Form 3160-3 (June 2015)

FORM OMB N Expires: J

M APPROVED No. 1004-0137 : January 31, 2018	F/5
lo.	17/

DEPARTMENT OF THE BUREAU OF LAND MA	INTERIO	R 20°	-0	5. Lease Serial No. NMNM023199			
BUREAU OF LAND MAI APPLICATION FOR PERMIT TO	DRILL OF	REENTERIU	EU	6. If Indian, Allotee or	Tribe Name		
		RECE	~				
la. Type of work: 🔽 DRILL	REENTER		2 1	7. If Unit or CA Agree	ment, Name and No.		
lb. Type of Well: Oil Well Gas Well	Other	-	, ,	8. Lease Name and We	di No		
c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		CAMELLIA FED CO			
		_		1			
· ·				"" (>	325400)		
2. Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No.			
Ba. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin 1		No. (include area coa 4700	le)	10. Field and Pool, or / WOLFCAMP	Exploratory 98234		
4. Location of Well (Report location clearly and in accordance	e with any Sta	te requirements.*)		11. Sec., T. R. M. or B	•		
At surface LOT C / 670 FNL / 2000 FWL / LAT 32.01	1968 / LONG	-103.27213		SEC 28 / T26S / R36	E/NMP		
At proposed prod. zone LOT C / 50 FNL / 2318 FWL /	LAT 32.0504	1 / LONG -103.271	12				
4. Distance in miles and direction from nearest town or post of miles	office*			12. County or Parish LEA	I3. State NM		
15. Distance from proposed* 670 feet	16. No of	acres in lease	17. Spaci	ng Unit dedicated to this	well		
location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	320		320				
8. Distance from proposed location*	19. Propos	sed Depth	20. BLM	M/BIA Bond No. in file			
to nearest well, drilling, completed, applied for, on this lease, ft.	11890 fee	et / 23313 feet	FED: NA	/B001478			
1. Elevations (Show whether DF, KDB, RT, GL, etc.) 2912 feet	22. Appro 12/01/201	ximate date work will	start*	23. Estimated duration	_		
2912 1661		achments	· .	90 days			
The following, completed in accordance with the requirements as applicable) . Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Offi	stem Lands, th	4. Bond to cover the litem 20 above). 5. Operator certification.	ne operation	ns unless covered by an extraction and/or plans as ma	xisting bond on file (see		
5. Signature		ne (Printed/Typed)		I -	ate		
(Electronic Submission)	Chri	stie Hanna / Ph: (73	7)300-472	3 0	5/17/2018		
itle Senior Engineering Technician		4.4	•				
Approved by (Signature)	Nam	ne (Printed/Typed)		D	ate		
(Electronic Submission)		stopher Walls / Ph:	(575)234-2	2234 0	5/15/2019		
litle	Offi						
Petroleum Engineer		RLSBAD		*	b I d data ab		
Application approval does not warrant or certify that the applic applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant noids lega	i or equitable title to t	nose rights	in the subject lease which	n would entitle the		
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212 of the United States any false, fictitious or fraudulent statement					department or agency		
GCA Rec ogholig		ITH CONDIT	IONS	Yay	WHI		
.nnt/	OVED W	TH CUND.		REQU	110ES NO		
Continued on page 2)	V			*(Instr	uctions on page 2)		

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

(Continued on page 3)

Additional Operator Remarks

Location of Well

1. SHL: LOT C / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.01968 / LONG: -103.27213 (TVD: 0 feet, MD: 0 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
PPP: NENW / 670 FNL / 2000 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.02151 / LONG: -103.27114 (TVD: 11885 feet, MD: 12799 feet)
BHL: LOT C / 50 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27112 (TVD: 11890 feet, MD: 23313 feet)

BLM Point of Contact

Name: Priscilla Perez

Title: Legal Instruments Examiner

Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

263628C APD Camellia Fed Com 26 36 21 104H 30015 NMNM023199 Ameredev 12-55 03192019 NMK_ContigencyPlan

Сар

13 3/8	surface	csg in a	17 1/2	inch hole.		Design F	actors	SUR	FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	54.50		55	BUTT	7.73	1.25	1.12	2,025	110,363
"B"								0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig	: 1,027	Tail Cmt	does not	circ to sfc.	Totals:	2,025	110,363
omparison (of Proposed t	o Minlmum	Required Co	ement Volume	<u>s_</u>			•	•
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Rea'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
~·									

rade HCL { rest psig: are Inten	80 ided to achi	BUTT	Body 4.57	Collapse 1.73	Burst 0.82 Totals:	Length 5,013 0 5.013	Weight 200,520 0
Test psig:				1.73		0	0
	ided to achi	ave a ten of			Totals:	0 5.013	0
	ded to achi	ove a ten of	_ '	er i cere e creur qualitation :	Totals:	5.013	200 520
are Inten	ded to achi	ove a ten of	<u> </u>			0,0.0	200,520
		eve a top oi	0	ft from su	rface or a	2025	overlap.
Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
mt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
ok 🖫 📗	0	1689		9.40	4161	5M	0.81
	3262				sum of sx	Σ CuFt	Σ%excess
315	36				1357	3882	130
	nt Sx	nt Sx CuFt Cmt bk > 0 3262	nt Sx CuFt Cmt Cu Ft bk > 0 1689 3262	nt Sx CuFt Cmt Cu Ft % Excess Ok > 0 1689 3262	nt Sx	nt Sx	nt Sx

7 5/8	casing in	side the	9 5/8	A Bu	oyant	Design Fac	ctors	INTER	MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	29.70	HCL	80	BUTT	2.13	1.1	1.36	11,147	331,066
"B"	· · · · · · · · · · · · · · · · · · ·					·-		0	0
w/8.4#/g	mud, 30min Sf	c Csg Test psig:	2,452				Totals:	11,147	331,066
The c	ement volum	ne(s) are inte	nded to ach	leve a top of	0	ft from su	rface or a	5013	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Caic	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
8 3/4	0.1005	683	1339	1172	14	10.50	3870	5M	0.56
lass 'H' tail cn	nt yld > 1.20						· '		
						Alt Collapse = :	1.65 > 1.125		

5 1/2	casing in	side the	7 5/8	_	-	Design	Factors -	PROD	UCTION
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	20.00	P	110	BUTT	2.75	2.1	2.21	11,147	222,940
"B"	20.00	P	110	BUTT	11.62	1.87	2.21	12,166	243,320
w/8.4#/g	g mud, 30min Sfe	Csg Test psig	2,452				Totals:	23,313	466,260
В	egment Desi	gn Factors	would be:		44.08	1.97	if it were a ve	ertical wellb	ore.
No Di	lot Hole Pla		MTD	Max VTD	Csg VD	Curve KOP	Dogleg°	Severity	MEOC
NO PI	iot note Pla	nnea	23313	11890	11890	11400	90	6	12904
The c	cement volum	e(s) are inte	ended to ach	leve a top of	0	ft from s	urface or a	11147	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
6 3/4	0.0835	1751	2346	2056	14	10.50			0.49
lass 'H' tail ci	mt vld > 1.20	k	,						1

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Ameredev Operating LLC

LEASE NO.: NMNM023199

WELL NAME & NO.: | Camellia Fed Com 26 36 21 104H

SURFACE HOLE FOOTAGE: 670'/S & 2000'/W **BOTTOM HOLE FOOTAGE** 50'/N & 2318'/W

LOCATION: | Section 28, T.26 S., R.36 E., NMPM

COUNTY: Lea County, New Mexico

COA

H2S	Yes	© No	
Potash	• None	Secretary	C R-111-P
Cave/Karst Potential	€ Low	Medium	← High
Variance	None	Flex Hose	• Other
Wellhead	C Conventional	Multibowl ■ Multi	Both
Other	☐4 String Area	Capitan Reef	□ WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 2025 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

- after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- ❖ Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Page 2 of 9

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Excess calculates to 21% - additional cement might be required.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 15% additional cement might be required.

Alternate Casing Design:

 2^{nd} Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 14% additional cement might be required.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 14%
 additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - \(\times \)
 Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)
 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK4292019

Page 9 of 9

263628C APD Camellia Fed Com 26 36 21 104H 30015 NMNM023199 Ameredev 12-55 03192019 NMK

Cap

13 3/8	3/8 surface csg in a 17			inch hole.		Design I	actors	SUR	FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	68.00	J	55	BUTT	7.77	2.21	0.71	2,025	137,700
"B"		*						0	0
w/8.4#/g	mud, 30min Sfe	Csg Test psig	: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	2.025	137,700
				ement Volume	e			•	·
vilipai isvii i	ui riupuseu i	o minimiuni,	Vedanea r	tillelif Antrille					
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
	•			Min	-	Drilling Mud Wt	Calc MASP	Req'd BOPE	Min Dist

95/8	casing ir	iside the	13 3/8		_	Design	Factors -	INTERI	MEDIATE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	40.00	HCL	80	BUTT	2.09	0.87	0.89	10,966	438,640
"B"						•		0	0
w/8.4#/g	mud, 30min Sf	c Csg Test psig					Totals:	10,966	438,640
The c	cement volun	ne(s) are inte	ended to ach	lieve a top of	0	ft from su	rface or a	2025	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
12 1/4	0.3132	look 🖫	0	3498		8.50	3870	5M	0.81
D V Tool(s):			4993				sum of sx	Σ CuFt	Σ%excess
by stage %:		126	21				2761	6223	78
Class 'H' tail cı	mt yld > 1.20			•					
Burst Frac Gra	dient(s) for Se	egment(s): A,	B, C, D = 0.5	2, b, c, d	Ale I	Burst = 1.49 > :	1 & Alt Collan	.co = 1 21 \ '	1 125
<0.70 a Probl	em!!				Aiti		a Air Collap		

5 1/2	casing in	side the	9 5/8	_		Design Fac	tors	PROD	UCTION
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	20.00	HCP	110	BUTT	2.70	1.79	1.91	11,400	228,000
"B"	20.00	HCP	110	BUTT	12.50	1.63	1.91	11,913	238,268
w/8.4#/g	mud, 30min Sf	Csg Test psig:	2,508				Totals:	23,313	466,268
The c	ement volum	e(s) are inte	nded to ach	leve a top of	0	ft from su	rface or a	10966	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
8 1/2	0.2291	4905	6573	5693	15	10.50			1.23

0			5 1/2		-	<u>Design l</u>	<u>Factors</u>		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"								0	0
"B"								0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig:					Totals:	0	0
Cm	it vol calc be	low includes	s this csg, TC	C intended	0	ft from su	rface or a	23313	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
Δ .			0	0					1

Carlsbad Field Office

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

operator Certification Data Report 05/16/2019

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/04/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin

State: TX

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: Zachary Boyd

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

City: AUSTIN

State: TX

Zip: 78735

Phone: (737)300-4700

Email address: zboyd@ameredev.com

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400030326

Submission Date: 05/17/2018

Operator Name: AMEREDEV OPERATING LLC

Well Number: 104H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400030326

Tie to previous NOS?

Submission Date: 05/17/2018

BLM Office: CARLSBAD

User: Christie Hanna

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM023199

Lease Acres: 320

Surface access agreement in place?

Allotted?

Reservation:

Zip: 78735

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Number: 104H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Well Number: 104H

Number of Legs: 1

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New 9

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Well Class: HORIZONTAL

Well Work Type: Drill

Well Type: OIL WELL
Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 5 Miles

Distance to nearest well: 1017 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: JEFF_20190403143600.pdf

CAMELLIA_FED_COM_26_36_21_104H___BLM_LEASE_MAP_20190403143637.pdf

CAMELLIA_FED_COM_26_36_21_104H___EXH_2AB_20190403143639.pdf

CAMELLIA_FED_COM_26_36_21_104H___VICINITY_MAP_20190403143639.pdf

CAMELLIA_FED_COM_26_36_21_104H___C_102_REV_SIG_20190403143640.pdf

GAS_CAPTURE_PLAN_20190403143652.pdf

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

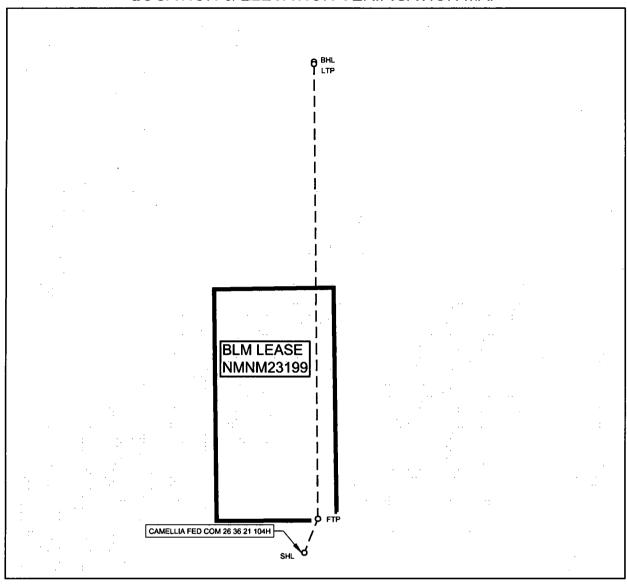
Describe Survey Type:


Datum: NAD83

Vertical Datum: NAVD88

	٠	,															•	
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW.	DVT
SHL Leg #1		FNL	() () () () () () () () () ()	FWL	268	36E		Lot C	145 g	(011 ±77 1 ±	LEA	NEW MEXI CO	NEW MEXI CO		STATE			

Well Number: 104H


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
KOP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
PPP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
PPP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA		NEW MEXI CO		STATE			
PPP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
PPP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
PPP Leg #1		FSL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
PPP Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
EXIT Leg #1		FNL		FWL	26S	36E		Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO		STATE			
BHL Leg #1		FNL		FWL	26S	36E		Lot C			LEA	NEW MEXI CO	NEW MEXI CO		STATE			

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

WELLSITE DIAGRAM

LOCATION & ELEVATION VERIFICATION MAP

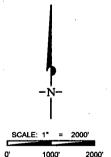
AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO .:

CAMELLIA FED COM 26 36 21 104H

 SECTION
 28
 TWP
 26-S
 RGE
 36-E
 SURVEY
 N.M.P.M.


 COUNTY
 LEA
 STATE
 NM
 ELEVATION
 2912'

 DESCRIPTION
 670' FNL & 2000' FWL

DESCRIPTION _____

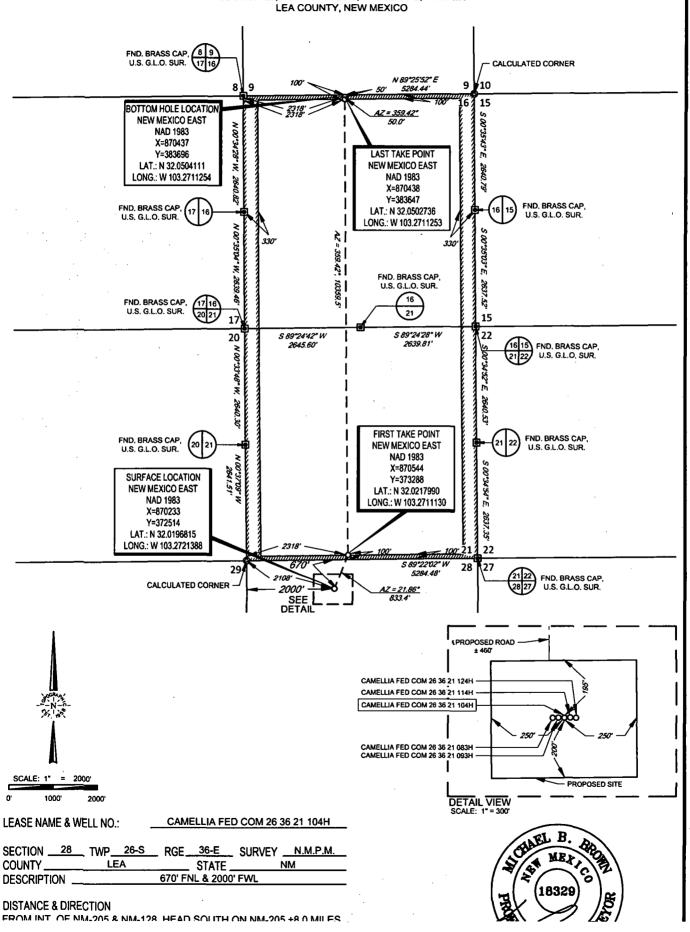
N 32.0196815

LONGITUDE W 103.27213

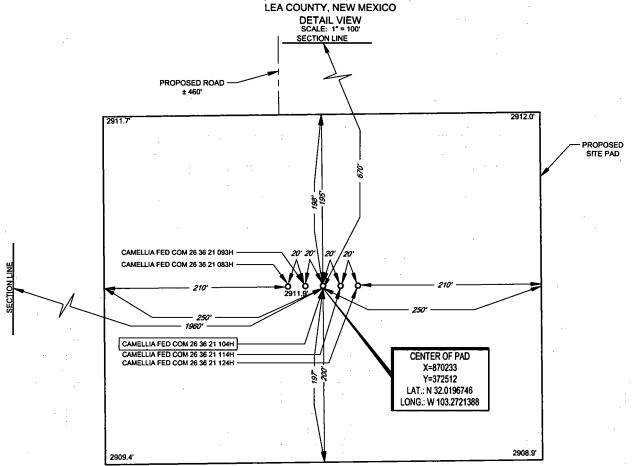
THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.

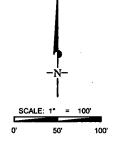
TOPOGRAPHIC LOYALTY INNOVATION LEGACY


1400 EVERMAN PARKWAY, Ste. 148 • FT. WORTH, TEXAS 76140 <u>TELEPHONE:</u> (817) 744-7512 • FAX (817) 744-7554 2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1630 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

AMEREDEV OPERATING, LLC


EXHIBIT 2A

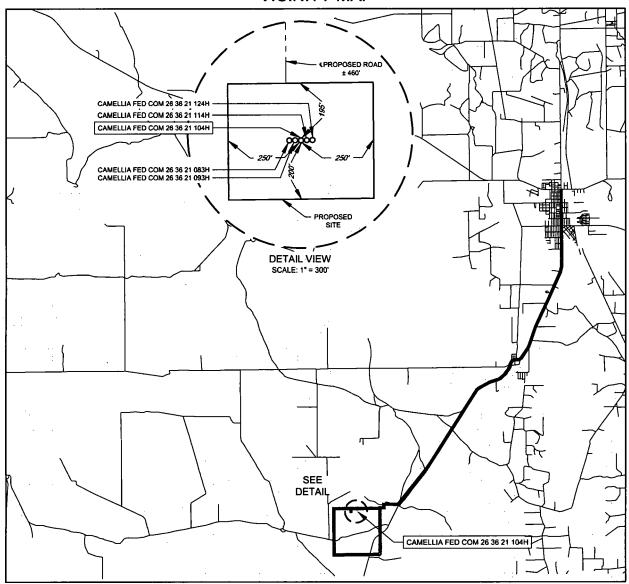
SECTION 28, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M.
LEA COUNTY, NEW MEXICO


SECTION 28, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M.

 LEASE NAME & WELL NO.:
 CAMELLIA FED COM 26 36 21 104H

 104H LATITUDE
 N 32:0196815
 104H LONGITUDE
 W 103:2721388

CENTER OF PAD IS 672' FNL & 2000' FWL


ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140
TELEPHONE: (817) 744-7512 • FAX (817) 744-7554
2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705
TELEPHONE: (432) 682-1633 OR (800) 767-1653 • FAX (432) 882-1743
WWW.TOPOGRAPHIC.COM

EXHIBIT 2 VICINITY MAP

AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO .:

CAMELLIA FED COM 26 36 21 104H

SECTION 28 TWP 26-S RGE

36-E _ SURVEY _

NM

STATE

DESCRIPTION

COUNTY.

670' FNL & 2000' FWL

DISTANCE & DIRECTION

FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205 ±8.0 MILES THENCE WEST (RIGHT) ON A PROPOSED RD. ±1.2 MILES, THENCE SOUTH (LEFT) ON A PROPOSED RD. ±460 FEET TO A POINT ±200 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM of 1983, EAST ZONE, U.S. SURVEY FEET.

1400 EVERMAN PARKWAY, Sie. 148 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-7554 2903 NORTH BIG SPRING • MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

05/16/2019

APD ID: 10400030326

Submission Date: 05/17/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

· · · · · · · · · · · · · · · · · · ·	<u> </u>	- i	F			F · · · · · · · · · · · · · · · · · · ·	
Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
1							
2							
3							
4							e e
5							4
6							**
7							
8							
9							
10							
11							
12							
13							

Section 2 - Blowout Prevention

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Requesting Variance? YES

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190403151819.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190403151836.pdf

5M_BOP_System_20190403151836.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190403151837.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190403151900.pdf

Section 3 - Casing

L Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
2	INTERMED IATE																					
3	PRODUCTI ON																					

Casing Attachments

Operator Name: AMEREDE\ Well Name: CAMELLIA FED		Well Number: 104H		
Casing Attachments		·		
Casing ID: 1 Inspection Document:	String Type:SURFACE			
Spec Document:				
Tapered String Spec:		11		•
Casing Design Assumpt	ions and Worksheet(s):			
13.375_68.00J55	_BTC_20190403152133.pdf			:
Camellia_Fed_Com	_26_36_21_104HWellbor	re_Diagram_and_CDA_	20190403152153.pd	f
Casing ID: 2 Inspection Document:	String Type:INTERMEDIAT	E		
Spec Document:				
Tapered String Spec:				
	ions and Worksheet(s): _26_36_21_104HWellbor HC_4100_Collapse_20190403		_20190403152332.pd	f
Casing ID: 3 Inspection Document:	String Type: PRODUCTION		:	
Spec Document:				
Tapered String Spec:				
Casing Design Assumpt	ions and Worksheet(s):			
5.5_20_P110HP_Ea	agle_SFH_20190403152458.p	odf		
Camellia_Fed_Com	_26_36_21_104HWellbor	e_Diagram_and_CDA_	20190403152528.pd	f

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

	Section	4 - C	emen	t									
	String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type		Additives
		Lead					1.76					·	
		Tail											
		Lead					2.47						
٠:													
		Tail											- -
٠	ata di kacamatan	Lead					2.47						
		Tail	.:										
:		Lead					1.34						

Section 5 - Circulating Medium

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1096 6	1189 0	OIL-BASED MUD	10.5	12.5							
0	2412	WATER-BASED MUD	8.4	8.6							
2412	1096 6	OTHER : Diesel Brine Emulsion	8.5	9.4	·	,	·				

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2384.19

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180517115309.pdf

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Section 8 - Other Information

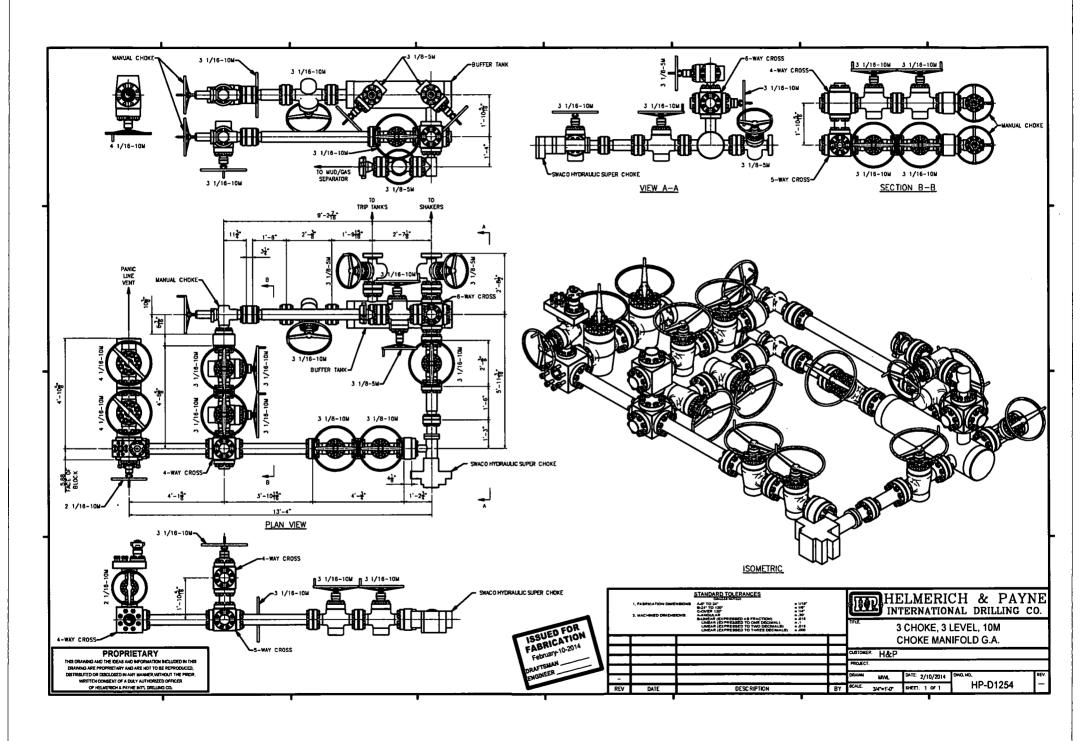
Proposed horizontal/directional/multi-lateral plan submission:

Cam104_DR_20190403153608.pdf

Cam104_LLR_20190403153609.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190403153656.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190403153656.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190403153719.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190403153742.pdf
Requested_Exceptions___3_String_Revised_03252019_20190403153743.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure
- *FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

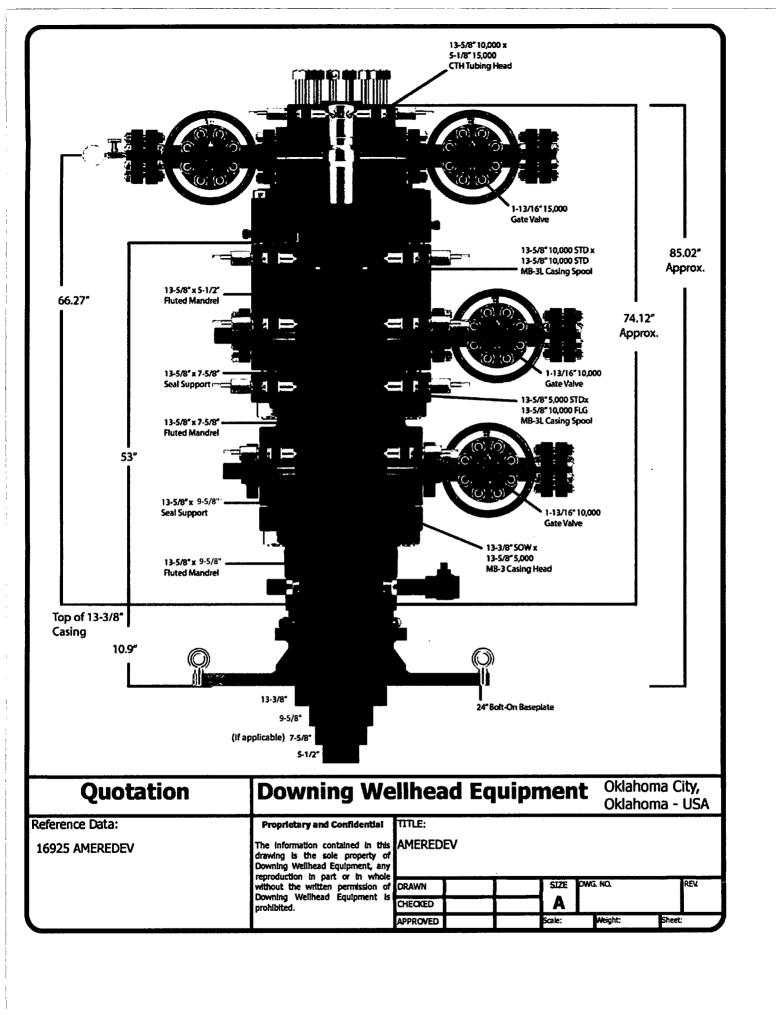
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak
 off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Wellbore Schematic

Well: Camellia Fed Com 26-36-21 104H

SHL: Sec. 28 26S-36E 670' FNL & 2000' FWL BHL: Sec. 16 26S-36E 50' FNL & 2318' FWL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Tubing Spool - 5-1/6 Talvi X-13-3/6 T

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

XXXXXX

AFE No.: xxxx-xxx

API No.: XXXXXXXXXX

GL: 2,912'

Field: Delaware

Objective: Wolfcamp A TVD: 11,890'

MD: 23,313'

Rig: TBD **KB:** 27'

