.00	0.00	0.00
10,90	0.0 6.0	0 204.00	10,862.8	-381.5	-65.4	-659.7	0.00	0.00	0.00
11,00	0.0 6.0	0 204.00	10,962.2	-391.0	-69.7	-669.2	0.00	0.00	0.00
11,03	88.0 6.0	0 204.00	11,000.0	-394.7	-71.3	-672.8	0.00	0.00	0.00
11,10	00.0 4.7	6 204.00	11,061.7	-400.0	-73.7	-678.1	2.00	-2.00	0.00
11,20	00.0 2.7	6 204.00	11,161.5	-406.0	-76.3	-684.0	2.00	-2.00	0.00
11,30	00.0 0.7	6 204.00	11,261.4	-408.8	-77.6	-686.8	2.00	-2.00	0.00
11,33	38.0 0.0	0 0.00	11,299.5	-409.0	-77.7	-687.1	2.00	-2.00	0.00
11,40	0.0 0.0	0.00	11,361.4	-409.0	-77.7	-687.1	0.00	0.00	0.00
11,4:	38.6 0.0	0.00	11,400.0	-409.0	-77.7	-687.1	0.00	0.00	0.00
11,50	00.0 7.4	0 60.25	11,461.3	-407.0	-74.2	-685.1	12.04	12.04	0.00
11,60	00.0 19.4	4 60.25	11,558.4	-395.5	-54.1	-673.9	12.04	12.04	0.00
11,70	00.0 31.4	8 60.25	11,648.5	-374.2	-16.9	-653.1	12.04	12.04	0.00
11,70	34.5 39.2	4 60.25	11,701.0	-355.7	15.5	-635.0	12.04	12.04	0.00
11,80	00.0 41.1	0 54.28	11,728.2	-343.3	34.7	-622.9	12.04	5.22	-16.83
11,90	00.0 47.7	2 39.85	11,799.8	-295.6	85.3	-575.8	12.04	6.62	-14.42
12,0	00.0 55.7	8 28.43	11,861.7	-230.6	128.9	-511,4	12.04	8.06	-11.42
12,10	00.0 64.7	1 19.11	11,911.4	-151.2	163.5	-432.5	12.04	8.93	-9.32
12,1			11,928.8	-112.5	175.5	-393.9	12.04	9.33	-8.29
Sec 21									
12,20	00.0 74.1	5 11.10	11,946.5	-61.0	187.6	-342.5	12.04	9.52	-7.78

1/16/2019 9:13:29AM

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Welibore: Design:	Ameredev Operating CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1	, LLC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calculat Database:	e:	Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000	
Planned Survey									_
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (บรft)	DLeg (°/100usft)	Build (°/100usft)	Tum (°/100usft)
12,30	to the contract of the second second second second		11,965.6	36.2	200.3	-245.6	12.04	9.70	-7.28
12,36	62.8 90.00	0 359.42	11,969.0	98.9	202.0	-182.9	12.04	9.79	-7.02
Cam101	I FTP								
12,40	00.0 90.00	0 359.42	11,969.0	136.0	201.6	-145.8	0.00	0.00	0.00
12,50	00.0 90.00	0 359.42	11,969.0	236.0	200.6	-45.8	0.00	0.00	0.00
12,60	0.0 90.0	0 359.42	11,969.0	336.0	199.6	54.2	0.00	0.00	0.00
12,70	0.0 90.0	0 359.42	11,969.0	436.0	198.6	154.2	0.00	0.00	0.00
12,80	00.0 90.0	0 359.42	11,969.0	536.0	197.6	254.2	0.00	0.00	0.00
12,90	00.0 90.0	0 359.42	11,969.0	636.0	196.5	354.2	0.00	0.00	0.00
13,00			11,969.0	736.0	195.5	454.2	0.00	0.00	0.00
13,10			11,969.0	836.0	194.5	554.2	0.00	0.00	0.00
13,20	00.0 90.0	0 359.42	11,969.0	936.0	193.5	654.2	0.00	0.00	0.00
13,30	00.0 90.0	0 359.42	11,969.0	1,036.0	192.5	754.2	0.00	0.00	0.00
13,40	00.0 90.0	0 359,42	11,969.0	1,136.0	191.4	854.2	0.00	0.00	0.00
13,50			11,969.0	1,236.0	190.4	954.2	0.00	0.00	0.00
13,60			11,969.0	1,336.0	189.4	1,054.2	0.00	0.00	0.00
13,70			11,969.0	1,436.0	188.4	1,154.2	0.00	0.00	0.00
13,80			11,969.0	1,536.0	187.4	1,254.2	0.00	0.00	0.00
13,90			11,969.0	1,636.0	186.3	1,354.2	0.00	0.00	0.00
14,00			11,969.0	1,636.0	185.3	1,354.2	0.00	0.00	0.00
14,10			11,969.0	1,835.9	184.3	1,454.2	0.00	0.00	0.00
14,20			11,969.0	1,935.9	183.3	1,654.2	0.00	0.00	0.00
14,30			11,969.0	2,035.9	182.2	1,754.2	0.00	0.00	0.00
			·	·		·			
14,4(11,969.0	2,135.9	181.2	1,854.2	0.00	0.00	0.00
14,50			11,969.0	2,235.9	180.2	1,954.2	0.00	0.00	0.00 0.00
14,60			11,969.0	2,335.9	179.2	2,054.2	0.00	0.00	
14,7(00.0 90.0	0 359.42	11,969.0	2,435.9	178.2	2,154.2	0.00	0.00	0.00

COMPASS 5000.15 Build 90

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Vell: Vellbore: Design:	Ameredev CAM/AZ CAM/AZ # Camellia 1 Wellbore # Design #1	01H	LC.				Local Co-ordina TVD Reference MD Reference: North Referenc Survey Calcula Database:	e:	Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000	
anned Survey	/									
MD (usft)		nc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
14,80	0.0	90.00	359.42	11,969.0	2,535.9	177.1	2,254.2	0.00	0.00	0.00
14,90	0.0	90.00	359.42	11,969.0	2,635.9	176.1	2,354.2	0.00	0.00	0.00
15,00	0.0	90.00	359.42	11,969.0	2,735.9	175.1	2,454.2	0.00	0.00	0.00
15,10	0.00	90.00	359.42	11,969.0	2,835.9	174.1	2,554.2	0.00	0.00	0.00
15,20	0.0	90.00	359.42	11,969.0	2,935.9	173.1	2,654.2	0.00	0.00	0.00
15,30	0.0	90.00	359.42	11,969.0	3,035.9	172.0	2,754.2	0.00	0.00	0.00
15,40	0.0	90.00	359.42	11,969.0	3,135.9	171.0	2,854.2	0.00	0.00	0.00
15,50	0.0	90.00	359.42	11,969.0	3,235.9	170.0	2,954.2	0.00	0.00	0.00
15,60	0.0	90.00	359.42	11,969.0	3,335.9	169.0	3,054.2	0.00	0.00	0.00
15,70	0.0	90.00	359.42	11,969.0	3,435.9	168.0	3,154.2	0.00	0.00	0.00
15,80	0.0	90.00	359.42	11,969.0	3,535.9	166.9	3,254.2	0.00	0.00	0.00
15,90	0.0	90.00	359.42	11,969.0	3,635.9	165.9	3,354.2	0.00	0.00	0.00
16,00	0.0	90.00	359.42	11,969.0	3,735.8	164.9	3,454.2	0.00	0.00	0.00
16,10	0.0	90.00	359.42	11,969.0	3,835.8	163.9	3,554.2	0.00	0.00	0.00
16,20	0.0	90.00	359.42	11,969.0	3,935.8	162.9	3,654.2	0.00	0.00	0.00
16,30	00.0	90.00	359.42	11,969.0	4,035.8	161.8	3,754.2	0.00	0.00	0.00
16,40	DO.O	90.00	359.42	11,969.0	4,135.8	160.8	3,854.2	0.00	0.00	0.00
16,50	00.0	90.00	359.42	11,969.0	4,235.8	159.8	3,954.2	0.00	0.00	0.00
16,60	00.0	90.00	359.42	11,969.0	4,335.8	158.8	4,054.2	0.00	0.00	0.00
16,70	00.0	90.00	359.42	11,969.0	4,435.8	157.7	4,154.2	0.00	0.00	0.00
16,80	00.0	90.00	359.42	11,969.0	4,535.8	156.7	4,254.2	0.00	0.00	0.00
16,90	00.0	90.00	359.42	11,969.0	4,635.8	155.7	4,354.2	0.00	0.00	0.00
17,00	00.0	90.00	359.42	11,969.0	4,735.8	154.7	4,454.2	0.00	0.00	0.00
17,10	00.0	90.00	359.42	11,969.0	4,835.8	153.7	4,554.2	0.00	0.00	0.00
17,20	00.0	90.00	359.42	11,969.0	4,935.8	152.6	4,654.2	0.00	0.00	0.00
17,30	00.0	90.00	359.42	11,969.0	5,035.8	151.6	4,754.2	0.00	0.00	0.00
17,40	00.0	90,00	359.42	11,969.0	5,135.8	150.6	4,854.2	0.00	0.00	0.00

i.

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operati CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1	ng, LLC.	· · · · · · · · · · · · · · · · · · ·			Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	9:	Well Camellia 1011 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000		
Planned Survey	1		-				•			
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (*/100usft)	Build (°/100usft)	Turn (°/100usft)	
17,50	0.0 90	.00 359.42	11,969.0	5,235.8	149.6	4,954.2	0.00	0.00	0.00	
17,54	44.4 90	.00 359.42	11,969.0	5,280.2	149.1	4,998.7	0.00	0.00	0.00	
Sec 16	00.0 90	.00 359.42	11,969.0	5,335.8	148.6	5,054.2	0.00	0.00	0.00	
17,70	00.0 90	.00 359.42	11,969.0	5,435.8	147.5	5,154.2	0.00	0.00	0.00	
17,8	00.0 90	.00 359.42	11,969.0	5,535.8	146.5	5,254.2	0.00	0.00	0.00	
17,9	0.0 90	.00 359.42	11,969.0	5,635.7	145.5	5,354.2	0.00	0.00	0.00	
18,0	00 0.00	.00 359.42	11,969.0	5,735.7	144.5	5,454.2	0.00	0.00	0.00	
18,10	00.0 90	.00 359.42	11,969.0	5,835.7	143.5	5,554.2	0.00	0.00	0.00	
18,20	0.0 90	.00 359.42	11,969.0	5,935.7	142.4	5,654.2	0.00	0.00	0.00	
18,30	00.0 90	.00 359.42	11,969.0	6,035.7	141.4	5,754.2	0.00	0.00	0.00	
18,40	00.0 90	.00 359.42	11,969.0	6,135.7	140.4	5,854.2	0.00	0.00	0.00	
18,5	0.0 90	.00 359.42	11,969.0	6,235.7	139.4	5,954.2	0.00	0.00	0.00	
18,6	00.0 90	.00 359.42	11,969.0	6,335.7	138.3	6,054.2	0.00	0.00	0.00	
18,70	00.0 90	.00 359.42	11,969.0	6,435.7	137.3	6,154.2	0.00	0.00	0.00	
18,8	00.0 90	.00 359.42	11,969.0	6,535.7	136.3	6,254.2	0.00	0.00	0.00	
18,9	00.0 90	.00 359.42	11,969.0	6,635.7	135.3	6,354.2	0.00	0.00	0.00	
19,00	00.0 90	.00 359.42	11,969.0	6,735.7	134.3	6,454.2	0.00	0.00	0.00	
19,10	00.0 90	.00 359.42	11,969.0	6,835.7	133.2	6,554.2	0.00	0.00	0.00	
19,2	00.0 90	.00 359.42	11,969.0	6,935.7	132.2	6,654.2	0.00	0.00	0.00	
19,3	00.0 90	.00 359.42	11,969.0	7,035.7	131.2	6,754.2	0.00	0.00	0.00	
19,4	0.0 90	.00 359.42	11,969.0	7,135.7	130.2	6,854.2	0.00	0.00	0.00	
19,5	0.0 90	.00 359.42	11,969.0	7,235.7	129.2	6,954.2	0.00	0.00	0.00	
19,6	00.0 90	.00 359.42	11,969.0	7,335.7	128.1	7,054.2	0.00	0.00	0.00	
19,70	00.0 90	.00 359.42	11,969.0	7,435.7	127.1	7,154.2	0.00	0.00	0.00	
19,8	00.0 90	.00 359.42	11,969.0	7,535.6	126.1	7,254.2	0.00	0.00	0.00	
19,9	00.0 90	.00 359.42	11,969.0	7,635.6	125.1	7,354.2	0.00	0.00	0.00	

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating, CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1	LLC.				Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:		Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000		
Planned Survey	· · · · · · · · · · · · · · · · · · ·			i						I
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build {°/100usft)	Turn (°/100usft)	
20,00	00.0 90.00	359.42	11,969.0	7,735.6	124.1	7,454.2	0.00	0.00	0.00	
20,10	00.0 90.00	359.42	11,969.0	7,835.6	123.0	7,554.2	0.00	0.00	0.00	
20,20	90.00	359.42	11,969.0	7,935.6	122.0	7,654.2	0.00	0.00	0.00	
20,30	00.09 0.00	359,42	11,969.0	8,035.6	121.0	7,754.2	0.00	0.00	0.00	
20,40			11,969.0	8,135.6	120.0	7,854.2	0.00	0.00	0.00	
20,50			11,969.0	8,235.6	119.0	7,954.2	0.00	0.00	0.00	
20,60	90.00	359.42	11,969.0	8,335.6	117.9	8,054.2	0.00	0.00	0.00	
20,70	00.0 90.00	359.42	11,969.0	8,435.6	116.9	8,154.2	0.00	0.00	0.00	
20,80	00.0 90.00	359.42	11,969.0	8,535.6	115.9	8,254.2	0.00	0.00	0.00	
20,90			11,969.0	8,635.6	114.9	8,354.2	0.00	0.00	0.00	
21,00	00.0 90.00	359.42	11,969.0	8,735.6	113.8	8,454.2	0.00	0.00	0.00	
21,10	00.09 0.00	359.42	11,969.0	8,835.6	112.8	8,554.2	0.00	0.00	0.00	
21,20	00.0 90.00	359.42	11,969.0	8,935.6	111.8	8,654.2	0.00	0.00	0.00	
21,30	0.00 90.00	359,42	11,969.0	9,035.6	110.8	8,754.2	0.00	0.00	0.00	
21,40			11,969.0	9,135.6	109.8	8,854.2	0.00	0.00	0.00	
21,50			11,969.0	9,235.6	108.7	8,954.2	0.00	0.00	0.00	
21,60	00.0 90.00	359.42	11,969.0	9,335.6	107.7	9,054.2	0.00	0.00	0.00	
21,70	00.00 90.00	359.42	11,969.0	9,435.6	106.7	9,154.2	0.00	0.00	0.00	
21,80	0.00 90.00	359.42	11,969.0	9,535.5	105.7	9,254.2	0.00	0.00	0.00	
21,90			11,969.0	9,635.5	104.7	9,354.2	0.00	0.00	0.00	
22,00	00.00 90.00	359.42	11,969.0	9,735.5	103.6	9,454.2	0.00	0.00	0.00	
22,10			11,969.0	9,835.5	102.6	9,554.2	0.00	0.00	0.00	
22,20	00.00 90.00	359.42	11,969.0	9,935.5	101.6	9,654.2	0.00	0.00	0.00	
22,30	0.00 90.00	359.42	11,969.0	10,035.5	100.6	9,754.2	0.00	0.00	0.00	
22,40			11,969.0	10,135.5	99.6	9,854.2	0.00	0.00	0.00	
22,50			11,969.0	10,235.5	98.5	9,954.2	0.00	0.00	0.00	
22,60			11,969.0	10,335.5	97.5	10,054.2	0.00	0.00	0.00	

Ameredev Operating, LLC

Company: Project: Site: Well: Wellbore: Design:	Ameredev Ope CAM/AZ CAM/AZ #1N Camellia 101H Wellbore #1 Design #1	-	LC.				Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Camellia 101 KB @ 2951.0usft KB @ 2951.0usft Grid Minimum Curvatur EDM5000		
Planned Survey MD (usft)	lnc (°)	<u></u> .	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100vsft)	
22,700 Cam101		90.00	359.42	11,969.0	10,435.5	96.5	10,154.2	0.00	0.00	0.00	
22,774 Cam101		90.00	359.42	11,969.0	10,510.1	95.7	10,228.9	0.00	0.00	0.00	