E-Mail: Wellsite2@ameredev.com

Hala Cia-	Fammakian Tana		1	Comerns	Manal Matatadas
Hole Size	Formation Tops		Logs	Cement	Mud Weight
17.5"	Rustler	2,287'		1,475 Sacks TOC 0'	8.4-8.6 ppg WBM
/I	13.375" 68# J-55 BTC	2,412'		4. 5 6	- Θ
	Salado	2,357'	:		
	Tansill	3,179'	*		
	Capitan Reef	3,640'		ks Sess	ion
	Lamar	4,943'		883 Sacks TOC 0' 50% Excess	wuls
	DV Tool	4,993'	:	883 Sacks TOC 0' 50% Exces	ine El
12.25"	Bell Canyon	5,113'		.: .	I 8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon	7,010'		* .:	g Die
	Bone Spring Lime	8,051'			9.4 pt
	First Bone Spring	9,545'			8.5 -
	Second Bone Spring	10,177		cks ss	·
	Third Bone Spring Upper	10,841'		1,723 Sacks TOC 0' 50% Excess	
	9.625" 40# L-80HC BTC	10,966'		1,723 S TOC 0' 50% Ex	
8.5"	Third Bone Spring	11,442'			≥
12° Build	Wolfcamp A	11,664'		,	10.5 - 12.5 ppg OBM
@ 11,375' MD			1		5 pp
thru	5.5" 20# P-110CYHP BTC	23,313'		ks ks	- 12
12,903' MD	Target Wolfcamp A 11890 TVD // 23313 i	MD		Sat Sat	0.5
· · · · [<u> </u>				4,978 Sacks TOC 0' 25% Excess	
			<u> </u>	4, <u>⊢</u> 8	

Casing Design and Safety Factor Check

Casing Specifications								
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling		
Surface	17.5	2,412'	13.375	68	J-55	ВТС		
Intermediate	12.25	10,966'	9.625	40	HCL-80	BTC		
Prod Segment A	8.5	11,375'	5.5	20	CYHP-110	BTC		
Prod Segment B	8.5	23,313'	5.5	20	CYHP-110	BTC		

		·						
	Chec	k Surface (Casing					
OD Cplg	Body	Joint	Joint Collapse Burst					
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	S	afety Facto	ors					
1.56	6.52	5.58	3.80	0.64				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	558 6700					
	Safety Factors							
2.31	2.14	2.13	1.25	1.23				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.06	2.75	1.73	1.86				
	Check Pro	od Casing,	Segment B					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36 70.68 63.59 1.66 1.86								

SěAH

9.625"

40#

<u>.395"</u>

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse	4100	psi
	.:	•
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
ВТС	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTIO	ON
MECHANICAL PROPERTIES	;		
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
SKOISKEKKI			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANTE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000	•	lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

- Other than proprietary collapse and connection values, performance properties have been calculated using standard
 equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal
 pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (5MYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev25 (April)

Wellbore Schematic

Camellia Fed Com 26-36-21 104H Well:

SHL: Sec. 28 26S-36E 670' FNL & 2000' FWL

BHL: Sec. 16 26S-36E 50' FNL & 2318' FWL

Lea, NM

A - 13-5/8" 10M x 13-5/8" SOW Wellhead:

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

2-7/8" L-80 6.5# 8rd EUE Tubing:

Co. Well ID:

XXXXX

AFE No.:

XXXX-XXX API No.: XXXXXXXXX

> GL: 2,912'

Delaware Field:

Wolfcamp A Objective:

> TVD: 11,890' 23,313'

MD:

Rig: TBD KB: 27'

Wellsite2@ameredev.com E-Mail:

ı unıng:	2-116 L-00 0.3# 010 EUE		<u>vvensitez@ameredev.com</u>			
Hole Size	Formation Tops	·	Logs Cement		t	Mud Weight
17.5"	Rustler	2,287'		1,475 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC	2,412'		1,4, TO	100	δ̈́
	Salado	2,357'				
	Tansill	3,179'				::
	Capitan Reef	3,640'		မ္	ess	LO
	Lamar	4,943'		883 Sacks TOC 0'	50% Excess	mulsi
	DV Tool	4,993'		88 7	20%	ije E
12.25"	Bell Canyon	5,113'	1			8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon	7,010'				og Die
	Bone Spring Lime	8,051'			•	9.4 pl
	First Bone Spring	9,545'				8.5 -
	Second Bone Spring	10,177'		cks	ess	
	Third Bone Spring Upper	10,841'		1,723 Sacks TOC 0'	50% Excess	
	9.625" 40# L-80HC BTC	10,966'		1,7	20%	
8.5"	Third Bone Spring	11,442'				N N
12° Buil @	d Wolfcamp A	11,664'				10.5 - 12.5 ppg OBM
11,375' N	D L					25 pt
thru	5.5" 20# P-110CYHP BTC	23,313'		cks	ess	12
12,903° N	D Target Wolfcamp A 11890 TVD // 23313	MD		4,978 Sacks TOC 0'	25% Excess	10.5
				6, 5	25	

Casing Design and Safety Factor Check

Casing Specifications								
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling		
Surface	17.5	2,412'	13.375	68	J-55	BTC		
Intermediate	12.25	10,966'	9.625	40	HCL-80	BTC		
Prod Segment A	8.5	11,375'	5.5	20	CYHP-110	BTC		
Prod Segment B	8.5	23,313'	5.5	20	CYHP-110	втс		

	Check Surface Casing							
OD Cplg	Body	ody Joint Collapse Burst						
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	S	afety Facto	ors					
1.56	6.52	5.58	3.80	0.64				
	Check I	ntermedia	te Casing	·				
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
		afety Facto	ors					
2.31	2.14	2.13	1.25	1.23				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.06	2.75	1.73	1.86				
	Check Pro	od Casing,	Segment B					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36 70.68 63.59 1.66 1.86								

PERFORMANCE DATA

API BTC
Technical Data Sheet

13.375 in

68.00 lbs/ft

J-55

-	 	 	-

Tubular Parameters				: • :	
Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in			
Nom. Pipe Body Area	19.445	in²		- * .	
Connection Parameters					
Connection OD	14.375	in		•	
Coupling Length	10.625	in			
Threads Per Inch	5.000	in :			
Standoff Thread Turns	1.000			٠.	
Make-Up Loss	4.513	in			
Yield Load In Tension		lbs			
Min. Internal Yield Pressure	3,500	psi			

Printed on: February-13-2015

NOTE

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Wellbore Schematic

Camellia Fed Com 26-36-21 104H Well:

SHL: Sec. 28 26S-36E 670' FNL & 2000' FWL BHL: Sec. 16 26S-36E 50' FNL & 2318' FWL

Lea, NM

A - 13-5/8" 10M x 13-5/8" SOW Wellhead:

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

2-7/8" L-80 6.5# 8rd EUE Tubing:

Co. Well ID:

XXXXXX

AFE No.:

XXXX-XXX API No.: XXXXXXXXXX

> 2,912' GL:

Delaware Field:

Objective: Wolfcamp A

11,890' TVD: MD: 23,313'

Rig: TBD KB: 27'

E-Mail: Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cement		Mud Weight
17.5"		Rustler	2,287'		1,475 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,412'	<u>.</u>	4, D	<u>ĕ</u>	80
		Salado	2,357'	,			
		Tansill	3,179'				
		Capitan Reef	3,640'		 မွ .	ess	uo
		Lamar	4,943'		883 Sacks TOC 0'	50% Excess	mulsi
		DV Tool	4,993'		883 Sac TOC 0	20%	ie Er
12.25"		Bell Canyon	5,113'	• . •			8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,010'				g Die
		Bone Spring Lime	8,051'				9.4 pp
		First Bone Spring	9,545'				8.5 -
		Second Bone Spring	10,177'		cks	ess	
		Third Bone Spring Upper	10,841'		1,723 Sacks TOC 0'	50% Excess	
		9.625" 40# L-80HC BTC	10,966'		1,723 S TOC 0'	20%	
8.5"		Third Bone Spring	11,442'				W
12° Build @		Wolfcamp A	11,664'				10.5 - 12.5 ppg OBM
11,375' MD							2.5 p
thru 12,903' MD		20# P-110CYHP BTC	23,313' ₁		acks	Seo	5-1
12,303 MD	ı arget W	Volfcamp A 11890 TVD // 23313	MD		4,978 Sacks TOC 0'	25% Excess	10.

Casing Design and Safety Factor Check

	Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	2,412'	13.375	68	J-55	BTC				
Intermediate	12.25	10,966'	9.625	40	HCL-80	втс				
Prod Segment A	8.5	11,375'	5.5	20	CYHP-110	BTC				
Prod Segment B	8.5	23,313'	5.5	20	CYHP-110	BTC				

		100							
	Chec	k Surface (
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.375	1,069	915	4,100	3,450					
	S	afety Facto	ors						
1.56	6.52	5.58	3.80	0.64					
Check Intermediate Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
Safety Factors									
2.31	2.14	2.13	1.25	1.23					
	Check Pro	od Casing,	Segment A						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
1.36	3.06	2.75	1.73	1.86					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
1.36	70.68	63.59	1.66	1.86					

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- b. Physical effects and hazards
- c. Principal and operation of H2s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. <u>Protective Equipment for Essential Personnel:</u>

a. **Breathing Apparatus:**

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC – Emergency Phone 737-300	-4799							
Key Personnel:									
Name ,	Title	Office	Mobile						
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810						
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996						
Blake Estrada	Construction Foreman		432-385-5831						

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
<u>National</u>	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

CAM/AZ CAM/AZ #5SX Camellia 104H

Wellbore #1

Plan: Design #1

Standard Planning Report

05 March, 2019

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

CAM/AZ

Project: Site:

CAM/AZ #5SX

Well: Wellbore: Camellia 104H Wellbore #1

Local Co-ordinate Reference:

Survey Calculation Method:

Well Camellia 104H KB @ 2939,0usft

Minimum Curvature

TVD Reference: MD Reference:

North Reference:

KB @ 2939.0usft Grid

Design:

Design #1

Project

CAM/AZ

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

From:

Well

CAM/AZ #5SX

Site Position:

Well Position

Lat/Long

Northing: Easting:

372,513.64 usft 870,193.17 usft Latitude:

Longitude:

32° 1' 10.853 N 103° 16' 20.164 W

0.56

Position Uncertainty:

0.0 usft

Slot Radius:

13-3/16 "

Grld Convergence:

Camellia 104H

+N/-S +E/-W

0.4 usft 40.0 usft Northing: Easting:

372.514.07 usft 870,233.15 usft

6.61

Latitude: Longitude:

32° 1' 10.853 N 103° 16' 19.700 W

Position Uncertainty

0.0 usft

IGRF2015

Wellhead Elevation:

3/5/2019

Ground Level:

2,912.0 usft

Wellbore

Wellbore #1

Design #1

Magnetics **Model Name**

Sample Date

Declination (°)

Dip Angle (°)

Field Strength (nT)

47,675.25018163

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

59.90

Vertical Section:

Depth From (TVD) (usft) 0.0

+N/-S (usft) 0.0

+E/-W (usft) 0.0

Direction (°) 1.05

Plan Survey Tool Program

Depth From

(usft)

Depth To (usft)

Date

Survey (Wellbore)

3/5/2019

Tool Name

Remarks

0.0

23,313.4 Design #1 (Wellbore #1)

MWD

OWSG MWD - Standard

Planning Report

Database: Company: EDM5000

Project: Site:

Wellbore:

Well:

Ameredev Operating, LLC.

CAM/AZ

CAM/AZ #5SX Camellia 104H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

esign:	Desig	Design #1									
lan Sections	·										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Bulld Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target	
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00		
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00		
2,300.0	6.00	162.00	2,299.5	-14.9	4.8	2.00	2.00	0.00	162.00		
6,724.8	6.00	162.00	6,700.0	-454.8	147.8	0.00	0.00	0.00	0.00		
7,024.8	0.00	0.00	6,999.5	-469.7	152.6	2.00	-2.00	0.00	180.00		
11,375.3	0.00	0.00	11,350.0	-469.7	152.6	0.00	0.00	0.00	0.00		
12,086.0	85.28	7.48	11,825.8	-35.3	209.7	12.00	12.00	0.00	7.48		
12,826.0	85.28	7.48	11,886.8	695.9	305.7	0.00	0.00	0.00	0.00		
12,903.8	90.00	359.42	11,890.0	773.5	310.4	12.00	6.07	-10.36	-59.84	Cam104 FTP	
23,313.4	90.00	359.42	11,890.0	11,182.4	204.2	0.00	0.00	0.00	0.00	Cam104 BHL	

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

CAM/AZ

Well: Wellbore: Wellbore #1

CAM/AZ #5SX Camellia 104H Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: Survey Calculation Method: Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Velibore:	Wellbore #1								
lesign:	Design #1					-			
Planned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.	.0 0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.		0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.		0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.		0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.		0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.		0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.		0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.	.0 0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.	.0 0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000. 1,100.		0.00	1,100.0		0.0 0.0	0.0	0.00 0.00	0.00	0.00 0.00
				0.0		0.0		0.00	
1,200.		0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.		0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.	.0 0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.	.0 0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.		0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.		0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.		0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.		0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.		0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.		162.00	2,100.0	-1.7	0.5	-1.6	2.00	2.00	0.00
2,200.		162.00	2,199.8	-6.6	2.2	-6.6	2.00	2.00	0.00
2,300.		162.00	2,299.5	-14.9	4.8	-14.8	2.00	2.00	0.00
2,400.	.0 6.00	162.00	2,398.9	-24.9	8.1	-24.7	0.00	0.00	0.00
2,500.	0 6.00	162,00	2,498.4	-34.8	11.3	-34.6	0.00	0.00	0.00
2,600.		162.00	2,597.8	-34.6 -44.7	14.5	-34.0 -44.5	0.00	0.00	0.00
2,700. 2,700.									
		162.00 162.00	2,697.3	-54.7	17.8	-54.4 64.2	0.00	0.00	0.00
2,800.			2,796.7	-64.6	21.0	-64.2	0.00	0.00	0.00
2,900.	0 6.00	162.00	2,896.2	-74.6	24.2	-74.1	0.00	0.00	0.00
3,000.	0 6.00	162.00	2,995.6	-84.5	27.5	-84.0	0.00	0.00	0.00
3,100.	0 6.00	162.00	3,095.1	-94.5	30.7	-93.9	0.00	0.00	0.00
3,200.	0 6.00	162.00	3,194.5	-104.4	33.9	-103.8	0.00	0.00	0.00
3,300.		162.00	3,294.0	-114.3	37.2	-113.6	0.00	0.00	0.00
3,400.		162.00	3,393.4	-124.3	40.4	-123.5	0.00	0.00	0.00
3,500.		162.00	3,492.9	-134.2	43.6	-133.4	0.00	0.00	0.00
3,600.		162.00	3,592.3	-144.2	46.8	-143.3	0.00	0.00	0.00
3,700.		162.00	3,691.8	-154.1	50.1	-153.2	0.00	0.00	0.00
3,800.		162.00	3,791.2	-164.0	53.3	-163.0	0.00	0.00	0.00
3,900.	0 6.00	162.00	3,890.7	-174.0	56.5	-172.9	0.00	0.00	0.00
4,000.	0 6.00	162.00	3,990.1	-183.9	59.8	-182.8	0.00	0.00	0.00
4,100.		162.00	4,089.6	-193.9	63.0	-192.7	0.00	0.00	0.00
4,200.		162.00	4,189.0	-203.8	66.2	-202.6	0.00	0.00	0.00
4,300.		162.00	4,288.5	-213.8	69.5	-212.4	0.00	0.00	0.00
4,400.		162.00	4,387.9	-223.7	72.7	-222.3	0.00	0.00	0.00
4,500.		162.00	4,487.4	-233.6	75.9	-232.2	0.00	0.00	0.00
4,600.		162.00	4,586.9	-243.6	79.1	-242.1	0.00	0.00	0.00
4,700.		162.00	4,686.3	-253.5	82.4	-252.0	0.00	0.00	0.00
4,800.		162.00	4,785.8	-263.5	85.6	-261.9	0.00	0.00	0.00
4,900.	0 6.00	162.00	4,885.2	-273.4	88.8	-271.7	0.00	0.00	0.00
5,000.	0 6.00	162,00	4,984.7	-283.3	92.1	-281.6	0.00	0.00	0.00
5,000. 5,100.		162.00	5,084.1	-203.3 -293.3	95.3	-201.0 -291.5	0.00	0.00	0.00
5,100. 5,200.		162.00	5,084.1 5,183.6	-293.3 -303.2	93.3 98.5	-291.5 -301.4	0.00	0.00	0.00
			•						
5,300.	0 6.00	162.00	5,283.0	-313.2	101.8	-311.3	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

CAM/AZ CAM/AZ #5SX

Well: Wellbore: Design:

Camellia 104H Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

sign:	Design #1	······································							
anned Survey									······································
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (*/100usft)
5,400.0		162.00	5,382.5	-323.1	105.0	-321.1	0.00	0.00	0.00
5,500.0		162.00	5,481.9	-333.0	108.2	-331.0	0.00	0.00	0.00
5,600.0		162.00	5,581.4	-343.0	111.4	-340.9	0.00	0.00	0.00
5,700.0		162.00	5,680.8	-352.9	114.7	-350,8	0.00	0.00	0.00
5,800.0 5,900.0		162.00 162.00	5,780.3 5,879.7	-362.9 -372.8	117.9 121.1	-360.7 -370.5	0.00 0.00	0.00 0.00	0.00 0.00
6,000.0		162.00	5,979.2	-382.8	124.4	-380.4	0.00	0.00	0.00
6,100.0		162.00	6,078.6	-392.7	127.6	-390.3	0.00	0.00	0.00
6,200.0		162.00	6,178.1	-402.6	130.8	-400.2	0.00	0.00	0.00
6,300.0		162.00	6,277.5	-412.6	134.1	-410.1	0.00	0.00	0.00
6,400.0	6.00	162.00	6,377.0	-422.5	137.3	-419.9	0.00	0.00	0.00
6,500.0	6,00	162.00	6,476,4	-432.5	140.5	-429.8	0.00	0.00	0.00
6,600.0		162.00	6,575.9	-442.4	143.7	-439.7	0.00	0.00	0.00
6,700.0		162.00	6,675.3	-452.3	147.0	-449.6	0.00	0.00	0.00
6,724.8		162.00	6,700.0	-454.8	147.8	-452.0	0.00	0.00	0.00
6,800.0		162.00	6,774.9	-461.3	149.9	-458.5	2.00	-2.00	0.00
6,900.0		162.00	6,874.7	-467.1	151.8	-464.3	2.00	-2.00	0.00
7,000.0		162.00	6,974.7	-469.6	152.6	-464.3 -466.8	2.00	-2.00 -2.00	0.00
7,000.0		0.00	6,999.5	-469.7	152.6	-466.9	2.00	-2.00	0.00
7,100.0		0.00	7,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,100.0		0.00	7,074.7 7,174.7	-469.7	152.6	-466.9	0.00	0.00	0.00
•									
7,300.0		0.00	7,274.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,400.0		0.00	7,374.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,500.0		0.00	7,474.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,600.0		0.00	7,574.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.7	-469.7	152.6	-466.9	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	-469.7	152,6	-466.9	0.00	0.00	0.00
7,900.0		0.00	7,874.7	-469.7	152.6	-466.9	0.00	0.00	0.00
8,000.0		0.00	7,974.7	-469.7	152,6	-466.9	0.00	0.00	0.00
8,100.0		0.00	8,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	-469.7	152.6	-466.9	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	-469.7	152.6	-466.9	0.00	0.00	0.00
8,400.0		0.00	8,374.7	-469.7 -469.7	152.6	-466.9	0.00 0.00	0.00	0.00
		0.00	•	-469.7 -469.7	152.6			0.00	
8,500.0 8,600.0		0.00	8,474.7 8,574.7	-469.7 -469.7	152.6	-466.9 -466.9	0.00 0.00	0.00	0.00 0.00
8,700.0		0.00	8,674.7	-469.7 -469.7	152.6	-466.9	0.00	0.00	0.00
8,800.0		0.00	8,774.7	-469.7	152.6	-466.9	0.00	0.00	0.00
8,900.0		0.00	8,874.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,000.0		0.00	8,974.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,100.0		0.00	9,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,200.0	0.00	0.00	9,174.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,300.0	0.00	0.00	9,274.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,400.0	0.00	0.00	9,374.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,500.0	0.00	0.00	9,474.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,600.0		0.00	9,574.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,700.0	0.00	0.00	9,674.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,800.0	0.00	0.00	9,774.7	-469.7	152.6	-466.9	0.00	0.00	0.00
9,900.0		0.00	9,874.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,000.0		0.00	9,974.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,100.0		0.00	10,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,100.0		0.00	10,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,300.0		0.00	10,274.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,400.0		0.00	10,374.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,500.0	0.00	0.00	10,474.7	-469.7	152.6	-466.9	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

CAM/AZ CAM/AZ #5SX

Well: Wellbore: Design:

Camellia 104H Wellbore #1

Design #1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference:

Well Camellia 104H KB @ 2939.0usft KB @ 2939.0usft

MD Reference: North Reference:

Grid Minimum Curvature

П		
	Planned	Survey

Measured			Vertical		Vertical	Dogleg	Build	Turn	
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (*/100usft)
10,600.0	0.00	0.00	10,574.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,700.0	0.00	0.00	10,674.7	-469.7	152.6	-466.9	0.00	0.00	0.00
10,800.0	0.00	0.00	10,774.7	-4 69.7	152.6	-466.9	0.00	0.00	0.00
10,900.0	0.00	0.00	10,874.7	-469.7	152.6	-466.9	0.00	0.00	0.00
11,000.0	0.00	0.00	10,974.7	-469.7	152.6	-466.9	0.00	0.00	0.00
11,100.0	0.00	0.00	11,074.7	-469.7	152.6	-466.9	0.00	0.00	0.00
11,200.0	0.00	0.00	11,174.7	-469.7	152.6	-466.9	0.00	0.00	0.00
11,300.0	0.00	0.00	11,274.7	-469.7	152.6	-466.9	0.00	0.00	0.00
11,375.3	0.00	0.00	11,350.0	-469.7	152.6	-466.9	0.00	0.00	0.00
Cam104 KOF	•								
11,400.0	2.96	7.48	11,374.7	-469.1	152.7	-466.2	12.00	12.00	0.00
11,500.0	14.96	7.48	11,473.3	-453.7	154.7	-450.8	12.00	12.00	0.00
11,600.0	26.96	7.48	11,566.5	-418.3	159.4	-415.3	12.00	12.00	0.00
11,700.0	38.96	7.48	11,650.2	-364.4					
11,700.0	50.96	7.48 7.48	11,720.8	-364.4 -294.5	166.5 175.6	-361.3 -291.3	12.00 12.00	12.00 12.00	0.00 0.00
11,900.0	62.96	7.48 7.48	11,775.3	-294.5 -211.5	186,5	-291.3	12.00	12.00	0.00
12,000.0	74.96	7.48	11,811.1	-119.2	198.7	-115.5	12.00	12.00	0.00
12,086.0	85.28	7.48	11,825.8	-35.3	209.7	-31.5	12.00	12.00	0.00
			•						
12,100.0	85.28	7.48	11,827.0	-21.5	211.5	-17.6	0.00	0.00	0.00
12,200.0	85.28	7.48	11,835.2	77.4	224.5	81.4	0.00	0.00	0.00
12,300.0	85.28 85.28	7.48	11,843.5	176.2	237.4	180.5	0.00	0.00	0.00
12,400.0 12,500.0	85.28	7.48 7.48	11,851.7 11,859.9	275.0 373.8	250.4 263.4	279.5 378.5	0.00 0.00	0.00 0.00	0.00 0.00
12,500.0		7.40	11,039.9	3/3.0	203.4		0.00	0.00	0.00
12,600.0	85.28	7.48	11,868.2	472.6	276.4	477.6	0.00	0.00	0.00
12,700.0	85.28	7.48	11,876.4	571.4	289.4	576.6	0.00	0.00	0.00
12,799.0	85.28	7.48	11,884.6	669.2	302.2	674.6	0.00	0.00	0.00
Cam104 into									
12,800.0	85,28	7.48	11,884.6	670.2	302,3	675.6	0.00	0.00	0.00
12,826.0	85.28	7.48	11,886.8	695.9	305.7	701.4	0.00	0.00	0.00
12,900.0	89.77	359.81	11,890.0	769.6	310.4	775.2	12.00	6.07	-10.36
12,903.8	90.00	359.42	11,890.0	773.5	310.4	779.0	12.00	6.09	-10.34
Cam104 FTP									
13,000.0	90.00	359.42	11,890.0	869.6	309.4	875.1	0.00	0.00	0.00
13,100.0	90.00	359.42	11,890.0	969.6	308.4	975.1	0.00	0.00	0.00
13,200.0	90.00	359.42	11,890.0	1,069.6	307.3	1,075.0	0.00	0.00	0.00
13,300.0	90.00	359.42	11,890.0	1,169.6	306.3	1,175.0	0.00	0.00	0.00
13,400.0	90.00	359.42	11,890.0	1,269.6	305.3	1,175.0	0.00	0.00	0.00
13,500.0	90.00	359.42	11,890.0	1,369.6	304.3	1,374.9	0.00	0.00	0.00
13,600.0	90.00	359.42	11,890.0	1,469.6	303.3	1,474.9	0.00	0.00	0.00
13,700.0	90.00	359.42	11,890.0	1,569.6	302.2	1,574.8	0.00	0.00	0.00
13,800.0	90.00	359.42	11,890.0	1,669.6	301.2	1,674.8	0.00	0.00	0.00
13,800.0	90.00	359.42 359.42	11,890.0	1,769.6	301.2	1,674.8	0.00	0.00	0.00
14,000.0	90.00	359.42	11,890.0	1,869.6	299.2	1,874.7	0.00	0.00	0.00
14,100.0	90.00	359.42	11,890.0	1,969.6	298.2	1,974.7	0.00	0.00	0.00
14,200.0	90.00	359.42	11,890.0	2,069.6	297.1	2,074.6	0.00	0.00	0.00
14,300.0	90.00	359.42	11,890.0	2,169.6	296.1	2,174.6	0.00	0.00	0.00
14,400.0	90.00	359.42	11,890.0	2,269.6	295.1	2,274.6	0.00	0.00	0.00
14,500.0 14,600.0	90.00 90.00	359.42 359.42	11,890.0 11,890.0	2,369.5 2,469.5	294.1	2,374.5	0.00	0.00	0.00
14,600.0	90.00	359.42 359.42	11,890.0	2,469.5 2,569.5	293.1 292.0	2,474.5 2,574.4	0.00	0.00	0.00 0.00
							0.00	0.00	
14,800.0	90.00	359.42	11,890.0	2,669.5	291.0	2,674.4	0.00	0.00	0.00
14,900.0	90.00	359.42	11,890.0	2,769.5	290.0	2,774,4	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

CAM/AZ CAM/AZ #5SX

Well: Wellbore: Camellia 104H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