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
- 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

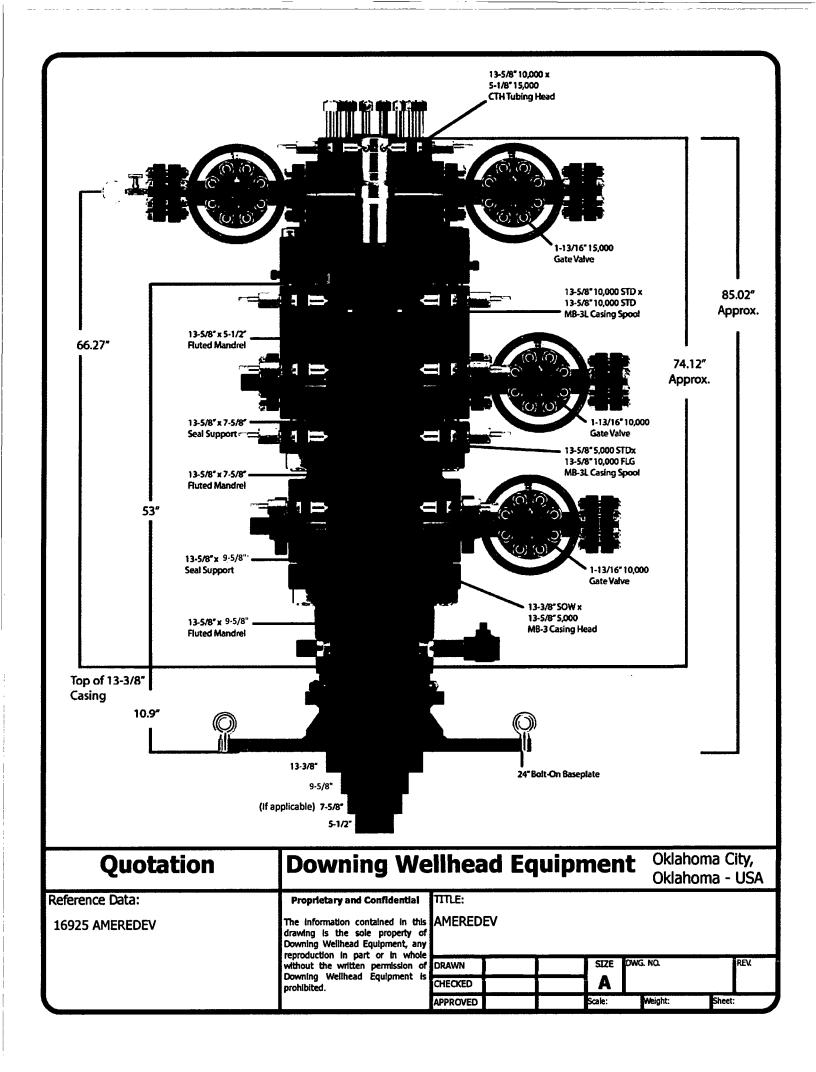
Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic


Well:	(Well Name)	Co. Well ID:	XXXXXX
SHL:	(SHL)	AFE No.:	XXXX-XXX
BHL:	(BHL)	API No.:	XXXXXXXXXXXX
	Lea, NM	GL:	(Elevation)'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree	: 2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375'' 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625'' 40# L-80HC BTC		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625'' 29.7# L-80HC FJM		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

	Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,888'	13.375	54.5	J-55	BTC				
int #1	12.25	5,013'	9.625	40	HCL-80	BTC				
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM				
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF				
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF				

Contingency Casing Design and Safety Factor Check

	Chec	k Surface	Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.38	853	909	1,130	2,730				
Safety Factors								
1.56	8.29	8.83	1.15	0.91				
	Che	ck Int #1 C	asing	i				
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
10.625	916	1042	4230	5750				
	S	afety Facto	ors					
0.81	4.57	5.20	1.41	0.95				
	Che	ck Int #2 C	asing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
	S	afety Facto	ors					
0.56	2.84	1.96	1.10	1.24				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
		afety Facto						
0.49	3.11	2.79	1.77	1.89				
	Check Pro	od Casing,	Segment B					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
	728	655	12780	14360				
5.777	Safety Factors							
0.49		afety Facto	ors 1.68	1.89				

1							
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	17.5	13.375	1888		1.76	13.5	
	Bbl/Sk				0.31372549		
	bbls				419.402246		
	Stage Tool Depth	<u>ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו </u>			N/A		
	Top MD of Segm	ent			0		
	Bottom MD of Se	egment			1502		
	Cement Type	-			C		
7 -	Additves	Bentonite, Accele	erator, Kolseal, Def	oamer, Celloflake			
Stage 1 Lead							
5 - L							
	Quantity (sks)				1,337		
	Yield (cu ft/sk)				1.76		
	Density (lbs/gal)				13.5		
	Volume (cu ft)				2,352.85		
	Percent Excess				100%	Target %	100%
	Column Height				3,389.88		
		Target TOC	0				
		Calc TOC	-1888	bbl	25% Excess	100%	
		calc vol	0.12372195	233.587041	291.9838012	467.174082	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	17.5	13.375	1888		1.34	14.8	
	Bb1/Sk				0.23885918		
	bbls				47.77183601		
	Top MD of Segm				1502		
	Bottom MD of Se	egment			1888		
	Cement Type				c		
- I	Additives						
Stage 1 Tail			·				1
Et Et		. ,					
	Quantity (sks)	<u></u>		·	200		
	Yield (cu ft/sk)				1.34		
- 1	Density (lbs/gal)				14.8		
	Volume (cu ft)		· · · · ·		268		
	Percent Excess				100%		
	Column Height				386.1225606		
1							

SURFACE CEMENT

	Hole Size 12.25 Bbl/Sk	Casing Size 9.625	Depth 5013	Sacks	Yield 3.5	Density	
	12.25 Bbl/Sk						
					3.5	9	
					0.623885918		
	bbis				372.0365733		
	Stage Tool Dept	h			N/A		
	Top MD of Segm	ent			0		
	Bottom MD of S	egment			4163		
	Cement Type				<u> </u>		
Lead	Additves	Bentonite,Salt,Ko	lseal, Defoamer, Co	ellociake			
Lead	Quantity (sks)				596		
	Yield (cu ft/sk)				3.5		
	Density (lbs/gal)				9		
	Volume (cu ft)				2,087.13		
	Percent Excess				50%	Target %	50%
	Column Height				6,669.49	-	
		Target TOC Calc TOC calc vol	0 -2506.5 0.055781888	bbl 279.6346021	25% Excess 349.5432526	50% 419.4519031	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	12.25	9.625	5013	Jacks	1.33	14.8	
ł	Bbi/Sk				0.237076649		
	bbls		-		47.41532977		
	Top MD of Segm				4163		
	Bottom MD of S	egment			5013		
	Cement Type				<u>c</u>		
_	Additives						
Tail	Quantity (sks)				200		
	Yield (cu ft/sk)				1.33		
	Density (lbs/gal)	1			14.8		
	Volume (cu ft)				266		
	Percent Excess				25%		
	Column Height				850.013004		
·				<u></u>	<u> </u>		

INTERMEDIATE 1 CEMENT - STAGE 1

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	1	12.25	9.625	3262		3.5	9	
		8bi/Sk				0.623885918		
		bbls				225.5254458		
		Stage Tool Dept	ו			N/A		
		Top MD of Segm	ent			0		
		Bottom MD of Se	egment			2412		
		Cement Type				C		
a p	,	Additves	Bentonite,Salt,Ko	olseal, Defoamer, Ce	lloclake			
stage z Lead								
		Quantity (sks)	· · · · ·			361		
		Yield (cu ft/sk)	<u> </u>			3.5		
	1	Density (lbs/gal)			•	9		
	1	Volume (cu ft)				1,265.20	.	
		Percent Excess				50%	Target %	50%
		Column Height				4,042.99		
			Target TOC	0				
			Calc TOC	-1631	bbl	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
		Bbl/Sk				0.237076649		
		bbls				47.41532977		
		Top MD of Segm	ent			2412		
		Bottom MD of Se	egment			3262		
		Cement Type				C		
N		Additives						
Stage Z Tail						<u> </u>		
		Quantity (sks)				200		
		Yield (cu ft/sk)				1.33		
		Density (lbs/gal)				14.8		
	1	Volume (cu ft)				266		
	1					25%		
	1	Percent Excess				850.013004		

INTERMEDIATE 1 CEMENT - STAGE 2

	T	<u> </u>			-			
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	1	8.75	7.625	10670		2.47	9	
		Bbl/Sk				0.440285205		
	1	bbls				168.6309595		
		Stage Tool Dept				N/A		
	1	Top MD of Segm				0		
		Bottom MD of S	egment			6755		
		Cement Type			<u> </u>	H		
Stage 1 Lead	1	Additves		der, Kolseal, Defoar	her,Celloflake, Ant	i-Settling		
tage		Expansion Addit	ive					
Ś		Quantity (sks)				383		
		Yield (cu ft/sk)			<u> </u>	2.47		
		Density (lbs/gal)				9		
		Volume (cu ft)				946.02		
	1	Percent Excess				25%	Target %	25%
		Column Height				9,422.97	-	
			Target TOC	0				
	i		Calc TOC	-2667.5	bbl	25% Excess	25%	
			calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
			· · · · · · · · · · · · · · · · · · ·					
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		8.75	7.625	10670	. 1	1.31	14.2	
	1							ſ
		<u>B</u> bl/Sk				0.233511586		
		bbls				70.05347594		
		Top MD of Segm				6755		
		Bottom MD of S	egment			10670		
		Cement Type	<u> </u>			н		
		Additves	Salt,Bentonite,R	etarder, Dispersant	,Fluid Loss			
Stage 1 Tail								
2		Quantity (sks)		•		300		
		Yield (cu ft/sk)				1.31		
		Density (lbs/gal)	1			14.2		
	ł	Volume (cu ft)				393		
	ł	Percent Excess				25%		
	1							
		Column Height				3914.533571		

INTERMEDIATE 2 CEMENT

	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	6.75	5.5	22496		1.34	14.2	
			-				
	Bbl/Sk				0.23885918		
	bbls				418.2897805		
	Stage Tool Dept				N/A		
	Top MD of Segm				0		
	Bottom MD of S	egment			22496		
	Cement Type				<u> </u>		
Stage 1 Lead	Additves	Salt, Bentonite, F	luid Loss, Dispersa	nt, Retarder, Def	oamer		
itage Lead					<u> </u>		
<u>~</u> –		-					
	Quantity (sks)				1,751		
	Yield (cu ft/sk)				1.34		
	Density (lbs/gal)				14.2		
	Volume (cu ft) Percent Excess				2,346.61	Torget %	25%
	Column Height	• •	· · · · · · · · · · · · · · · · · · ·		2370	Target %	25%
	Column Height				28,120.00		
		Toresh TOC	0				
		Target TOC	_		254 5	259/	
		Calc TOC	-5624 0.01487517	bbl 334.6318244	25% Excess 418.2897805	25% 418.2897805	
	 	calc vol	0.01487517	554.0518244	418.2897805	418.2897605	
	Hole Size	Conting Sing	Dorth	Sacks	Yield	Density	
	6.75	Casing Size 5.5	Depth 22496	0	0	OPISICY	
	0.75	5.5	22430	•	<u>`</u> L		
	Bbi/Sk				0		
	bbls				0		
	Top MD of Segm	ent			22496		
	Bottom MD of S			-	22496		
	Cement Type				н		
	Additives						
te 1 ii			-		· · · · ·		
Stage 1 Tail							ł
•,	Quantity (sks)				0		
	Yield (cu ft/sk)				0		
	Density (lbs/gal)				0		
	Volume (cu ft)				0		
	Percent Excess						
	Column Height				0		

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Request/Sluri	r y	2488456/2		Rig Name			Date	e 18/DE0	C/2018
Submitted By	,	Dillon Briers		Job Type	In	termediate Casing	Bull	k Plant	
Customer		Ameredev		Location	Le	a	Wel	l	
Well Info	rmatic)n							
Casing/Liner		7.625 in		Depth MD	50)13 ft	BHS	6 T 165°F	
Hole Size		8.75 in		Depth TVD	50)13 ft	BHO	CT 130°F	
Cement In	forma	tion - Lead I	Design						<i>\</i> "
Conc UO	<u>M</u>	Cement/Additiv	e					Cement Prop	erties
100 % E	SWOC	NeoCem					Slurry Densi	ty 9	lbm/gal
14.68 gal/	sack	Heated Fresh Wa	ter				Slurry Yield	3.5	ft3/sack
							Water Requi	rement 14.68	gal/sack
									,
		<u>s Request II</u> Request Test							
Femp (degF)	300 X	200 200		00	60	30	6	3	Cond Time
cmp (ucgi)	500	200				20	·	Ū	(min)
10 (up)	82	67	4	19	42	39	36	28	0
10 (down)	82	59	1	35	26	18	10	. 9	0
80 (avg.)	82	63	4	12	34	29	23	19	0
V (cP) & YP (lbs/100ft	2): 61.73	22.32	(Least-square	s method)				
V (cP) & YP (lbs/100ft	2): 60	22	(Traditional n	nethod (300 &	2 100 rpm based))			
eneralized He	rschel-Bu	ikley 4: YP(lbf/1	00ft2)=20.3	3 MuInf(cP)=5	2.39 m=0	.81 n=0.81			•
API Rheo	logy, R	lequest Test	ID:3566	5341					
ſemp (degF)	300	200	100	60	30	6	3	Cond T (min)	ime Cond Temp (degF)
34 (up)	63	47	29	21	15	7	6	30	134
34 (down)	63	46	29	21	14	7	4	30	134
34 (avg.)	63	47	29	21	15	7	5	30	134
V (cP) & YP (lbs/100ft2	2): 57.12	7.98	(Least-square	s method)				
V (cP) & YP (lbs/100ft2	2): 51	12	(Traditional n	nethod (300 &	2 100 rpm based))			
eneralized He	rschel-Bu	ikley 4: YP(lbf/1	00ft2)=2.26	MuInf(cP)=3	0.64 m=0	.41 n=0.41			
API Fluid	Loss,	Request Tes	t ID:356	65342			·		
est Temp (de	gF) T	est Pressure (psi) Test Ti	ne (min) 🛛 🛛	Meas. Vol.	Calculat		nditioning time	Conditioning Tem
	-					min)	(m	in)	(degF)

This report is the property of Haliburton Energy Services and neither It nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Haliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Haliburton. This report is for information purposes only and the content is limited to the sample described. Haliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Haliburton shall not be liable for any loss or damage regardless of cause, Including any act or omission of Haliburton, resulting from the use hereof.

Global Customer Report

Page 1 of 2

Free Fluid AF	PI 10B-2, Re	quest Test	ID:35665343			
Con. Temp (degF)	Cond. Tin	e (min)	Static T. (F)	Static time (min)	Incl. (deg)	% Fluid
134	30		80	120	0	0
Pilot Test Res	ults Reques	t ID 25041	16/5			
Thickening Ti	ime - ON-O	FF-ON, Re	quest Test ID:	35852392		
Test Temp (degF)	Pressure (psi)	Reached in (min) 70 Bc (hh:min) Start Bc		
126	5800	40	6:18	16		
UCA Comp. S	Strength, Re	quest Test	ID:35852394			<u> </u>
End Temp Pr (degF)	essure (psi) 50	psi (hh:mm)	500 psi 12 h (hh:mm)	r CS (psi) 24 hr CS (ps	i) 48 hr CS (psi)	

749

681

456

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

159

4000

8:55

12:23

Page 2 of 2

USS

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM[®]

<u> </u>		·····	
MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM®	
Minimum Yield Strength	110,000	_	psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	125,000	-	psi
DIMENSIONS	Pipe	USS-LIBERTY FJM [®]	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375	-	in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift	-	-	in.
Nominal Linear Weight, T&C	29.70	-	lbs/ft
Plain End Weight	29.06	-	lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM [®]	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency	-	59.4	%
PERFORMANCE	Rhe	USS-UBERTY FJM®	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	-	lbs
Joint Strength		558,000	lbs
Compression Rating	-	558,000	lbs
Reference Length	-	12,810	ft
Maximum Uniaxial Bend Rating		39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque	-	10,800	ft-ibs
Maximum Make-Up Torque	-	15,250	ft-lbs

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4. USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.

 Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

Legal Notice

USS-LIBERTY FJM[®] is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

USS

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTIO	N
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Unlaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

QUALITY CONTROL	No.: QC-DB- 651 / 2013		
	Page : 1 / 44		
Hose No.:	Revision : 0		
66551, 66552, 66553, 66554	Date: 14. November 2013.		
	Prepared by : Scala Lander		
	Appr. by: Appr. Such		

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

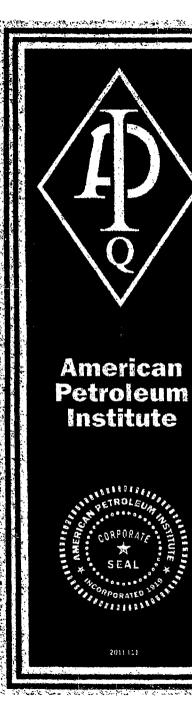
Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ContiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +38 62 568 737 Fax: +36 62 566 738 e-mail: Info@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Csongréd County es Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU1 1087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No.: QC- DB- 651 / 2013			
Industrial Kft.	Page:	2/44		

CONTENT


	OOMENT	D = = =
1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8.	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37. 38-39.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	30-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

· Ana

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	3/44	

Certificate of Authority to use the Official API Monogram License Number: 16C-0004

The American Petroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD. Budapesti ut 10 Szeged Hungary

the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec 01° and API Spec 16C and in accordance with the provisions of the License Agreement.

In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number. 16C-0004

The American Petroleum Institute reserves the right to revoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute.

The scope of this license includes the following product: Flexible Choke and Kill Lines.

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016 To verify the authenticity of this license, go to www.api.org/compositelist. American Petroleum Institute

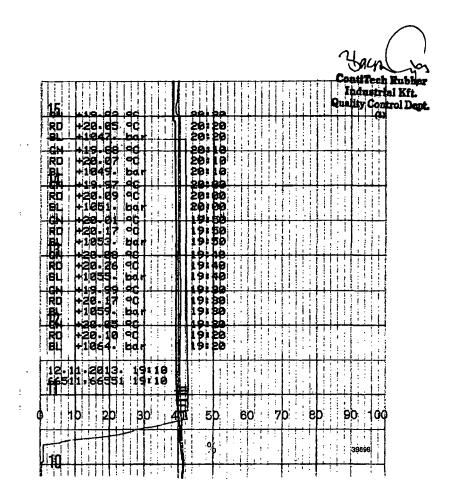
ORIGINAL

Director of Global Industry Service

CONTITECH RUBBER Industrial Page: No:QC-DB-

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	5/44	

QU/ INSPECTION	ALITY CON AND TES		ATE	CERT. I	Nº:	1905	
PURCHASER:	ContiTech	Oil & Marine Co	orp.	P.O. Nº:		4500370505	5
CONTITECH RUBBER order	Nº: 537587	HOSE TYPE:	3" ID	•	Choke an	d Kill Hose	
HOSE SERIAL Nº:	66551	NOMINAL / ACTUAL LENGTH: 10,67 m / 10,75 n		m / 10,75 m			
W.P. 68,9 MPa	10000 psi	т.р. 103,4	MPa 1500)O psi	Duration:	60	min.
ambient temperature		See attachme	nt. (1 page	•)			
↑ 10 mm = 10 Mi → 10 mm = 25 Mi COUPLINGS T	Pa	Serial	N°	C	luality	Heat N	10
3" coupling w	ith	8084	8083	AIS	51 4130	2461:	3.
4 1/16" 10K API Fla	nge end			AIS	SI 4130	03493	9
NOT DESIG	NED FOR W	ELL TESTIN	G		1	API Spec 16	С
					Temp	perature rate	∋:"B"
All metal parts are flawless WE CERTIFY THAT THE ABO					H THE TERM	S OF THE ORDER	र
INSPECTED AND PRESSURE STATEMENT OF CONFORMIT conditions and specifications of accordance with the referenced	TY: We hereby of the above Purc	certify that the above haser Order and the	e items/equipme at these items/e nd meet the relev	nt supplied quipment vant accept	were fabricate	ed inspected and	tested in
Date: 13. November 2013.	Inspector		Quality Contro	Conti Ind	Tech Rubbe ustrial Kft. Control Def	· /)


ContiTech Rubber Industrial Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phane: +38 62 556 737 Fax: +38 62 566 738 e-mail: Info@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Ceongrád County as Registry Court Registry Court No: HU 06-09-002602 EU VAT No: HU 11087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

No: 1904, 1905

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE

Page: 1/1

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	6 / 44

QUA INSPECTION	LITY CON AND TEST		ATE		CERT. N	∜°:	1906	
PURCHASER:	ContiTech	Oil & Marine (Corp.		P.O. Nº:		4500370505	
CONTITECH RUBBER order N	ı∘: 537587	HOSE TYPE:	3"	ID		Choke an	d Kill Hose	
HOSE SERIAL Nº:	66552	NOMINAL / AC	TUAL LE	ENGTH:		10,67 n	n / 10,73 m	
W.P. 68,9 MPa 1	0000 psi	T.P. 103,4	MPa	1500)O psi	Duration:	60	min.
ambient temperature ↑ 10 mm = 10 Min		See attachm	ent. (1	l page	•)			
→ 10 mm = 25 MP							-1	
COUPLINGS Ty		Seria				uality	Heat N°	
3" coupling wit	h	8088	808	5	AIS	Si 4130	24613	
4 1/16" 10K API Flan	ge end				AIS	61 4130	034939	
NOT DESIGN	ED FOR W	ELL TESTIN	IG			A	API Spec 16 C	
All metal parts are flawless						Temp	erature rate:	"B"
WE CERTIFY THAT THE ABOV						H THE TERM	s of the order	
STATEMENT OF CONFORMITy conditions and specifications of accordance with the referenced s	f: We hereby c the above Purcl tandards, codes a	ertify that the abo naser Order and t	ve items/e hat these and meet	equipmer items/ea the relev	nt supplied quipment v ant accept	were fabricate	d inspected and te	sted in
Date: 13. November 2013.	Inspector		Quality	y Contro	Conti Ta Indue	sch Rubber strial Kft.	thread	

ContiTech Rubber Industrial Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary

Phone: +38 62 568 737 Fac: +38 62 568 738 e-mail: trio@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Csongråd County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	7 / 44

PURCHASER: ContiTech Oil & Marine Corp. P.O. N°: 45003705 CONTITECH RUBBER order №: 537587 HOSE TYPE: 3" ID Choke and Kill Hose HOSE SERIAL №: 66553 NOMINAL / ACTUAL LENGTH: 10,67 m / 10,745 m W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 Pressure test with water at ambient temperature See attachment. (1 page) See attachment. (1 page) 10 mm = 10 min. → 10 mm = 25 MPa Serial № Quality Heal	
HOSE SERIAL N°: 66553 NOMINAL / ACTUAL LENGTH: 10,67 m / 10,745 m W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 Pressure test with water at ambient temperature See attachment. (1 page) \hat{T} 10 mm = 10 Min. \rightarrow 10 mm = 25 MPa COUPLINGS Type	
W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 Pressure test with water at ambient temperature See attachment. (1 page) \$\begin{pmatrix} 1 & 0 & mm = & 10 & mm. \\ -> 10 & mm = & 25 & MPa & - \\ \hline COUPLINGS Type & Serial N° & Quality & Heat	
Pressure test with water at ambient temperature See attachment. (1 page) ↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	
ambient temperature See attachment. (1 page) \uparrow 10 mm = 10 Min. \rightarrow 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	min
$ \uparrow 10 \text{ mm} = 10 \text{ Min.} $ $ \rightarrow 10 \text{ mm} = 25 \text{ MPa} $ $ \hline COUPLINGS Type \qquad Serial N^{\circ} \qquad Quality \qquad Heat $	
→ 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	
→ 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	
→ 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	
→ 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat	
COUPLINGS Type Serial N° Quality Heat	
	N°
3" coupling with 8089 8087 AISI 4130 23171	24613
4 1/16" 10K API Flange end AISI 4130 0345	939
NOT DESIGNED FOR WELL TESTING API Spec 1	6 C
All metal parts are flawless	te:"B"
WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORD INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.	
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected an accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requi	ER
Date: Inspector Quality Control	the terms, d tested in
13. November 2013.	the terms, d tested in

Contillech Rubber Industrial Kift. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phane: +36 62 566 737 Fax: +36 62 566 738 e-mail: info@ftuid.contitech.hu Internet: www.contitech-rubber.hu The Court of Csongråd County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU1 1087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	8 / 44

QUA INSPECTION	LITY CON AND TES		ATE	CERT. N	1 °:	1908	
PURCHASER:	ContiTech	Oil & Marine C	orp.	P.O. N°:		45003705	05
CONTITECH RUBBER order N	e: 537587	HOSE TYPE:	3" ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	66554	NOMINAL / ACT	TUAL LENGTH	:	10,67 m	/ 10,71 m	
W.P. 68,9 MPa 10	0000 psi	T.P. 103,4	MPa 150	00 psi	Duration:	60	min.
ambient temperature		See attachme	ent. (1 page	e)			
\uparrow 10 mm = 10 Min → 10 mm = 25 MPa	-						
COUPLINGS Typ	pe	Serial	N°	Q	uality	Hea	t Nº
3" coupling with	h	8090	8086	AIS	SI 4130	23171	24613
4 1/16" 10K API Flan	ge end			AIS	61 4130	034	939
NOT DESIGN	ED FOR W	ELL TESTIN	G		Α	PI Spec 1	6 C
					Temp	erature ra	te:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVE					H THE TERMS	OF THE ORD	ER
INSPECTED AND PRESSURE T STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced s	Y: We hereby of the above Purch tandards, codes	ertify that the abov haser Order and th	re items/equipme at these items/e and meet the rele	nt supplied quipment vant accept	were fabricated	l inspected an	d tested in
Date: 13. November 2013.	Inspector		Quality Contr	Con In	tiTech Rubbs dustrial Kft ity Control De) 2

ContiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +38 62 566 737 Fox: +38 62 566 738 e-mail: info@fluid.comthech.hu internet: www.contitech-rubber.hu

The Court of Csongréd County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU1 1087209 Bank date Commercial and Creditbank Szeged 10402805-28014250-00000000

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1906, 1907, 1908

Page: 1/1

Hacn

ContiTech Rubber Endustriai Kft.

C								Π									1	ļ
RD	+19	. 22				i	7	20	 +		-+ • :	1		1		 .		Ť
GN RD	+19	-04 -04	-0C				7	10			· · ·			<u> </u> : 	. 1	1		
	+10	50 - 69 89	baı ec eC		∦	H	17				,						-	
RD BL) Gl	1910	5 0	603 60	0	ł		17	60 60 50	f	50	7	o	8	ip!		ob!	:1	o(
	+19 +10	53	bai				16	50	1		: · ·				· ·	İ.		1
RO BL	+19 +10	.78 59	eC bai		Î		16	40 40								Ī	Ţ	i
- GN-	+19 +19 +10	-50 73 56	oc oc bai				16) 16)	80 80 80									 	ĺ
BL RD BL	+19 +19 +10	- 52 - 78 62 -	eC eC bdr				6	2020										
					T		İİ				ŗ						· † .	:
1 2 . 665	11 Z 52,6	813	3,66	+00 554			00 				1	 	i			 	; ; ; ; ;	i
		$\parallel \parallel$			⋣]	ÌÌ			+	 		ļ					:

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	9 / 44

Ontinental & CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Туре	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	Νο
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

				Г	CONT	ITECH	RUBE	BER	No:QC	-DB- 6	651 /20	13
					lr	ndustri	al Kft.		Page:		10/4	4
	Descript AISI4130/BL/ 197-238 BHN MIN ELONGA	r: Ignatories: Sreaves A ion VCK ROLLE , 655MPA M VTION, CHA	Cocking D BAR, HEA IIN TENSILE RPY IMPAC	11t 070687(I J Jarvis A I TREATED 517MPA N T TESTING	Der Indust 32 4205 S(h Februar Rev. 18/04 A Pears S CERTI D & TESTED AIN YIELD, 1 27J MIN @	trial Kft 258500 160045 064201 ry 2013 6/2013) Selman FICATE 10 8% -30C	Bod 8083 J 42 OF CONFO HARDENED TEMPERED WATER TEN	- SISS - SISS 451- 0511 DRMITY FROM B60 AT 670C F	- 14 6 00 10 FOR 533 00 10 HOL E BEFORE	CG CG CG CHOURS (V URS (AIR CC QUENCH, 2	NATER QUE DOL) 18°C, AFTER	Treatment ENCH) 3, 35°C.
	OR COLDER REDUCTION TAKEN FROM MECHANICA NACE MR017 APPROX 20 1 CERTS TO E	3:1 MIN, NI A A 4* SQR L TEST SPE 25/ISO15156 TONNES 21	1% MAX & (QTC AS PEI CIMEN TO (APPLIES	CE 0.62 MA	X, TESTS M SL 3 OTC SI	AY BE ZE.	TEMP. MEA: COMPONEN TEST COUP REDUCTION REDUCTION FURNACE C C/E = 0.693	IT HARDNE ON - 4° SQ I RATIO - 6, I RATIO & F	SS E 10 - 21 X B" LONG, 2 IT APPLY T	11 HBW10/3 , TESTED A TO BOTH JO	000 T % T LOC/ PB & TEST F	TION
ľ			····				24613					
1	C	Si	Mn	s	P	Ni	er	Mo	AI	Cu	Sn	ND
	0.3200 V	· · · · · · · · · · · · · · · · · · ·			0.0100		1.0560					
	ľ	Ta	TI	Nb+Ta	Co	N	В	W	Ce	Fe	As	S b
	0.0010	Ca	0.0010 H (ppm)		}	0.0079	0.0001			 	 	<u> </u>
	150											ł
	L	<u>.</u>	1.20		*****		517 N/m			L	L	l
	[]	remperatu	re	Re	Rp 0.2	Rm	A %	Z %	ICLD	act	Temp.	Hardnes
		RT		· ·	517.000]
	L	<u> </u>		H/mm2	N/mm2	N/mm2	40	L	ł			L
	Test Nun	nber	Dir.Memp.	Re	Rp	TEST I Rm	RESULTS	Z %	oL	ules	Charpy Direction	
	ST2256		20.0°C		524.000	696.000	GA 50.00mm	67.70	KCV -46°C	60 50 78	LONG	211
		Ø 12.500mm							KCV -60°C	50 50 46	LONG	
									% Shoar Su 62.0% 5	rlece i2.0% 80.0%		
									Lote-ol Expa 0.840 0	insion (mm)).740 1.020	LONG	
1												
	For and on	Behalf of	TM Steels	Ltd.	<i>4. [0</i>		ng			DintiTech Rub Industrial Kfi CERTIFICATI ACCEPTABLI OLICEPTABLI C INSPECTO E: 14.06.		
		Behalf of	TM Steels	Ltd.	<i>4. [0</i>		ng		, a	CERTIFICATI ACCEPTABLI	t. E E R 21-	
	The Steen Ltd	Behalf of	TM Steels	Ltd.	<i>4 [</i> 0		ng		, a	industrial Kf CERTIFICATI ACCEPTABLI Q.J	t. E E 21. Tel +4	
			TM Steels	Lid.	<i>4. [</i> 0	ic Ki	ng		, a		t. E E R 21-	
	Thi Steels Lid Forwood Way		TM Steels	Lid.			Engineerin	g Industrie	e D DATI		t. E E R 21. Tel +4 Sales Fax +4 scien Fex +4	(0)1246 268