<i>N</i> ellbore: Design:	Wellbore #1 Design #1								
Planned Survey									
_			Moderal			M411		D. #4	-
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
15,100.	0 90.00	359.42	11,890.0	2,969.5	288.0	2,974.3	0.00	0.00	0.00
15,200.	0 90.00	359.42	11,890.0	3,069.5	286.9	3,074.2	0.00	0.00	0.00
15,300.0	0 90.00	359.42	11,890.0	3,169.5	285.9	3,174.2	0.00	0.00	0.00
15,400.0		359,42	11,890.0	3,269.5	284.9	3,274.2	0.00	0.00	0.00
15,500.		359.42	11,890.0	3,369.5	283.9	3,374.1	0.00	0.00	0.00
15,600.		359.42	11,890.0	3,469.5	282.9	3,474.1	0.00	0.00	0.00
15,700.0		359.42	11,890.0	3,569.5	281.8	3,574.0	0.00	0.00	0.00
15,800.0		359.42	11,890.0	3,669.5	280.8	3,674.0	0.00	0.00	0.00
15,900.0		359.42	11,890.0	3,769.5	279.8	3,774.0	0.00	0.00	0.00
16,000.0		359.42	11,890.0	3,869.5	278.8	3,873.9	0.00	0.00	0.00
16,100.0		359.42	11,890.0	3,969.5	277.8	3,973.9	0.00	0.00	0.00
16,200.0	90.00	359.42	11,890.0	4,069.5	276.7	4,073.8	0.00	0.00	0.00
16,300.0	90.00	359.42	11,890.0	4,169.5	275.7	4,173.8	0.00	0.00	0.00
16,400.0		359.42	11,890.0	4,269.4	274.7	4,273.7	0.00	0.00	0.00
16,500.0		359.42	11,890,0	4,369.4	273.7	4,373.7	0.00	0.00	0.00
16,600.0		359.42	11,890.0	4,469.4	272.7	4,473.7	0.00	0.00	0.00
16,700.0		359.42	11,890.0	4,569.4	271.6	4,573.6	0.00	0.00	0.00
16,800.6		359.42	11,890.0	4,669.4	270.6	4,673.6	0.00	0.00	0.00
16,900.0		359.42	11,890.0	4,769.4	269.6	4,773.5	0.00	0.00	0.00
17,000.0		359.42	11,890.0	4,869.4	268.6	4,873.5	0.00	0.00	0.00
17,100.0		359.42	11,890.0	4,969.4	267.6	4,973.5	0.00	0.00	0.00
17,200.0	90.00	359.42	11,890.0	5,069.4	266.5	5,073.4	0.00	0.00	0.00
17,300.0	90.00	359.42	11,890.0	5,169.4	265.5	5,173.4	0.00	0.00	0.00
17,400.0		359.42	11,890.0	5,269.4	264.5	5,273.3	0.00	0.00	0.00
17,500.0		359.42	11,890.0	5,369.4	263.5	5,373.3	0.00	0.00	0.00
17,600.0		359.42	11,890.0	5,469.4	262.4	5,473.3	0.00	0.00	0.00
17,700.0		359.42	11,890.0	5,569.4	261.4	5,573.2	0.00	0.00	0.00
17,800.0		359.42	11,890.0	5,669.4	260.4	5,673.2	0.00	0.00	0.00
17,900.0		359.42	11,890.0	5,769.4	259.4	5,773.1	0.00	0.00	0.00
18,000.0		359.42	11,890.0	5,869.4	258.4	5,873.1	0.00	0.00	0.00
18,100.0		359.42	11,890.0	5,969.4	257.3	5,973.1	0.00	0.00	0.00
18,200.0	90.00	359.42	11,890.0	6,069.4	256.3	6,073.0	0.00	0.00	0.00
18,300.0	90.00	359.42	11,890.0	6,169.3	255.3	6,173.0	0.00	0.00	0.00
18,400.0	90.00	359.42	11,890.0	6,269.3	254.3	6,272.9	0.00	0.00	0.00
18,500.0	90.00	359.42	11,890.0	6,369.3	253.3	6,372.9	0.00	0.00	0.00
18,600.0		359.42	11,890.0	6,469.3	252.2	6,472.9	0.00	0.00	0.00
18,700.0	90.00	359.42	11,890.0	6,569.3	251.2	6,572.8	0.00	0.00	0.00
18,800.0	90.00	359.42	11,890.0	6,669.3	250.2	6,672.8	0.00	0.00	0.00
18,900.0		359.42	11,890.0	6,769.3	249.2	6,772.7	0.00	0.00	0.00
19,000.0		359.42 359.42	11,890.0	6,869.3	249.2 248.2	6,872.7	0.00	0.00	0.00
19,000.0		359.42 359.42	11,890.0	6,969.3	240.2 247.1	6,972.7	0.00	0.00	0.00
19,200.0		359.42	11,890.0	7,069.3	246.1	7,072.6	0.00	0.00	0.00
19,300.0		359.42	11,890.0	7,169.3	245.1	7,172.6	0.00	0.00	0.00
19,400.0		359.42	11,890.0	7,269.3	244.1	7,272.5	0.00	0.00	0.00
19,500.0		359.42	11,890.0	7,369.3	243.1	7,372.5	0.00	0.00	0.00
19,600.0		359.42	11,890.0	7,469.3	242.0	7,472.5	0.00	0.00	0.00
19,700.0	90.00	359.42	11,890.0	7,569.3	241.0	7,572.4	0.00	0.00	0.00
19,800.0	90.00	359.42	11,890.0	7,669.3	240.0	7,672.4	0.00	0.00	0.00
19,900.0		359.42	11,890.0	7,769.3	239.0	7,772.3	0.00	0.00	0.00
20,000.0		359.42	11,890.0	7,869.3	238.0	7,872.3	0.00	0.00	0.00
20,100.0		359.42	11,890.0	7,969.3	236.9	7,972.3	0.00	0.00	0.00
20,200.0		359.42	11,890.0	8,069.2	235.9	8,072.2	0.00	0.00	0.00
20,300.0		359.42	11,890.0	8,169.2	234.9	8,172.2	0.00	0.00	0.00
20,400.0	90.00	359.42	11,890.0	8,269.2	233.9	8,272.1	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

CAM/AZ CAM/AZ #5SX

Weil: Wellbore: Design:

Camellia 104H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

KB @ 2939.0usft KB @ 2939.0usft

North Reference: Grid

Survey Calculation Method:

Minimum Curvature

Well Camellia 104H

Design #1

20,500.0 20,600.0	(°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20.600.0	90.00	359.42	11,890.0	8,369.2	232.9	8,372.1	0.00	0.00	0.00
,	90.00	359.42	11,890.0	8,469.2	231.8	8,472.0	0.00	0.00	0.00
20,700.0	90.00	359.42	11,890.0	8,569.2	230.8	8,572.0	0.00	0.00	0.00
20,800.0	90.00	359.42	11,890.0	8,669.2	229.8	8,672.0	0.00	0.00	0.00
20,900.0	90.00	359.42	11,890.0	8,769.2	228.8	8,771.9	0.00	0.00	0.00
21,000.0	90.00	359.42	11,890.0	8,869.2	227.8	8,871.9	0.00	0.00	0.00
21,100.0	90.00	359.42	11,890.0	8,969.2	226.7	8,971.8	0.00	0.00	0.00
21,200.0	90.00	359.42	11,890.0	9,069.2	225.7	9,071.8	0.00	0.00	0.00
21,300.0	90.00	359.42	11,890.0	9,169.2	224.7	9,171.8	0.00	0.00	0.00
21,400.0	90.00	359.42	11,890.0	9,269.2	223.7	9,271.7	0.00	0.00	0.00
21,500.0	90.00	359.42	11,890.0	9,369.2	222.7	9,371.7	0.00	0.00	0.00
21,600.0	90.00	359.42	11,890.0	9,469.2	221.6	9,471.6	0.00	0.00	0.00
21,700.0	90.00	359.42	11,890.0	9,569.2	220.6	9,571.6	0.00	0.00	0.00
21,800.0	90.00	359.42	11,890.0	9,669.2	219.6	9,671.6	0.00	0.00	0.00
21,900.0	90.00	359.42	11,890.0	9,769.2	218.6	9,771.5	0.00	0.00	0.00
22,000.0	90,00	359.42	11,890.0	9,869.2	217.6	9,871.5	0.00	0.00	0.00
22,100.0	90.00	359.42	11,890.0	9,969.1	216.5	9,971.4	0.00	0.00	0.00
22,200.0	90.00	359.42	11,890.0	10,069.1	215.5	10,071.4	0.00	0.00	0.00
22,300.0	90.00	359.42	11,890.0	10,169.1	214.5	10,171.4	0.00	0.00	0.00
22,400.0	90.00	359.42	11,890.0	10,269.1	213.5	10,271.3	0.00	0.00	0.00
22,500.0	90.00	359.42	11,890.0	10,369.1	212.4	10,371.3	0.00	0.00	0.00
22,600.0	90.00	359.42	11,890.0	10,469.1	211.4	10,471.2	0.00	0.00	0.00
22,700.0	90.00	359.42	11,890.0	10,569.1	210.4	10,571.2	0.00	0.00	0.00
22,800.0	90.00	359.42	11,890.0	10,669.1	209.4	10,671.2	0.00	0.00	0.00
22,900.0	90.00	359.42	11,890.0	10,769.1	208.4	10,771.1	0.00	0.00	0.00
23,000.0	90.00	359.42	11,890.0	10,869.1	207.3	10,871.1	0.00	0.00	0.00
23,100.0	90.00	359.42	11,890.0	10,969.1	206.3	10,971.0	0.00	0.00	0.00
23,200.0	90.00	359.42	11,890.0	11,069.1	205.3	11,071.0	0.00	0.00	0.00
23,263.3	90.00	359,42	11,890.0	11,132.4	204.7	11,134.3	0.00	0.00	0.00
Cam104 LTP									
23,300.0	90.00	359.42	11,890.0	11,169.1	204.3	11,171.0	0.00	0.00	0.00
23,313.4	90.00	359.42	11,890.0	11,182.4	204.2	11,184.3	0.00	0.00	0.00

Design Targets	-		-						
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Cam104 KOP - plan hits target cente - Point	0.00 er	0.00	11,350.0	-469.7	152.6	372,044.34	870,385.77	32° 1' 6.191 N	103° 16' 17.981 W
Cam104 BHL - plan hits target cente - Point	0.00 er	0.00	11,890.0	11,182.4	204.2	383,696.51	870,437.30	32° 3' 1.480 N	103° 16' 16.051 W
Cam104 FTP - plan hits target cente - Point	0.00 er	0.00	11,890.0	773.5	310.4	373,287.53	870,543.52	32° 1' 18.476 N	103° 16' 16.007 W
Cam104 LTP - plan hits target cente - Point	0.00 er	0.00	11,890.0	11,132.4	204.7	383,646.49	870,437.82	32° 3' 0.985 N	103° 16' 16.051 W

Planning Report

Database: EDM5000
Gompany: Ameredev
Project: CAM/AZ
Site: CAM/AZ #

Wellborer Wellborer

Dosigne

EDM5000 Ameredev Operating, LLC.

CAM/AZ CAM/AZ #5SX Camellia 104H Wellbore #1

Design #1

Lecel Co-ordinato Reference: TVD Reference:

MD References
North References
Survey Celeviziton Methods

Well Camellia 104H KB @ 2939,0usft KB @ 2939.0usft

Grid

Minimum Curvature

CAM/AZ CAM/AZ #5SX Camellia 104H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

05 March, 2019

Lease Penetration Section Line Footages

Company: Ameredev Operating, LLC.

Project: CAM/AZ

Site: CAM/AZ #5SX Well: Camellia 104H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

ce: Well Camellia 104H KB @ 2939.0usft

TVD Reference: KB @ 2939.0usft MD Reference: KB @ 2939.0usft

North Reference: Grid
Survey Calculation Method: Minimum Curvature

Database: EDM5000

Project CAM/AZ

Map System: Geo Datum: US State Plane 1983 North American Datum 1983

ane 1983 System Datum:

Mean Sea Level

Map Zone: New Mexico Eastern Zone

Site CAM/AZ #5SX

Site Position: From: Position Uncertainty:

Lat/Long

+E/-W

Northing: Easting: Slot Radius: 372,513.64 usft 870,193.17 usft 13-3/16"

Latitude: Longitude: Grid Convergence: 32° 1' 10.853 N 103° 16' 20.164 W

0.56

Well Camellia 104H

Well Position +N/-S

0.0 usft 0.0 usft

0.0 usft

Northing: Easting: 372,514.07 usft 870,233.15 usft

Latitude: Longitude: 32° 1' 10.853 N 103° 16' 19.700 W

Position Uncertainty

0.0 usft

Wellhead Elevation:

usft

Ground Level: 2,912.0 usft

Wellbore Wellbore #1 Magnetics Model Name Sample Date Declination Dip Angle Field Strength (°) (°) (nT) IGRF2015 3/5/2019 6.61 59.90 47,675.25018162

Design	Design #1					
Audit Notes:						
Version:		Phase:	PROTOTYPE	Tie On Depth:	0.0	
Vertical Section:		Depth From (TVD)	+N/-S	+E/-W	Direction	
		(usft)	(usft)	(usft)	(°)	
		0.0	0.0	0.0	1.05	

Survey Tool Program	1	Date 3/5/2019			•
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description	
0.0	23,313	.4 Design #1 (Wellbore #1)	MWD	OWSG MWD - Standard	

anned Survey	·						
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usfi)	Latitude	Longitude
0.0	0.00	0.00	0.0	-669.6	2,000.0	32° 1′ 10.853 N	103° 16' 19.700
100.0	0.00	0.00	100.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
200.0	0.00	0.00	200.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
300.0	0.00	0.00	300.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
400.0	0.00	0.00	400.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
500.0	0.00	0.00	500.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
600.0	0.00	0.00	600.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
700.0	0.00	0.00	700.0	-669.6	2,000.0	32° 1 ⁱ 10,853 N	103° 16' 19.700
800.0	0.00	0.00	800.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
900.0	0.00	0.00	900.0	-669.6	2,000.0	32° 1' 10,853 N	103° 16' 19,700
1,000.0	0.00	0.00	1,000.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700
1,100.0	0.00	0.00	1,100.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700

Lease Penetration Section Line Footages

Company:

CAM/AZ

Project: Site: Well: Wellbore:

Design:

CAM/AZ #5SX Camellia 104H Wellbore #1

Design #1

Ameredev Operating, LLC.

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature

EDM5000

Planned Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
1,200.0	0.00	0.00	1,200.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,300.0	0.00	0.00	1,300.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,400.0	0.00	0.00	1,400.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,500.0	0.00	0.00	1,500.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,600.0	0.00	0.00	1,600.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,700.0	0.00	0.00	1,700.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19,700 W
1,800.0	0.00	0.00	1,800.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
1,900.0	0.00	0.00	1,900.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
2,000.0	0.00	0.00	2,000.0	-669.6	2,000.0	32° 1' 10.853 N	103° 16' 19.700 W
2,100.0	2.00	162.00	2,100.0	-671.2	2,000.5	32° 1' 10.837 N	103° 16' 19.694 W
2,200.0	4.00	162.00	2,199.8	-676.2	2,002.1	32° 1' 10.788 N	103° 16' 19.675 W
2,300.0	6.00	162.00	2,299.5	-684.5	2,004.8	32° 1' 10.705 N	103° 16' 19.645 W
2,400.0	6.00	162.00	2,398.9	-694.4	2,008.1	32° 1′ 10.607 N	103° 16' 19.609 W
2,500.0	6.00	162.00	2,498.4	-704.4	2,011.3	32° 1' 10,508 N	103° 16' 19.572 W
2,600.0	6.00	162.00	2,597.8	-714.3	2,014.5	32° 1' 10.409 N	103° 16' 19.536 W
2,700.0	6.00	162,00	2,697.3	-724.3	2,017.8	32° 1' 10.311 N	103° 16' 19,500 W
2,800.0	6.00	162.00	2,796.7	-734.2	2,021.0	32° 1' 10.212 N	103° 16' 19.463 W
2,900.0	6.00	162.00	2,896.2	-744.1	2,024.2	32° 1' 10.113 N	103° 16' 19.427 W
3,000.0	6.00	162.00	2,995.6	-754.1	2,027.4	32° 1' 10.014 N	103° 16' 19.390 W
3,100.0	6.00	162.00	3,095.1	-764.0	2,030.7	32° 1' 9.916 N	103° 16' 19.354 W
3,200.0	6.00	162.00	3,194.5	-774.0	2,033.9	32° 1' 9.817 N	103° 16' 19.318 W
3,300.0	6.00	162.00	3,294.0	-783.9	2,037.1	32° 1' 9.718 N	103° 16' 19.281 W
3,400.0	6.00	162.00	3,393.4	-793.9	2,040.4	32° 1' 9.620 N	103° 16' 19.245 W
3,500.0	6.00	162.00	3,492.9	-803.8	2,043.6	32° 1' 9.521 N	103° 16' 19.209 W
3,600.0	6.00	162.00	3,592.3	-813.7	2,046.8	32° 1' 9.422 N	103° 16' 19.172 W
3,700.0	6.00	162.00	3,691.8	-823.7	2,050.1	32° 1' 9.324 N	103° 16' 19.136 W
3,800.0	6.00	162.00	3,791.2	-833.6	2,053.3	32° 1' 9.225 N	103° 16' 19.099 W
3,900.0	6.00	162.00	3,890.7	-843.6	2,056.5	32° 1′ 9.126 N	103° 16' 19.063 W
4,000.0	6.00	162.00	3,990.1	-853.5	2,059.7	32° 1′ 9.028 N	103° 16′ 19.027 W
4,100.0	6.00	162.00	4,089.6	-863.4	2,063.0	32° 1' 8.929 N	103° 16' 18.990 W
4,200.0	6.00	162.00	4,189.0	-873.4	2,066.2	32° 1' 8.830 N	103° 16' 18.954 W
4,300.0	6.00	162.00	4,288.5	-883.3	2,069.4	32° 1' 8.732 N	103° 16' 18.917 W
4,400.0	6.00	162.00	4,387.9	-893.3	2,072.7	32° 1' 8.633 N	103° 16' 18.881 W
4,500.0	6.00	162.00	4,487.4	-903.2	2,075.9	32° 1' 8.534 N	103° 16' 18.845 W
4,600.0	6.00	162.00	4,586.9	-913.1	2,079.1	32° 1′ 8.436 N	103° 16' 18.808 W
4,700.0	6.00	162.00	4,686.3	-923.1	2,082.4	32° 1' 8.337 N	103° 16' 18.772 W
4,800.0	6.00	162.00	4,785.8	-933.0	2,085.6	32° 1′ 8.238 N	103° 16' 18.736 W
4,900.0	6.00	162.00	4,885.2	-943.0	2,088.8	32° 1′ 8.140 N	103° 16' 18.699 W
5,000.0	6.00	162.00	4,984.7	-952.9	2,092.0	32° 1' 8.041 N	103° 16' 18.663 W
5,100.0	6.00	162.00	5,084.1	-962.9	2,095.3	32° 1' 7.942 N	103° 16' 18.626 W
5,200.0	6.00	162.00	5,183.6	-972.8	2,098.5	32° 1' 7.844 N	103° 16' 18.590 W
5,300.0	6.00	162.00	5,283.0	-982.7	2,101.7	32° 1' 7,745 N	103° 16' 18.554 W
5,400.0	6.00	162.00	5,382.5	-992.7	2,105.0	32° 1' 7.646 N	103° 16' 18.517 W
5,500.0	6.00	162.00	5,481.9	-1,002.6	2,108.2	32° 1' 7.548 N	103° 16' 18.481 W

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: CAM/AZ CAM/AZ #5SX Camellia 104H

Well: Wellbore: Design:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database: Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature

EDM5000

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,600.0	6.00	162.00	5,581.4	-1,012.6	2,111,4	32° 1' 7,449 N	103° 16' 18.445
5,700.0	6.00	162.00	5,680.8	-1,022.5	2,114.7	32° 1' 7.350 N	103° 16' 18.408
5,800.0	6.00	162.00	5,780.3	-1,032.4	2,117.9	32° 1' 7,251 N	103° 16' 18.372
5,900.0	6.00	162.00	5,879.7	-1,042.4	2,121.1	32° 1' 7.153 N	103° 16' 18.335
6,000.0	6.00	162.00	5,979.2	-1,052.3	2,124.3	32° 1' 7.054 N	103° 16' 18.299
6,100.0	6.00	162.00	6,078.6	-1,062.3	2,127.6	32° 1' 6.955 N	103° 16' 18.263
6,200.0	6.00	162.00	6,178.1	-1,072.2	2,130.8	32° 1' 6.857 N	103° 16' 18.226
6,300.0	6.00	162.00	6,277.5	-1,082.1	2,134.0	32° 1' 6.758 N	103° 16' 18.190
6,400.0	6.00	162.00	6,377.0	-1,092.1	2,137.3	32° 1' 6.659 N	103° 16' 18.153
6,500.0	6.00	162.00	6,476.4	-1,102.0	2,140.5	32° 1' 6.561 N	103° 16' 18.117
6,600.0	6.00	162.00	6,575.9	-1,112.0	2,143.7	32° 1' 6.462 N	103° 16' 18.08
6,700.0	6.00	162.00	6,675.3	-1,121.9	2,147.0	32° 1' 6.363 N	103° 16' 18.044
6,724.8	6.00	162.00	6,700.0	-1,124.4	2,147.8	32° 1' 6.339 N	103° 16' 18.035
6,800.0	4.50	162.00	6,774.9	-1,130.9	2,149.9	32° 1' 6.274 N	103° 16' 18.01
6,900.0	2.50	162.00	6,874.7	-1,136.7	2,151.8	32° 1' 6.216 N	103° 16' 17.990
7,000.0	0.50	162.00	6,974.7	-1,139.2	2,152.6	32° 1' 6.192 N	103° 16' 17.98
7,024.8	0.00	0.00	6,999.5	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,100.0	0.00	0.00	7,074.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,200.0	0.00	0.00	7,174.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
7,300.0	0.00	0.00	7,274.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,400.0	0.00	0.00	7,374.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
7,500.0	0.00	0.00	7,474.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,600.0	0.00	0.00	7,574.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,700.0	0.00	0.00	7,674.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
7,800.0	0.00	0.00	7,774.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
7,900.0	0.00	0.00	7,874.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
0.000,8	0.00	0.00	7,974.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
8,100.0	0.00	0.00	8,074.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
8,200.0	0.00	0.00	8,174.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
8,300.0	0.00	0.00	8,274.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.98
8,400.0	0.00	0.00	8,374.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
8,500.0	0.00	0.00	8,474.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
8,600.0	0.00	0.00	8,574.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
8,700.0	0.00	0.00	8,674.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
0.008,8	0.00	0.00	8,774.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17,981
8,900.0	0.00	0.00	8,874.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,000.0	0.00	0.00	8,974.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,100.0	0.00	0.00	9,074.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,200.0	0.00	0.00	9,174.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,300.0	0.00	0.00	9,274.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17,981
9,400.0	0.00	0.00	9,374.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,500.0	0.00	0.00	9,474.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,600.0	0.00	0.00	9,574.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981
9,700.0	0.00	0.00	9,674.7	-1,139.3	2,152.6	32° 1' 6,191 N	103° 16' 17.981

Lease Penetration Section Line Footages

Company: Project: Ameredev Operating, LLC.

CAM/AZ

Site: Well: CAM/AZ #5SX Camellia 104H

Wellbore: Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature

EDM5000

Planned	Survey
riamileo	JUIVEY

Planned Survey					~		
MD (usft)	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
	0.00	(°) 0.00	(usft)	(usft) -1,139.3	(usft)	209 41 6 404 N	4029 461 47 004 144
9,800.0		0.00	9,774.7		2,152.6	32° 1' 6.191 N	103° 16' 17.981 W 103° 16' 17.981 W
9,900.0 10,000.0	0.00 0.00	0.00	9,874.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
		*	9,974.7	-1,139.3	2,152.6	32° 1' 6.191 N	
10,100.0	0.00	0.00	10,074.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,200.0	0.00	0.00	10,174.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,300.0	0.00	0.00	10,274.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,400.0	0.00	0.00	10,374.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,500.0	0.00	0.00	10,474.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,600.0	0.00	0.00	10,574.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,700.0	0.00	0.00	10,674.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16′ 17.981 W
10,800.0	0.00	0.00	10,774.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
10,900.0	0.00	0.00	10,874.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
11,000.0	0.00	0.00	10,974.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
11,100.0	0.00	0.00	11,074.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
11,200.0	0.00	0.00	11,174.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
11,300.0	0.00	0.00	11,274.7	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
11,375.3	0.00	0.00	11,350.0	-1,139.3	2,152.6	32° 1' 6.191 N	103° 16' 17.981 W
Cam104 KOP							
11,400.0	2.96	7.48	11,374.7	-1,138.7	2,152.7	32° 1' 6.197 N	103° 16' 17.980 W
11,500.0	14.96	7.48	11,473.3	-1,123.3	2,154.7	32° 1' 6.349 N	103° 16' 17.954 W
11,600.0	26.96	7.48	11,566.5	-1,087.9	2,159.4	32° 1' 6.699 N	103° 16' 17.896 W
11,700.0	38.96	7.48	11,650.2	-1,034.0	2,166.4	32° 1' 7.231 N	103° 16' 17.808 W
11,800.0	50.96	7.48	11,720.8	-964.1	2,175.6	32° 1' 7.922 N	103° 16' 17.693 W
11,900.0	62.96	7.48	11,775.3	-881.1	2,186.5	32° 1' 8.742 N	103° 16' 17.557 W
12,000.0	74.96	7.48	11,811.1	-788.7	2,198.6	32° 1' 9.655 N	103° 16' 17.406 W
12,086.0	85.28	7.48	11,825.8	-704.9	2,209.7	32° 1' 10.484 N	103° 16' 17.269 W
12,100.0	85.28	7.48	11,827.0	-691.0	2,211.5	32° 1' 10.621 N	103° 16' 17.246 W
12,200.0	85.28	7.48	11,835.2	-592.2	2,224.5	32° 1' 11.597 N	103° 16' 17.084 W
12,300.0	85.28	7.48	11,843.5	-493.4	2,237.4	32° 1' 12.573 N	103° 16' 16.922 W
12,400.0	85.28	7.48	11,851.7	-394.6	2,250.4	32° 1' 13.550 N	103° 16' 16.760 W
12,500.0	85.28	7.48	11,859.9	-295.8	2,263.4	32° 1' 14.526 N	103° 16' 16.598 W
12,600.0	85.28	7.48	11,868.2	-197.0	2,276.4	32° 1' 15.503 N	103° 16' 16.436 W
12,700.0	85.28	7.48	11,876.4	-98.2	2,289.3	32° 1' 16.479 N	103° 16' 16.274 W
12,799.0	85.28	7.48	11,884.6	-0.3	2,302.2	32° 1' 17.446 N	103° 16' 16.114 W
Cam104 into NMNM2							
12,800.0	85.28	7.48	11,884.6	0.7	2,302.3	32° 1' 17.456 N	103° 16' 16.112 W
12,826.0	85.28	7.48	11,886.8	26.4	2,305.7	32° 1' 17.710 N	103° 16' 16.070 W
12,900.0	89.77	359.81	11,890.0	100.1	2,310.4	32° 1' 18.438 N	103° 16' 16.007 W
12,903.8	90.00	359.42	11,890.0	103.9	2,310.4	32° 1' 18.476 N	103° 16' 16.007 W
Cam104 FTP			44 000 0	*** :		000 41 40 400 1	4000 401 10 000
13,000.0	90.00	359.42	11,890.0	200.1	2,309.4	32° 1' 19,428 N	103° 16' 16.007 W
13,100.0	90.00	359.42	11,890.0	300.0	2,308.3	32° 1' 20.417 N	103° 16' 16.008 W
13,200.0	90.00	359.42	11,890.0	400.0	2,307.3	32° 1' 21.407 N	103° 16' 16.008 W
13,300.0	90.00	359.42	11,890.0	500.0	2,306.3	32° 1' 22,397 N	103° 16' 16.009 W
13,400.0	90.00	359.42	11,890.0	600.0	2,305.3	32° 1' 23.386 N	103° 16' 16.009 W

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: CAM/AZ CAM/AZ #5SX Camellia 104H

Well: Wellbore: Design:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature EDM5000

Database:

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude			
13,500.0	90.00	359.42	11,890.0	700.0	2,304.3	32° 1' 24.376 N	103° 16' 16.009			
13,600.0	90.00	359.42	11,890.0	800.0	2,303.2	32° 1' 25.365 N	103° 16' 16.016			
13,700.0	90.00	359.42	11,890.0	900.0	2,302.2	32° 1' 26.355 N	103° 16' 16.010			
13,800.0	90.00	359.42	11,890.0	1,000.0	2,301.2	32° 1' 27,344 N	103° 16' 16.01			
13,900.0	90.00	359.42	11,890.0	1,100.0	2,300.2	32° 1' 28.334 N	103° 16' 16.01			
14,000.0	90.00	359.42	11,890.0	1,200.0	2,299.2	32° 1' 29.323 N	103° 16' 16.01			
14,100.0	90.00	359.42	11,890.0	1,300.0	2,298.1	32° 1' 30.313 N	103° 16' 16.01			
14,200.0	90.00	359.42	11,890.0	1,400.0	2,297.1	32° 1' 31.302 N	103° 16' 16.01			
14,300.0	90.00	359.42	11,890.0	1,500.0	2,296.1	32° 1' 32.292 N	103° 16' 16.01			
14,400.0	90.00	359.42	11,890.0	1,600.0	2,295.1	32° 1' 33.281 N	103° 16' 16.01			
14,500.0	90.00	359.42	11,890.0	1,700.0	2,294.1	32° 1' 34.271 N	103° 16' 16.01			
14,600.0	90.00	359.42	11,890.0	1,800.0	2,293.0	32° 1' 35.260 N	103° 16' 16.01			
14,700.0	90.00	359.42	11,890.0	1,900.0	2,292.0	32° 1' 36.250 N	103° 16' 16.01			
14,800.0	90.00	359,42	11,890.0	2,000.0	2,291.0	32° 1' 37,239 N	103° 16' 16.01			
14,900.0	90.00	359.42	11,890.0	2,100.0	2,290.0	32° 1' 38.229 N	103° 16' 16.01			
15,000.0	90.00	359.42	11,890.0	2,199.9	2,289.0	32° 1' 39.218 N	103° 16' 16.01			
15,100.0	90.00	359.42	11,890.0	2,299.9	2,287.9	32° 1' 40.208 N	103° 16' 16.01			
15,200.0	90.00	359.42	11,890.0	2,399.9	2,286.9	32° 1' 41.197 N	103° 16' 16.01			
15,300.0	90.00	359.42	11,890.0	2,499.9	2,285.9	32° 1' 42.187 N	103° 16′ 16.01′			
15,400.0	90.00	359.42	11,890.0	2,599.9	2,284.9	32° 1' 43.176 N	103° 16' 16.01			
15,500.0	90.00	359.42	11,890.0	2,699.9	2,283.9	32° 1' 44.166 N	103° 16' 16.01			
15,600.0	90.00	359,42	11,890.0	2,799.9	2,282.8	32° 1' 45,155 N	103° 16' 16.01			
15,700.0	90.00	359.42	11,890.0	2,899.9	2,281.8	32° 1' 46.145 N	103° 16' 16.01			
15,800.0	90.00	359.42	11,890.0	2,999.9	2,280.8	32° 1' 47.134 N	103° 16' 16.01			
15,900.0	90.00	359.42	11,890.0	3,099.9	2,279.8	32° 1' 48.124 N	103° 16' 16.02			
16,000.0	90.00	359.42	11,890.0	3,199.9	2,278.8	32° 1' 49.113 N	103° 16' 16.02			
16,100.0	90.00	359.42	11,890.0	3,299.9	2,277.7	32° 1' 50.103 N	103° 16' 16.02			
16,200.0	90.00	359.42	11,890.0	3,399.9	2,276.7	32° 1' 51.092 N	103° 16' 16.02			
16,300.0	90.00	359.42	11,890.0	3,499.9	2,275.7	32° 1' 52.082 N	103° 16' 16.02			
16,400.0	90.00	359.42	11,890.0	3,599.9	2,274.7	32° 1' 53.071 N	103° 16' 16.02			
16,500.0	90.00	359.42	11,890.0	3,699.9	2,273.7	32° 1' 54.061 N	103° 16' 16.02			
16,600.0	90.00	359.42	11,890.0	3,799.9	2,272,6	32° 1' 55.050 N	103° 16' 16.02			
16,700.0	90.00	359.42	11,890.0	3,899.9	2,271.6	32° 1' 56.040 N	103° 16' 16.02			
16,800.0	90.00	359.42	11,890.0	3,999.9	2,270.6	32° 1' 57.030 N	103° 16' 16.02			
16,900.0	90.00	359.42	11,890.0	4,099.8	2,269.6	32° 1' 58.019 N	103° 16' 16.02			
17,000.0	90.00	359.42	11,890.0	4,199.8	2,268.6	32° 1' 59.009 N	103° 16' 16.02			
17,100.0	90.00	359.42	11,890.0	4,299.8	2,267.5	32° 1' 59.998 N	103° 16' 16.02			
17,200.0	90.00	359.42	11,890.0	4,399.8	2,266.5	32° 2' 0.988 N	103° 16' 16.02			
17,300.0	90.00	359.42	11,890.0	4,499.8	2,265.5	32° 2' 1.977 N	103° 16' 16.02			
17,400.0	90.00	359.42	11,890.0	4,599.8	2,264.5	32° 2' 2.967 N	103° 16' 16.02			
17,500.0	90.00	359.42	11,890.0	4,699.8	2,263.5	32° 2' 3.956 N	103° 16' 16.02			
17,600.0	90.00	359.42	11,890.0	4,799.8	2,262.4	32° 2' 4.946 N	103° 16' 16.02			
17,700.0	90.00	359.42	11,890.0	4,899.8	2,261.4	32° 2' 5.935 N	103° 16' 16.02			
17,800.0	90.00	359.42	11,890.0				103° 16' 16.02			