HOY	VOC							(Bo	- Wer	I								Т	est		erti	fic	ate	3
WCO METAL	MANAGE							8	083-	8030			Custan Numbe	n er Orde r r		322	52193 - 0	1	Test N	st Number 402483					
arbrook heffield	59 2JN	-					To: CONTIT H-6728,	ECH RUE	BBER ÍND	USTRIAL	.KFT		Custon Date	ter Order		2	7Feb12		Part N	umber		420	5160045		
elephon acsimile							SZEGE	ESTIUT	10, K·I	562.	-KI	575	Sales (Numbe			EUF	1-352087	-1	Cast N	umber		Č	3171		
	X						HUNGA	env'				_	Report	Date		.2	5Sep12		Cert N	umber		EUF	-265844	5	
(R)	2					•			1205	16 5	045		Quanti	Q.	14 P	cs 1740	2 Kgs 210) mm Dia							
	9 0						Descrip	tion AISI	41 30 7 5K	SI .2% PS	API QI	TC							Steel	Гурө	ALLO	Y 4130			
esults qua					_	*						~~~							<u> </u>						_
Vaterial S	pocificat	ion	A	SI4130	<u> </u>																				
leat Trea	tment Sp)ec	16	7-2378	-IN				-	Test	Spec 5	517N/MM	2MIN.YLC	>				Test S	pec						
Nett Pract	ice		E	FND			Produc	tion Meth	ođ	FORGE	D														
Heat	Treatme	ent		Temp(*C	7	Soak	<u> </u>	Cod	pient	Char	ge Rel.	Init	Max(°C)	Ba	toh	Temp n	ecorded (rsing	CONT	CT THEF	MOCOU	PLE			-
ARDEN			8	60	Т	3 HRS		WATER	UENCH	SHF-1	8284	20	30	09120	91308	Naturo	d T/P		Separa	te					
TEMPER			6	60		4 HRS		TABLEC	OOL	SHF-1	8284			10120	91319	Oto siz	e 4inc	h SQ X 6	inch LON	3					
			+		-+	·	.	~	·····							+			1 1	Reg. Min/	Max	7	Achiev	 ed	
					-+					+		+				Hardn	ess on T/	P	197	237	HBW	229	229		IBW
			+		-+					+			<u> </u>	+		Herdo	ess on M	aterial	197	237	HBW	218	235		BW
Tensile -								<u></u>						Impacts		1			1				~~~~		
	ation	· Ţ		Direction		Roos	20%	F F	7m		A%	-1	Z%		Location	n	Din	ction	T	CVN	<u> </u>	Lat. Exp. (n	um)	% Sh	
1	/4T		LON	GITUDI	VAL	517 N	8in	655	to 800	18 1	Ain (4d)		0 Min		1/4T		LONG	TUDINAL	27	Min Ave		0.380 Mh	n	0	
Results (I	Vmm2)					58	0	,	785	25 (1	0.0mm)) 64.0	(12.56mn	n) Result	e (Joule	8)	-30 Ce	nligrade	10	6 104 10	2	1.44 1.42	1.4	40 40	40
Results											 v			Result	9										
Corrostor) ·		Т	میں کینے ہوتے ہیں۔ م																					
Pitting Re	sistance		-†-			Ferrite								Microst	ามเส่นเต			T.							
Carbon E			+					371				Gra	in Size	Min		6	Max		. 8	· · · ·					
C	SI	Mn	7	P	8	Cr	Mo	N	Cu			└─ <u>─</u> ─	1	l	<u> </u>	T	T^{-}		·1	┯┶╍╍╸	<u> </u>				
0.2940	0.2920	0.597	510	20110	0.00	50 1.0620	0.2290	0.1860	0.2430				+			+	-		; -	<u>†.</u>	1				
Cents to E NACE MI FE = BAL REDUCT	9-01-75			1			L					ATE ABLE		.	·	- 4		Hardness force per	e Calibrat load/pen ASTM E1	etration di 0.	ms to AP apth - HB	10 diame	ition ANN ter (mm)/	EX M. 3000 kgt	test
Names o This repo	1 Approv rt la not i	to be r	gne! eproi	orles : S duced wi	i.Ma Thou	xted G.Smith t written app	n S.Suter rovel.	P.Rogen	M.Brown	PAT	C INSPE	10.04	}				Signature	TÍ	5			Page 1	of 1		

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page: 11 / 44

				Со	NTITEC	H RUBBEF	No:QC-	DB- 651 /2013
					Indust	rial Kft.	Page:	12 / 44
م آ ۶٥RG	HAMC	DR Z CHININ	Rt.	808	Flang 3-8030 TING			ÉMI-TÜV ISO9001
H-3531	Miskol							Fax: 36/46/379-19
		IN	SPECI		N CE	RTIFIC	ATE	
ACCEPTA	NCE ACCO	ORDING	EN 102	04-05	5/3.1		Certifica	ate No.: (86989/13 -
Date of	issue:	2013.	03.27	Hámo	or No.:	98-398526	3 Order	No.: 32259784/13/
Custome	r: Cont : 6728		Rubber d Budap			Kft.		
Dimensi	on: MSO .	-10059	7-002/A	/Hmm	L	P I 6A PSL3 Heat-trea		131×182
Quantit	y: 30) pcs	Weigh	 t:	73.0	kg/pc T	otal weig	ght: 2190.00
nomin.	ation of	prod	uct: Fo	rged,	machin	ad disc		
	Chemical	l anal	ysis %				eat No.: er: CELSA	034939 Hutaostrowiec PO
Test No.	Spec. value Min. Max.				P 2	G CR 025 2.75 1	MO V .500 0.30	Ce 00 0.82
1	Result	0.28	0.56 0.	20 0.	006 0.0	03 0.99 0	.170 0.00	3 0.62
	Mechanic	al pr	opertie	8:				
Test	Spec. value Min.	НВ 197	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27	ContiTech Rut Industrial Ki CERTIFICAT	π.
No.	Max.	238			 	·	ACCEPTAB	
L13314	Result Result	235 238	525	662	1 <u>9</u> .50	35 52	OC INSPECT DATE: 11.01	10R .29
					1	82		
Dimens Ultras Steel NACE HB-E10	making (MR 0175/ ,Mechani Of forgi	d vis t acc meltin ISO 19 ka:AS	ial cont to SEJ ng) prod 5156+AP IM A370 .81	2 192 Cess: [17K acc.	1-84 פן UHP-AS + API <i>2h</i> נ	ec. is sa EA vacuum 6A PSL3.	c/series	Expèrt

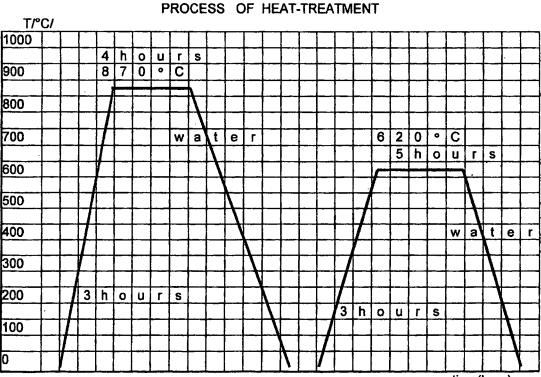
CONTITECH RUBBER	No:QC-DB- 651 /2013		
	Page:	13/44	

MOR ZRT

MISKOLC Kiss Emő u. 17. sz. H-3531

.

tel:36/46/401-033 fax:36/46/379-199


e-mail: <u>hamor@t-online,hu</u>

PROTOCOL NUMMER: 98-39B							
HEAT-TREATMENT PROTOCOL							
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.	Order No. of Buyer: \$2259784/13/2						
	Work No. of Buyer:						
PRODUCT:	QUANTITY: PIECE	No. of drawing:					
forged	30	MSO-100597-002/A/H					
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:					

HEAT-TREATMENT: quenching and tempering

Typ of furnace: electric furnace

Hardening medium: water

Miskolc, Hámor ZRt. 2013-03-26.

time(hour)

ando head of heat-treatment

Hámor zRt. Vinóség ellenőizée Osztály

winword/doc/HOKEZ-K/CONTITEC/4130-620

	CONTITECH	RUBBER	No:QC-	DB- 651 /2013		
	Industri	al Kft.	Page:	14 / 44		
61344	gamma control)	l kft	19/10/	13 12:54 Lap:		
SAMMA-MINTKOLL STORAGE CONSIGNATION STORAGE CONSIGNATION OF STATE	REF	ESS TEST PORT	Report	No: 561/13.		
CLIENT:	JE-ZO KFT.	SZECED, KUL	TERULET, O	1408/22.		
TEST EQUIPMENT;		indness tester	·			
PROCEDURE:	QCP-45-R1	- FL - Flaure				
DESCRIPTION OF COUP DRAWING NUMBER:	MT-3121-30					
SERIAL NUMBER:	8083; 8084;					
BRINELL, HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART O COUPL		ACTUAL HARDNESS RESULT (HB)		
Min HB 197 Max HB 238	8083	body weld flange connection face		224 222 236 238		
	√ 8084	body weld flange connection face		213 208 220 238		
	J 8085	body weld flange connection face		214 214 219 222		
	/ 8086	body weld flange connectior	,	232 237 238 197		
ne coupling(s) conform to	API Spec 6A requi	rements.				
	······································					
ATE:	PREPARED:	20	6750 Algyo,	CONTROLL KFT.		
	Ménesi Is	tván	Adosz WXV-			
2013. október 30. P-03 HB/11	Ménesi Is	itván	Adosz			

Felado :

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	15 / 44		

19/10/13

12:54

Lap: 3

GAMMA-CONTRULL HARDNESS TEST Report No: 562/13, REPORT 6784 Aged Bandina qu Mar Di Sharta, Iraz Mar Jan Janata ; CLIENT: JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22. TEST EQUIPMENT: TH 160-D Hardness tester PROCEDURE: QCP-45-R1 DESCRIPTION OF COUPLING: coupling(s) after PWHT DRAWING NUMBER: MT-3121-3000 SERIAL NUMBER: 8087; 8088; 8089; 8090 **BRINELL HARDNESS** SERIAL NO OF ACTUAL PART OF THE REQUIREMENT COUPLING COUPLING HARDNESS **RESULT (HB)** body 213 J 8087 weld 216 Min HB 197 flange 220 Max HB 238 connection face 225 body 229 / 8088 weld 212 flange 223 connection face 213 body 219 V 8089 weld 229 flange 231 connection face 238 body . 207 / 8090 weld 210 flange 226 connection face 234 The coupling(s) conform to API Spec 6A requirements. DATE: PREPARED: APPROMEDEONTROLL KFT. Varges Mile Color 1800 LL NFT. 250 Algoo, Küherelet Ottavild, Insc. Adoszains 1100 4014 0.06 Www.gemma/control.to. Varges Mild 6010 The 2013. október 30. Ménesi István QCP-03 HB/11

gamma controll kft

Felado :

61344

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	16 / 44		

GAMMA-COM	VTROLL	ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV				Vizsgálati szám: Report No.:	
Al > 100.025511.0 E5 >017,550 www.garune-contro 6750 Algy6, kultarütet 0168 Tel/Fec. +38 62/517.40	8.hu 14/14, hrsz.	ULTRASONIC EXAMINA REPORT				INATION	513/13
A NAT étai NAT-1-114072010 szároon aktra							
Vizsgálat tárgya	a / Objec	t of te	st			Coupling	(Body))
Gyártó				Megrendel	ő	JE-ZO Kft. Sz	eaed
Manufacturer Gyáriszám				Customer Rendelési	ezám		
Serial-No.				Order-No.			
Azonosító jel	83-8088			Követelmé Requireme	•	AS	TM A388
Geometriai kialakítás / Rajz	szám			Vizsgálati I	nőkezelé	3	előtt
Geometric configuration / D	rawing-No.			Test heat t	reatment	t	prior
MT-3121-3000		ø	200xø70x491	-			
Anyagminőség Material		AISI 4	130 🖊	Letapogatá Direction of	•	3Y13	lis és radiális
Adagszám				Direction of	r scanna	<u>.</u>	
Heat-No.		24613					
Vizsgálati felület állapota Surface condition		forgácso machine		Vizsgálati t Exted of Te	•	^m 100'	% %
Vizsgált darabszám							
Testing pieces		6 db			•		
	Vizs	gálati	adatok / I	Cxamina	tion	data	
Készülék típusa Type of US-equipment		USM2	5	Készülék g Serial-No. (-	787	5f
Vizsgálófej(ek)		SE8-2,		Frekvencia			2 MHz
Searc unit(s)		SEB4H		Frequency((ies)		4 MHz
							MHz
	·····	•				1.5 M	MHz
Kalibrációs blokk Calibration standard identfic	ation		ET1,ET2	Erősítés(ek Gain	()	axiálisan	18 dB dB
Compration standard identific				Gam			dB
1				1		radiálisan	6 dB
Csatoló közeg		olaj		Hanggyeng	Olés		dB/m
Couplant		oil		Attenuation	· · · · · · · · · · · · · · · · · · ·		
Értékelés / észlelt :	kijelzesek	/ Evalu	ation / recor	dable ind	icatio	ns	
Értékelés Evaluation	X	megfel			nem	megfelelő / no	t acceptable
Megjegyzés(ek)		satisfa	CLOTY	_L	L		
Remark(s)							
Hely / keit				~ '		GAMMA - CONT	ROLL KTT.
Place / date				R . ()' -		6750 Algya Kali	free hrsz.
Gamma-Co			¥.\O			Adoszam. 1109	4614-2-99
Algyő, 201	3.10.17		-	atot végezte www.gamutoath01000000 Tcl.: 06-302-18-2040 Approved by			18-2640 ived by
			Tóth Ákos L	Л2010309030)7	Benkő Péter -	Felelős vezetőh.

Ez a jegyzőkönyv részleteiben nem másolható! / Copying details is prohibited!

	CONITI	TECH RUBBE	R No:QC-D	B- 651 /201
		dustrial Kft.	Page:	17/44
	L			
GAMMA-CONTROLL		IANG VIZS GYZŐKÖN		Vizsgálati szám: Report No.:
W -KGVIISSI DI ES NUMESS Descrite PDD www.gamma-controllha 6750 Agyd, koltertist 01684/14. http: Tel/Fex: +38 62/517-400 / 61344 A NAT dtal HAT-114972010 science ektredisti vicualitation	ULTRASC	NIC EXAM REPORT	IINATION	514/13
Vizsgálat tárgya / Obj	lect of test	······································	Coupling	(Rody)
Gyártó		Megrendelő		
Manufacturer Gyáriszám		Customer Rendelési szám	JE-ZO Kft. Sze	
Serial-No.		Order-No.		
Azonositó jel 8089_800	10	Követelmény	4£7	M A388
Identification Geometrial klalakítás / Rajzazám	· · · · · · · · · · · · · · · · · · ·	Requirement Vizsgálati hőkeze		előtt
Geometriar Kalakitas / Rajzszam Geometric configuration / Drawing-No.		Test heat treatme		elött prior
MT-3121-3000	ø200xø70x491			·
Anyagminőség Material	AISI 4130 🖌	Letapogatási irán Direction of scanr	·	iis és radiáli:
Adagszám	23171 /			
Heat-No. Vizsgálati felület állapota	forgácsolt	Vizsgálati terjedel	lem 4000	· · · · · · · · · · · · · · · · · · ·
Surface condition	machined	Exted of Test	100%	Ó
Vizsgált darabszám Testing pleces	2 db			
· V	'izsgálati adatok /	Examination	data	
Készülék típusa Type of US-equipment	USM25	Készülék gyári sz Serial-No. Of US-	7876	f
Vizsgálófej(ek)	SEB-2,	Frekvencia(k)		2 MHz
Searc unit(s)	SEB4H	Frequency(ies)		4 MHz MHz
		·		MHz
Kalibrációs blokk Calibration standard identification	ET1,ET2	Erősités(ek) Gain	axiállsan	18 dB
Campration standard Identification	•	Gain		dB dB
			radiálisan	6 dB
Csatołó közeg Couplant	olaj oil	Hanggyengülés Attenuation		dB/n
Értékelés / észlelt kijelzés			ons	
Értékelés X	megfelelő	nen	n megfelelő / not	acceptable
EValuation Megjegyzés(ek) Remark(s)	satisfactory	.		-
	·····		0.1104	NTROLL KFT
Hely / kelt Place / date		14 01	5750 Algyo Holte	rule: #1884/14. hrs
Gamma-Controll Kft		su (['	Ados	nuel 81884/14. hrsz 1094614-2-06 ja-connoli:hu
Algyő, 2013.10.17	Vizsç	álatot végezte	Tel. 081	RU248-2640
		Tested by	Approv	