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

CAM/AZ CAM/AZ #5SX

Weil: Wellbore: Design:

Camellia 104H Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature

EDM5000 Database:

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
17,900.0	90.00	359.42	11,890.0	5,099.8	2,259.4	32° 2' 7.914 N	103° 16' 16.028
18,000.0	90.00	359.42	11,890.0	5,199.8	2,258.4	32° 2' 8.904 N	103° 16' 16.029
18,100.0	90.00	359.42	11,890.0	5,299.8	2,257.3	32° 2' 9.893 N	103° 16' 16.029
18,200.0	90.00	359.42	11,890.0	5,399.8	2,256.3	32° 2' 10.883 N	103° 16' 16.030
18,300.0	90.00	359.42	11,890.0	5,499.8	2,255.3	32° 2' 11.872 N	103° 16' 16.030
18,400.0	90.00	359.42	11,890.0	5,599.8	2,254.3	32° 2' 12.862 N	103° 16' 16.030
18,500.0	90.00	359.42	11,890.0	5,699.8	2,253.2	32° 2' 13.851 N	103° 16' 16.03
18,600.0	90.00	359.42	11,890.0	5,799.8	2,252.2	32° 2' 14.841 N	103° 16' 16.03
18,700.0	90.00	359.42	11,890.0	5,899.8	2,251.2	32° 2' 15.830 N	103° 16' 16.03
18,800.0	90.00	359.42	11,890.0	5,999.8	2,250.2	32° 2' 16.820 N	103° 16' 16.03
18,900.0	90.00	359.42	11,890.0	6,099.7	2,249.2	32° 2' 17.809 N	103° 16' 16.033
19,000.0	90.00	359.42	11,890.0	6,199.7	2,248.1	32° 2' 18.799 N	103° 16' 16.03
19,100.0	90.00	359.42	11,890.0	6,299.7	2,247.1	32° 2' 19.788 N	103° 16' 16.033
19,200.0	90.00	359.42	11,890.0	6,399.7	2,246.1	32° 2' 20.778 N	103° 16' 16.03
19,300.0	90.00	359.42	11,890.0	6,499.7	2,245.1	32° 2' 21.767 N	103° 16' 16.034
19,400.0	90.00	359.42	11,890.0	6,599.7	2,244.1	32° 2' 22.757 N	103° 16' 16.03
19,500.0	90.00	359.42	11,890.0	6,699.7	2,243.0	32° 2' 23.746 N	103° 16' 16.03
19,600.0	90.00	359.42	11,890.0	6,799.7	2,242.0	32° 2' 24.736 N	103° 16' 16.036
19,700.0	90.00	359.42	11,890.0	6,899.7	2,241.0	32° 2' 25.725 N	103° 16' 16.036
19,800.0	90.00	359.42	11,890.0	6,999.7	2,240.0	32° 2' 26.715 N	103° 16' 16.036
19,900.0	90.00	359.42	11,890.0	7,099.7	2,239.0	32° 2' 27.704 N	103° 16' 16.03
20,000.0	90.00	359.42	11,890.0	7,199.7	2,237.9	32° 2' 28.694 N	103° 16' 16.03
20,100.0	90.00	359.42	11,890.0	7,299.7	2,236.9	32° 2' 29.683 N	103° 16' 16.038
20,200.0	90.00	359,42	11,890.0	7,399.7	2,235.9	32° 2' 30.673 N	103° 16' 16.038
20,300.0	90.00	359.42	11,890.0	7,499.7	2,234.9	32° 2' 31.662 N	103° 16' 16.039
20,400.0	90.00	359.42	11,890.0	7,599.7	2,233.9	32° 2' 32.652 N	103° 16' 16.039
20,500.0	90.00	359.42	11,890.0	7,699.7	2,232.8	32° 2' 33.641 N	103° 16' 16.039
20,600.0	90.00	359.42	11,890.0	7,799.7	2,231.8	32° 2' 34.631 N	103° 16' 16.040
20,700.0	90.00	359.42	11,890.0	7,899.7	2,230.8	32° 2' 35.621 N	103° 16' 16.040
20,800.0	90.00	359.42	11,890.0	7,999.6	2,229.8	32° 2' 36.610 N	103° 16' 16.04
20,900.0	90.00	359.42	11,890.0	8,099.6	2,228.8	32° 2' 37.600 N	103° 16' 16.04
21,000.0	90.00	359.42	11,890.0	8,199.6	2,227.7	32° 2' 38.589 N	103° 16' 16.042
21,100.0	90.00	359.42	11,890.0	8,299.6	2,226.7	32° 2' 39.579 N	103° 16' 16.042
21,200.0	90.00	359.42	11,890.0	8,399.6	2,225.7	32° 2' 40.568 N	103° 16' 16.042
21,300.0	90.00	359.42	11,890.0	8,499.6	2,224.7	32° 2' 41.558 N	103° 16' 16.043
21,400.0	90.00	359.42	11,890.0	8,599.6	2,223.7	32° 2' 42.547 N	103° 16' 16.04
21,500.0	90.00	359.42	11,890.0	8,699.6	2,222.6	32° 2' 43.537 N	103° 16' 16.044
21,600.0	90.00	359.42	11,890.0	8,799.6	2,221.6	32° 2' 44.526 N	103° 16' 16.044
21,700.0	90.00	359.42	11,890.0	8,899.6	2,220.6	32° 2' 45.516 N	103° 16' 16.045
21,800.0	90.00	359.42	11,890.0	8,999.6	2,219.6	32° 2' 46.505 N	103° 16' 16.04
21,900.0	90.00	359.42	11,890.0	9,099.6	2,218.6	32° 2' 47.495 N	103° 16' 16.045
22,000.0	90.00	359.42	11,890.0	9,199.6	2,217.5	32° 2′ 48.484 N	103° 16' 16.046
22,100.0	90.00	359.42	11,890.0	9,299.6	2,216.5	32° 2' 49.474 N	103° 16' 16.046
22,200.0	90.00	359.42	11,890.0	9,399.6	2,215.5	32° 2' 50.463 N	103° 16' 16.047

Lease Penetration Section Line Footages

Database:

Company:

Ameredev Operating, LLC.

Project: Site:

ÇAM/AZ CAM/AZ #5SX Camellia 104H

Well: Wellbore: Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Camellia 104H

KB @ 2939.0usft KB @ 2939.0usft

Grid

Minimum Curvature EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
22,300.0	90.00	359.42	11,890.0	9,499.6	2,214.5	32° 2' 51.453 N	103° 16' 16.047
22,400.0	90.00	359.42	11,890.0	9,599.6	2,213.5	32° 2′ 52.442 N	103° 16' 16.048
22,500.0	90.00	359.42	11,890.0	9,699.6	2,212.4	32° 2′ 53.432 N	103° 16' 16.048
22,600.0	90.00	359.42	11,890.0	9,799.6	2,211.4	32° 2' 54.421 N	103° 16' 16.048
22,700.0	90.00	359.42	11,890.0	9,899.5	2,210.4	32° 2' 55.411 N	103° 16' 16.049
22,800.0	90.00	359.42	11,890.0	9,999.5	2,209.4	32° 2′ 56.400 N	103° 16' 16.049
22,900.0	90.00	359.42	11,890.0	10,099.5	2,208.4	32° 2' 57.390 N	103° 16' 16.050
23,000.0	90.00	359.42	11,890.0	10,199.5	2,207.3	32° 2' 58.379 N	103° 16' 16.050
23,100.0	90.00	359.42	11,890.0	10,299.5	2,206.3	32° 2′ 59.369 N	103° 16' 16.051
23,200.0	90.00	359.42	11,890.0	10,399.5	2,205.3	32° 3′ 0.358 N	103° 16' 16.051
23,263.3	90.00	359.42	11,890.0	10,462.8	2,204.6	32° 3' 0.985 N	103° 16' 16.051
Cam104 LTP							
23,300.0	90.00	359.42	11,890.0	10,499.5	2,204.3	32° 3′ 1.348 N	103° 16' 16.051
23,313.4	90.00	359.42	11,890.0	10,512.9	2,204.1	32° 3′ 1.480 N	103° 16' 16.051
Cam104 BHL							

Plan Annotal	tions				
	Measured	Vertical	Local Coord	dinates	
	Depth	Depth	+N/-S	+E/-W	
	(usft)	(usft)	(usft)	(usft)	Comment
	12,799.0	11,884.6	669.2	302.2	Cam104 into NMNM23199

Checked By:	Approved By:	Date:
Onconoa By.		

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	·

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

^{*}FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing
 Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M BSec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2
 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of
 the Casing Shoe will be performed to minimum of the MWE anticipated to control formation
 pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional
 and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

Well: (Well Name)

Co. Well ID: AFE No.:

XXXXXX

SHL: (SHL) BHL: (BHL)

API No.:

xxxx-xxx XXXXXXXXXX (Elevation)

Lea, NM Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

Delaware

B - 13-5/8" 10M x 13-5/8" 10M

Field: Objective:

Wolfcamp B

C - 13-5/8" 10M x 13-5/8" 10M

TVD: MD: Rig:

GL:

(TVD)'

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

(MD)'

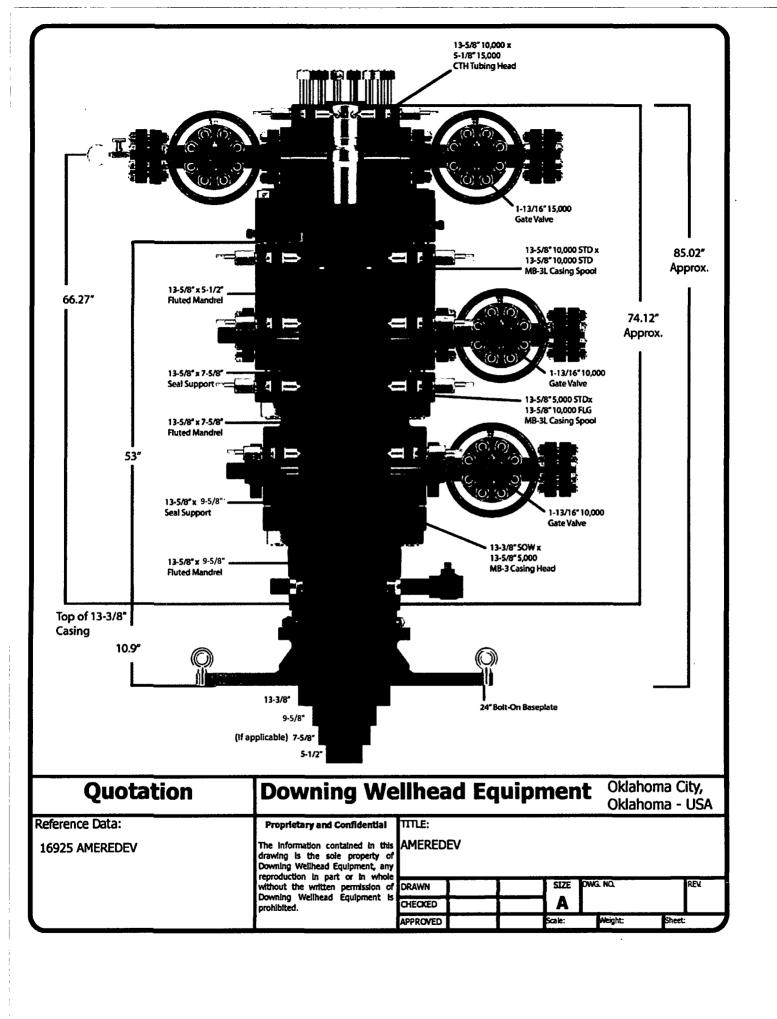
Xmas Tree: 2-9/16" 10M

TBD KB 27'

Tubing:

2-7/8" L-80 6.5# 8rd EUE

E-Mail:


Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC Lamar		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625" 29.7# L-80HC FJM TBSG Upper		TOC 0'	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0'	10.5-14 ppg OBM

Contingency Casing Design and Safety Factor Check

	Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling					
Surface	17.5	1,888'	13.375	54.5	J-55	BTC					
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC					
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM					
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF					
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF					

·	Chec	k Surface (Casing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.38	853	909	1,130	2,730					
	S	afety Facto	ors						
1.56	8.29	8.83	1.15	0.91					
	Che	ck Int #1 C	asing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
10.625	916	1042	4230	5750					
Safety Factors									
0.81	4.57	5.20	1.41	0.95					
Check Int #2 Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
	S	afety Facto	ors						
0.56	2.84	1.96	1.10	1.24					
	Check Pro	od Casing,	Segment A						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
		afety Facto	ors						
0.49	3.11	2.79	1.77	1.89					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
		afety Facto		·					
0.49	63.53	57.16	1.68	1.89					

Γ							1
1	Hole Siz	ze Casing Size	Depth	Sacks	Yield	Density	
1	17.5	13.375	1888		1.76	13.5	
Stage 1 Lead	Cement Ty Additves Quantity (s Yield (cu ft, Density (lb:	Segment D of Segment pe Bentonite, Accel ks) /sk)	erator, Kolseal, De	foamer, Celloflake	1,337 1.76 13.5		
i i	Volume (cu				2,352.85		1
	Percent Exc				100%	Target %	100%
	Column He	ight			3,389.88		i
_	Hole Si2	Target TOC Calc TOC calc vol te Casing Size 13.375	0 -1888 0.12372195 Depth 1888	bbl 233.587041 Sacks	25% Excess 291.9838012 Yield 1.34	100% 467.174082 Density 14.8	
1		13.373	1000		1.34	14.6	
1	Bbl/Sk bbls Top MD of Bottom MD Cement Typ Additives	of Segment			0.23885918 47.77183601 1502 1888 C		
Stage 1	Quantity (s Yield (cu ft, Density (lb: Volume (c Percent Ex Column He	/sk) s/gal) u ft) cess			200 1.34 14.8 268 100% 386.1225606		

SURFACE CEMENT

			Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	1		12.25	9.625	5013	,	3.5	9	
			BbI/Sk			•	0.623885918		
	- 1		bbis				372.0365733		
	- 1		Stage Tool Depti	1		-	N/A		
	- 1		Top MD of Segm	ent			0		
	- 1		Bottom MD of S				4163		
	- 1		Cement Type				С		
stage 1	핗		Additves	Bentonite,Salt,Ko	olseal,Defoamer,Ce	lloclake			
N.	Lead				• • •				
	- 1		Quantity (sks)				596		
	J		Yield (cu ft/sk)				3.5		
		·	Density (lbs/gal)				9		
		·	Volume (cu ft)				2,087.13		
			Percent Excess	•			50%	Target %	50
			Column Height				6,669.49		
	- 1			Target TOC	0				
				Calc TOC	-2506.5	LLI	25% Excess	50%	
	Į			calc vol	-2506.5 0.055781888	bbl 279.6346021	349.5432526	50% 419.4519031	
	\dashv			Carc voi	0.033761666	275.0346021	343.3432320	419.4319031	
	ı		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
			12.25	9.625	5013		1.33	14.8	
	ł		BbI/Sk				0.237076649		
	- 1		bbls				47.41532977		
	- 1		Top MD of Segm	ent			4163		
			Bottom MD of Se				5013		
	- 1		Cement Type				c		
			Additives						
Stage 1	潭								
•			Quantity (sks)				200		
	- 1		Yield (cu ft/sk)				1.33		
	- 1		Density (lbs/gal)				14.8		
	- 1		Volume (cu ft)						
	. ,		Percent Excess Column Height				25% 850.013004		

INTERMEDIATE 1 CEMENT - STAGE 1

ł		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1		12.25	9.625	3262		3.5	9	
Stage 2	Lead	Bbl/Sk bbls Stage Tool Dept Top MD of Segm Bottom MD of S Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	h nent egment Bentonite,Salt,Ko	olseal,Defoamer,Ce		0.623885918 225.5254458 N/A 0 2412 C 361 3.55 9 1,265.20 50% 4,042.99	Target %	50%
			Calc TOC	-1631	bbl	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
		Bbl/Sk bbls	····	 		0.237076649 47.41532977		
1	ı	Top MD of Segm				2412		
		Bottom MD of S	egment			3262		
		Cement Type	<u>-</u>		 	<u>c</u>		
Stage 2	Tail	Additives						
%	•	Quantity (sks)		· · · · · · · · · · · · · · · · · · ·		200		
1		Yield (cu ft/sk)			· · · · · · · · · · · · · · · · · · ·	1.33		
		Density (lbs/gal)				14.8		
1		Volume (cu ft)				266		
1		Dannest Conses				25%		
		Percent Excess				850.013004		

INTERMEDIATE 1 CEMENT - STAGE 2

Stage 1 Lead	Expansion Additiv Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	Bentonite,Retard	Depth . 10670 er,Kolseal,Defoam	Sacks er,Celloflake, Ant	Yield 2.47 0.440285205 168.6309595 N/A 0 6755 H i-Settling 383 2.47 9 946.02 25% 9,422.97	Density 9 Target %	25%
Stage 1 Lead	Bbl/Sk bbls Stage Tool Depth Top MD of Segme Bottom MD of Seg Cement Type Additives Expansion Additiv Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	7.625 nt gment Bentonite,Retard e	er, Kolseal, Defoam		0.440285205 168.6309595 N/A 0 6755 H i-Settling 383 2.47 9 946.02 25%	9	25%
Stage 1 Lead	Bbl/Sk bbls Stage Tool Depth Top MD of Segme Bottom MD of Seg Cement Type Additves Expansion Additiv Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	nt gment Bentonite,Retard e	er, Kolseal, Defoarr	er,Celloflake, Ant	168.6309595 N/A 0 6755 H i-Settling 383 2.47 9 946.02 25%	Target %	25%
				•			
			-2667.5	bbl	25% Excess	25%	
		Calc TOC Calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
		aic voi	0.01789574	190.94/5483	238.0844334	230.0044334	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	8.75	7.625	10670	Sacks	1.31	14.2	
	6.75	7.023	20070				
	Bbl/Sk				0.233511586		
	bbis				70.05347594		
	Top MD of Segme				6755		
1 1	Bottom MD of Seg	ment			10670		
1 1	Cement Type				. н		
-	Additves S	aft,Bentonite,Re	tarder, Dispersant,	Fluid Loss			
Stage 1 Tall							
% -	Quantity (sks)				300		
1 1	Yield (cu ft/sk)				1.31		
1 1	Density (lbs/gal)				14.2		
1 1	Volume (cu ft)				393		
1 1					25%		
1 1	Percent Excess				3914.533571		
	Percent Excess Column Height						

INTERMEDIATE 2 CEMENT

	ł .							
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	ı	6.75	5.5	22496		1.34	14.2	1
Stage 1 Lead		Bbl/Sk bbls Stage Tool Depth Top MD of Segm Bottom MD of Se Cement Type Additves	ent gment	luid Loss, Dispersa	nt, Retarder, Defe	0.23885918 418.2897805 N/A 0 22496 H		
		Quantity (sks)				1,751		1
		Yield (cu ft/sk)				1.34		
		Density (lbs/gal)				14.2		
		Volume (cu ft) Percent Excess				2,346.61 25%	Target %	25%
		Column Height				28,120.00	rarget 76	2370
		Column Height		·····		20,120.00		
			Target TOC Calc TOC calc vol	0 -5624 0.01487517	bbl 334.6318244	25% Excess 418.2897805	25% 418.2897805	
			0 1 0 0	D 1	6	20.14		
		Hole Size 6.75	Casing Size 5.5	Depth 22496	Sacks 0	Yield 0	Density 0	1
Stage 1 Tall		Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additives Quantity (sks) Yield (cu ft/sk)				0 0 22496 22496 H		
	İ	Density (lbs/gal)				0		
	1	Volume (cu ft)				Ō		
	1					_		
		Percent Excess Column Height				0		

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results-Lead

Request/Slurry	2488456/2		Rig Name					Date	18/DEC	/2018
Submitted By	Dillon Briers		Job Type		Interme	ediate Casing	1	Bulk Plan	t ,	
Customer	Ameredev		Location		Lea		•	Well	•	
Well Information) II	:	:						:	
Casing/Liner Size	7.625 in	,	Depth MD		5013 ft	:		BHST	165°F	
Hole Size	8.75 in		Depth TVD		5013 ft	:		внст	130°F	
Cement Informa	tion - Lead D	esign	П							≼
Conc UOM	Cement/Additive		•						ment Prope	
100 % BWOC	NeoCem						Slurry D	•	9 3.5	lbm/gal
14.68 gal/sack	Heated Fresh Wat	ег			• :		Slurry Y Water R	ieia equirement		ft3/sack gal/sack
	• • •		٠.				Water 10	oquii omicii	11.00	gan sack
	:		• •			٠.				11.1
Pilot Test Result									_	
API Rheology, R	Request Test 1	D:3566	5340							
Геmp (degF) 300	200	1	00	60		30	6		3	Cond Time (min)
30 (up) 82	67		19	42	••	39	36		28	0
30 (down) 82	59		5 5	26		18	10		9	. 0
80 (avg.) 82	63	-	2	34		29	23		19	0
V (cP) & YP (lbs/100ft	2): 61.73	22.32	(Least-square	s meth	nod)					•.
			•							
V (cP) & YP (lbs/100ft	2): 60	22	(Traditional n	neunoc	1 (300 & 100	rpm basea))				
ieneralized Herschel-Bu	ilkley 4: YP(lbf/10	0ft2)=20.3	3 MuInf(cP)=52	2.39	m=0.81	n=0.81				
API Rheology, F	Request Test I	D:3566	5341							
Temp (degF) 300	200	100	60		30	6	. 3		Cond T (min)	ime Cond Temp (degF)
134 (up) 63	47	29	21		15	7	6		30	134
134 (up) 63 134 (down) 63	46	29	21		14	7	4	'	30	134
134 (avg.) 63	47 🚶	29	21		15	7	5	•	30	134
V (cP) & YP (lbs/100ft	2): 57.12	7.98	(Least-square	s meth	nod)					.≇
		.12	(Traditional n			mm bacad\\			•	
V (cP) & YP (lbs/100ft					m=0.41	•			٠	
eneralized Herschel-Bu				J.0 4	m=0.41	n=0.41				
LE I FIUIU LUSS,	request 1 est	10.000				 				
Test Temp (degF) T	est Pressure (psi)	Test Tir	ne (min) 🏻 🖪	Meas.	Vol.	Calculate	d FL (<30	Conditio	ning time	Conditioning Ten

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Free Fluid A	PI 10B-2, I	Request Test	ID:356653	43				
Con. Temp (deg)	F) Cond. 1	Γime (min)	Statle T. (F)	Static	time (min)	Incl. (deg)	% Fluid	
134	30		80	120		0	. 0	
Pilot Test R	esults Requ	est ID 25041	16/5					
Thickening	Time - ON-	OFF-ON, R	equest Test	ID:3585239	2			
Test Temp (degF)	Pressure (psi)	Reached in	(min) 70 Bc (h	h:min) Start l	Вс			
126	5800	40	6:18	16				
UCA Comp.	Strength,	Request Test	ID:358523	94				
End Temp (degF)	Pressure (psi)	50 psi (hh:mm)	500 psi (hh:mm)	12 hr CS (psi)	24 hr CS (psi)	48 hr CS (psi)		
159	4000 _:	8:55	12:23	456	749	681		

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

		·····	
MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM®	
Minimum Yield Strength	110,000	••	psi
Maximum Yield Strength	140,000	-	psi ·
Minimum Tensile Strength	125,000		psi
DIMENSIONS	Pipe	USS-LIBERTY FJM [®]	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375		in.
Inside Diameter	6.875	6.789	. in.
Standard Drift	6.750	6.750	in.
Alternate Drift	_		in.
Nominal Linear Weight, T&C	29.70	<u></u> '	lbs/ft
Plain End Weight	29.06		lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency		59.4	%
PERFORMANCE	Pipo	USSALMERTY FIL ^G	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	-	lbs
Joint Strength	-	558,000	lbs
Compression Rating		558,000	lbs
Reference Length		12,810	ft
Maximum Uniaxial Bend Rating	-	39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque	-	10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs

Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional
design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

- 2. Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Unlaxlat bending rating shown is structural only, and equal to compression efficiency.
- USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.
- 5. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.
- 7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

Legal Notice

USS-LIBERTY FJM[®] is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
EXIOREMINE			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361	*;	in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
EGTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
EDYNAMTOHTE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	l b s
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes

- Other than proprietary collapse and connection values, performance properties have been calculated using standard
 equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal
 pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev25 (April)

QUALITY CONTROL	No.: QC-DB- 651 / 2013				
	Page: 1 / 44				
Hose No.:	Revision: 0				
66551, 66552, 66553, 66554	Date: 14. November 2013.				
	Prepared by: Seal of Sander				
	Appr. by:				

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK

Purchaser Order No.:

ContiTech Rubber Order No.: 537587

ContiTech Oil & Marine Corp. Order No.:

4500370505

NOT DESIGNED FOR WELL TESTING

No.: QC- DB- 651 / 2013 Page: 2 / 44

CONTENT

•		<u>Page</u>
1.	API QMS Certificate (No.: 0760)	3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7 .	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8.	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

des gula

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

No:QC-DB- 651 /2013

Page:

3/44

Certificate of Registration

APIQR REGISTRATION NUMBER 0760

This certifies that the quality management system of

CONTITECH RUBBER INDUSTRIAL LTD.
Budapesti ut 10
Szeged
Hungary

bas been assessed by the American Petroleum Institute Quality Registrar (APIQR*) and found it to be in conformance with the following standard:

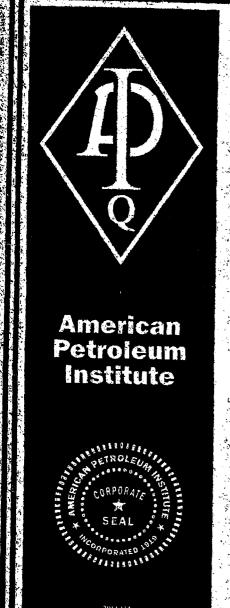
ISO 9001:2008

The scope of this registration and the approved quality management system applies to the Design and Manufacture of High Pressure Hoses

APIQR® approves the organization's justification for excluding:

No Exclusions Identified as Applicable

Effective Date: October 15, 2013 Expiration Date: October 15, 2016 Registered Since: October 15, 2007


V. Lla. Whittalka. Manager of Operations, APIQR

According by Member of the Introduction According to Vienna Mathineral Recognition According for Mathins Mathineral Research

This restillate is while for the period specified bento. The exphered organization and continuity ment all registrations of APRIN's Registration Program and the regularization for Registration is greatered and regularly mentioned duringly amount full spaces marks. Parties charifulness regularly the scare of the corridors and the application of the OFF sension may be obtained by consisting the registered organization. This corridors has been benefit on VPRS offices benefit at 13.00 t. Serve, V.W. Biologian, D.C. 20035-1070, I.S.A. It is the property of PPRIR, and used be extended upon request. To restly the authoritiest.