1

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	18 / 44		

CANHAL	CONTROLL	U	LTRAHA			I.	Vizsgálati azám: Report No.:
DAMMAN	JUNINULL		JEG	ZÖKÖ	DNYV		
MARK LUCE FOR	and an an an an an an an an an an an an an		MD 4 0 0 1				616/13
		יט ף	TRASON	IC EX/	AMINATIC	N	010/13
6750 Alguð túlistur Tel./Fici +36 625 ANN 424 EXT-1 140/2110 statem	17-400/81944		F	EPOR	Т		
Vizegálat tár	gya / Objec	t of te	et		Flar	ige)	
Gyártó	····			Megrendelö	JE-ZO K	ft. Sze	aed
Manufacturer				Customer			
Gyáriszém Senisi-No.				Rendslési sz Order-No.	am		
Azonositó (al				Követeimán	,		······································
Identification	8083-8090			Requiremon		AST	M A388
Geometriai kialakités /	•			Vizsgálati hó			előtt
Geometric configuratio	n / Drawing-No.			Test hest tro	atment		prior
MT-3121-3000		ø315x8	Sx#190x94x#70				
Anyagminöség Matenal		AISI 41	30 /	Letepogetee Direction of i	•	axiál	is és radiális
Adecszárt				Corection of I	scannaig		
Heat-No		03493	9 /				
Vizsastati felület állapo	ta	forgicso	<u> </u>	Vozegálati ter	jedelem		
Surface condition		machined		Exted of Tes	•	100%	3
Vizsgát darabszám		8 db					
Testing pieces				L			
	Viz	sgálati	adatok / E	saminat	lon data		
Készülék tipusa Type of US-equipment		USM28	6	Készülék gyé		7875	?
Vizenálófel(ek)		SEB-2.		Frekvencialk	US-equipment		
Searc und(s)		SEB4H		Frequency(is	•		2 MHz
Searc units)		GEDHI		requency(a	\$ /		4 MHz
							MHz MHz
Kalibrációs blókk				Erősités(ek)	exidiisan		6 dB
Calibration standard Ide	entfication		ET1,ET2	Gain			d 8
				1			đB
				<u>[</u>	radiálisan		6 cB
Ceatolo kozeg		olaj		Hanggyengi	iês		dB/m
Couplant	وينفنون في محدث و 19	oli		Attenuation			
Ertékelés / észi	elt kijelzések	/ Evalu	ation / record	lable indic	ations		
Ertékelés	X	megfel	elő		nem megfelek		Cooont-blc
Evaluation	<u>^</u>	satisfi			ment meficier		weeebrabie
Megjegyzés(ek) Remark(s)							-
Hely / kelt			Λ				
Place / date			1100	10	CAM	Subscit	BERNALL NE
	Önder HK		I HAL	. <i>N</i> .	-750 5	ave auto	sile track to be
Gamma	-Controll Kft						
			Vizsodiat	ot vézezie	A	disjinal	10006]4_2.00
	2013.10.17		-	ot végezte ed by	A	dis jovan	

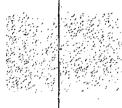
Ez a jegyzőkönyv (észteteiben nem másolható: / Copying datais is prahibited!

3.változat 2013.07.16

No:QC-DB- 651 /2013 CONTITECH RUBBER Industrial Kft. 19/44 Page: MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body) RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel) Azonositó szám: UT20103090307 (Identification No.): A tanúsított neve: Tóth Ákos József (The name and forename of the certificated individual): tanúsított személy aláírása Születési hely/idő: Hódmezőváráshely, 1987. 09. (The signature of the certificated individual) (Place and date of birth): 19. Vizsgálati eljárás(ok): Ultrahangos anyagvizsgálat (The NDT method(s): (Ultrasonic testing) Aria sa sa Készülékek, berendezések, létesítmények vizsgálata EM Ipari terület: (Industrial sector): (Pre and in-service testing of equipment, plant and structure) (c)+Fy, (w)+Fv, (wp)+Fv, (f)+Fv Termék terület(ek): Product sector(s) A minősítés fokozata; UT2 (The level of certification) A tanúsítás és kladásának időpontja: Budapest, 2009. 12. 07. (The date of certification and il's issue): A tanúsítás érvényes: 2014.12.06. (The date upon which certification expires): TI IS ANYA ANNE. Tanúsító Testület nevéb (On behalf of cerufying N-SVH esztéste sgalati for Az ipari és/vegy termék ternlet érvényesség kiterjesztve: (The industrial and/or product sector has Kijelölés: 9/20/01 GM een expanded to): 057/2004 QA Daum (Date): 2 izsgáztató (Examiner) Scard Materi ig megújítva (MSZ EN 473 9.): A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):) Dátum (Date): Tanúsító Testület nevében (On behalf of certification body) A Magyar Hegesztéstechnikái és Anyagvizsgálati Egyesülés, mint a Nemzeti Akkreditáló Testülét által a NAT-5-0013/2006 számon akkreditált tanisító testület az MSZ EN 473 számú szabvány szerint eredményes vizsgája alapján a nevezett személyt tanúsítja a fentiek szerint: (The Hungarian Association of Welding Technology and Mairrial Testing as an accredited by the National Accreditation Board (under NAT. No. NAT-5-0013/2000 certification body, on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above.) c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakitott termékek (wrought products); p - műanyag termékek (plastics products); k - kompozitok (composites products);

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	20 / 44

	GARIAN ASSOCIA	(Certific	cation Body)	•		
Meghatabnazzuk a tani (MSZ EN 473 3.21)			• •			vállaljon.
(The bolder of this certificate)	has been authorised to per	form tests and take resp	onsibility for the test	results. (MSZ I	EN 473 3.21)	. •
6722 Sz	MA - CONTROL	L KFT F\$6/A				
OTP 1		90-		Dátum: Date:)	200g.12.0	7
1 	WW.8amma-controll. Rel.: 06 30 218-2640	10				
	Folyamates	munkavégzés igaz of continued work acti	olása (MSZ EN	473 9.)		
Sorsz.:	Munkaltate	aláírása	MA-CONTROL		Dátun	a
<u>1</u>	(Signature of th	e employer)	wagotas Simples		(Date)	
2	The so	Atri	AGAA CONT	0117	1010.01.0 2011.01	
3.	INA		and the second second second second second second second second second second second second second second second	YARA A	Dell OI	
<u> </u>	105	21.	ANMATONT	£1	10(3.01.0	
5.	+ (Anyagolangilo Indiagellenoral	s Kft	· · · · · · · · · · · · · · · · · · ·	
6. 7.			<u> </u>			
8.						
9,						
10.						
				5 5- 4- 598 		
Clegészítések:						· · ·
						· · ·
						·.
					•	
	• •				8	
· · · · ·		,		₩ A		
:. `	· .		2 t 1			
					•	


(This certificate is valid with the signature of the employer.)

.

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	21 / 44		

.

PHOENIX	TECHNI	CAL D	ATA SHEET	TDS	Page	
PHOENIX RUBBER			E SPECIFICA	+	Nº 1 of :	
	· · · · · · · · · · · · · · · · · · ·			WPS	L	
CLIENT	1					REV 4
IDENTITY CODE	ON ASM	IE CODE	E SECTION IX SUPPORTING PQR N°			
	Wei ppie pp		TAW-SMAW	PERFORME		D 0700002
ITEM Qty Data for Acceptance	TYPES: MAN		A W-SIMA W	WELDER'S		
JOINTS (QW-402)	TTPES: WEAT	TUAL	1	WELDER S	STAMP	······································
8 Appr. 1.5	- B 		Sequences	of weld see	on adder	ndum
JOINT DESIGN B.	ACKING: YE	<u>s</u> /NO	WELD SEQUEN	ICE		
BASE METALS (QW-403)			PART "A	"	PAR	Г "В"
DRW Nº						
GRADE:	WNo.	:1.7220	ASTM A 322-91: AISI 4130 / 34CrMo4 (MSZ EN 10083-1) *			
CARBON EQUIVALENT	max.C _e =		0.82		0.	82
MECHANICAL PROPERTIES:						
TENSILE STRENGT	i N/mm ²	min.	655		6:	55
DUCTILITY	%	min.	18		18	
Hardness	HB	max.	238		238	
IMPACT TEST -30°	C JA	verage	27		27	
THICKNESS: t = 5	5-38 mm		OUTSIDE DIAMETER : ØD = 60-2		D = 60-2	80 mm
FILLER METALS (QW-404)						1
WELD MATERIAL DIAMETER	Bran			NDARD		SUPPLIE
Rod 2.4 mm	EML	•	AWS A5.18			Böhler
Electrode 3.2; 4.0	T-PUT NIM		AWS A 5.5-96: I	E 10018-D2	(mod.)	Böhler
LAPSE BETWEEN OF PASSES	MIN./mir	n 				
Positions (QW-405)			Preheat (QW-406)			
POSITIONS: 1G Rotated (horiz	zontal)		PREHEAT TEMP.: 300-330 °C			
WELDING PROGRESSION: Wel	d flat at or		INTERPASS TEMP.: max. 350 °C			
near	PREHEAT MAINTENANCE: Till the begining of postweld heat threating					
POSITION OF FILLET			postweia ne	at threating		

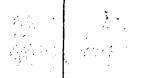
CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	22 / 44

	CONTINUAT	TION OF WPS	Nº 140-71 Rev	v.4			P	age Nº 2 of 2	
	POSTWELD	HEAT TREAT	MENT (QW-407)	GAS (QW	GAS (QW-408)			
	HOLDING	TEMP. RANG	620 +20 / -	0 C°	SHIELDING GAS Argon for root			t	
	HOLDING TEMP. TIME 4 HR								
	HEATING RATE MAX.:				PERCEN	TAGE COMPO	SION (MIXTUR	:Е)	
	COOLING RATE MAX.: 80 °C/HR					9	9.995 %		
	Location of thermocouple				FLOW R	ATE I	0-12 LITRES	5/min	
			· · · · · · · · · · · · · · · · · · ·		GAS BAG	CKING: Argo	on (for 1st and	2nd passes)	
	FURNACE	ATMOSPHER	e Air		FLOW R	ate 7	-9 Litres/min		
	TYPE:				TRAILIN	G SHIELDING	GAS COMP.	<u></u>	
	ELECTRICAL CURRENT	L CHARACTE	RISTICS (QW-40	19)	ELECTRO	DE POLARITY	1st : 2nd-28th	pass: - passes: +	
	TUNGSTEN	ELEKTRODE S	BIZE/TYPE: Ø3.2	mm thoriated	tungsten				
	MODE OF T	RANSFER FOR	GMAW						
	ELECTRODE	. / WIRE FEED	SPEED RANGE						
	Weld	PROCESS	Filler	METAL	Cu	RRENT	VOLT	HEAT	
	LAYERS		CLASS	DIAMETER	TYPE	AMP.	RANGE	INPUT	
	1	GTAW	EMIL 5	2.4 mm	POLAR.	RANGE 110-130	11-12	(KJ/cm) 5-8.4	
el anti y en l'y della.	2-3	SMAW	T-PUT NiMo 100	3.2 mm	+	120-140	24-26	12-19.6	
	4-28	SMAW	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5	
4	TRAVEL SPEED RANGE 100-130 mm/min								
	Technique (QW-410)								
	STRING OR	WEAVE BEAD)		ORIFACE OR GAS CUP SIZE Ø9mm				
	INITAL/INTE	RPASS CLEAN	NING: Brushing,	Grinding					
	EQUIPMENT	EQUIPMENTS FOR WELDING:							
	OTHER:							**************************************	
	EXAMINA		eptance instruct		REMARKS	w CMa2 (M	87 (1)		
	1		Based on ASMI		 * Formerly CMo3 (MSZ 61) ** Ni content less than 1 % 				
		WHO-10 2					electrodes for	2 hours at	
					350 ℃				
	Вү	DATE	TECH	NICAL D	ATA SHI	EET			
	Desig	26 14.06.	WELDING I	ROCEDUR	E SPECIF	ICATION	HOSETE	CHNICAL	
	Appr. Ch	En 2007	SUBJECT: Butt	weld of hose	coupling for	H2S service	; DEPAR	RTMENT	
	Chek'd			Strenght	75K		WPS Nº 14	0-71 Rev.4	

CONTITECH RUBBER	No:QC-DB- 651 /2013		
	Page:	23 / 44	

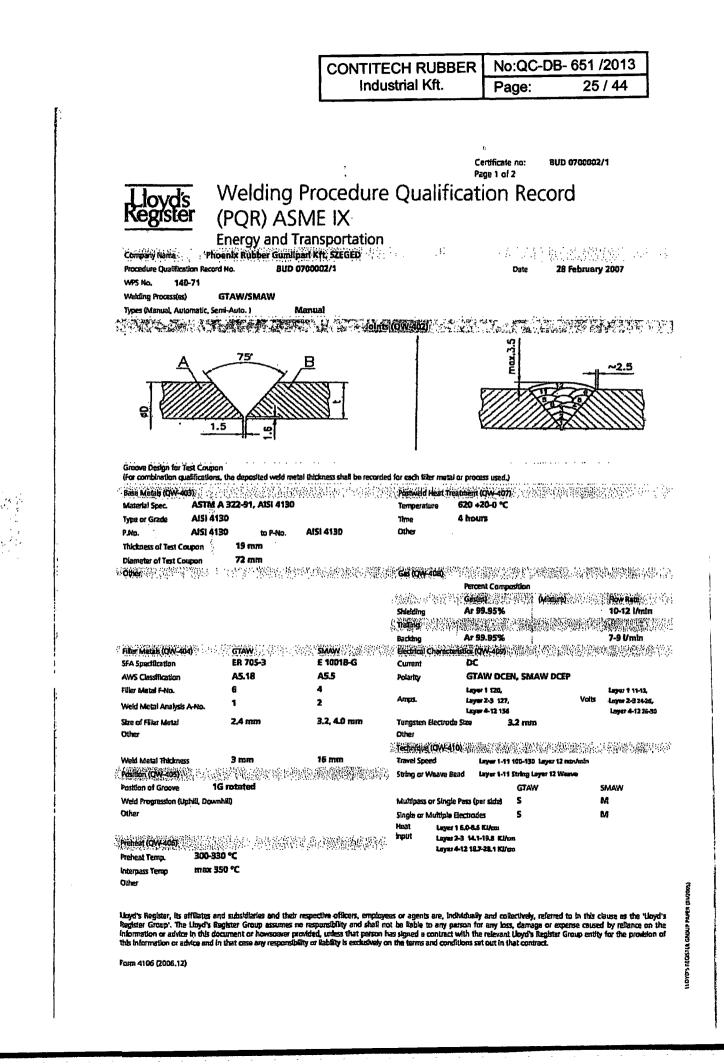
PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page Nº:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bainch
for the approved wall thickness range 5-38 mm	Checked:	144
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	Coefen

No.	Wali thickness [mm]	Weld lay er s		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		1 2-3	3,2 3,2
3.	9-11		l 2-3 4-5	3,2 3,2 4,0
4 .	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		1 2-3 4-8	3,2 3,2 4,0
6.	5-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		l 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		1 2-3 4-19	3,2 3,2 4,0



Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm Rod EML 5; for the others: SMAW with electrode T-PUT NiMo 100

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	24 / 44	


PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendam
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Page Nº:	2/2

No.	Wall thickness [mm]	Weld layers	· · · · · · · · · · · · · · · · · · ·	Electrode Ø [mm]
10.	26-29		l 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
	32-35		1 2-3 4-24	3,2 3,2 4,0
13.	35-38		i 2-3 4-28	3,2 3,2 4,0

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm wire EML 5; for the others: SMAW with electrode T-PUT NiMo 100

.