D QUALTY

Certificate of Authority to use the Official API Monogram

License Number:

16C-0084

The American Petroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD Budapesti ut 10 Szeged Hungary

the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1 and API Spec 16C and in accordance with the provisions of the License Agreement.

In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number: 16C-0004

The American Petroleum Institute reserves the right to sevoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute.

The scope of this license includes the following product: Flexible Chake and kill Lines.

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016

To verify the authenticity of this license, go to warmapil.org/compositelist.

Director of Global Industry Service

No:QC-DB- 651 /2013

Page:

	<u></u>			·	
QUALIT INSPECTION AN	TY CONT ND TEST		ATE	CERT. Nº:	1905
PURCHASER: Co	ontiTech C	Dil & Marine Co	orp.	P.O. Nº:	4500370505
CONTITECH RUBBER order N°:	537587	HOSE TYPE:	3" ID	Choke	and Kill Hose
HOSE SERIAL Nº:	66551	NOMINAL / ACT	UAL LENGTH:	10,€	67 m / 10,75 m
W.P. 68,9 MPa 1000)() psi	T.P. 103,4	MPa 1500	00 psi Duratio	n: 60 min.
Pressure test with water at ambient temperature					
		•			
					•
	·S	See attachme	nt. (1 page	;)	
					·
					·
			• (
↑ 10 mm = 10 Min.			• •		
→ 10 mm = 25 MPa		•	· ·		
COUPLINGS Type	T	Serial	Nº	Quality	Heat N°
3" coupling with		8084	8083	AISI 4130	24613
4 1/16" 10K API Flange	end			AIS! 4130	034939
···					
NOT DESIGNED	FOR WI	ELL TESTING	G		API Spec 16 C
All model model and flevidage				Te	mperature rate:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVE HO INSPECTED AND PRESSURE TEST					ERMS OF THE ORDER
STATEMENT OF CONFORMITY: conditions and specifications of the accordance with the referenced stand	We hereby on above Purch lards, codes a	ertify that the above	e items/equipmer at these items/ea ad meet the relev	nt supplied by us an quipment were fabr ant acceptance crite	cated inspected and tested in
Date:	enactor		Quality Contro		
13. November 2013.	spector		Solver Control	Contifech Ru Industrial F Quality Control	(fr /

Page: 1/1

RD +20.05 °C 20.20		Jaya Constitute Bush
RD +20.05 9C 20.20 20 20 20 20 20 20 20 20 20 20 20 20 2	15	Contilect Rubbs Industrial Kft. Ruality Control Den
RU +28.87 9C 28:18 RU +1849- bdr 28:18 RU +28.89 9C 28:88 BL +1851- bdr 28:88 RU +28.17 9C 19:58 RU +28.17 9C 19:58 RU +28.26 9C 19:48 RU +28.26 9C 19:48 RU +28.26 9C 19:48 RU +1853- bdr 19:38 RU +1853- bdr 19:38 RU +28.17 9C 19:38 RU +28.17 9C 19:38 RU +28.17 9C 19:38 RU +28.17 9C 19:38 RU +28.18 9C 19:38 RU +28.18 9C 19:38 RU +28.65 9C 19:28 RU +28.65 9C 19:28 RU +28.65 9C 19:28 RU +28.65 9C 19:28 RU +28.65 9C 19:28	RD +20.05 90	20 20 20
RD +28.89 9C 20.80 20 20 20 20 20 20 20 20 20 20 20 20 20	GN +19-68 90 RD +29-07 90 BL +1849- 64	20:10
RD +20.17 90 19:50	RD +20.09 9C BL +1851- Ldr	20:00
GN +18-59 dC RD +28-17 9C BJ +1859- bdr 19130 BS +28-65 cc 19130 BS +28-65 cc 19120 BL +1864- bdr 19120 12-11-2013. 19110 66511-66551 19110 10 20 30 40 50 60 70 80 90 100	RD +28.17 90 BL +1853 - bd+	19:58 19:58 19:58
RD +28-17 9C 19:30 B1 +1859- bdr 19:30 B1 +28-05 9C 19:20 RD +28-10 9C 19:20 BL +1864- bdr 19:20 12-11-2813 19:10 66511-66351 19:10 10 20 30 48 50 60 70 80 90 100	BU H1055 - bor	. [1] [1] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
#20 +20 10 90	RD +28-17 90 BL +1859- bd+	19 80
10 20 30 40 50 60 70 60 90 100	RO +28.10 90 BL +1864. Edr	
	12.11.2013. 19:10 66511.66951 19:10	
33698	10 20 30	40 5p 60 7p 8p 9p 100
	10	ing it all it is a second of the second of t

No:QC-DB- 651 /2013

Page:

6/44

QUA INSPECTION	LITY CON AND TES		ATE		CERT	. N°:	1906		
PURCHASER:	ContiTech	Oil & Marine C	orp.		P.O. N	۰:	4500370505		
CONTITECH RUBBER order	_{I°:} 537587	HOSE TYPE:	3"	ID		Choke ar	nd Kill Hose		
HOSE SERIAL Nº:	66552	NOMINAL / ACT	TUAL LE	ENGTH:					
W.P. 68,9 MPa 1	0000 psi	T.P. 103,4	MPa	1500)() ps	i Duration:	60	min.	
Pressure test with water at ambient temperature	: ::		···	·					
		See attachme	ent. (1	page	:)	•			
	· •								
	1								
↑ 10 mm = 10 Mir → 10 mm = 25 MP									
COUPLINGS Ty	ре	Serial	N°			Quality	Heat Nº		
3" coupling wit	h	8088	808	5	Α	ISI 4130	24613		
4 1/16" 10K API Flar	ge end				A	ISI 4130	034939		
NOT DESIGN	ED FOR W	ELL TESTIN	G				API Spec 16 C		
All metal parts are flawless						16111	perature rate.		
WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE 1						TH THE TERM	IS OF THE ORDER		
STATEMENT OF CONFORMIT conditions and specifications of accordance with the referenced s	the above Purc	haser Order and th	at these	items/ed	ulpment	were fabricat	ed inspected and tes	sted in	
		COUNTRY OF ORIG	SIN HUN	GARY/E	U		<u> </u>		
Date:	Inspector		Qualit	y Contro	_	Tach Rubber			

13. November 2013.

Industrial Kft.

Quality Control Dept

No:QC-DB- 651 /2013

Page:

QUA INSPECTION	LITY CON AND TES		ATE	CERT.	√' :	1907	
PURCHASER:	ContiTech	Oil & Marine C	Corp.	P.O. Nº:		4500370505	5
CONTITECH RUBBER order N	p: 537587	HOSE TYPE:	3" ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	66553	NOMINAL / AC	TUAL LENGTH	l;	10,67 m	/ 10,745 m	
W.P. 68,9 MPa 10	0000 psi	T.P. 103,4	MPa 150	00 psi	Duration:	60	min.
Pressure test with water at ambient temperature						<u>, i i i i i i i i i i i i i i i i i i i</u>	
					:		
	;	See attachmo	ent. (1 pag	e)	-		
				1.			
↑ 10 mm = 10 Min → 10 mm = 25 MPa							·
COUPLINGS Typ	е	Seria	l N°	Q	uality	Heat N	lo.
3" coupling with	י	8089	8087	AIS	SI 4130	23171 2	4613
4 1/16" 10K API Flan	ge end			AIS	SI 4130	03493	9
NOT DESIGN	ED FOR W	ELL TESTIN	IG		A	Pl Spec 16	С
			. '		Tempe	erature rate	∍:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVE					H THE TERMS	OF THE ORDER	· ·
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced st	': We hereby of the above Purc tandards, codes	ertify that the above	ve items/equipment these items/eand meet the rela	ent supplied equipment v	were fabricated	inspected and t	tested in
Date: 13. November 2013.	Inspector		Quality Contr	Conti Ind	ustriph Whit.	Bocn Cy) 9

Ontinental & CONTITECH

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

Pressure test with water at amblent temperature See attachment. (1 page) ↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2481 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIEY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY. We hereby cartify that the above llems/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these tems/equipment were fabricated inspected and tester accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirement.	QUALITY CO		ATE	CERT. N	o:	1908	
HOSE SERIAL N°: 66554 W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 r Pressure test with water at ambient temperature See attachment. (1 page) ↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby contify that the above Items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	PURCHASER: ContiTe	ch Oil & Marine C	огр.	P.O. Nº:		450037050	5
W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 repressure test with water at ambient temperature See attachment. (1 page) 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial № Quality Heat № 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND THE SURFE TESTED AS ABOVE Purchaser Order and that these items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tester conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tester conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tester conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tester conditions and specifications and meet the relevant acceptance criteria and design requirement.	CONTITECH RUBBER order N°: 53758	HOSE TYPE:	3" ID		Choke and	Kill Hose	
Pressure test with water at amblent temperature See attachment. (1 page) 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3° coupling with 8090 8086 AISI 4130 23171 2461 4 1/16° 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIEY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY. We hereby certify that the above Items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and testor accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirement.	HOSE SERIAL Nº: 66554	NOMINAL / AC	TUAL LENGTH:		10,67 m	/ 10,71 m	
See attachment. (1 page) ↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tester accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements	W.P. 68,9 MPa 10000 I	psi T.P. 103,4	MPa 1500)() psi	Duration:	60	min.
↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements							
↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements					:		
COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	. f	See attachme	ent. (1 page	;)			
COUPLINGS Type Serial N° Quality Heat N° 3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate: "E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ter conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.					:		
3" coupling with 8090 8086 AISI 4130 23171 2461 4 1/16" 10K API Flange end AISI 4130 034939 NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements	05						
A 1/16" 10K API Flange end NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	COUPLINGS Type	Seria	N°	Q	uality	Heat	N°
NOT DESIGNED FOR WELL TESTING API Spec 16 C Temperature rate:"E All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	3" coupling with	8090	8086	AIS	1 4130	23171	24613
All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	4 1/16" 10K API Flange end			AIS	1 4130	0349	39
All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	NOT DESIGNED FOR	WELL TESTIN	IG		A	Pl Spec 16	S C
WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	All motel parts are flowless				Temp	erature rat	e:"B"
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the ten conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.	WE CERTIFY THAT THE ABOVE HOSE HAS				THE TERMS	OF THE ORDE	:R
COUNTRY OF ORIGIN HUNGARY/EU	STATEMENT OF CONFORMITY: We here conditions and specifications of the above I	eby certify that the above Purchaser Order and to des and specifications of	ve Items/equipme hat these Items/e and meet the relev	nt supplied quipment v ant accept	vere fabricated	inspected and	tested in
Date: Contifect Rubber Industrial Kft. Control Design Control Des			Quality Contro	Cont	instrial Kft. y Control DQ	/)

Page: 1/1

		MONT -CA
		Contifuel Rubb
		Endustriel Kft.
69 19 69 96 RD 19 92 96 BL 1945 bd 1	17:20 17:20 17:20	
RD +19.68 90 RD +19.64 90 BL +19.68 bdr	17:10	
RO +19.69 9C	17 50 17 600 60 70 80 90	:100
07 +19-50 -0 RD +19-77 -9C BJ +1053 - 50 -	16 30 16 30	
RO +19.78 4C BL +1055 - bor	16:40 16:40	
GN +19.88 °C RD +19.73 °C BL +1056 bor	16:30 16:30 16:30	1
81 +1058 bor 61 +19 82 96 RD +19 78 °C 81 +1062 bdr	16:39 16:39 16:20 16:20	
1		
12-11-2913-16-00 66552-66553-66554	60	
		' : , :
 		

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	9 / 44

Ontinental & CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

No:QC-DB- 651 /2013 Page: 10 / 44

Body

Customer:

ContiTech Rubber Industrial Kft

Order Number:

32258500 4205160045

Part Number: Our Ref:

SO64201

Date:

11th February 2013

Cortificate Number:

TR070687/(Rev. 18/06/2013)

Approved Signatories:

R M Greaves A Cocking J Jarvis A Pears S Selman

8083 - 808

3451- 3466

42 0516 00 45

Description

CERTIFICATE OF CONFORMITY

Heat Treatment

AISI4130/BLACK ROLLED BAR, HEAT TREATED & TESTED TO 197-238 BHN, 655MPA MIN TENSILE, 517MPA MIN YIELD, 18% MIN ELONGATION, CHARPY IMPACT TESTING 27.4 MIN @ -30C (OR COLDER) LATERAL EXPANSION 0.38 MIN, ROLLING REDUCTION 3:1 MIN, NI 1% MAX & CE 0.62 MAX, TESTS MAY BE TAKEN FROM A 4° SQR QTC AS PER API 6A/PSL 3 OTC SIZE. MECHANICAL TEST SPECIMEN TO ASTM A370 NACE MR0178/ISO15156 APPLIES

APPROX 20 TONNES 210 MM DIA

CERTS TO EN10204 3.1

HARDENED FROM 880°C FOR 5:30 HOURS (WATER QUENCH)
TEMPERED AT 670°C FOR 10 HOURS (AIR COOL)
WATER TEMPERATURE BEFORE QUENCH, 28°C, AFTER, 35°C.
TEMP. MEASUREMENT, FURNACE ATMOSPHERE THERMOCOUPLE
COMPONENT HARDNESS E10 - 211 HBW10/3000
TEST COUPON - 4° SQ X 8° LONG, TESTED AT ½ T LOCATION
REDUCTION RATIO - 6,2
REDUCTION RATIO - 6,4
FURNACE CALIBRATION: APIGA 20th ed, annex M
C/E = 0.683

	(CAST 24613)										
С	Si	Mn	s	P	N	er	Mo	Al	Cu	Sn	Nb
0.3200	0.2590	0.5680	0.0090	0.0100	0.1660	1.0560	0.2350	0.0200	0.1420	0.0070	0.0010
V	Ta	Ti	Nb+Ta	Co	N .	В	W	CB	Fe	As	Sb
0.0010		0.0010	:		0.0079	0.0001					<u>.</u> .
Pb	Ca	H (ppm)	CEV			[
		1.20	0.69								

	1	TEST SPECIFICATION 517 N/mm2 MIN YIELD								
		Temperature RT	Re	Rp 0.2 517.000	Řm	A %	Z %	impact	Temp.	Hardness
İ	l		M/mm2	Ntmm2	Minm2	40	İ	j		

	-			TEST R	RESULTS			Charpy	
Test Number	Dir./Temp.	Re	Rρ	Rm	A %	Z %	Joules	Direction	
ST22561N	20,0°C		524.000	898.000	27.60	67.70	KCV 48°C 60 50 78		710,0000 211
Specimen Ø 12.500mm							KCV 50 50 46	LONG	
							% Sheer Surface	1	
							62.0% 52.0% 80.0%	4	

0.840 0.740 1.020 LONG

For and on Behalf of TM Steels Ltd.

A. locking

Industrial Kit.
CERTIFICATE
ACCEPTABLE
OC INSPECTOR
DATE: /4-06-24-

Contilech Rubber

TLI Steen Lid

Foxwood Way

Forwood Road

Chesterfe'd \$41 9RA Steel for the Oil and Engineering Industries Machining and Boring Facilities Tei +44 (0)1248 268312

Sales Fax +44 (0)1246 288313

Production Fex. +44 (0)1248 269841

email salos@imsteels.co.uk

Co Rog No: 3523526 Vat No: GB 706 2614 57

Industrial Kft.	CONTITECH RUBBER
Page:	No:QC-DB- 651 /2013
11/44	651 /2013

	•
	11/0-
	4412HF
	0UP $>$ 1
•	
100	
WHICH EVERY	VE MANAGEMEN
. an HER	TO BEKINSON

Carbrook Street Sheffleld S9 2JN

Telephone: +44 114 244 6711 Facsimile: +44 114 244 7469

Results quoted only refer to the items tested.

AISI4130 /

197-237BHN EFAD

Temp(°C)

860

3 HRS

4 HRS

Melt Practice

HARDEN

TEMPER

Material Specification Heat Treatment Spec

Heat Treatment

Test Certificate

		0.00	OAGA							
		8083-	8000		Gustam: Number	er Order	322521	R3 - 01	Test Number	402483
į	To: CONTI H-6728	TECH RUBBER İNDI	USTRIAL KET		Custom Date	er Order	27Fe	b12	Part Number	4205160045
	SZEGE	ESTIUT 10, K./			Sales C Number		EUR-352067-1		Cast Number	23171
	HUNG	ADV		. - -	Report	Date	2580	2 p12	Cert Number	EUR-265844
•		4205	16 004	7	Quantit	y 14 P	cs 17402 Kg	ps 210 mm Dia		
	Desart	ption AISI 4130 75KS	31 .2% PS API C	тс					Steel Type	ALLOY 4130
				 -						
		·	Test Spec	517N/MM	ZMINLYLD			Test S	pec	_
	Produ	ction Method	FORGED							
Soak		Coolant	Charge Ref	inti	Max(℃)	Betch	Тетр гесо	ded using	CONTACT THERM	OCOUPLE
3		WATER QUENCH	SHF-158284	20	30	0912091308	Nature of	T/P	Separate	
3		TABLE COOL	SHF-158284			1012091319	Oto size	4Inch SQ X 6	inch LONG	

Hardness on T/P

				ŀ			Hardness on Material	197 237	HBW 218	235 HBW
Tensile -						Impaote -				
Location	Direction	Rp 0.20%	Firm	A%	Z%	Location	Direction	CVN	Lat. Exp. (mm)	% Shear
. 1/4T	LONGITUDINAL	517 Min	655 to 800	18 Min (4d)	O Min	1/4T ·	LONGITUDINAL	27 Min Ave	0.380 Min	0
Results (N/mm2)		580	766	25 (50.0mm)	84.0 (12.56mm)	Results (Joules)	-30 Centigrade	106 104 102	1.44 1.42 1.4	40 40 40
										ļ
Results			Ĺ	<u> </u>	<u> </u>	Results				1
Compoine										

Results													Result	ls .										
Corrosio	n																							
Pitting R	lesistance	·		1	Ferrite								Micros	tructure										
Carbon	Equivaler	t.				.8.	71				Grai	n Size	Min		6	Max		6						
C	SI	Mn	P	6	Cr	Mo	N	Cu																
0.2940	0.2920	0.5370	0.0110	0.0050	1.0620	0.2290	0.1860	0.2430																
Cents to	BSEN10	204.2004	3.1						Col	ntiTech fi Industrial	Kft.					1	U furnace	Calibrati	on confor	ms to AP	16A 20th	Edition Al	NNEX M.	

NACE MR-01-75 FE = BAL REDUCTION RATIO 6.5:1

CERTIFICATE ACCEPTABLE

Hardness load/penetration depth - HBW 10 diameter (mm)/3000 kgf test force per ASTM E10.

Req. Min/Max

237

197

Third party inspection :

Names of Approved Signstories: S.Mexted G.Smith S.Suter P.Rogers M.Brown This report is not to be reproduced without written approvel.

Page 1 of 1

Achieved

HBW

229

CONTITECH RUBBER | No:QC-DB- 651 /2013 Industrial Kft.

Page:

12 / 44

1386 FORGING, MACHINING, HEAT-TREATING 4205140284

ÉMI - TÜV ISO9001

H-3531 Miskolc, Kiss Ernö u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199

INSPECTION CERTIFICATE

ACCEPTANCE ACCORDING EN 10204-05/3.1

Certificate No.: (86989/13-0)

Date of issue: 2013.03.27 | Hámor No.: 98-39B5263 | Order No.: 32259784/13/2

Customer: Contitech Rubber Industrial Kft.

6728 Szeged Budapesti út 10

Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 315/451 × 182

Dimension: MSO-100597-002/A/H mm

Final dim.: MSO-100597-002/A(4 1/16") Heat-treatment: Quenched & tempered

Quantity: 30 pcs | Weight: 73.0 kg/pc | Total weight:

nomination of product: Forged, machined disc

Chemical analysis %

Heat No.: (034939) Steelmaker: CELSA Hutaostrowiec POLA

	Spec.	_ C	MN	SI	P	s	CR	MO	V	Ce
Test	Min. Max.									
No.	Max.	0.45	1.80	1.00	0.025	0.025	2.75	1.500	0.300	0.82

Result | 0.28 | 0.56 | 0.20 | 0.006 | 0.003 | 0.99 | 0.170 | 0.003 | 0.62 |

Mechanical properties:

Test No.	Spec. value Min. Max.	HB 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27
L13314	Result Result	235 238	525	662	19.50	35 52 82

Test bar from product.

Dimensional and visual control: passed

Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory

Steel making (melting) process: UHP-ASEA vacuum-treated.

NACE MR 0175/ISO 15156+API 17K + API 6A PSL3.

HB-E10, Mechanika: ASTM A370 acc.

Grade Of forging: 9.81

30 pc/series.

Executive

namor zki. linőség ellenőrzé Osztály

Expèrt

ALKA EFOR

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 13 / 44

HWORZAD

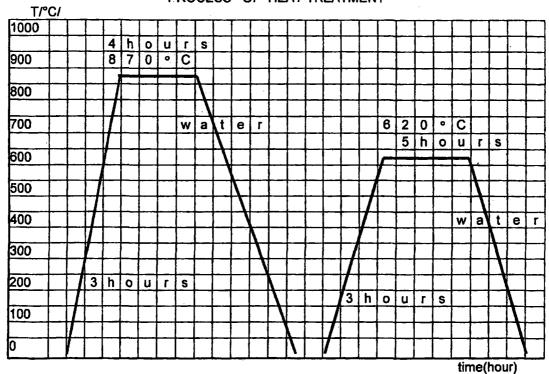
MISKOLC Kiss Emő u. 17. sz. H-3531

tel:36/46/401-033

fax:36/46/379-199

e-mail: hamor@t-online.hu

PROTOCOL NUMMER: 98-39B5263


HEAT-TREAT	MENT PROTOC	OL			
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.	Order No. of Buyer: 32259784/13/2 Work No. of Buyer:				
Dodapesti ut 10, 52.					
PRODUCT:	QUANTITY: PIECE	No. of drawing:			
forged	30	MSO-100597-002/A/H			
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:			

<u>HEAT-TREATMENT</u>: quenching and tempering

Typ of furnace: electric furnace

Hardening medium: water

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

head of heat-treatment

Hámor zRt. Ilnőség ellenőrzés Osztály

No:QC-DB- 651 /2013

Page:

14 / 44

Felado :

61344

gamma controll kft

19/10/13 12:54

HARDNESS TEST **REPORT**

Report No: 561/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT;

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8083; 8084; 8085; 8086

BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
Min HB 197 Max HB 238	√ 8083	body weld flange connection face	224 222 236 238
	√ 8084	body weld flange connection face	213 208 220 238
	√ 8085	body weld flange connection face	214 214 219 222
	/8086	body weld flange connection face	232 237 238 197

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

2013. október 30.

Ménesi István

APPROVED ONTROLL KF7.
6750 Algyo, Kalteralet 0188674. hrsz
Addszafin: 10346944. Str.

QCP-03 HB/11

No:QC-DB- 651 /2013

Page:

15 / 44

Felado :

61344

ma controli kft

19/18/13

\$ **
GAMMA-CONTRUCT
P .
Mish San Color Color to the grant Color of the
6750 Appa, Libraries Of Black pd, 1782.

HARDNESS TEST REPORT

Report No: 562/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT:

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(e) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8087; 8088; 8089; 8090

	Brinell Hardness Requirement	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
	Min HB 197 Max HB 238	✓ 8087	body weld flange connection face	213 216 220 225
		∕ 8088	body weld flange connection face	229 212 223 213
		√ 8089	body weld flange connection face	219 229 231 238
		8090	body weld flange connection face	207 210 228 234
- -				

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

Ménesi István

APPROMEDIONTROLL KFT. 50 Algyo, Kulturaler OHERA/14, hrsz. Adoszems 11094514-9-06 Www.gamma/control I hu-Vangsel Mild 640

QCP-03 HB/11

2013. október 30.

No:QC-DB- 651 /2013 Page:

16 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

6750 Algyo, külterület 01884/14, hrsz. Tel /Fex.: +36 62/517-400 / 61344 NAT-1-1140/2010 extress attraction stregistis

ULTRASONIC EXAMINATION REPORT

Vizsgálat tárgya / Object of test					Coupling (Body)				
Gyártó				MagrandalA					
Manufacturer				Customer JE-ZO Kft. Szeged				a	
Gyáriszám				Rendelési szám					
Serial-No.				Order-No.					
Azonositó jel 9092 9099			Követelmény ASTM A388						
Identification 8083-8088				Requirement			MDIM WOOD		
Geometriai kialakitás / Rajzszám				Vizsgálati hőkezelés		s	előtt		
Geometric configuration / Drawing-No.				Test heat treatment		prior			
MT-3121-3000		Ø2	00xø70x491			:			
Anyagminöség		AISI 4	120 /	Letapogatá	Letapogatási irányok Direction of scanning		axiális és radiális		
Vlaterial		AISI 4	130 /	Direction of					
Adagszám		24613							
Heat-No.		24013							
∕izsgálati felület állapot	8	forgacso	orgácsolt		Vizsgálati terjedelem		4000/	1009/	
Surface condition		machine	d	Exted of Te	Exted of Test		100%		
Vizsgált darabszám									
Testing pieces		6 db		i					
	Viz	sgálati	adatok / l	Sxamina	tion	data			
Készülék típusa		USM2	ISM25		Készülék gyári száma		7975f	7875f	
Type of US-equipment				Serial-No. C		quipment	10131		
/izsgálófej(ek)		SEB-2,		Frekvencia((k)	•		2 MHz	
Searc unit(s)		SEB4H		Frequency(ies)			4 MHz		
				ŀ				MHz	
		•						, MHz	
Kalibrációs blokk			ET1,ET2	Erősítés(ek)	axiálisan		18 dB	
Calibration standard ide	ntfication	£11,£12		Gain			dB		
								dB	
						radiálisan		6 dB	
Csatoló közeg		olaj		Hanggyengülés			dB/m		
Couplant		oii .		Attenuation			U5/11		
Ertékelés / észle	it kijelzések			rdable indi	catio	ns			
Ertékelés	X	megfel			nem	megfelelő	/ not ac	ceptable	
evaluation (a)		satisfa	CTOTY		ــــــ				
/legjegyzés(ek) Remark(s)									
lely / kelt		1		"		Π		T WET	
Place / date Gamma-Controll Kft. Algyő, 2013.10.17			Vizsgálatot végezte		GAMMA CONTROLL (ST. 6750 Algy) Kelly of a 1894 14 first. Adeszent 1104614-2-16 www.gammas-pontroll hu Tel: 06-30-218-2640 Approved by				
			Tested by						
			Tóth Ákos UT20103090307		Benkő Péter - Feleiős vezetőh.				

No:QC-DB- 651 /2013 Page:

17 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

WWW.gammis-Commounts 6750 Algyd, followled 01684/14, hrsz. Tel./Fex.: +36 62/517-400 / 61344 NOT 45# NOT-1-14072) III számon etátrozási vézejétés

ULTRASONIC EXAMINATION REPORT

Vizsgálat tár	gya / Obje	ct of test	Coupling (gody)				
Gyártó			Megrandelli				
Manufacturer			Customer JE-ZO Kft. Szeged				
Gyáriszám			Rendelési szám				
Serial-No.			Order-No.				
Azonosító jel	8089-8090		Követelmény ASTM A388				
Identification			Requirement	ASIM ASSS			
Geometriai kialakítás /	Rajzszám		Vizsgálati hőkezelés előtt				
Geometric configuration / Drawing-No.			Test heat treatment prior				
MT-3121-3000		ø200xø70x491					
Anyagminőség Material		AISI 4130 /	Letapogatási irányok Direction of scanning	axiális és radiális			
Adagszám Heat-No.	:	23171 /					
Vizsgálati felület állapota forgácso		forgácsolt	Vizsgálati terjedelem	100%			
Surface condition		machined	Exted of Test	10076			
Vizegált darabszám Festing pieces 2 db		2 db		,			
	Via	sgálati adatok / l	Examination dat	ä			
Készülék típusa	észülék tígusa			Készülék gyári száma			
Type of US-equipment		USM25	Serial-No. Of US-equipm	7875f			
zsgálófej(ek) SEB-2,		Frekvencia(k)	2 MHz				
Searc unit(s)		SEB4H	Frequency(iea)	4 MHz			
	,			MHz			
				MHz			
Kalibrációs blokk		ET1,ET2	Erősítés(ek) axia	állsan 18 dB			
Calibration standard ide	entfication	E11,E12	Gain	dB			
				dB			
				lálisan 6 dB			
Csatoló közeg		olaj	Hanggyengülés dB/n				
Couplant		oil	Attenuation				
Ertekeles / eszk	elt kijelzėsei	r / Evaluation / reco	rdable indications				
Fatterite -		megfelelő	I Inom mo	-f-1-1# /+			
Evaluation	Х	satisfactory		gfelelő / not acceptable			
Evaluation Megjegyzés(ek)	Х		l laca ma	Reserve A not acceptable			
	-Controll Kft.	satisfactory		GAMMA - CONTROLL KFI. 6750 Algya Material B89/14. hrsz. Anto-far. 1054814-2-06			
Evaluation Megjegyzés(ek) Remark(s) Hely / kelt Place / date Gamma		satisfactory Col	م ۱۵ ا	GAMMA - CONTROLL KF I. 6750 Also Hollende B 88/14. hrsz.			

No:QC-DB- 651 /2013 Page:

18 / 44

ULTRAHANG VIZSGÁLATI **JEGYZŐKÖNYV**

Vizagálati azám: Report No.:

ULTRASONIC EXAMINATION REPORT

<u> </u>		·····				
Vizsgálat tárg	zya / Obje	ct of test	Flange			
Gyártó		Megrendelo JE-ZO Kft. Szeged				
Manufacturer			GRAMINO.			
Gyariszem		•	Rendslési szám			
Senal-No.			Order-No.			
Azonositó jel	8083-8090		Kovetelmény ASTM A388			
ibanuncaben ,		, 	Requirement			
Geometriai klalakitás / I			Vizsgátati hőkezelés előtt			
Geometric configuration	1 / Urawing-we.	-245-55-460-04-420	Test heat treatment	prior		
MT-3121-3000		6315x85x6190x94x670	a a a a a a da a i ballaccale			
Anyagminoség		AISI 4130 /	Letapogaldai iranyok	ovialio de raticido		
Material			Direction of scanning			
Adegszárii		034939 /	I			
Heat-No. Vizsgålati felület állapot		22	Vozagálati terjedelem			
		forgicsoft machined	Exted of Test	100%		
Surface condition Voscot dansbazam	·	(therefore)	EXECUTION			
Testing pieces		8 db				
s daming biscops			<u> </u>			
	Vi	zsgálati adatok / E	zamination d	lata		
Kászülák típusa			Készülék gyári szám	8.		
Type of US-equipment		USM25	Serial-No. Of US-equ	/R/RT		
		SEB-2.	Freirvencia(k)	2 MHz		
[· -· · · · · · · · · · · · · · ·		SEB4H	Frequency(les)	4 MHz		
				MHz		
				MHz		
Kalibrációs bicitik Calibration standard identification		ETA ETA	Erősités(ek)	exiàlisan 6 dB		
		ET1,ET2	Gain	ď₿		
				dB		
			<u>. </u>	radiálisan 6 dB		
Castoló közeg olaj		olaj	Hanggyengülés	dB/m		
Couplant		oii	Attenuation			
Ertékelén / észk	elt kijelzése	k / Evaluation / record	lable indication			
Ertékelés	X	megfelelő	nem :	negfelelő / not acceptable		
Evaluation		satisfactory				
Megjegyzdo(ek) Romark(e)						
Hely / kelt			-	<i>-</i> 2 <i>O</i>		
Place / date		1 11 cm	Q_{ℓ}	GANTING CUSTERNELL NEL		
Gamma-Controll Kft				al50 March, Kutternta 91581, 14, his-		
			tot végezte	Adiogeography 14-2		
, -9,70,	··································	T	ted by	Adistron his 2414 2 de nuis gamma Control ha 1,4000 and the reasi		
			120103090307	Benkö Péter - Felelös vezetőh		
	Es a lacur	ökönyv részleteiben nem másolh				

No:QC-DB- 651 /2013

Page:

19 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő:

(Place and date of birth):

Tóth Ákos József

Hódmezőváráshely, 1987. 09.

Azonosító szám: UT20103090307 (Identification No.):

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

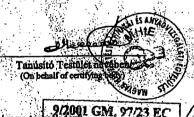
Ultrahangos anyagvizsgálat

(Ultrasonic testing)

Ipari terület: (Industrial sector): Készülékek, berendezések, létesítmények vizsgálata EM Service Land (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): Product sector(s):

(c)+Fv, (w)+Fv, (wp)+Fv, (f)+Fv


A minosites fokozata; (The level of certification)

UT2

A tanúsítás és kiadásának Mőpontja: (The date of certification and it's issue):

Budapest, 2009, 12. 07.

A tanúsitás érvényes: (The date upon which certification expires): 2014. 12. 06.

Az ipari és/vagy termék terti-let érvényesség kiterjésztve: (The industrial and/or product sector has

Dátim (Date): _&

9/2001 GM

(Examiner)

A tanúsítás érvényessége

(Renewed the validity of the certification until (MSZ EN 473 9.):)

ig megújítva (MSZ EN 473 9.):

Dátum (Date)

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikái és Anyagvizsgálati Egyesülés, mint a Nemzeti Akkreditáló Testület által a NAT-5-0013/2006 számon akkreditált tanásító testület az MSZ EN 473 számú szabvány szerint eredményes

NAT-5-0015/2006 SZAMON AKKTEGITAL TAMESHO LESTINE AZ MISZ, EIN 4-75 SZAMIU SZAMOWANY SZEMIC CLEMENTY-S VIZSEGJA ALAPJÁN A nevezett személyt támásítja a fentlek szerint! (The Hungarian Association of Welding Technology and Material Testing as an accredited by the National Accreditation Board (under No. NAT-5-0013/2000) certification body, on the basis of his/her successful examination under the standard MSZ BN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csővek (tubes); wp - alaktrott terinékek (wrought products); p - muanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBB	ER
Industrial Kft.	

No:QC-DB- 651 /2013 20 / 44

Page:

UT20103090307

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatálmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21)

GAMMA - CONTROLL KPT
6722 52 ged Gyertyányos u. 1246/A
Munkáltató alaírása - Thank 14738605 20406154

Www.gamma-control.hu
Tel.: 06 30 218-2640

Dátum: 9009 . 12.07

$\frac{1}{\sqrt{1+\epsilon}}\frac{1}$			
		avěgzés igazolása (MSZ EN 473 9.) inucd work activity (MSZ EN 473 9.))	a Balandin (d. 145) - Aliendari Balandin da marata (d. 1464)
Sorsz.:	Munkáltató aláírá (Signature of the emplo		Dátum (Date)
(1) 全海(1) 文学》。	MINN	Minesegullendere Boll	1010.01.04.
2.	Tese 1	TIOSING CONTROLL	2011.01.06.
3,		none Mr.	no12 01.09.
A ,	M		12(3.01.09
5.		Anyagunas Kit	
6.	Name of the last o		
文章 主义 7. 为 5. 4			
8.			The reserve of the second statement of the second s
9, ,			
10.			

Klegészítések (Additional remarks;)

^{*} A tanúsítvány a munkáltató aláírásával érvényes (This certificate) is valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	21 / 44

- PHOEND	K	TECHNI	CAL D	ATA SHEET		TDS	Page	
PHOENIX RUBBER INDÚSTRIAL LYD.	WEL	DING PRO	WPS	Nº 1 of 2				
CLIENT		THIS SPE	CIFICAT	ION IS BASED	WPS N°	140–71	REV 4	
IDENTITY CODE	DENTITY CODE ON ASME CODE				SUPPOR	_	R N° ID 0700002/1	
Ітем	Qty	TAW-SMAW	PERFORM	ED BY:				
DATA FOR ACCEP	TANCE	TYPES: MA	NUAL		WELDER'	s Stamp		
JOINTS (QW-402)	75' opr. 1.5	B	-	Sequences	of weld see	~2.5	ndum	
JOINT DESIGN	B	ACKING: YI	S/NO	WELD SEQUEN	NCE			
BASE METALS (QW-403) DRW N°				PART "A" PAR		Г "В"		
GRADE:		WNo	.:1.7220	ASTM A 322-91: AISI 4130 / 34CrMo4 (MSZ EN 10083-1) *				
CARBON EQUIVAL	ENT	max.C	, =	0.82 0.		82		
MECHANICAL PRO	PERTIES:	N/mm²	min.	655 6		55		
	TILITY	% YV,IIII	min.	18			18	
	ONESS	HB	max.	 		38		
	CT TEST -30°	C J	Average	27 2		7		
THICKNESS:	t = 5	-38 mm	·	OUTSIDE DIAMET	ER: (ØD = 60-2	80 mm	
FILLER METALS (C	(₩-404)			<u> </u>				
WELD MATERIAL	DIAMETER	Bra	ND	STANDARD			SUPPLIER	
Rod	2.4 mm	EMI	. 5	AWS A5.18	3-01: ER70	S-3	Böhler	
Electrode	3.2; 4.0	T-PUT NIN	/lo 100++	AWS A 5.5-96:	E 10018-D	2 (mod.)	Böhler	
Lapse between c	F PASSES	MIN./m	in					
Positions (QW-	105)			PREHEAT (QW-406)				
Positions: 1G	Rotated (horiz		Рпенеат темр.: 300-330 °C					
WELDING PROG	RESSION: Wel	d flat at or		INTERPASS TEM			1	
Position of fili		to the top		PREHEAT MAINTENANCE: Till the begining of postweld heat threating				
OTHER				METHOD OF PRI	EHEATING:	rumace	<u></u> j	

No:QC-DB- 651 /2013 CONTITECH RUBBER Industrial Kft. Page:

22 / 44

CONTINUAT	TON OF WPS	Nº 140-71 Rev	.4		- 1	P	age N° 2 of 2	
POSTWELD HEAT TREATMENT (QW-407)					-4 08)			
HOLDING	TEMP. RANG	620 +20 / -	SHIELDI	NG GAS A	rgon for roo	t		
HOLDING	TEMP. TIME	4 HR						
HEATING	RATE MAX.:		PERCEN	TAGE COMPOS	ION (MIXTUR	te)		
COOLING	RATE MAX.:	80 °C/HR			99	.995 %		
LOCATION	OF THERMOO	COUPLE		FLOWR	ATE 10	-12 LITRES	S/min.	
		•	GASBAC	CKING: Argon	(for 1st and	2nd passes)		
FURNACE	ATMOSPHERE	Air		FLOW R	ATE 7-9	9 Litres/min		
Type:		_	4	TRAILIN	G SHIELDING C	AS COMP.		
ELECTRICAL CURRENT	CHARACTER DC	usπcs (QW-40	ELECTROE	DE POLARITY:	1st 2nd-28th	pass: - passes: +		
TUNGSTEN	ELEKTRODE S	ZE/TYPE: Ø3.2	mm thoriated	tungsten				
MODE OF TE	RANSFER FOR	GMAW						
ELECTRODE	/ WIRE FEED	SPEED RANGE				·····		
WELD	PROCESS	FILLER	METAL	Cui	RRENT	Volt	HEAT	
LAYERS	N. Salah	CLASS	DIAMETER	TYPE POLAR.	AMP.	RANGE	INPUT (KJ/cm)	
1	GTAW	EMIL 5	2.4 mm	- TOLKIC	110-130	11-12	5-8.4	
2-3	SMAW	T-PUT	3.2 mm	+	120-140	24-26	12-19.6	
4-28	SMAW	NiMo 100 T-PUT	4.0 mm	+	150-170	26-30	16,2-27,5	
4-20	SIVIAW	NiMo 100	4.0 mm	1	130-170	20-30	10.2-27.3	
TRAVEL SPE	ED RANGE	100-130 n	nm/min					
TECHNIQUE	(QW-410)				, , , , , , , , , , , , , , , , , , , 			
STRING OR	WEAVE BEAD			ORIFACE C	ORIFACE OR GAS CUP SIZE Ø9mm			
INITAL/INTE	RPASS CLEAN	ING: Brushing,	Grinding					
EQUIPMENT	S FOR WELDIN	1G:	· 		··· <u>··</u>	· · · · · · · · · · · · · · · · · · ·		
OTHER:	***************************************				 		······································	
EXAMINA	TION -	,		REMARKS			·····	
A	cc. to the acc	eptance instruct	ion	- * Formerly CMo3 (MSZ 61)				
N'	MIO-FB 2 I	Based on ASME	IX.	- ** Ni content less than 1 %				
				- Before we 350 ℃	elding bake el	ectrodes for	2 hours at	
Ву	DATE	TECH	NICAL D	ATA SHI	EET			
Desig.	14.06.	WELDING P	ROCEDUI	RE SPECIF	ICATION	HoseTi	ECHNICAL	
Appr. Col		UBJECT: Butt	weld of hose	coupling for	H2S service;	DEPAI	RTMENT	
Chek'd			Strenght	75K		WPS Nº 14	40-71 Rev.4	

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page No:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bais W
for the approved wall thickness range 5-38 mm	Checked:	11.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Seferal

No.	Wali thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		l 2	3,2 3,2
2.	7-9		l 2-3	3,2 3,2
3.	9-11		l 2-3 4-5	3,2 3,2 4,0
3	11-13		1 2-3 4-6	. 3,2 3,2 4,0
5.	13-15		l 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		l 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0

No:QC-DB- 651 /2013 Page: 24 / 44

PHOENIX RUBBER Industrial Ltd.

ADDENDUM

for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1

Nº:	WPS 140-71 Addendum
Revision:	4
Page N°:	2/2

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		l 2-3 4-19	3,2 3,2 4,0
11.	29-32		l 2-3 4-23	3,2 3,2 4,0
(Since) (2.2)	32-35	24 (23) 19 (18) 18 (19) 8 (8)	1 2-3 4-24	3,2 3,2 4,0
13.	35-38	20 70 70 70 70 70 70 70 70 70 70 70 70 70	i 2-3 4-28	3,2 3,2 4,0

Page:

No:QC-DB- 651 /2013 25 / 44

Certificate no:

BUD 0700002/1

Welding Procedure Qualification Record (PQR) ASME IX

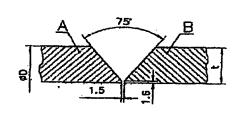
Energy and Transportation

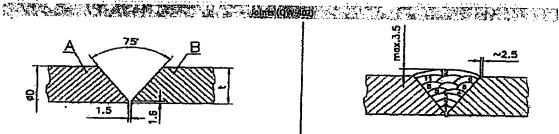
Company Name Phoenix Rubber Gumilpari Kft, SZEGED

Procedure Qualification Record No.

BUD 0700002/1

4.00毫克克克斯斯斯 (A) 3 28 February 2007


140-71


Welding Process(es)

GTAW/SMAW

Types (Manual, Automatic, Semi-Auto.)

Manual

Groove Design for Test Coupon

(For combination qualifications, the deposited weld metal thickness shall be recorded for each titler metal or process used.)

Base Metals (CW-405): Postwald Heat (reactment (CW-405))

Material Spec.

AISI 4130

620 +20-0 °C Temperature

Type or Grade AJSİ 4130 P.No.

Time

4 hours

Thickness of Test Coupon 🧍

to P-No. AISI 4130 Other

Diameter of Test Coupon

19 mm

72 mm

CONCIDENT TO THE PROPERTY OF T

				rercent Composition		
			-diddhod beyyd	Gires (Mi	nure)	How Rate
				Ar 99.95%		10-12 i/min
			Training			
				Ar 99.95%		7-9 <i>Um</i> b
Filter Metals (QW-404)	GTAW	SIMAW	Electrical Characterist	G (QW-409)	eranda here	在實際包持從至在
SFA Specification	ER 705-3	E 10018-G	Current	DC	A 10 4 5 4 4 4 4 5 7 7 7 7 1	a sexermostations and
AWS Classification	A5.18	AS.5	Polarity	GTAW DCEN, SMAW	DCEP	
Filler Metal F-No.	6	4	•	Layer 1 120.		Layer 1 11-12
Weld Metal Analysis A-No.	1	2	Amps.	Layer 2-3 127,	Valts	Layer 2-3 140s,
-				Layer 4-12 136		Layer 4-12 25-30
Size of Filer Metal	2.4 mm	3.2, 4.0 mm	Tungsten Electrade S	29 9.2 mm		-
Other			Other			
			Tortholist PRAEATA	AND THE PROPERTY OF	of Antonious and	Collinate Monace Co
Stald Samuel Mark.	•	44	CONTRACTOR OF THE PARTY OF	AMERICA CONTRACTOR OF SELECTION	HOMASHIELD	在新聞歌·問題和自由。

3 mm

16 mm

Layer 1-11 100-130 Layer 12 mm/min

Festition (CNV-405) String or Weave Buad

Travel Speed

Layer 1-11 String Layer 12 Weave **GTAW**

1G retared Pasitian of Graave

SMAW

Weld Progression (Uphill, Downhill)

Multipass or Single Pass (per side)

Loyer 4-12 18,7-28.1 K2/go

M R/S

Other

Weld Metal Thickness

Single or Multiple Gectrades

Layer 1 6.0-8.6 Kifem Input Layer 2-3 14,1-19.8 KU/cm

Printer (OV-400) Preheat Temp.

300-330 ℃ max 350 °C

Interpass Temp Other

Lloyd's Register, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the "Lloyd's Register Group". The Lloyd's Register Group assumes no responsibility and shall not be liable to any purson for any loss, damage or expense caused by reliance on the information or advice in this document or however provided, unless that person has signed a contract with the relevant Lloyd's Register Group entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

Form 4106 (2006,12)

No:QC-DB- 651 /2013 Page: 26 / 44

BUD 0700002/1

Certificate no: Page 2 of 2

Specimen No.	Width mre	Thick mm	tress	Area	istopus . Mitt	Tensile Test Ultimate Total Load kN	Ultimate Unit Stress MPa	Type of Failure	779.71	301	0700002/1
39/1	18.9	15.8		prvio vi			657	Base materix	6 6 83		
39/2	18.9	15.7		i .			664	Base materia	d		
							: · · ·	•			
: The Mark and administration	: lears crimenter to	caracteristic ()	ris resp. trip. trip			ode and employees as a contract	est of each of the primary base	energen var en en en en en en en en en en en en en	Same and the second second second		
Guided Ben Type and Figure		11160)					Results				
180° Bend re		mm 2+	2 pcs.		(344)		Satisfactory				
	A. S	us file	este a			i Barata da ing	erikan (j. 1882). Prijanski jaron (j. 1882).			·	
, /			<i>**</i>	1			a interest in the	t to year of	, a e 11 27 1 2 2 1	4 15.	,
Toughteen										Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de La compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compa	
Specimen No.		h Location	a Santa da Marie	aria Spi nun	edmen St			un Velue	SECURITY TO SHE		Weight Break
39			WW(2)		x10x55	•c -30		% Sh	ear Mils	(YAV)	
39	\$	na na mara	recent in		x10x55	-30	49	meter to a distance	rangenta, es es Califolia es es		
· 39 ((())) - 39	S HA	SANAY' Z	TATE OF	()	x10x55 x10x55	-30 -30	38				
39	HA	Rather tes	V(AS)	10	x10x55	-30			學類性類。		
39 10.1149 JACK	HÁ Viða varaðara	ž Problékás	.onan.	10. Sedatetek	x10x55	-30 33000 100000	62 <i>Marij</i> a (11. je 170)	tions and Kurski.	e Portonia de Pert	Abdos:	Marka Nasa
o inclinação (verte de)	1999 Dig.	rivita i sele	en of the	egayyan: İ	W. Sept. W.	A service of the first	Marie Contraction	NA SELENIARA	nemekhista v	and partie	Principle of the
	學的學	中醫學		N. S. P.		14.17.48	斯尼亚发烈	的。中华的			特特权
Comments:	3.324.24.45 3.324.24.15	a de la companya de l	0.74 <i>093</i>	iskalija.			ANNE ALANE AN		E8726 Val. (**)	W. W.	ANNO AREAS
· · · · · · · · · · · · · · · · · · ·	edwerting i Der Leeder	et wastaan	V 14 Jan Gabe	1 C 1111 921	Marie Control	or the contract of the contrac	arante i or i por	er i kriiste hetiete pere een	e de Mathellacent	in action in a	r i matemaria asta
771111 Abon Gerta		oneste un	·····		**************	****** *******************************					
(EU) AVOIDO	.,,								_		_
Result- Satisfact Macro - Results	ory:	Yes		No		Penetrati	on Into Parent Mei	al: '	nes 🔲	No	
(color rese											
Type of Test Deposit Analysis	H	erdness :	test								
Other		acro - S									
Welder's Name		tay - 521 radar St		y 81. 378251	R	Clock N	ia. (BC 15)	Cts.m.	o Na.		
Test Conducted				izsgalati			tory Test No:	TIMO 007-7/07		,	
	•						•			•	
We certify that requirements of					t and th	at the test wel	lds were prepare	d, welded, and tes	ted in accordan	nce with th	e
Date Issued:		oi vie A		y.			Lloyd's Registy	Aug -			
	_					Ī	private 17	1			

A member of the Lloyd's Register Group

Surveyor to Lloyd's Register EMEA

or stephen want fall of

Phoenix Rubber Gumipari Kft, SZEGED

No:QC-DB- 651 /2013 CONTITECH RUBBER Industrial Kft. Page:

Fluid Technology

27 / 44

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

		Weld test det	tails	Range of a	pprovai	Photo (if required)
Welding proces	is	GTAW/SMA	GTAW/SMAW			
	Туре	Rod / Electro	ode	1		
Filler metal	iller metal Designation		70S-3 018			
Parent metal gr	oup(s)	ASTM A 322-91 4130	i; AISI	ASTM A 322-91; AISI 4130		
Plate or pipe		Pipe		Pipe/P	late	
Welding position		1G		1G/F	at	
Outside diameter (mm)		72 mm		> 25 n	ດກາ	Identification of test
Test plece thickness (mm)		19		Max to be	welded	pieces:
Single/ both sid	e welding	Single				WPS No.:
Gouging/ backing						140-60 Rev.4
Joint type		Groove	Groove		Fillet	Testing standard:
Shielding/ back	ing gas(ses)	Argon (99,95	%)			ASME IX
Welding carried	out, place: S	zeged	Date	e: Iding Engineer:	29 April 20 László Baj	10 USZ Beeter
Type of test		Performed and accepted			Plac	e and date:
Visual	Acc	epted (Vjk-1739/10)				Szeged, 18-Jun-2010
Radiography	Acc	epted (Vjk-1739/10)				•
Ultrasonic			+		Sun	еуог:
Magnetic particl	le			+		Péter Szabó
Penetrant				+		on and alarmeters.
Macro				+	Star	np and signature
Fracture Bend				+		((ZABS))
				+		
Bend	Additional tests		+			ZX974V***

CONTITECH RUBBER	
Industrial Kft.	

No:QC-DB- 651 /2013 Page: 28 / 44

CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

	PROLON	GATION OF APPROVAL BY EMPLOY	ER		
Place	Date	Name/ position/ title	Stamp and signature		
Szeged	29. (0. 2010.	Laselo Bajusz / Welling bedung Popent	Boeres		
Szeged	29.04.2011.	Lass Lo Boyus / Welding telenologis	Berrel		
Szeged	29.10.2011	Lasslo Banen Welling Jedusobjist	Beerer		
Sreged	29.04.2012	Casilo Baicer Webling beckeralget	Burel		
es esocl	29. 10. 2017.	Cassle Dairen Mibling decleration	Beach		
regal	29.04.20B	Caselo Bajun Webling Ladendayist	Barrel		
rgel	28,10,2013	Carlo Daiser / Webling tale work got	Beered		
	:	·			
:	:				
			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·		
		<u> </u>			

No:QC-DB- 651 /2013 29 / 44 Page: WLS Nº. Száma: 2013. / 2898. WELDING LOG SHEET HEGESZTÉSI MUNKALAP PAGE /oldal PURCH, ORDER NO. 32261598 Rendelésszám WPS NO 14D-71. Rev. 4. 1.7 2898 - 2905 Heg.ut.száma DRWG Nº. 4T 3121 -3000 Raizszám LOCATION/SHOP 3. C. 15. Szegeol. Tope Szele 6. Munkavégzés helye SERIAL NUMBERS 8083 ~ 80 9<u>0</u>1 Sorszámok 14613, 80 93-108 body CAST NO. MATERIAL AISI . 4130 . Adagszám 27,171, 8085-8090 Anyag MATERIAL CAST No. Florge 034939 . DISI. 1/30 Adagszám Anyag 2-3. 1. 4-11. FM. 5. NIND. IDD. MIMO. IDD 2.4. 4. 3.2. 800303 1124075 1127750 + 24 26. 12. 180. 140 180 . 300. Cº Hours 8. Percentage Composition Flow Rate 99⁹⁵. Áramlási seb Tisztaság. 8. **Vmin** 7. POSITION Forgatott. Helyzet 9. LAPSE BEETWEN OF PASSES 8. Varratfelrakási szünetek min Temperature Furnace atmosph. Cooling rate Hőmérséklet Hűtőközeg Hūlési se G20 . Levego". Cº *80* . Cº/H min

Bankszámlaszám: 12067008-3010 7(07,000 (0000) CONTITECH RUBBER Industrial Kft. CLIENT Megrendel6 CONTRACT NO. SPOOLJOB NO. Özemi m.szám Kötésszé/n NAME OF WEDED PARTS Body + Florge Heg. alkatrész megnevezése NAME/ NO. OF WELDER Stabo Truador lószló. Hegesztő neve és száma QUANTITY DATE Dátum 2013. 10. 25 Darabszám 1. MATERIAL SUBJECT 1 CONTROL Tárgy 1 Anyag megfelelőség SUBJECT 2 azonositása Tángy 2 2. FILLER METAL WELD LAYERS Elektróda minőség Varratszám TYPE ás méret Tipus DIAMETER Átmérő FILLER CAST NO. Elektr.adagszám TYPE POLAR Polaritás 3. ELECTRICAL CHARACTERISTICS VOLT (V) Elektromos adatok AMPERE (A) 4. PRE HEAT TREATMENT OF ELECTRODES Elektróda felhasználást megelőző hőkezelése 5. APPLIED SHILDING GAS TYPE Tipus Argon. Alkalmazott védőgáz 6. HEAT TREATMENT (pre-weld) 300. Előmelegítés 8. SPEED OF TRAVELS 100÷130 . mm/min Hegesztési sebesség Time 10.POSTWELD HEAT ldő TREATMENT Utóhőkezelési adatok *24*0. 11. RADIOGRAPHIC TEST CERT. Nº. 2450/15 1451/4 Radiográfiai vizsg, blz. száma REPAIR X NO/ Nem YES/ Igen Javítás TYPE OF DEFECT PLACE OF DEFECT Hiba tipusa Hiba helye **METHOD OF REPAIR** Javítási módszer VISUAL INSPECTION Heafelela / Sotisfactory Szemrevételezés REMARKS WALLASTETT HEGESZTÖDEN WALLASTETT HEGESZTÖDEN HEGETT TARSASAG HEGETT STEER (TARSASAG HEGETT STEER (TARSASAG) HEGETT STEER (TAR Frontus Megjegyzés <u>·ZO KFT</u> INSPECTOR⁶⁷²⁸ Szeged, Külterület 01408/22 hrsz. Ellener Adópzán: 13341039-2-06 2013 NOV 04 Bankizáprászám: DATE 1006700; G0127077-00160001 Date, end of coling down time BC Dátum, kihűlés vége -13. dia Dátum

WLS-13

JE-ZO KFT.

6728 Szeged, Külterület 01408/22 hr - z

Adószám: 13341039-2-06

No:QC-DB- 651 /2013

Page:

30 / 44

Pelado

61344

gamma controll kft

19/10/13

12:50 La

Lap: 1

SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV Record No. Jegyzőkönyv száma:

813/13

WWW.garnen-controlling 8780 Algod, ictionolog 01894/14, hrst. Tel./Pau. + 29 82/517-409 / 61944 NT 688 NST-1-1102078 achien aluspaida skepplilistonologos NT 688 NST-1-1102078 achien aluspaida skepplilistonologos

Algyo, 2013.10.30. (10h)

VISUAL EXAMINATION REPORT

Object Tárgy	Coupling welding Caatlakozó hegesztés	Serial No. Gyári szám	083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. Rajzszám	-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AISI 4130 115/77
Quantity Mennyisé	8 db	Extent of examination Vizsgalat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Heat treatment Hökezelés	after PWHT
Written Procedur Vizsgálati eljárás	· OCP-09-1	Welder Hegesztő	BC15

Visual examination / Szemrevételezéses vizsgálat

Technique
Módszer
Instrument
Készülék
Visual aids
Szerédeszközök
3x magnifiying lens

Segédeszközök Measurement / Mérés Equipment Készülék Instrument Készülék Surface temperature Surface Lighting intensity condition 20 °C machined 1000lx Felület A felület Megvilágítás **állapot**a hömérséklete Test results Eredmėnyok : SATISFACTORY megfelelő.....8 pc(s)/db not accepted pc(s)/db nem megíclelő......0 Vizagálatot végezje: Áttekintette és jóváhagyta: Vizsgålat helye és ideje: Reviewed and approved by Tested by: Place and date of test: Kis Abor Gamma-Controll Kft.

VT20103130102

No:QC-DB- 651 /2013

Page:

31 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

A tanúsitott neve: (The name and forerame of the certificated individual): Születési hely/ldő: (Place and date of birth):

Kis Gábor Balázs

Szeged, 1980. 02. 29.