			CONTITECH RUE	BER No:QC-D	B- 651 /2013
_			Industrial Kft.	Page:	26 / 44
<u>I</u>					
				i Contificate con Pi	15.0700002/4
				Certificate no: Bl Page 2 of 2	JD 0700002/1
	Wid	·······	Tenslie Test (QW-150) Ultimate Total Ultimate Uni	t staten staten a bij op gan i -	R No. BUD 0700002/1
	39/1 1/2 21 21 18.4		a num Load kN Stress MPa	Type of Failure & Location Base material	
1	39/2 18.5		664	Base material	· .
	:		έλαμαβιας που παραφάλεια] προτολογίας με τραγολογίας με τραγολογίας Γεγολογίας		
	Gillioen Bent Jost Type and Rouse No.		Results	• • • • •	
		lla. 36 mm 2+2 pcs.	Satisfactory	12년 전 11년 - 11년 11년 11년 - 11년 11년 11년 11년 11년 11년 11년 11년 11년 11	
	and a state of the	n no Aragona (Ala Conto en la conto en El conto en la conto en la conto en la conto en la conto en la conto en la conto en la conto en la conto en la c		en de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de La compañía de la comp	
		QW-1707			
	Specimen No.	Notion totation	um °C j	Calification and a statistic statistic statistics	Drop Weight Break
	39 39	S 1	l0x10x55 -90 0x10x55 -30	angenese (n. 1917) - Anterska (n. 1917) 19 - 1 19 - Fried A. Britsler, i Winstand (m. 1917)	
	39	HAZ	l0x10x55 -30 :	1999 - 1999 - 1997 - 1997 - 1999 - 1999 - 1999 19 19 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	
	39 39	HAZ 1	an handler i de ander die stradie	Maria (Maria) 12 Amerika - Andreas Maria (Maria)	
	Comments				
	(Ellet-Weitzusztio)	(0-18))			
	Result- Satisfactory:	Yes 🚺 No	Penetration into Parent M	ietal: Yes 🗋	No 🗋
	Macro - Results				
	Type of Test Deposit Analysis	Hardness test			
	Other	Macro - Satisfactory X-ray - Satisfactory		_	
1	Welder's Name Test Conducted By:	Tivadar Szabo DC-II. 3782 DKG EAST Anyagvizsgala) Stamp No. TMO 007-7/07 V/K 1207/	2007
ŀ	We certify that the st	atements in this record are com	ect and that the test welds were prepa	red welded and tasted in acco	ordance with the
ł	requirements of Section	ion IX of the ASME Code. 28 February 2007	Lloyd's Rugi	7 -	
		R	Budaperty	Lloyds	
	Manufacturer's Represen	ntative Lassio Bajusa	Laszło P		
			t Surveyo	i to Lloyd's Register EMEA	·]
		ntative Lassio Bajusa	t Surveyo		· · · · · · · · · · · · · · · · · · ·
		ntative Lassio Bajusa	t Surveyo	i to Lloyd's Register EMEA	· · · · · · · · · · · · · · · · · · ·
		ntative Lassio Bajusa	t Surveyo	i to Lloyd's Register EMEA	· · · · · · · · · · · · · · · · · · ·
		ntative Lassio Bajusa	t Surveyo	i to Lloyd's Register EMEA	

-

CONTITECH RUBBER	No:QC-DB- 651 /2013		
	Page:	27 / 44	

activities and a second

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

		Weld test details		Range of approval		Photo (if required)
Welding process		GTAW/SMA	W			
	Туре	Rod / Electro	ode			
Filler metal	Designation	AWS 5.18; ER AWS 5.5; E9		1		
Parent metal gro	up(s)	ASTM A 322-91 4130	I; AISI	ASTM A 322 4130		
Plate or pipe		Pipe		Pipe/Plate		
Welding position	7 7 4	1G		1G/Fl	at	
Outside diamete	(mm)	72 mm	·······	> 25 m	າກ	Identification of test pleces:
Test piece thickn	iess (mm)	19		Max to be	welded	pieces.
Single/ both side	welding	Single				WPS No.:
Gouging/ backing	g					140-60 Rev.4
Joint type		Groove		Groove / Fillet		Testing standard:
Shielding/ backir	ng gas(ses)	Argon (99,95	5%)			ASME IX
Welding carried	out, place: Sz	eged	Dat	e: Iding Engineer:	29 April 20 László Baj	10 USZ Barrer
Type of test	P	erformed and accepted		Not required		e and date:
Visual	Acce	epted (Vjk-1739/10)			§	Szeged, 18-Jun-2010
Radiography	Acce	epted (Vjk-1739/10))	
Ultrasonic				+	Surv	reyor:
Magnetic particle				+		Péter Szabó
Penetrant				+		and all all and all all all all all all all all all al
Macro			+		Stan	np and signature
Fracture			+			
Bend				+		AT THE ALL AND A DE THE
Additional tests				+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See attached page	ge(s) for prole	ongation by employ	er every	6 months		
····						

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	28 / 44	

Continental -CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

	PROLON	IGATION OF APPROVAL BY EMPLOY	ER
Piace	Date	Name/ position/ title	Stamp and signature
Szeged	29, 10.2010.	Laselo Bajuse / Webling techno liquist	Barred
Szeged	29.04.2011.	Lass to Boyuss / Walding telenologies	Berrel
Szeged	29 10. 2011	Lasslo Baricon Welding Jedens byist	Beerer
Sreged	29.04.2012.	Caselo Bainon (Webling Lecterolysit	Barr
Sz egect	29, 10, 2017.	12526 Dairen / Ukblig Laber	Beech
Sz ggel	29. 04. 20B.	laselo Baiun Weblicy taleudagest	Baral
Siger	28.10.2013	Cosilo Dairen / Weblieg tale uslaget	Beercel
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			
- <u></u>			
<u></u>			·
	<u> </u>		<u> </u>

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	29 / 44	

eged, K	ZO KFT. Diterület 01408/2 : 13341039-2-00	22 hi sz 6		ELDIN					WLS I Száma	₩. a: 2013.	12	898.
I Deal	számlaszám: pic 7677.04100		HE	9ESZ	ESI	MUN	KAI		PAGE	/oldal 1/	1	
CLIENT Megren	delő C	ONTI	TECH R	UBBER I	ndustria	al Kft.		CH.ORDE		3226159	8.	
CONTR Kötéssz	ACT N ^O . Ám			NL/JOBN ^O . 1 m.szám	<i>189</i> 8	-2905	•	WPS N ⁴ Heg.ut.s	-	14D - 71	R	ev. 4. 1.7
Heg. ali	OF WEDED PAR atrész megneve	zése	Bad	(+ -].	onge			DRWG Rajzszá	m Y	T 3121 -	- 30	oq
	N ^Q . OF WELDE		Szabo	livador	losz l	<u>d.</u> <u>B.</u> C	15.	LOCATI	ómrác h	aho Jege	đ. T	opé széle 6.
DATE Dátum	2013.10.	25	QUANT Darabs		8.			SERIAL Sorszán	NUMBE nok	ERS 8085 ~	- 80	90.
1. MATE			JECT 1	poq	ły	MATERI	NL	AISI . 41		CAST N ^o . Adagszám	12 4	1010k do 12 mg
	negfelelőség	Tân SUB	JECT 2			Anyag MATERI/		······		CAST Nº.	1	(171, 8085-80
azonosi	883	Tár		Han	ge	Anyag		<u> (151. 51.</u>	a	Adagazám		034939.
	R METAL a minóség		D LAYER: atszám	S		1.	ź	2-3.		4-1.		
ás mére	t	TYPI Tipu	_		FW.	5.	NIH	0. 100	. NI	MO. 10D		
		Atmé			2	.4.		3.2.	_	4.		
		Elek	LLER CAST N ^O . lektr.adagszám		800)303.	112	4075	11	27750.		
3. ELEC	TRICAL CTERISTICS			OLAR Polaritás		-		+	_	+		
Elektro	nos adatok		VOLT (V) AMPERE (A)		12. 24.			26.				
4 0054		1			81	0.		40.		180 .		
	ical incalmic Ida felhasználás					300 .		C°	<u></u>	8.		Hours
	ED SHILDING (azott védőgáz	3AS	TYPE ^{Tipus} Ar	qon.	Percen Tisztas	tage Comp ág .	osition G	9 ⁹⁵ .	9	Flow Ret Aramlási		8.
	TREATMENT (j legités				7. POS Helyz		Forq	atott	•			
	D OF TRAVELS	100	+130.	mm/min		SE BEETW				8.		min
10.POST	WELD HEAT			ne	Te	mperature imérséklet	T	Furna	ace atm Otôkôze			Cooling rate
	rment kezelési edatok		240	-		G20 .	C°		eveque. 80			
	OGRAPHIC TE			2450	115,	2451	115					
REPAIR Javítás	YES/ Igi	en				X	NO/ N	em				
	PLACE OF DE Hiba helye	FECT			TYPE OF DEFECT Hiba tipusa							
	METHOD OF I Javitási módsz		2			1						
VISUAL I Szemrewi	NSPECTION .		tegfele)	å 50	hsfact	ory.						
REMARK		Ŧ	ionius .	Manie	. Ika	EGESZI	2600				TC	-ZO KFT.
Date, end	of coling down		IN	MADOST	ACTTI'	TARSASA.	נד ו נ	3C) [IN	SPECTO	OR ⁶⁷²⁸ Szeg	eA.	ülterület 01408/2
-	hűlés vége 10. 26	-19	>	1995 1995 1995 1995 1995 1995 1995 1995	Szeged, Ta	Pé széle 6. Heller köz	1. (3.)		Engr Z013	NOV O A L	∭an (¢	n: 13341039-2-06 k zám Aszám: 60127077-001600
			una ru		www.eys			Dá	itum		1	

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	30 / 44		

61344

GAMMA-CONTROLL	SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV	Record No. Jegyzőkönyv száma
Alexandra and an an 1993 and an an an an Www.purchs-control.hu G750 Agyd, kobiertiej 01504/14, hrsp. Tel/Fez: +03 12517-00/ 01544 A NAT 650 NAT-1-1452215 entern attracted singlitysembors	VISUAL EXAMINATION REPORT	813/13

Object Tárgy	Coupling welding Caatlakozó hegesztés	Serial No. Gyári szám	083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. Rejzszám MT	-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminôség/méret	AISI 4130 116/77
Quantity Mennyisé	8 db	Extent of examination Vizsgalat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Hest treatment Hőkezelés	after PWHT
Written Procedure I Vizsgálati eljárás sz	OCP.09.1	Welder Hegesztő	BC15

Technique		· · · · · · · · · · · · · · · · · · ·
Módszer	Direct visual	-
Instrument	· · · · · · · · · · · · · · · · · · ·	
Készülék	•	•
Visual aids		
Segédeszközök	3x magnifiying lens	-
	Management (M	l.l.

Measurement / Mérés Equipment _ Készülék Instrument . -. Készülék Lighting intensity Surface temperature Surface condition 20 °C machined 1000lx Feiület A felület Megvilágitás Allapota hômérséklete Test results SATISFACTORY Eredmények : megfelelő......8 pc(a)/db not accepted pc(s)/db nem megíclelö......0 Vizsgálat helye és ideje: Vizsgálatot végezte: Áttekintette és jóváhagyta: Reviewed and approved by Place and date of test: Tested by: 6750 AI A. Kabatin Kis Gabor VT20103130102 18 MAR Gamma-Controll Kft. zin Algyő, 2013.10.30. (10h) Tel Foscass Iseas

the a jegyndialatyr remdeterben new manolihotal / Conying devulk is prohibited)

1. viituut 2012.07.10

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	31 / 44

Azonosító szám:

(Identification No.):

The signifure of

A tanúsitott s

VT20103130102

ély aláírás

ed individ

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Szemrevételezéses anyagvizsgáló

Készülékek, berendezések, létesítmények vizsgálata EM

(Pre and in-service testing of equipment, plant and structure)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth).

Kis Gábor Balázs Szeged, 1980. 02. 29.

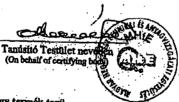
Vizsgálati eljárás(ok): (The NUT method(s):

> Ipari tertilet: (Industrial sector):

Termék terület(ek): Product sector(s):

A minosités fokozata: (The level of contification):

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):


A tanúsítás érvényes: (The date upon which certification expires): Budapest, 2013. 02. 19.

(Visual testing)

(c), (w), (wp), (f)

2018, 02, 18,

VT2

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product soctor has been expanded to):

Dátum (Date):

Tamisito Testillet nevében (On behalf of centifying body)

A tanúsítás érvényessége -ig megújítva (MSZ EN ISO 9712 10.): (Renewed the validity of the certification until (MSZ EN ISO 9712 10.):)

Dátum

(Date):

Tanúsító Testfilet nevében (On behalf of certification body)

Vizsgáztató

(Examiner)

c - öntvények (castings); f - kuvácsolt termékek (forgings); w - hegesztett és forrasztott termékek (welded products); t - csövek és csővezetékek (tubes); wp - alakított termékek (wrought products); k - kompozit anyagok (composites products).

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	32 / 44

:

.

VT20103130102
MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION ÓF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)
* Michaelinennit a saufate das selectores to har vienalistates viennis de amb andrés vient filellation

Meghatahmazzuk a tanusavany many (MSZ EN ISO 9712 3.21) (The holder of this of the meghating top of the test results. (MSZ EN ISO 9712 3.21)) 0726 Szehed, Túzok n. 8/A Dátura:

Munikáltat Signatore of Ø	6 aláírása Adoszámi 11004514.2.00 z cmplofall Bank: 11055005-200001 54 www.gamma-controll.hu/ Tcl. 065-01-2000	Dátum: (Dat) – rés igazolása (MSZ EN ISO 9712 10.)	945 01 01 -	
	Evidence of continued	l work activity (MSZ EN ISO 9712 10.)		
Sorsz.:	Municalizato alairasa (Signature of the employer)	Ph. "GANMA CONSTROLL."	Dátum (Date)	
1.	L A	Anyogutugalo és Minoségetlenőrső Kít.	7012.02.06	
2.				
3.				
4				
5.				
6.				
7.				
8				
9.				
10.		······································		

· · .

. •

.

Kiegészítések: (Additional remarks:)

A tamúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

_

					L		Indu	ustri	al Ki	ft	Pa	ige:		33/4	44	
lo :	613	44			9	8448	con	trol	l kft		1	9/18/1	3 12	:54	Lap:	
	⁹ Gama	ia-Co	NTROL	·	R	AD				l Vize Köny		ATI	Report	1könyv s: No.: 2431/		
	VIDE THE CONTRACT OF DECEMBER OF THE DEFENSION WINN, GETTERS CONTRACT OF THE OFFICE OF THE OFFICE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OFFICE A NOT WELL NATION OF THE OFFICE OF THE OFFICE OFFICE OFFICE A NOT WELL NATION OF THE OFFICE			•	EΣ	R	ADI	OGI	RAPHI ON RE	IC	P	Kiáliáás Date of 1	dátunta:			
Vizsgálat	tángya:				Coupling	 or			endelő;							
Object: Munkasz	im;			·					uldai sut	m:		·	<u>ie-20 i</u>	Kít. Szej	ed	
Job Nu.: Rajzszóm				M1	-3121-3	000			gminősé	g ;		_ <u></u> .	214	1 4 1 3 0		
	szabvány:				DCP-13-	_			alat terje					0%		
	nvetolmén	y:			STM E			Exten Höke	t of testi celes:	ng:						
Acceptant Kód:	e criteria;							_	reatmen xtil jele:	t condition:		·	After PWHT			
Code: Borendez/	s tipusa;				IN ISO		1	Welder stamp: BC15 Kepmindsegielző típusa; ASTM set B type								
Type of ea Sugarform	uipment:		<u> </u>	GA	MMAM	AT		Туро	of IQI;	etző halye:)e	
Source: Nugariord					Ir192			Place	nont of i	iQ1:		<u> </u>		F		
Source siz					sai,Smm) 		Requi	red IQ1:			·	2%	(2-217)		
Activity:			Kázi:		0,4 TBq			Film 1	ype:	astagság:			FON	<u>1A R5</u>	 .	
Film proce	-	a.	Manual:		Automut		X			ud thick:	. <u></u>		Pb (Defects	0,027		
Megnevezés Designation	e Méret Size	B. Felvitelets entime: B. Number of entitographer	a Atragant aryonangrie: B Proceed Airbour	 Segnitaries film tivelsitg Semno-to-film distance: 	Film the a they sugtents build a outside I Distance ten source side of object to film	Feixtedits ' Density.	n Megrildenten ider 5. Expos. Trane.	Maksitis A-magklelig NA-non magketis Result.	Virregidat Miliportis, Date of last	Ciáz Porosity A 200	Salak Siag B 300	Kötős Lack of fiction C 401	Gyök Lack of D 402	Repodés Crack E 100	1	
8083	115/77	4	19	96	19	2,4	0,5	A	10,30. 10p							
8084	115/77	4	19	96	19	2,4	0,5	A	10,38 106							
8085	115/77	4	19	96	19	2,4	0.5	· A	(0,30) 196							
8086	115/77	4	19	96	19	2,4	0,5	A	102	· · ·					[
8087	115/77	4	19	96	19	2,4	0,5	A	10.30, 195							
8088	115/77	4	19	96	19	2.4	0,5	Å	10.30. 105							
A filmsz	imok és bers of ti tot végez	varrats 10 film	zámok a	zonos	ak, beaz	onosí	ásuk s	neg	endelf tion is	tterhell. the task of Ménesi I.					·	
Vicepolat h Place of Las	elye: :: 6750	Algyö	, Teleph		Értékelt Bvaluais		й М		Lstván 12010			407507	győ, Kulte dószánt.	INTROI	4/10, hr 2-0	