Azonositó szám: VT20103130102

A tanúsitoti személy alátrása be signame of the certificanti individual

Vizzgálati eljárás(ok): (The NDT method(s):

Szemrevételezéses anyagvizsgáló

(Visual testing)

Ipari terillet: (Industrial sector): Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

(c), (w), (wp), (f)

Termék terület(ek):

Product sector(s):

VT2

A minúsités fokozata: (The level of certification):

Budapest, 2013. 02. 19.

A tanúsitás és kiadásának időpontja: (The date of certification and it's issue): A fanúsitás érvényes:

A tanúsitás érvényes: (The date upon which certification emires):

2018, 02, 18.

Tamistic Testillet never in (On behalf of certifying being)

Vizsgáztató (Exeminer)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Tamisitó Testillet nevében (On behalf of certifying body)

A tamúsitás érvényessége -ig megájítva (MSZ EN ISO 9712 10.): (Renewed the validity of the certification until (MSZ EN ISO 9712 10.):)

Dátum (Date):

> Tamisité Testillet nevében (On behalf of certification body)

[°]c - ömtvånyek (castings); f - kuvácsoli teamékek (fingings); w - hegesztett és forrasztott teamékek (welded products); t - csövek és csővezetékek (tubes); wp - akklitott teamékek (wronglit piroducts); t - kompozit anyagok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 32 / 44

VT20103130102

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tamisítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21)

(MSZ EN 150 9/12 3.21)

(The holder of this control and the experimental portrol and the responsibility for the test results (MSZ EN 150 9/12 3.21))

6726 Szeked, Túzok n. 8/A

Munikáltató aláírásan dószánt 11/046/14.2 p. 64

(Signature of the control of P Bank: 11.235003-20000132

Www.gamma-control hu Dátum: 1015-01-06-

Same :	Tel: 10 Fedy and Shahard Spring legarities (MSZ EN ISO 9712 10.) Sorsz.: Munikalitató aldressa											
30152.	Munikáltató alálrása (Gignature of the employer)	РЬ. "GAMMA GONG HOLL."	Dánni (Date)	1 · · · · · · · · · · · · · · · · · · ·								
1.	LA	Anyagolisgáló és Minőségelkerőrső Kfr	7013.00.00									
2.												
3.				,								
4.												
5.				٠. ،								
6,												
7.				•								
8.												
9.												
10.												

Kiegészítések: (Additional remarks:)

A tamúsítvány a munkáltató aláírásával érvényes (This cartificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013

Page:

33 / 44

Felado :

61344

gamma controll kft

19/18/13

12:54 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

Jegyzökönyv szám: Report No.:

2431/13

RADIOGRAPHIC EXAMINATION REPORT

Kiállálás dátump; Date of report:

2013.10.30

Vizagálas tá Object:	rgya:		:	(Coupling	g			endulő;			,	1E-20	Kft. Szeg	
Munkazan	r.	Client: Rendulèsi szim:											JENERY !	MIL SZEE	<u> </u>
Job No.:	••							Order		****					
Rajzazóm;				847	-3121-3	000		Anys	minôsc	g:		 -	4.50	4 4300	
Drawing No				[VI]	-3121-3	000		Male	iai:				AIS	14130	
Vizsgálati es)CP-13-	1		. ~	Alat terje				1/	00%	
Testing stand						<u>. </u>			l of testi	ng:					
Arvételi köv Acceptance		y ;		A	STM E9	4		Hoke		t condition:			After	PWHT	
Kód:	Gritter Mr.								zi/i jele;						
Code:				MSZ E	in iso	6 520 -	t		s stamp				B	CIS	
Jorondezés t	tipusa:				MMAM	47				lző típusa;		,	A CORAC		
ype of equi				GA	VINLAM	ΛI		Турс	of IQ1;				MIGA	set B typ	£
ugárfornás:					Ir192					ebzi holye:				F	
Source:					-1174		· ·		nent of t					<u> </u>	
iugáribrnín r loures sizo:	merete;			3	x1,5mm	 I			képmini red 101:	Opticity!			2%	(2-2T)	
Aktivités:		~							ipus;						
Activity:),4 TBq			Film 1					FOR	AA R5	•
ilmkidolgoz	als mold	Æ	Kézi:		Automate	r:	~ V	Fóliafejts és vastagság:							
ilm process	ing:	Manual: Automotic: Sereun typo and thick:						Pb 0,027							
			144	Γ.	8 _							Hibák	Defects		
- 1		<u> </u>	Atractions suggenerações Practisted shickness	₩ ₁₂	Fitn the oblings sugients fatige obstation District from source side of object to flare	l	1	? پر ا	Viragida idipentje; Dare of test	Ciaz	Salak	Kötés	Gyök	Repedés	Pelaiel
		#		ĒÂ	9 8	l		A Paris		Porosity	Slag	Lack of Sudos	Leck of	Crack	Surfac
48 8 I			54	1		ľ	ğ	8.	Ç	A	В	C	D	E	F
と		1 3 5	F B	124	i ii		1 3 3		1	l ^		~	ľ	1 -	•
E. 🔁	ا ن غ	ŘĚ	1 2 8	I E Z	4 2 2	غِ ا	45	× 8 €	1	200	300	401	402	100	500
Megnevezés Designation	Méret	Febr ételek száma: Namber of nadiographs	Amplicat sayana Pertitod dickness	Sogtefarris film tivolety Socre-to-film distance	Film tiles o tilegy occeptivité Distance tran s object to film	Felecteder. Densty.	Megyalagadsi idibe Expos. Tisne:		1	***			1 ''-	.50	
		db	mm	mana	mm		min	Vinksites A-megleiche NA-nem megletab Resuft. Americand: Na-ner		l l			!	} '	
				ПЧИ					1939			—			
8083	115/77	4	19	96	19	2,4	0,5	A	1020	}					
						•	2.5		10,30						
8084	11 <i>5/77</i>	4	19	96	19	2,4	0,5	Α.	104						}
9095			10	7,	10	24	Λ.	•	in in						
8085	115/77	.4	19	96	19	2.4	0,5	·A	Inb						
8086	115/77	4	19	96	19	2,4	0,5	. A	10,30						
0000			17	7	17	2,7	7,5		IOb.						
8087	115/77	4	19	96	19	2,4	0,5	A	10.30. 10b			1			
				\vdash			_	<u> </u>	_						
8088	115/77	4	19	96	19	2,4	0,5	A	10.33. 10h	. [
filmszán	- de de :		د بامساد							t terbel!			L		
											Ø al				:
			s and we	ids ar	e identic	ai, the	SIL IGE	ittrica	ग्राका छ	the task o	I the cos	tumer.			
zsgálatot	t végez	te:						•		Ménesi I.	- Szahá	т.	-		
erformed	bv:														

Performed by: Vizypilat helya:

Place of lest:

Érickelte:

Evaluated by:

Joythanya: GANINA - CONTROLL. KFT 18730 1870, Kalterales 01884 18, hrss Adoszánt 1984 142 9 Wydganto Batogral Lip

6750 Algyō, Gamma-Controll Kft. Telephely

RT20101120107

Ez a jegyzőkünyv részleteiben nem másalhatól / Copying details is prohibitedt

No:QC-DB-651/2013

Page:

34 / 44

Felado :

61344

gamma controll kft

19/10/13

12:49

Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

RADIOGRAPHIC

EXAMINATION REPORT

Jegyzůkönyv szám: Report No.:

2430/13

Kinlitis ditume Date of report

2013,10,30

					ــــــــــــــــــــــــــــــــــــــ								4	2013.10	<u> </u>
V <i>izagála</i> Object	at birgya;				Couplin	g		Megr	endelő:				18.70	V# 6	
Munkes								Rondelési szám:					JE-ZO Kft. Szeged		
Joh No.: Razzoan								Orde							
Drawing		<u>.</u>		M	F-3121-3	1000		Mate	gminösi rial:	g:			AIS	14130	
	ti szabyány)CP-13-	.1	-			edelme:			1	00%	
	<i>tandur</i> d: követelmén	~						Fatur 186kg	1 of test	ing:					
Acceptor	ios criterio:			^	STM E	94				1 candition;			After	PWHT	
Kåd; Code:				MSZ I	EN ISO	6520-	1		unt Jelè			-		CIS)	
	ća tipusa:								z stomp	: izo tipusa:					
Type of e	quipment			GA	MMAM	AT			of (QI:	NO UPOM			ASTM	set B typ	18
Sugdribn Source:	rts:			_	Ir192					ebû helye:				F	-
	ûs mêrete:								nent of képmin						
ource si				3	1,5mm	l 		Requi	red IQI:		_		2%	(2-27)	
Vativities Vativity:					0 4 TD-		-	Film Type: FOMA R5							
	gozás mód	ia;	Kćzi:		O.4 TBq	n.		gatiefule de sector de							
ilm proc			Menoul:		Automati		X		type and thick: Pto 0,027						
		1	y.	3						Hibák/Defocts					
		i ii	3	3 8	le š	1.		별	₹.	Cláz.	Salak	Kōtés	Gyok	Kepedés	Fclalet
3 2 =	}			38	8 8		je i		4	Porosity	Slag	Lack of Eastern) ach nf Penetruino	Crack	Surface
를 를	l	1 1 1	10.7	Į į	1 8 E	1	達 1	B 2 5	1	A	В	С	D	E	F
Megnevezés Designation	Ĕ.	Fetvételet <u>számz.</u> Number of cadlographs.	Ássigárod espagyasingség: Penetried finiciosos	Septions film the laig. Source-to-film distance	First the, a they way forths table obside the state of observes from source either of object to flare.	Feeredes. Density.	Megviltgitkii idi: Expos. Time	Ninksiks A-megleleki: NA-vem orgálek Re A-tozatot NA-ve se	fizsgálst idéponja, Duse of ces	200	300	401	400		
₹ 2	Méret Size		1	g g		Febreeds Density.	و يو		i	200	ንሀሀ	401	402	100	500
	ø	øb.	mm	than	thu .	·	min	Nindests: A-megtelelo: NA-vers orgalisto Remit A-rosatot NA-mi sorrami	ا ۋ] [į			
8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 10h						
8090	115/77	4	19	96	19	2,4	0,5	A	10.30.						
_			-	,				-		_	-	-		_	
							-								
												 			
															{
Elman	fasals fa s	1]				l				

A filmszámok és varratszámok azonosak, beazonosításuk a megrendelőt terheli.

The numbers of the films and welds are identical, their identification is the task of the costumer.

Vizsgálatot végezte:

Performed by:

Ertékelte: Evaluated by: Ménesi I. - Szabó T.

Vizsgálm halyo: Piece of test:

lóváhagyta:

Application - CONTROLL 6750 pigyd, Kalempler 01992/

6750 Algyo, Gamma-Controll Kft. Telephely

Ménesi István RT20101120107

tise a jegyzákönyv részleteihen nem műsolhatól / Copying details is prohibited!

8. változat.2013.07.16

No:QC-DB- 651 /2013

Page:

35 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azon (Iden	osító szám: RT20101120107
	Mell
(7	A tamúsított személy alálrása he signature of the certificated individual)
	· · · · · · · · · · · · · · · · · · ·
izsgála	Contraction of the second
σ) · · ·	

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő:

Ménesi István

(Place and date of birth): Szentes, 1988. 09. 06.

Vizsgálati eljárás(ok): (The NDT method(s):

Radiográfiai anyagy

Ivari terület: (Industrial sector):

(Radiographic testing Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek):

(c), (w)

Product sector(s): A minősítés fokozata:

RT2

(The level of certification): A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2012. 03. 28.

A tanúsítás érvényes: (The date upon which certification expires):

2017. 03. 27.

Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Da

A tanúsitás érvényessège (Renewed the validity of the certification until (MSZ EN 473 9.).) -ig megújítva (MSZ EN 473 9.):

Dátum (Date):

Tanúsító Testület nevében (On behalf of pertification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a tievezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the slandard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER
Industrial Kft.

No:QC-DB- 651 /2013 36 / 44 Page:

RT20101120107

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon.

(MSZ EN 473 3.21)

(The holder of this certificate in Maria and take responsibility for the test results. (MSZ EN 473 3.21))

6126 Szeged 1094614-2-06

Adószám: 11094614-2-06

Adószám: 11735005-20406154

OTPBank: 11735005-20406154

OTPBank: 11735005-20406154

OTPBank: 11735005-20406154

Tel: 016-0-218-2640

Munkáltató aláírása: (Signature of the employer.)

	Tel:06-30-218-2041										
Folyamatos municavégzés igazolása (MSZ EN 473 9.) (Evidence of continued work activity (MSZ EN 473 9.))											
Sorsz.:	Munkáltató alátrása (Signature of the employer)	-GAMMA GONTROLL	Dátum (Date)								
1.		Anyagusan Kit.	-012.04.49.								
2.		Anyogotagáló és Handadgallandszá kft.	1013.01.09								
3.		Misco									
4.											
5.											
6.											
7.											
8.											
9.											
10.											

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 Page:

ContiTech Rubber	Examinat	ion record		Record No.			
Industrial Kft.	Vizsgálati j	egyzőköny	v	Jegyzőkönyv			
Szeged/Hungary	Liquid penetra			száma: 1222/13			
i i	Festékdiffúzi		on				
		•					
	Mágneses re	pedésvizsgál	lat				
<u> </u>							
Manufacturer Ji	E-ZO Kft.	Serial No.		8083-8090			
Gyártó		Gyári szám		· 			
	Tech Rubber	Drawing No) .	MT 3121-3000			
	ustrial Kft.	Rajzszám					
	upling(s)	Material		AISI 4130			
Tárgy		Anyagminö					
	8 pc(s)	Extent of ex					
Mennyiség		Vizsgálat te		le			
	STM E 709	Heat treatm	ent	yes			
Követelmények		Hőkezelés	·				
Written Procedure No.	QCP-11-1	Welder:		Szabó T.			
Vizsgálati eljárás száma	· · · · · · · · · · · · · · · · · · ·	Hegesztő:					
Liquid penetra	nt examination /l	- olyadékbel	natolás	os vizsgálat			
Penetrant	Remover	· · · · · · · · · · · · · · · · · · ·	Develo	per			
Behatoló anyag	Tisztító	· · · · · · · · · · · · · · · · · · ·	Előhívó				
Dwell time Behatolási idő	Drying Szárítás		Developing time Előhívási idő				
Surface temperature	Surface condition	Lighting intensity					
A felület hőmérséklete	Felület állapota	Megvilágítás					
Magnetic parti	cle examination/	Mágnesezho	ető por	os vizsgálat			
Equipment type Készülék típusa TSW 1000	Testing material Vizsgáló anyag	MR 76F	Mágnes	izing current 1000 A ező áram			
Black light type Superlight C UV-A lampa típusa 10A-HE	Field strength checki Térerőmérő	ng Berthold disc	Field str Térerő	4,2 KAVIII			
Surface temperature A feiület hőmérséklete 23 °C	Surface condition Felület állapota	machined	Lighting Megvilá	intensity 1000 μW/cm²			
Test results							
Eredmények :	satisfactory megfelelö	8	pc(s)/	ib .			
	not accepted nem megfelelö		pc(s)/c	. : db			
	_						
Performed by NDE Level II.	Revis	ed by Q.C. I	manage	r			
Vizsgálatot végezte		őrizte – MEC		ContiTech Rubber Industrial Kft.			
Signature Oravecz Gáb	or できる Signa	ature M	larkó Lá	szló QC 1			
Aláírás	Alálra Alálra	ás					
Place/Date	Place	/Date		·VIV			
Kelt Szeged, 04.11.20	13. Kelt	Sze	eged, 0	4.11.2013.			
QCP-12-1-MPT/07							
:= · ···· !/V!							

No:QC-DB-651 /2013 Page:

38 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: MT20103010506Ú (Identification No.):

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Mágnesezhető poros anyagvizsgáló (Magnetic particle testing)

Ipari terület: (Industrial sector):

Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek): Product sector(s):

(c), (f), (w), (wp)

A minősítés szintje: (The level of certification):

MT2

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2012. 02. 21.

A tanúsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

Vizsgáztató

Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date): Tanúsító Testület nevében (On behalf of certifying body)

A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):) -ig megújítva (MSZ EN 473 9.):

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alaktioti termékek (wrought products); p - milanyag termékek (plastics products), k - kompozitok (composites products).

No:QC-DB- 651 /2013 Page:

Dátum: 2012. 02. 21.

MT20103010506Ú

Munkáltató aláírása:

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to parform tests and take responsibility for the test results, (MSZ EN 473 3.21))

(Signature of the	he employer:)	June	733		(Da	ate:)	WIL.	02. 21.	<u></u> -
		Folyamatos mur (Evidence of co	nkavégzés ig entinued work	g azolása (N activity (MS	ASZ EN 473 Z EN 473 9.))	9.)			1
Sorsz.:		rató aláírása of the employer)		P	h.		[Dátum (Date)	
1.	Backs (مرية الم		Industr			2013.	01. 24.	
2.				(1	,	:			
3.	:								
4.		:							
5.		<u> </u>	:						
. 6.	;	-							
7.	i i i i i i i i i i i i i i i i i i i							:	
8.	and a strong				·.	•			
9.									
10									

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB-651/2013 Page:

40 / 44

505760

Bekaert Hlohovec a.s.

Mierová 2317

92028 Hiphovec / Slovakia

Tel:: Fax: 00421337363111

STEELCORD

MANUFACTURER: BKHL

Page: 1 / 1

Certificate of Analysis

Delivery No. : 4048181212

Contitech Rubber Industrial Kft.

CONTITECH RUBBER IND SZEGED

Contitech Rubber Industrial Kft.

14-18-07/1

REV.3 / 15.01.2002

H207297 / 26.10.2012

Budapesti út 10 H-6728 SZEGED

Spec customer

Your code

Your spec

Our Spec

Sales Order

3046059220/10

Purchase Order

32260330

Inspection lot

090000200665/000001

Betch

3500245379

Date produced

01.07.2013

Date COA

09.08.2013

Spools

32 delivered from a batch of 32 produced

Units

18 delivered from a batch of 16 produced

Delivery net Qty.

Zinc coated steelcord 1X24DW/3.6 NT 20/36 ZZ B650

5000 M

Lay direction

Material Description

ZZ

Lay length

20/38

			Lay io	An.	2000			
Yests			Specs		Results			
Test	Procedure	Unit	Alm	Min. Max.	Avg. N	Min ind Max ind		
Cord diameter	RA12-100	mm	3,6000	3,4200 3,7800	3,6845 6	3,6640 3,6930		
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870	. •	
Cord breaking strength	RA30-203	N		17900,0	19337,0 6	19087.0 19584.0		
Cord elongation at break	RA30-203	%		2,50	2,98 6	2,80 3,15		
Zinc D1	RA40-741	g/m2		32,000	40,057 6	37,870 44,630		
Zinc D2	RA40-741	g/m2		44,000	48,788 6	45,350 56,100		
Residual torsions	RA30-160	Nt	0,000	-3,000 3,000	-0,250 6	-0,500 0,000		

Comments:

D1: 0,64

D2: 0,73

Nominal Chemical composition of High Grade Oxysteet:

%Carbon: 0.70-0.90 %Manganese: 0.40-0.60

%Silicon: <0.230

%S: <0.011

%P. <0.012

Microstructure/Texture: Metallurgically the texture is known as a highy drawn, fine perlitic structure.

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

Azienda con sistema di . gestione certificato da IGQ secondo ISO 9001

PAG 1/1

Conforme a EN 10204/3.1

63892/2012

Specifica/Specification:

Destinatario/Receiver:

Cliente/Customer: ACCIAI VENDER S.P.A.

EN 10088-2

ACCIAI VENDER S.P.A.

VIA A.NOBEL, 4/A Q.RE IND.LE S.P.I.P

VIA A. NOBEL, 3/A

43100 PARMA

43100 PARMA

Accialo/Steel: 304PS

STRIPWOUND

DDT/DEL NOTE ·

16753 DEL/DE: 24/05/2012 Ordinelarder Terninox :

P04249

Ord ClientalCustomer

	0141110	OTES TOTAL	·	1 0-12-10	Old, Ollollia ad					
Matricola	Pos	Tipo Prodotto	Fin	Descrizione	Dimensioni(mm)	Pezzi	Weight	Rif. Cli.	Colata	NIM
Serial Number	Item	Product Type		Description	Dimensions(mm)	Pieces	(Kg)	Cust. Ref.	Heat	
C47997 733882	22	COIL	2B		0.60 x 460.0	1	6040		0431359	310727
C54489 7-1-3887	-27	NASTRI STRETTI	ВА	•	0.79 x 284.7	1	1290		0431741	324612
	1	<u> </u>	1)					

IL MATERIALE SOPRA ELENCATO E' STATO DIMENSIONALMENTE E/O SUPERPICIALMENTE TRASFORMATO DA TERNINOX SEAZA ALTERIARNE LE CARATTERISTICHE MECCANICHE E CHIMICHE
THE MATERIAL DESCRIBED ABOVE HAS BEEN DIMENSIONALLY ANDIOR SUPERPICIALLY TRASFORMED BY TERNINOX WITHOUT CHANGING THE MECHANICAL AND CHEMICAL FRATURES

Analisi di colata/Chemical Composition

7															
Colata/Heat	С%	Si %	Mn %	Р%	S %	Cr %	Ni %	Mo %	N %	11 %	Cu %	Nb %	B %	Al %	Co%
0431359	0.045	0.300	1:290	0.027	0.001	18.000	9.040	0.260	0.024		0.310				-
0431741	D.048	0.310	1.420	0.029	0.001	18.090	9.050	0.320	0.019	ļ	0.370			<u> </u>	
	1	}				Ì	l		ļ ·			. !			

Risultati delle prove/Test Result (1N/mm²=1 M Pa)

NIM	PRELLERY	Noe K	Caric, unit, s Yield st		Carlc. unit. Rottura Tensile strength		igamento a re ate elongatio		Durezza Hardness	Piega a Bend To 180°	Trail.termico Ricot. di solub. 7 hast treatment of ennesting for solubiliz.	Resistenza alle corrosione intergranularo secondo / Resistance to corrosion intergranulare	Grano Grain
	ĥ	1	RpO2% N/mm²	Rp1% N/mm²	Rm N/mm²	Lo =2"	Lo =80	Lo ≃A5	HRB			· · · · · · · · · · · · · · · · · · ·	ł
310727	77	ॉ र	245	271	607		60.7		70.5		1050	EN ISO 3851-2	
	0	T	230	261	604		62.8	ł	66.0		1 . 1		i
324612	1	• т	235	262	588		62.4		70.5		1050	EN ISO 3651-2	Į.
	lo	: т	237	267	605		62.1	•	72.0		1 1		i
	- }			1			1	م. ا	4				

COMPLIES WITH ED 2000/53/EC

Certificato emesso automaticamente 🗸

Data/Date

24/05/2012

R. GOVONI

CONTITECH RUBBER Industrial Kft.

Page: No:QC-DB-651 /2013

No:QC-DB- 651 /2013 Page:

42 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39.

1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Hivatkozási szám / Reference No.:

32259470

Page 1/3 oldal Kiadva / Issued

Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya:

Object of calibration:

Gyártó / Manufacturer: Tipus / Type:

Azonositó szám / Serial No.:

villamos kimenőjelű nyomásmérő

electrical-output manometer

AFRISO-EURO-INDEX GmbH

DMU03_HD 1518086

Műszaki adatok / Technical data:

(0...2500) bar méréstartomány / measuring range (0...2500) bar (4...20) mA kimenöjel tartomány / output signal range (4...20) mA

Kalibrálásra bemutatta:

Customer:

ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

A kalibrálás helye és ideje: Place and date of calibration:

Magyar Kereskedelmi Engedélyezési Hivatal

Hungarian Trade Licensing Office

Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements

Budapest, 2013.01.24.

A kalibrálást végezte:

Calibrated by:

Szaulich Dénes

metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards wood for the callbertion.

Megnevezés: Designation:	Gyártó: Manufacturer:	Típus: <i>Type</i> :	Gyártási szám: Serial No.:	Bizonyítvány szám: Certificate No.:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013
digitalis multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012
hőmérő / temperature measuring instr.	GANZ MM	DTHI	33656	Höm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módia:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

No:QC-DB- 651 /2013 Page:

43 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

21,1 °C

függőleges / vertical

24V DC

olai / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	· mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	- 8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közőlve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

No:QC-DB- 651 /2013

Page:

44 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön **K067662** azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: **K067662** on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

imi Enged

A bizonyítvány kiadható / Approved by:

Kálóczi László
osztályvezető / Head of Section

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface,
 Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that
 Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

Submission Date: 05/17/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

APD ID: 10400030326

Well Number: 104H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_104H___SITE_ACCESS_MAP_20190403154158.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAMELLIA_FED_COM_26_36_21_104H___SITE_ACCESS_MAP_20190403154300.pdf

CAM_AZE_5SX_ROAD_20190403154316.pdf

New road type: RESOURCE

Length: 455

Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: CROWNED AND DITCHED

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: CALICHE

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: GRADER

Access other construction information: NM One Call (811) will be notified before construction start.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: CROWNED AND DITCHED

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CAMELLIA_FED_COM_26_36_21_104H___1_MILE_RADIUS_WELLS_20190403154432.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.

Production Facilities map:

BO_CAMELLIA_FED_COM_BATTERY_SITE_REV1_20190403154515.pdf

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

CAM_AZE_5SX_FLOWLINE_20190403154518.pdf BO_CAM_AZE_5XS_PAD_SITE_REV1_20190403154526.PDF

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

CAMELLIA_FED_COM_26_36_21_104H___WATER_MAP_20190403154645.pdf

CAMELLIA_FED_COM_26_36_21_104H___WATER_WELLS_LIST_20190403154646.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Operator Name: AMEREDEV OPERATING LLC	
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 104H
Well Production type:	Completion Method:
Nater well additional information:	
State appropriation permit:	
Additional information attachment:	
Section 6 - Construction Materia	ıls
Construction Materials source location attachmer	nt:
CAMELLIA_FED_COM_26_36_21_104HCALICH	IE_MAP_20190403154720.pdf
Section 7 - Methods for Handling W	/aste
Vaste type: DRILLING	
Vaste content description: Drill cuttings, mud, salts	s, and other chemicals
Amount of waste: 2000 barrels	
Vaste disposal frequency : Daily	
Safe containmant attachment:	
	Disposal location ownership: COMMERCIAL
Disposal type description:	
-	
Reserve Pit	
Cuttings Area	
Cultings Area	9

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

 ${\sf CAMELLIA_FED_COM_26_36_21_104H__WELL_SITE_DIAGRAM_20190403154926.pdf}$

Comments:

Section 10 - Plans for Surface Reclamation

Recontouring attachment:

CAMELLIA_FED_COM_26_36_21_104H___WELL_SITE_DIAGRAM_20190403155644.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Well pad proposed disturbance

(acres): 4.53

Road proposed disturbance (acres):

0.313

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 1.8

Other proposed disturbance (acres): 0

Total proposed disturbance: 6.643

Well pad interim reclamation (acres):

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0 Other interim reclamation (acres): 0

Total interim reclamation: 0.79

Well pad long term disturbance

(acres): 3.74

Road long term disturbance (acres):

0.313

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 1.8

Other long term disturbance (acres): 0

Total long term disturbance: 5.853

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Su	ımmary	
Seed Type	Pounds/Acre	

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Last Name: Boyd

Phone: (580)940-5054

Email: zboyd@ameredev.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Operator Name: AMEREDEV OPERATING LLC	
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 104H
Pit closure attachment:	
Section 11 - Surface Ownership	
Disturbance type: PIPELINE	
JSFS Region:	
JSFS Forest/Grassland:	USFS Ranger District:
DI A I MELL DAD	
Disturbance type: WELL PAD	

Well Number: 104H
USFS Ranger District:
USFS Ranger District:
Use APD as ROW?