8. változat.2013.07.16

					[ECI ustri		JBBEF (ft.	`	o:QC- age:	-DB- 6	51 /2 34 /		
lo :	613	344				gana	a cor	ntrol	1 kf	t		19/18/	13 12	2:49	Lap:	
	GTED ADA	t ender el	. Jorge	· • • • •			J R	EG ADI	rző OG	I VIZ: KÖN RAPH ON RE	rv IC		Report KiAllita Date of	2430, « dátuma:	/13	
Vizagéli Object;	at tilrgya:				Couplin	'g		Meg	rendelő;							
Munkas Job No.:									clósi sz	âກາ:			<u>JK-20</u>	<u>KR. Sze</u>	ged	
Rejecté	n;			M	Г-3121-3	000		_	gminös	tg:			AIS	51 4 1 3 0	·	
Vizsenie	ti szebvány tiendard;	r		(QCP-13-	-1		Viza	alut ter	jedelme:				00%		
Arveteli	követelmén 102 criteria:			Ň	STM E	94) lûke			— <u>——</u> , ,			PWHT	· · · · · · · · · · · · · · · · · · ·	
Kåd; Code:	<u> </u>		<u>نــــــــــــــــــــــــــــــــــــ</u>	MSZ	EN ISO	6520-	·1 ·	licgur	tañ jeló				(BC15)			
Berende	tipusa:				MMAM			Képm	Kopmindsegtelse tipusa:							
Sugarlar	quipment: ns:				lr192			Type of (Q): Képminőség jelző helye: Pincoment of (Q):								
-	th márato;				3x1,5mm	··		136trt	kepmin	dsty:						
Source si Alctivitits						·····	·	Filmt		·		·····	4%	(2-2T)		
	gozás mód	ja:	Kezi:		0,4 TBq Automat		<u>x</u>	Film T	урс:	0310gs\$q;				1A R5		
Film proc	casing:	1	Mangal:	1	Automat	ka: T	$\hat{\mathbf{T}}$	Server	type or	nd thick:		Hibák	Pb	0,027		
Megnevezés Designation	» Méret Size	Feintmeich trainne B. Number of radiographs:	B Átenytrætt errjægesatergelse Prostreted thjefoness:	Brightiards film therefore Source-to-film distance	Fin: Set, e trigy ang Aurita ti dataka: B Distance from source side d adject to fin:	Februells: Demity	u Mensthøttel idd. Si Export Time	Nandadis: A-magneleto: NA-roca cargitetelo: Resale A-rocatete NA-roca second	Vicegéter idéponipi, Date of ices	Cláz Porosity A 200	Salak Slag B 300	Kötés Luck d ^r Enlen C 401	Győk Lack af practasiva D 402	Kepedés Crack E (00	Fclüle Surfac F \$00	
8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 10h							
8090	115/77	4	.19	96	19	2,4	0,5	A	10.34 105							
-	·	•	•	-	·	-		-		-	•			-	-	
									⁻						_	
				• • • •	•											
	bers of th	io films								t terheli. the task of	the cost	tumer.	4			
Vizsgála Performa	•	le:					• •		1	Ménesi I	Szabó '	r.				
Vizsgålat h Pizce of tes	alyo: t:	Algyő,			Értékelte Evaluato			Contraction of the second	stvår				: #A - CO győ, Keles lószám; h			
Gamm	a-Contro			ly			Menesi István RT20101120107 Adosam WP4614-2- Veny egymi Confront Tereso Sor 2540									

8. váitozat.2013.07.16

	CONTITECH RUB	BER No:QC-DB- 651 /2013
	Industrial Kft.	Page: 35 / 44
(HUNGARI	HEGESZTÉSTECHNIKAI ÉS AN IN ASSOCIATION OF WELDING TECH (Certification B WENTES ANYAGVIZSO	inology and material testing) ody) GÁLÓ TANÚSÍTVÁNY
	(Certificate of NDT person	nel)
		Azonosító szám: (Identification No.):
A tanúsított neve: (The name and forename of the certificated individual):	énesi István	Mbll
Születési hely/idő: (Place and date of birth): Sz	entes, 1988. 09. 06.	A tanúsított személy aláírása (The signature of the certificated individual)
Vizzgálati eljárá (The NDT me		gálat
Ipari te (Industrial	rillet: Készülékek, berendezések,	létesítmények vizsgálata EM of equipment, plant and structure)
Termék területi Product sört A minősítés foku	or(6):	
(The level of certifi A tanúsítás és kiadásának hlór	cation): R12 00ntja: Rudaneet 2012 nd 28	
(The date of certification and it A tanúsitás érve (The date upon which certification e	instue):	
Tanúsitó Test (On behalf of ca		TQD2 Vizzgáztato (Braminer)
Az ipari és/vagy termék ter let érvényesség kiterjeszt (The industrial and/or product soctor been expanded (re: Kijelölds. 9/2001 Cit	Tamister of certifier boo
A tanúsitás érvényessége (Renewed the validity of the certification	-ig megújítva (MSZ EN	N 473 9.):
Dátum (Date):		Tanúsító Testület nevében (On behalf of certification body)
473 szerint credményes vizsgé (The Hungarian Association of We National Accreditation Board (under EN 473, hereby certifies the named in •	i és Anyagvizsgálati Egyesülés, mint "e kreditált személytanúsító szervezet" a ri a alapján a fentiek szerint: lding Technology and Material Testing as an " No. NAT:5-013/2010", on the basis of his/her s ndividual according to the abave:) olt termékek (forgings); w - hegesztett kötések-te	a Nemzeti Akkreditáló Testület által a accredited certification body for person an by successful examination under the standard MSZ
wp - alakitott termékek (wrought pro	ou ternestes (torgangs); w - negeszten kolesze-te ducts); p - milanyag termékek (plastics products)	; k - kompozitok (composites products).

				CO	NTITECH F Industrial		Page		- 651 /2 36 /	
	AD	MAG (HUN	YAR HEG GARIAN ASS	ESZTÉSI BOCIATIOI	FECHNIKAI N OF WELDING	ÉS ANYA 5 technoi	GVIZSG. LOGY ANI	ÁLAT Mati	I EGYES Erial te	RT24 SÜL STIP
	Meghata (MSZ EN (The holder Munkáltatć (Signature of th	Imazzuk a t I 473 3.21) of this certific aláírása;	anúsitvány tul au myslen auto 6 26 Szeg Adoszám	ajdonosát, h ONTROLI 1937 (18 2017 00 11094614- 11094614-	(Certifica togy vizsgálatoka L Kř 1. p8555 and take respo 2-06 14064554	tion Body t végezzen és asibility for the P Dá) azok eredn ucst results. (M tum:	1 ényéért SZ EN 47	felelőssége 3 3.21))	
	1	ie employer.)	www.ga Tel.:0	5-30-218-26	40		Date:)			
•	0		tolya (E lunkáltató alài	vidence of con	tinued work activity (MSZ EN 473 9.))		74	
	Sorsz.:		gnature of the can		GAMM	Ph. A.CONTRO	11		Dátum (Date)	
	1	$\mathbb{N}_{\underline{s}}$	-	.	All of the		n -	101 L	04.14	1
	2.		152	<u> </u>	Anya	entregaló és entrentező k	n 1	2013	. 0(.09)
	3.			/						÷.
	.4.									· :
	5.									
	6.									
	7.					,				_
	8.									
	9.									
	10.									
	Kiegészítése	k:								÷
	(Additional) rem	ariks:)		. :				. '	. •	
	. ·		÷	2 ⁴ *		.':				
			. ' !							
		.: •	i.		47 	; ?				
	· .	÷.								
		·								

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	37 / 44

ContiTech Rubber Industrial Kft. Szeged/Hungary	Vizsgálat Liquid pene Festékdiffú X Magnetic p	ation record ti jegyzőkönyv trant examination izlós vizsgálat article examination repedésvizsgálat	Record No. Jegyzőkönyv száma : 1222/13
Manufacturer Gyártó	JE-ZO Kft.	Serial No. Gyári szárn	8083-8090
Customer Megrendelő	ContiTech Rubber Industrial Kft.	Drawing No. Rajzszám	MT 3121-3000
Object Tárgy	coupling(s)	Material Anyagminőség	AISI 4130
Quantity Mennyiség	8 pc(s)	Extent of examinat Vizsgálat terjedeln	
Requirements Követelmények	ASTM E 709	Heat treatment Hökezelés	yes
Written Procedure No Vizsgálati eljárás szár		Welder: Hegesztő:	Szabó T.

Liquid penetrant examination /Folyadékbehatolásos vizsgálat

Penetrant	Remover	Developer	
Behatoló anyag	Tisztító	Előhívó	
Dwell time	Drying	Developing time	
Behatolási idő	Szárítás	Előhívási idő	
Surface temperature	Surface condition	Lighting intensity	
A felület hömérséktete	Felület állapota	Megvilágítás	

Magnetic particle examination/Mágnesezhető poros vizsgálat

Equipment type TSW 1000 Készülék típusa	Testing mate Vizsgáló anya		76F	Magnetizing current Mágnesező áram	1000 A
Black light type Superlight C UV-A lámpa típusa 10A-HE	Field strength Térerőmérő	•	Berthold disc	Field strength Térerő	4,2 kA/m
Surface temperature A felület hőmérséklete 23 °C	Surface cond Felület állapo	mo	achined	Lighting intensity Megvilágítás	1000 µW/cm ²
Test results					
Eredmények :	satisfactor	1			
	megfelelő.			pc(s)/db	
		_			
	not accept				
	nem megfe	elelő		pc(s)/db	
	_				
Performed by NDE Level II.	000	Revised	by Q.C. r	manager	
Vizsgálatot végezte	Their	Ellenörizt	e – MEC) vezető Cont	iTech Rubber
Have UR!	At see is			Inc	iustrial Kft. QC 1
Signature Oravecz Gábo	Dr C. 3	Signature	e M	larkó Lászió	
Aláirás	E.	Aláirás			
Place/Date	`	Place/Da	te		
Kelt Szeged, 04.11.20	13.	Kelt		eged, 04.11.2013	
OCD 42 4 MDT/07					

QCP-12-1-MPT/07

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	38 / 44

Azonosító szám:

(Identification No.):

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Mágnesezhető poros anyagvizsgáló

(Magnetic particle testing)

Fémfeldolgozás MM

(Metal manufacturing)

Budapest, 2012. 02. 21.

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Szeged, 1958. 07. 07.

Oravecz Gábor

A tanúsított személy aláírása (The signature of the certificated individual)

MT20103010506Ú

Vizsgálati eljárás(ok): (The NDT method(s):

> Ipari terület: (Industrial sector):

Termék terület(ek): Product sector(s):

A minósítés szintje: MT2 (The lével of certification):

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

A tanúsítás érvényes: (The date upon which certification expires): 2017. 02. 20.

(c), (f), (w), (wp)

Tanúsító Testillet nevelinn (On behalf of certifying book rays Vizsgáztató (Examiner)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product soctor has been expanded to):

Dátum (Date): __

Tanúsító Testillet nevében (On behalf of certifying body)

A tanúsítás érvényessége -ig megújítva (MSZ EN 473 9.): (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint:

473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	39 / 44

(Date:)

MT20103010506Ú

AGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to parform tests and take responsibility for the test results. (MSZ EN 473 3.21))

Hain

Munkáltató aláírása: (Signature of the employer.)

- vos

Dátum: 2012. 02. 21.

·	Foly	amatos munke	avégzés igazolása (MSZ EN 473 nued work activity (MSZ EN 473 9.))	9.)
Sorsz.:	Munkáltató alái (Signature of the emp	rása	Ph. Conti Di Withibber	Dátum (Date)
1.	Back ~	ו	Industrial Kit. Quality Control Dept.	2013.01.24.
2.			œ	
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

Klegészítések:

(Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.) CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 40 / 44

Bekaert Hiohovec a.s. Mierová 2317 92028 Hiohovec / Slovakia Tel:: 00421337363111

Fex:: 00421337422742

STEELCORD MANUFACTURER : BKHL

CONTITECH RUBBER IND SZEGED

Contitech Rubber Industrial Kft.

Budapesti út 10

H-6728 SZEGED

١

Page:1 / 1

505760

Certificate of Analysis Delivery No. : (4046181212 3046059220/10 Sales Order Purchase Order 32260330 Inspection lot 090000200665/000001 3500245379 Batch 01.07.2013 Date produced Date COA 09.08.2013 Spools 32 delivered from a batch of 32 produced Units 18 delivered from a batch of 16 produced Delivery net Qty. 10517 KG Material Description Zinc coated steelcord 1X24DW/3.8 NT 20/36 ZZ B650

5000 M

ZŻ

Spec customerContitech Rubber Industrial KR.Your code14-18-07/1Your specREV.3 / 15.01.2002Our SpecH207297 / 26.10.2012

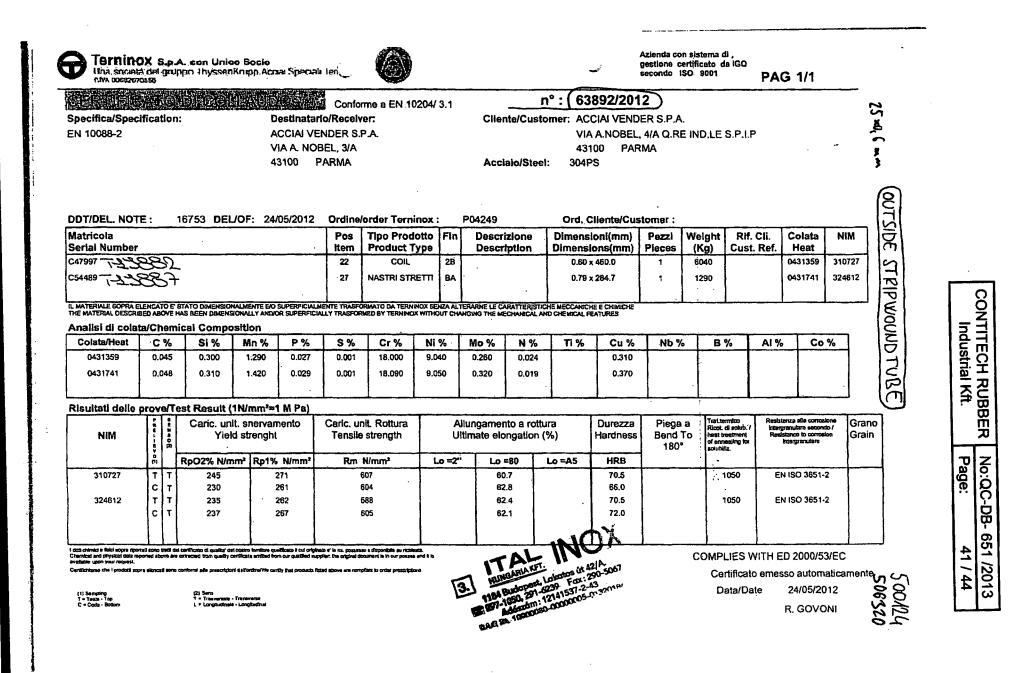
			Lay le	ngth	20/36		
Tests			Speca		Results		
Test	Procedure	Unit	Aim	Min. Max	Avg. N	Min ind Max ind	
Cord diameter	RA12-100	mm	3,6000	3,4200 3,7800	3,6845 6	3,6640 3,6930	
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870	
Cord breaking strength	RA30-203	N		17900,0	19337,0 6	19087,0 19584,0	
Cord elongation at break	RA30-203	%		2,50	2,98 6	2,80 3,15	
Zinc D1	RA40-741	g/m2		32,000	40,057 8	37,870 44,630	
Zinc D2	RA40-741	g/m2		44,000	48,788 6	45,350 <u>66,</u> 100	
Residual torsions	RA30-150	Nt	0,000	-3,000 3,000	-0,250 6	-0,500 0,000	

Lay direction

Cominenta :

)

D1: 0,54


D2: 0,73

Nominal Chemical composition of High Grade Oxysteel: %Carbon : 0.70-0.90 %Manganese: 0.40-0.60 %Silicon: <0.230 %S: <0.011 %P: <0.012

Microstructure/Texture: Metallurgically the texture is known as a high drawn, fine pertitic structure.

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	42 / 44	

Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No.: 32259470

Page 1/3 oldal Kiadva / Issued Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya: Object of calibration: Gyártó / Manufacturer: Típus / Type: Azonosító szám / Serial No.: Műszaki adatok / Technical data:		anometer -INDEX Gr		
Kalibrálásra bemutatta: <i>Customer:</i>	ContiTech Rubb 6728 Szeged, Bu	er Industrial	Kft.	
A kalibrálás helye és ideje: Place and date of calibration:				
A kalibrálást végezte: Calibrated by:	Lifi Szaulic	h Dénes	r	
A kalibrálásnál alkalmazott etalo	nok:			
Standards used for the calibration: Megnevezés: Designation:	Gyártó: Manufacturer:	Típus: <i>Type</i> :	Gyártási szám: Serial No.:	Bizonyítvány szám: Certificate No.:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013
digitális multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012
hômérô / temperature measuring instr.	GANZ MM	DTHI	33656	Hôm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztűk. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org.

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	43 / 44	

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature21,1 °Ca kalibrált eszköz helyzete / Position of the calibrated manometerfüggőleges / verticala kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer24V DCnyomóközeg / Pressure transfer mediumolaj / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

ويستعد فيستعد والمتحد و				
Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, enviromental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	44 / 44	

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Page 3/3 oldal

Bélyegzés:

.

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: <u>http://www.bipm.org</u>)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

AMEREDEV

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Submission Date: 04/27/2018

Well Number: 101H

Well Work Type: Drill

SUPO Data Report

05/06/2019

Show Final Text

APD ID: 10400029847

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_101H___WELL_PAD_ACCESS_20190314093823.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAMELLIA_FED_COM_26_36_21_101H___WELL_PAD_ACCESS_20190314093850.pdf EP_CAMELLIA_PAD_ROAD_EASEMENT_SEC_21_REV1_20190314093904.pdf EP_CAMELLIA_PAD_ROAD_EASEMENT_SEC_28_S_20190314093904.pdf New road type: RESOURCE

Length: 748 Feet Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: NM One Call (811) will be notified before construction start.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CAMELLIA_FED_COM_26_36_21_101H___1_MILE_RADIUS_WELLS_20190314094006.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 21, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled north of the well pad. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location. Production from the proposed well will be transported to a new production facility named Camellia CTB, north of the well pad. The Camellia CTB will be 500'x525' and will include a separator, Heat Exchanger, VRU, VRT, meter run and a tank battery. A buried 4" poly flowline will be run approximately 34' from the Camellia Fed Com 26 36 21 101H to the Camellia CTB.

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

8" poly water line will be run from the Camellia CTB to a line that will be installed taking our produced water in the area to an SWD that is operated by OWL. The new line will be approximately 662'. A power line will be run parallel to the water line and will connect into a power line that we will be installing for a well in the area. The new power line will be approximately 700'. **Production Facilities map:**

CAMELLIA_FED_COM_26_36_21_101H___FACILITIES_MAP_20190314094917.pdf BO_CAMELLIA_FED_COM_BATTERY_SITE_S_20190314095414.PDF EP_CAMELLIA_PAD_FLOWLINE_SEC_21_20190314095415.pdf EP_SOUTH_ELECTRIC_SEC_21_REV2_20190314095416.pdf EP_SOUTH_WATER_SEC_21_REV2_20190314095417.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING Describe type:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (gal): 840000

Water source and transportation map:

CAMELLIA_FED_COM_26_36_21_101H____WATER_MAP_20190314095517.pdf

CAMELLIA_FED_COM_26_36_21_101H___WATER_WELL_LIST_20190314095518.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Est thickness of aquifer:

Water source type: GW WELL

Source longitude:

Source volume (acre-feet): 2.577862

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face east. Closed loop drilling system will be used. Caliche will be hauled from existing caliche pits on private and state land.

Construction Materials source location attachment:

CAMELLIA_FED_COM_26_36_21_101H___CALICHE_MAP_20190314095556.pdf CAMELLIA_FED_COM_26_36_21_101H___WELLSITE_DIAGRAM_20190314095556.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks on pad

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: R360's State approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CAMELLIA_FED_COM_26_36_21_101H___WELLSITE_DIAGRAM_20190314095740.pdf
Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CAM/AZE Multiple Well Pad Number: 1N

Recontouring attachment:

CAMELLIA_FED_COM_26_36_21_101H___WELLSITE_DIAGRAM_20190314095755.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the north and east sides of the pad. This will leave 3.8 acres for producing five wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Seed Managemen	t		
<u>-</u> .			
Seed Table			
Seed type:		Seed source:	
Seed name:			
Source name:		Source address:	
Source phone:			
Seed cultivar:			
Seed use location:		:	
PLS pounds per acre:		Proposed seeding sea	ason:
Seed S	ummary	Total pounds/Acre:	
Seed Type	Pounds/Acre		
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	1	
Seed reclamation attachmen	A.		
· · · · · · · · · · · · · · · · · · ·			, .
Operator Contact/	Responsible Offici	al Contact Info	
First Name:		Last Name:	
Phone:		Email:	
Seedbed prep:			
Seed BMP:			
Seed method:		· · · ·	
Existing invasive species? N	10		
Existing invasive species tre			
Existing invasive species tre			
Need treatment plan descrip			
Veed treatment plan attachn			
Monitoring plan description:			
Nonitoring plan attachment:			
		: · · · · · · · · · · · · · · · · · · ·	
Success standards: To BLM		•	
Pit closure description: No p	ιτ .	· · · · · ·	
Pit closure attachment:			

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 101H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: **Operator Name:** AMEREDEV OPERATING LLC **Well Name:** CAMELLIA FED COM 26 36 21

Well Number: 101H

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: OTHER Describe: Power line Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: **Operator Name:** AMEREDEV OPERATING LLC **Well Name:** CAMELLIA FED COM 26 36 21

Well Number: 101H

USFWS Local Office:	:
---------------------	---

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS, 285003 ROW - POWER TRANS, 288100 ROW - O&G Pipeline, 288103 ROW - Salt Water Disposal Pipeline/Facility, 289001 ROW- O&G Well Pad

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 1/30/18. Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

CAMELLIA_FED_COM_26_36_21_101H___SUPO_REV_20190313_20190314100155.pdf CAMELLIA_FED_COM_26_36_21_101H_LETTER___OWNER_AGREEMENT_20190314100206.pdf

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-18 and NM-128, head south on NM-18 approximately 1.3 miles. Turn west (right) on Whitworth Drive, and proceed approximately .4 mile. Turn south (left) on NM-205 and proceed about 2.9 miles. Continue on Jal-3/Frying Pan Road approximately 4.4 miles, head west (right) on Beckham Road about 1.4 miles, then north (right) on unnamed road, for approximately .7 mile, then east (right) on proposed road for approximately 113', to the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

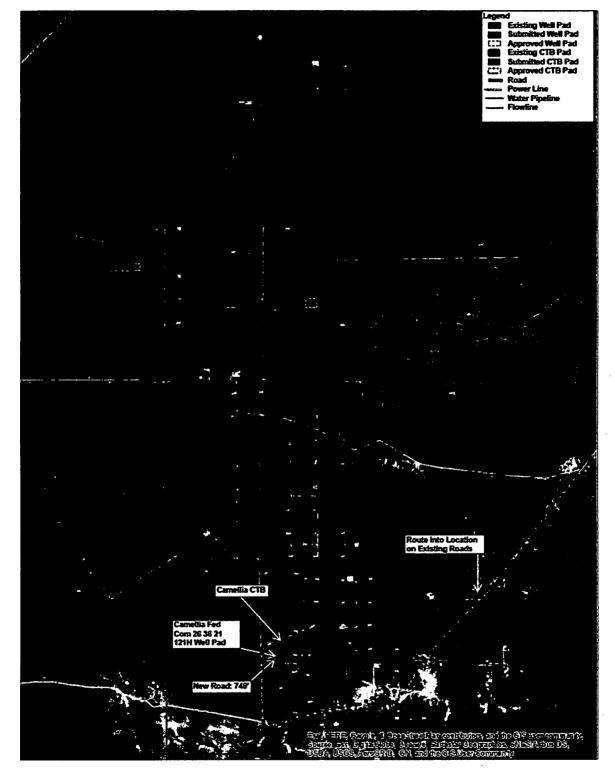
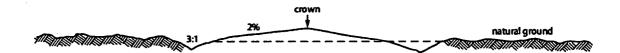


Exhibit 1 – Well Pad Access

2 | Page

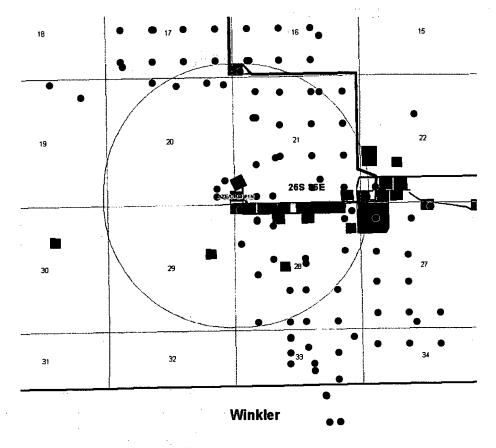


Section 1 – Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** The existing access road route to the proposed project does not cross lease or unit boundaries, so a BLM right of-way grant will not be necessary for this proposed road route.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- **D.** Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 – New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See Exhibit 1 Well Pad Access, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 748 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- **D.** The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:


- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Since the proposed portion of new access road does not cross lease boundaries, a right-of-way will not be required for this access road.
- I. No culverts or low water crossings will be constructed for the new portions of access road.

- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 - Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 101H. See *Exhibit 2a - One Mile Radius Existing Wells List* for a list of wells depicted.

Exhibit 2 – One Mile Radius Existing Wells

4 | Page

ΑΡΙ	WELL NAME	STATUS	TD
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259530000	NEW MEXICO `CV` STAT 1	PLUGOIL	3239
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON `21` FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271970000	LEA `20` 7426 JV-S 2	PLUGOIL	3670
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000		ABDNLOC	
30025269890000 30025441120000	QUANAH PARKER 4 WILDHOG BWX STATE CO 002H	ABDNLOC TREATD	16659
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	10055

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 101H Section 21, Township 26S, Range 36E Lea County, New Mexico

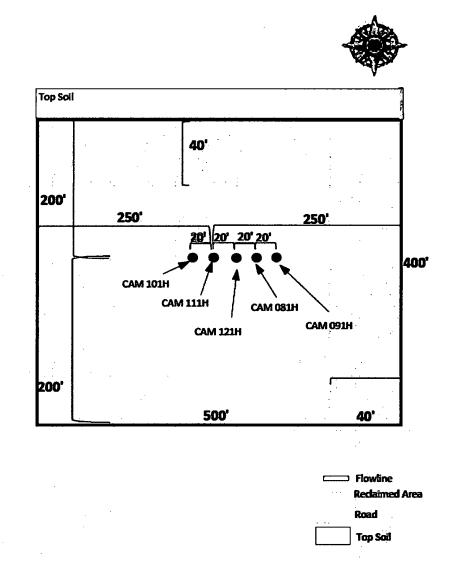

AZALEA 26-36-28 STAT 121H	JNK	3561
MAGNOLIA 26-36-22 ST 111H	PERMIT	
MAGNOLIA 26-36-22 ST 101H	PERMIT	
WILDHOG BWX STATE CO 003H	PERMIT	
CAMELLIA 26 36 16 FE 101H	PERMIT	
AZALEA 26-36-28 STAT 121H	AT-TD	13600
	MAGNOLIA 26-36-22 ST 111H MAGNOLIA 26-36-22 ST 101H WILDHOG BWX STATE CO 003H CAMELLIA 26 36 16 FE 101H	MAGNOLIA 26-36-22 ST 111HPERMITMAGNOLIA 26-36-22 ST 101HPERMITWILDHOG BWX STATE CO 003HPERMITCAMELLIA 26 36 16 FE 101HPERMIT

Exhibit 2a – One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on section 21, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Camellia CTB, north of the well pad.
- C. A buried 4" poly flowline will be run approximately 34' from the Camellia Fed Com 26 36 21 101H to the Camellia CTB that will be directly north of the well pad. The Camellia CTB will be 500'x525' and will include a separator, Heat Exchanger, VRU, VRT, meter run and a tank battery. A buried 8" poly water line will be run from the Camellia CTB to a line that will be installed taking our produced water in the area to an SWD that is operated by OWL. This new line will be approximately 662'. A power line will be run parallel to the water line and will connect into a power line that we will be installing for a well in the area. The new power line will be approximately 913'.
- **D.** The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- E. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- F. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

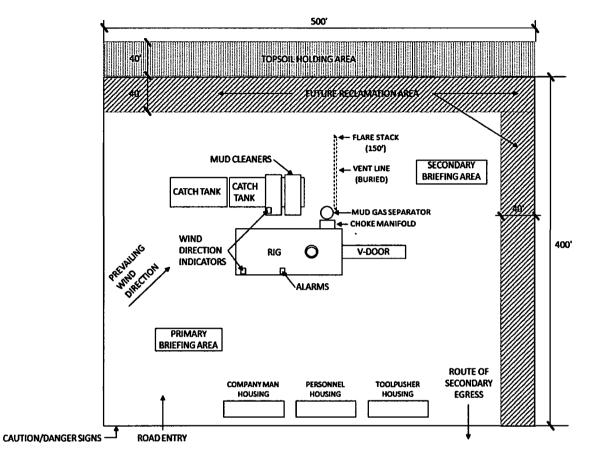
AMEREDE

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62" N, 103°13' 35.26" W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2″ N, 103°33'15.2″ W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	CB 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
J 3		32°02'41.5" N, 103°18'55.8" W


Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 – Enlarged Well Site Diagram.*
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a State approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a State approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a State approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- **A.** See *Exhibit 3 Well Site Diagram* and *Exhibit 5 Enlarged Well Site Diagram*. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

- **D.** If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.
- E. Interim reclamation will performed on the well site after the well is drilled and completed. *Exhibit 3 – Well Site Diagram* depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- **C.** All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. BLM has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- **B.** An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 101H well was held on January 30, 2018 (NOS ID#: 10400029847).
- C. The well pad described in this document Camellia (CAM/AZE #1N) will contain 5 wells that produce into an existing central tank battery (CTB) located southwest of the well pad. The wells share a common pad access road, pipeline easement, and electrical corridor. The 6 flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 081H
 - Camellia Fed Com 26 36 21 091H
 - Camellia Fed Com 26 36 21 101H
 - Camellia Fed Com 26 36 21 111H
 - Camellia Fed Com 26 36 21 121H

Ameredev field representative:

Zac Boyd, Operations Supervisor Cell: (432) 385-6996 Email: zboyd@ameredev.com

Ameredev office contact:

Christie Hanna, Regulatory Coordinator

Direct: (737) 300-4723

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

AMEREDEV

April 18, 2018

To whom it may concern:

Ameredev Operating, LLC is negotiating a private surface owner agreement with Brad Beckham of Beckham Ranch, Inc. (PO Box 1203, Jal, NM 88252; 575-712-4231) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Camellia Fed Com 26 36 21 101H well in sections 21 and 16 of T26S, R36E.

Thank you,

Christie Hanna Senior Engineering Technician/Regulatory Coordinator

5707 Southwest Parkway, Building 1, Suite 275 Austin, TX 78735

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

PWD Data Report

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

AFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 05/06/2019