SUPO Additional Information:

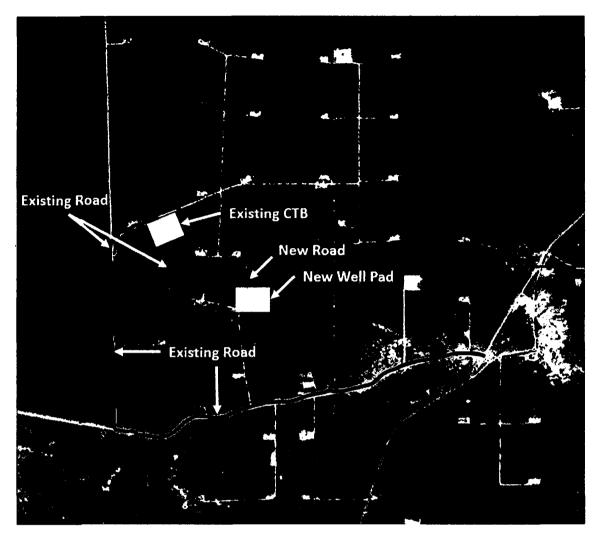
Operator Name: AMEREDEV OPERATING LLC

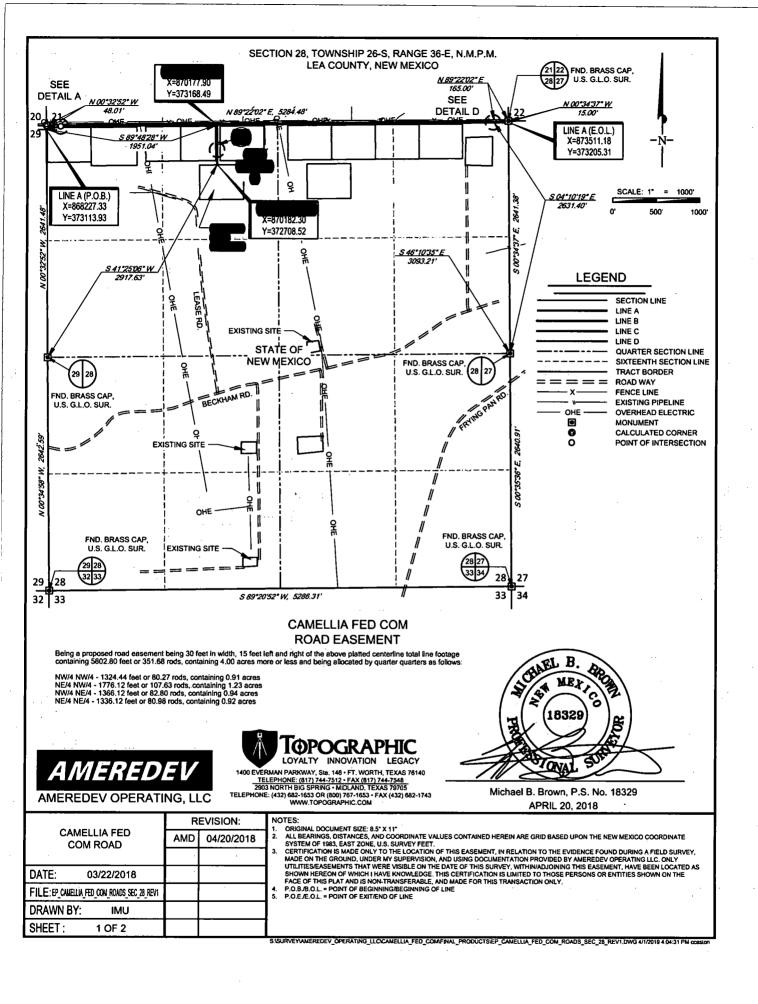
Operator Name: AMEREDEV OPERATING LLC

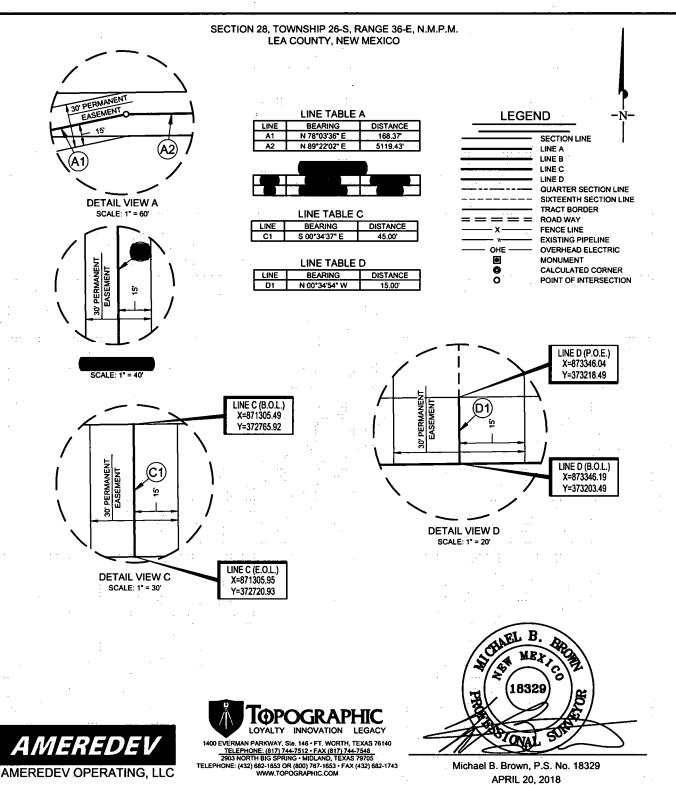
Well Name: CAMELLIA FED COM 26 36 21

Well Number: 104H

Use a previously conducted onsite? YES:


Other SUPO Attachment


CAMELLIA_FED_COM_26_36_21_104H___SUPO_REV_20190403160047.pdf

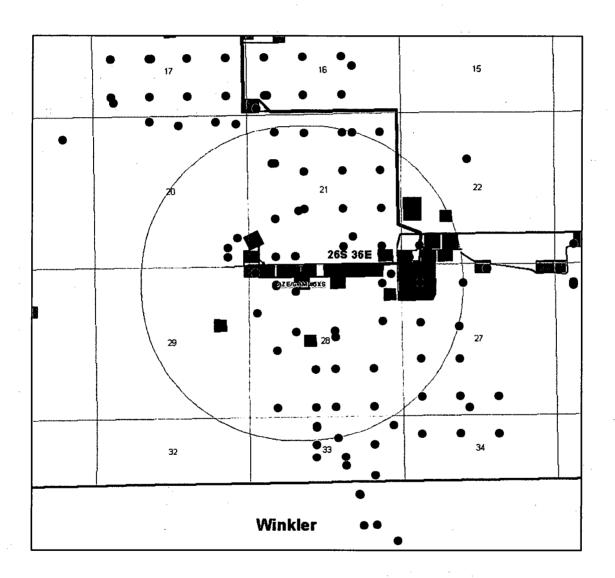


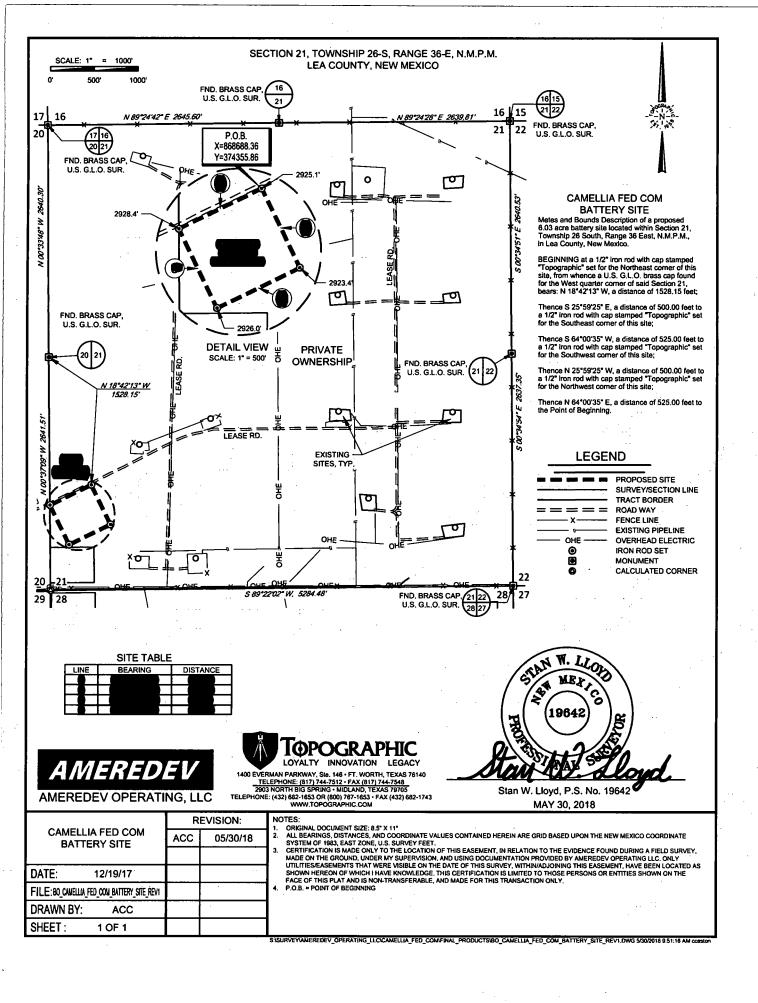
	REVISION:	
CAMELLIA FED COM ROAD	AMD	04/20/2018
DATE: 03/22/2018		
FILE: EP_CAMELLIA_FED_CON_ROADS_SEC_28_REVI		
DRAWN BY: IMU		
SHEET: 2 OF 2		

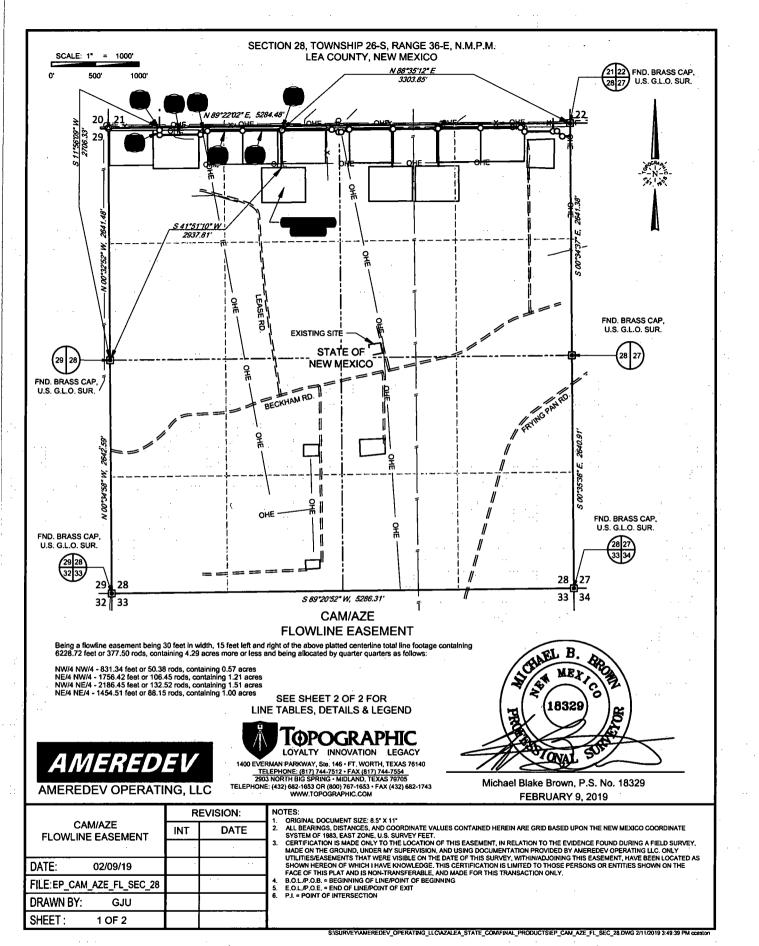
NOTES:
1. ORIGINAL DOCUMENT SIZE: 8.5' X 11"
2. ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREIN ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.
3. CERTIFICATION IS MADE ONLY TO THE LOCATION OF THIS EASEMENT, IN RELATION TO THE EVIDENCE FOUND DURING A FIELD SURVEY, MADE ON THE GROUND, UNDER MY SUPERVISION, AND USING DOCUMENTATION PROVIDED BY AMEREDEV OPERATING LLC. ONLY UTILITIES/EASEMENTS THAT WERE VISIBLE ON THE DATE OF THIS SURVEY, WITHIN/ADJOINING THIS EASEMENT, HAVE BEEN LOCATED AS SHOWN HEREON OF WHICH I HAVE KNOWLEDGE. THIS CERTIFICATION IS LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE, AND MADE FOR THIS TRANSACTION ONLY.
4. P.O.B.B.O.L. POINT OF BEGINNING/BEGINNING OF LINE
5. P.O.B.B.O.L. POINT OF EGINNING/BEGINNING OF LINE
6. P.O.B.B.O.L. POINT OF EXITIEND OF LINE

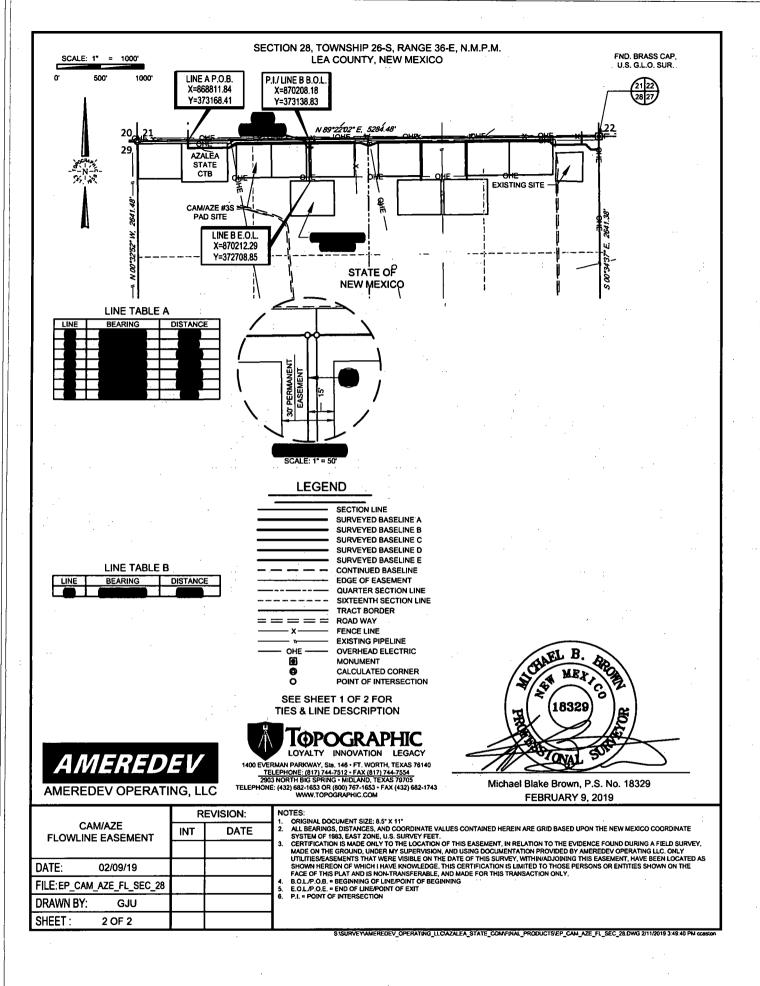
S ISURVEY/AMEREDEY_OPERATING_LICYCAMELLIA_FED_COM/FINAL_PRODUCTS/EP_CAMELLIA_FED_COM_ROADS_SEC_28_REV1.DWG4/1/20184-04:32 PM o

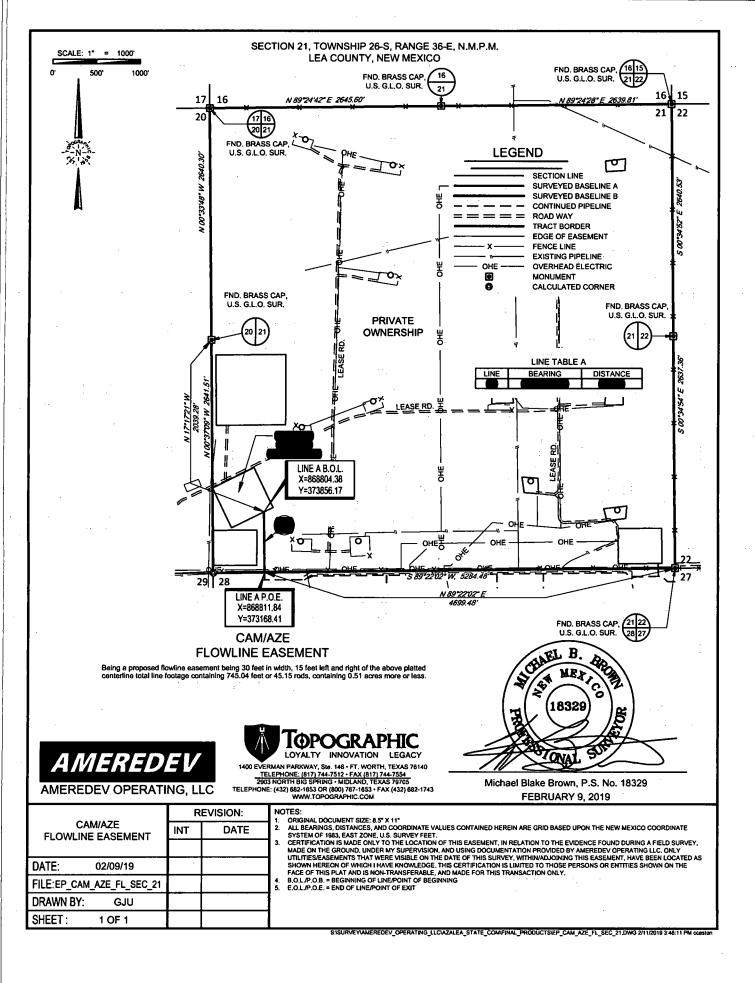
Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 104H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

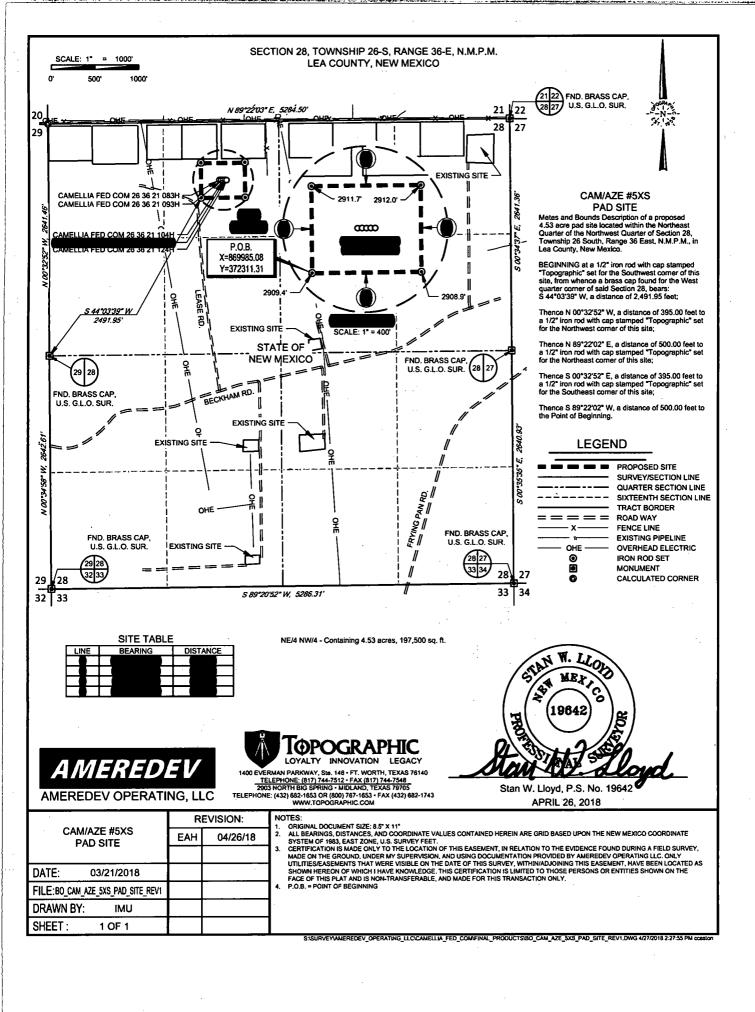


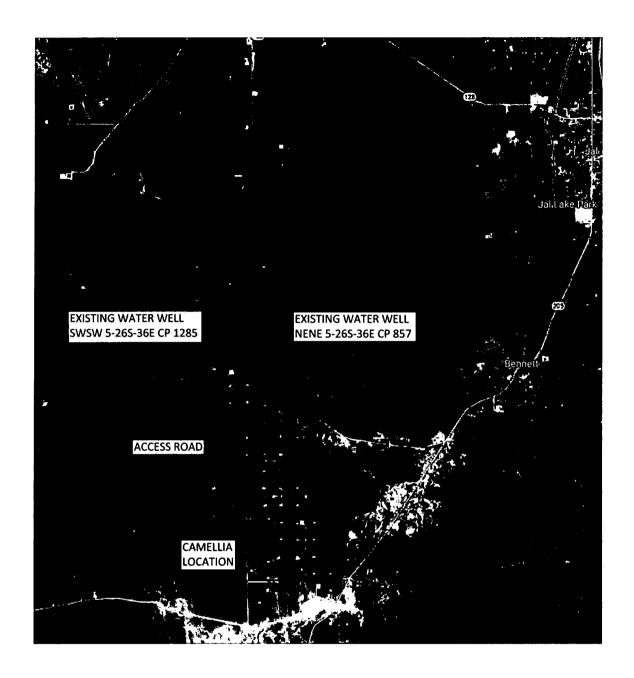

Exhibit 2 - One Mile Radius Existing Wells

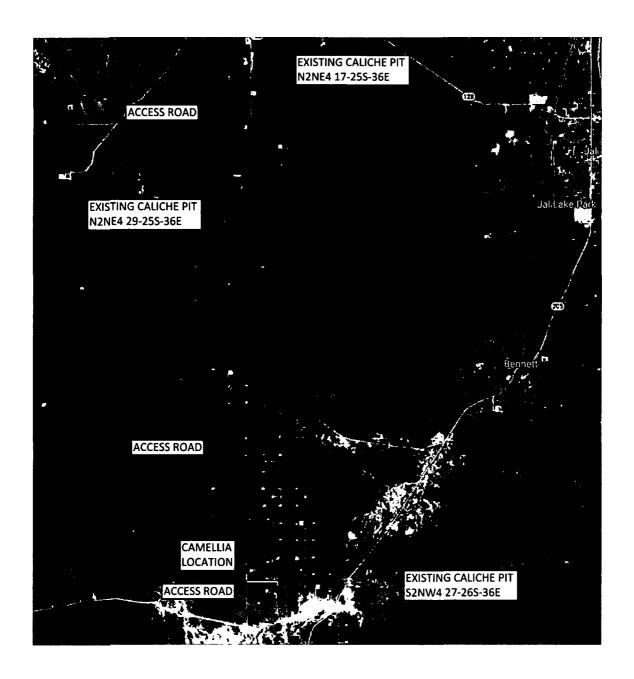


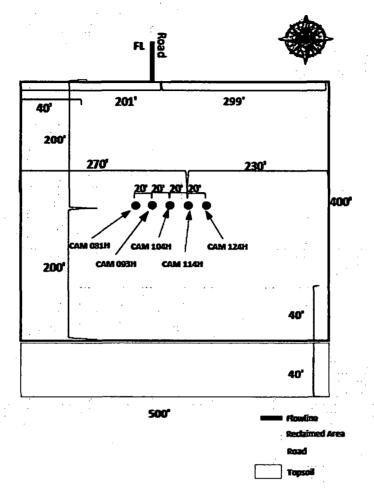

API	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIĻ	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	. 0
30025260480000	NEW MEXICO 'CV' STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON '21'-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598


30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606
30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	٠
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600
	· · · · · · · · · · · · · · · · · · ·		


Exhibit 2a - One Mile Radius Existing Wells List

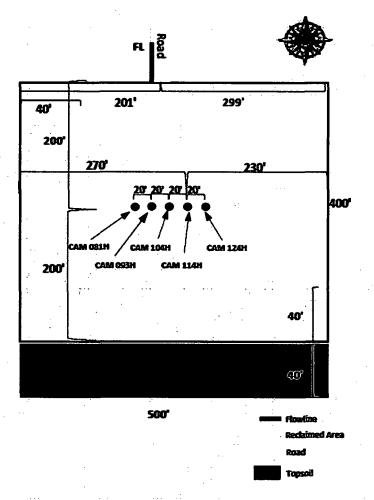






Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped '	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
13		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 - Water Wells



Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right-of-way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-205 and NM-128, head south on NM-205 approximately 8 miles. Turn west (right) on lease road and proceed approximately 1.2 miles. Turn south (left) on lease road and proceed approximately 460', to the northwest of the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

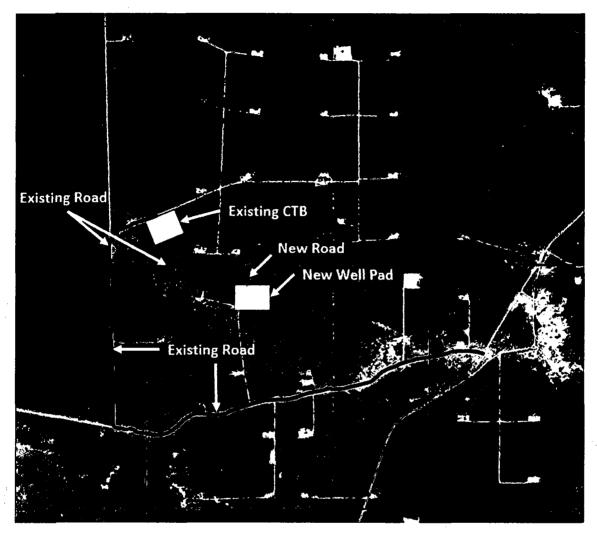
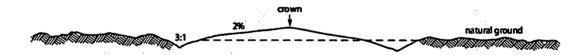


Exhibit 1 - Well Pad Access

Section 1 - Existing Roads

- A. The existing access road route to the proposed project is depicted on Exhibit 1 Well Pad Access. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- B. Any required right-of-way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement



projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.

D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 - New or Reconstructed Access Roads

- **A.** A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 455 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-of-way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- M. All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 104H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

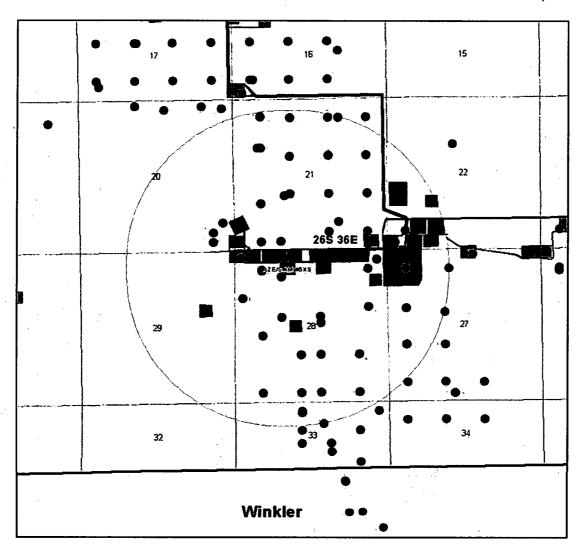


Exhibit 2 - One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887 .
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO 'CV' STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON '21'-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL ·	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606

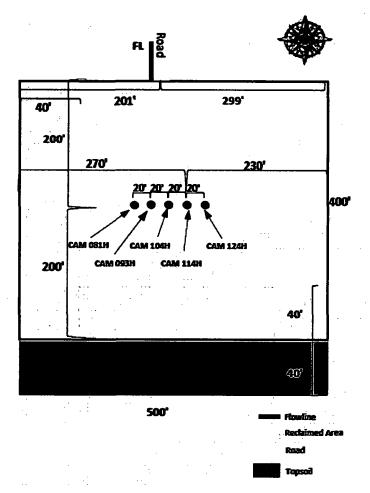

30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	•
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600

Exhibit 2a - One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- **A.** The multiple well pad will be located on section 28, and will measure 395'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.
- C. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- D. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5	· .	32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
13		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 - Water Wells

Section 6 - Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 8'0.90"N, Long: 103°16'45.05" or the caliche pit at Lat: 32° 6'28.34"N, Long: 103°16'58.48"W or the caliche pit at Lat: 32° 1'1.28"N, Long: 103°15'15.83"W.
- **B.** Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the Exhibit 3 Well Site Diagram.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - **4.** Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions.
 Topsoil will be stockpiled along the south edge of the pad as depicted in Exhibit 3 Well Site Diagram.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Proposed access road
 - 4. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.
- E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- **A.** Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. All topsoil remaining at the battery will be reseeded in place for the life of the battery.
- D. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. New Mexico State Land Office has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- **B.** An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 104H well was held on March 29, 2018. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- C. The well pad described in this document Camellia (CAM #5SX) will contain 5 wells that produce into an existing central tank battery (CTB) located northwest of the well pad. The wells share a common pad access road, and the five flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 083H, APD ID# 10400030726
 - Camellia Fed Com 26 36 21 093H, APD ID# 10400030569
 - Camellia Fed Com 26 36 21 104H, APD ID# 10400030326
 - Camellia Fed Com 26 36 21 114H, APD ID# 10400030038
 - Camellia Fed Com 26 36 21 124H, APD ID# 10400030103

Ameredev field representative:

Ameredev office contact:

Zac Boyd, Operations Supervisor

Christie Hanna, Regulatory Coordinator

Cell: (432) 385-6996

Direct: (737) 300-4723

Email: zboyd@ameredev.com

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report
05/16/2019

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	•
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment:	
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	and the second s
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dissolve that of the existing water to be protected?	ed Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):

Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information:** Surface discharge site facilities map: Section 6 - Other Would you like to utilize Other PWD options? NO **Produced Water Disposal (PWD) Location:** PWD disturbance (acres): PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: