ES INTERIOR NAGEMENT DRILL OR REENTER Other Single Zone [REENTER 2 REENTER 2 REC Multiple Zone	0 2019 EIV	8. Lease Name and Well N CAMELLIA FED COM 2	-0137 31, 2018 De Name It, Name (10. 6 36 21	and No.		
			9. API Well No.		, The second se		
	•	le)	10. Field and Pool, or Exp		<u>*0</u> 457.34		
e with any State	requirements.*) -103.2720097	971125	11. Sec., T. R. M. or Blk. a	nd Surve	ry or Area		
office*		.71125	12. County or Parish LEA	13. S	tate		
16. No of ac 320	tres in lease	17. Spacia 320	ng Unit dedicated to this we	<u>,</u> 1)			
1	•						
1		start*	23. Estimated duration 90 days				
24. Attac	hments						
of Onshore Oil tem Lands, the ce).	 Bond to cover th Item 20 above). Operator certific 6. Such other site sp 	e operation	is unless covered by an existi	ng bond c	on file (see		
	(Printed/Typed)	· · ·	Date				
Christi	e Hanna / Ph: (73	7)300-472	3 05/10	0/2018			
		575)234-2	Date 05/1	5/2019			
			· · · · · · · · · · · · · · · · · · ·				
OVED WI	TH CONDIT		Ream	9 ions on	<u>N/5/</u> page 2)		
	REENTER Other Single Zone [3b. Phone N (737)300-4 e with any State 96816 / LONG / LAT 32.04999 ffice* 16. No of ac 320 19. Propose 12470 feet 22. Approxit 12/01/2019 24. Attac of Onshore Oil 24. Attac of Onshore Oil tem Lands, the cc). Name Christi Office CARL ant holds legal of make it a crime s or representati	REENTER Image: Conter Single Zone Multiple Zone Single Zone Multiple Zone 3b. Phone No. (include area cod X (737)300-4700 e with any State requirements.*) 96816 / LONG -103.2720097 /LAT 32.0499988 / LONG -103.2 ffice* 16. No of acres in lease 320 19. Proposed Depth 12470 feet / 23216 feet 22. Approximate date work will 12/01/2019 24. Attachments of Onshore Oil and Gas Order No. 1 Soft Onshore Oil and Gas Order No. 1 Kem Lands, the Soft Onshore Oil and Gas Order No. 1 Name (Printed/Typed) Christie Hanna / Ph: (73) Name (Printed/Typed) Christopher Walls / Ph: (Office CARLSBAD ant holds legal or equitable title to the title to the title of the title to the title of the title of the title of the title to the title of the title of the title to the title title to the t	REENTER RECEIVER Other Single Zone Multiple Zone Single Zone Multiple Zone Multiple Zone X (737)300-4700 (737)300-4700 e with any State requirements.*) 96816 / LONG -103.2720097 y LAT 32.0499988 / LONG -103.271125 ffice* 16. No of acres in lease 17. Spacial 320 320 320 320 19. Proposed Depth 20. BLM, 12470 feet / 23216 feet FED: NM 22. Approximate date work will start* 12/01/2019 24. Attachments of Onshore Oil and Gas Order No. 1, and the F tem Lands, the 4. Bond to cover the operation 1tem 20 above). 5. Operator certification. 5. Operator certification. (c). Such other site specific infor BLM. Name (Printed/Typed) Christiopher Walls / Ph: (737)300-472 Name (Printed/Typed) Christopher Walls / Ph: (575)234-2 Office CARLSBAD ant holds legal or equitable title to those rights make it a crime for any person knowingly and s or representations as to any matter within its	ES INTERIOR NAGEMENT WAGEMENT AGEMENT BUILL OR REENTER Other Single Zone Multiple Zone Multiple Zone M	ES INTERIOR NAGEMENT NAGEMENT NAGEMENT SIGE CONC SIGE CONC Cher Single Zone Multiple		

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 05/15/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT C / 670 FNL / 2040 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.0196816 / LONG: -103.2720097 (TVD: 0 feet, MD: 0 feet) PPP: NESW / 2641 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.043285 / LONG: -103.271123 (TVD: 12470 feet, MD: 20773 feet) PPP: NENW / 670 FNL / 2040 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.0196816 / LONG: -103.2720097 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 0 FNL / 2317 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.021526 / LONG: -103.27111 (TVD: 12470 feet, MD: 12856 feet) PPP: NENW / 0 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.036031 / LONG: -103.27112 (TVD: 12470 feet, MD: 18134 feet) PPP: SESW / 0 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.036031 / LONG: -103.27112 (TVD: 12470 feet, MD: 18134 feet) PPP: SESW / 0 FNL / 2317 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.021526 / LONG: -103.27112 (TVD: 12470 feet, MD: 18134 feet) PPP: SESW / 0 FNL / 2317 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.021526 / LONG: -103.27112 (TVD: 12470 feet, MD: 18134 feet) PPP: SESW / 0 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.021526 / LONG: -103.271116 (TVD: 12470 feet, MD: 12856 feet) BHL: LOT C / 200 FNL / 2318 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.0499988 / LONG: -103.271126 (TVD: 12470 feet, MD: 12856 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

263628C APD Camellia Fed Com 26 36 21 124H 30015 NMNM023199 Ameredev 12-55 03192019 NMK

13 3/8	surface		17 1/2	inch hole.			Factors		FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weigh
"A"	68.00	J	55	BUTT	7.77	2.16	0.64	2,025	137,70
"B"								0	0
	mud, 30min Sfe			Tail Cmt	does not	circ to sfc.	Totals:	2,025	137,70
				ement Volume					
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cp
17 1/2	0.6946	1482	2524	1460	73	8.60	2942	3M	1.56
Burst Frac Grad	dient(s) for Se	gment(s) A, I	B=,bAll> 	> 0.70, OK.		Alt E	Burst = 1.17 > (0.70 	
95/8	casing in	side the	13 3/8			Design	Factors	INTERN	MEDIATE
Segment	#/ft	Grade	· · · · · · · · ·	Coupling	Body	Collapse	Burst	Length	Weigh
"A"	40.00	HCL	80	BUTT	2.09	0.79	0.71	10,966	438,64
"B"						2	t	0	0
w/8.4#/g	mud, 30min Sfe	Csg Test psig:					Totals:	10,966	438,64
				lieve a top of	0	ft from s	urface or a	2025	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cp
				1		9.40	5354	10M	0.81
12 1/4	0.3132	look 🖌	1 0	3498		9.40	0004		
12 1/4 D V Tool(s):	0.3132	look 🍾	0 4993	3498		9.40	, i		Σ%exce
D V Tool(s):	0.3132	L	4993	3498		5.40	<u>sum of sx</u>	<u>Σ CuFt</u>	ັ Σ%exce: 78
D V Tool(s): by stage % :		126	1	3498		5.40	<u>sum of sx</u> 2761	<u>Σ CuFt</u> 6223	78
D V Tool(s): by stage % : Class 'H' tail cri	nt yld > 1.20	126	4993 21	· · ·		·	<u>sum of sx</u> 2761 MASP is with	<u>Σ CuFt</u> 6223 in 10% of 50	00psig, nee
D V Tool(s): by stage % : Class 'H' tail cn Burst Frac Grad	nt yld > 1.20 dient(s) for Se	126	4993 21	· · ·	Alt	·	<u>sum of sx</u> 2761	<u>Σ CuFt</u> 6223 in 10% of 50	78 OOpsig, nee
D V Tool(s): by stage % : Class 'H' tail cn Burst Frac Grad	nt yld > 1.20 dient(s) for Se	126	4993 21	· · ·	Ait		<u>sum of sx</u> 2761 MASP is with	<u>Σ CuFt</u> 6223 in 10% of 50	78 OOpsig, nee
D V Tool(s): by stage % : Class 'H' tail cn Burst Frac Grac :0.70 a Proble Tail cmt	nt yld > 1.20 dient(s) for Se	126 gment(s): A,	4993 21	· · ·	Ait	Burst = 1.07 >	sum of sx 2761 MASP is withi 1 & Alt Collap	<u>Σ CuFt</u> 6223 in 10% of 50 ose = 1.19 > 1	78 OOpsig, nee
D V Tool(s): by stage % : class 'H' tail cn Burst Frac Grad 0.70 a Proble Tail cmt 5 1/2	nt yld > 1.20 dient(s) for Se em!!	126 gment(s): A,	4993 21 B, C, D = 0.5	2, b, c, d	Ait		sum of sx 2761 MASP is withi 1 & Alt Collap	<u>Σ CuFt</u> 6223 in 10% of 50 ose = 1.19 > 1	78 00psig, nee 1.125 UCTION
D V Tool(s): by stage % : lass 'H' tail on lurst Frac Grad 0.70 a Proble Tail cmt 5 1/2	nt yld > 1.20 dient(s) for Se em!! casing in #/ft	126 gment(s): A,	4993 21 B, C, D = 0.5 9 5/8	· · ·	· · · · · · · · · ·	Burst = 1.07 >	sum of sx 2761 MASP is withi 1 & Alt Collap ICTORS	<u>Σ CuFt</u> 6223 in 10% of 500 se = 1.19 > 1 PROD Length	78 00psig, nee 1.125 UCTION Weigh
D V Tool(s): by stage % : class 'H' tail cn burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00	126 gment(s): A, side the Grade HCP	4993 21 B, C, D = 0.5 9 5/8 110	2, b, c, d Coupling BUTT	Body 2.57	Burst = 1.07 > Design Fa Collapse 1.42	sum of sx 2761 MASP is withi 1 & Alt Collap Internet Collap Burst 1.53	<u>Σ CuFt</u> 6223 in 10% of 50 use = 1.19 > 1 PROD Length 12,000	78 00psig, nee 1.125 UCTION Weigh 240,00
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B"	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00	126 gment(s): A, side the Grade HCP HCP	4993 21 B, C, D = 0.5 9 5/8 110 110	2, b, c, d	Body	Burst = 1.07 > Design Fa Collapse	sum of sx 2761 MASP is withi 1 & Alt Collap Inctors Burst	<u>Σ CuFt</u> 6223 in 10% of 500 see = 1.19 > 1 PROD Length 12,000 11,800	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grac (0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo	126 gment(s): A, side the Grade HCP HCP CSg Test psig:	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640	2, b, c, d Coupling BUTT BUTT	Body 2.57	Burst = 1.07 > <u>Design Fa</u> <u>Collapse</u> <u>1.42</u> 1.31	sum of sx 2761 MASP is within 1 & Alt Collap Cotors Burst 1.53 1.53 Totals:	<u>Σ CuFt</u> 6223 in 10% of 500 use = 1.19 > 1 PROD Length 12,000 11,800 23,800	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo	126 gment(s): A, side the Grade HCP CSg Test psig: te(s) are inte	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach	2, b, c, d Coupling BUTT BUTT	Body 2.57 11.82 0	Burst = 1.07 > Design Fa Collapse 1.42 1.31 ft from si	sum of sx 2761 MASP is withi 1 & Alt Collap Cors Burst 1.53 1.53 Totals: urface or a	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap.
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grad 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular	126 gment(s): A, side the Grade HCP HCP c Csg Test psig: te(s) are Inte 1 Stage	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage	2, b, c, d Coupling BUTT BUTT ieve a top of Min	Body 2.57 11.82 0 1 Stage	Burst = 1.07 > Design Fa Collapse 1.42 1.31 ft from si Drilling	sum of sx 2761 MASP is withi 1 & Alt Collap Cons Burst 1.53 1.53 Totals: urface or a Calc	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grad 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume	126 gment(s): A, side the Grade HCP HCP Csg Test psig: te(s) are inte 1 Stage Cmt Sx	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt	2, b, c, d Coupling BUTT BUTT ileve a top of Min Cu Ft	Body 2.57 11.82 0 1 Stage % Excess	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt	sum of sx 2761 MASP is withi 1 & Alt Collap Cors Burst 1.53 1.53 Totals: urface or a	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grad 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291	126 gment(s): A, side the Grade HCP HCP c Csg Test psig: te(s) are Inte 1 Stage	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage	2, b, c, d Coupling BUTT BUTT ieve a top of Min	Body 2.57 11.82 0 1 Stage	Burst = 1.07 > Design Fa Collapse 1.42 1.31 ft from si Drilling	sum of sx 2761 MASP is withi 1 & Alt Collap Cons Burst 1.53 1.53 Totals: urface or a Calc	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291	126 gment(s): A, side the Grade HCP HCP Csg Test psig: te(s) are inte 1 Stage Cmt Sx	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt	2, b, c, d Coupling BUTT BUTT ileve a top of Min Cu Ft	Body 2.57 11.82 0 1 Stage % Excess	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt	sum of sx 2761 MASP is withi 1 & Alt Collap Cons Burst 1.53 1.53 Totals: urface or a Calc	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp
D V Tool(s): by stage % : class 'H' tail cm Burst Frac Grad 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291	126 gment(s): A, side the Grade HCP HCP Csg Test psig: te(s) are inte 1 Stage Cmt Sx	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt	2, b, c, d Coupling BUTT BUTT ileve a top of Min Cu Ft	Body 2.57 11.82 0 1 Stage % Excess	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt	sum of sx 2761 MASP is withi 1 & Alt Collap Cons Burst 1.53 1.53 Totals: urface or a Calc	<u>Σ CuFt</u> 6223 in 10% of 500 ose = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp
D V Tool(s): by stage % : class 'H' tail cn Burst Frac Grac (0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cn	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20	126 gment(s): A, side the Grade HCP CSg Test psig: te(s) are inte 1 Stage Cmt Sx 5082	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt	2, b, c, d Coupling BUTT BUTT leve a top of Min Cu Ft 5805	Body 2.57 11.82 0 1 Stage % Excess 17	Burst = 1.07 > <u>Design Fa</u> <u>Collapse</u> 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u>	sum of sx 2761 MASP is withi 1 & Alt Collap Cetors Burst 1.53 1.53 Totals: urface or a Calc MASP	<u>Σ CuFt</u> 6223 in 10% of 500 see = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23
D V Tool(s): by stage % : class 'H' tail cn burst Frac Grad 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cn 0 Segment	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291	126 gment(s): A, side the Grade HCP HCP Csg Test psig: te(s) are inte 1 Stage Cmt Sx	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810	2, b, c, d Coupling BUTT BUTT ileve a top of Min Cu Ft	Body 2.57 11.82 0 1 Stage % Excess	Burst = 1.07 > <u>Design Fa</u> <u>Collapse</u> 1.42 1.31 ft from si Drilling Mud Wt 12.50	sum of sx 2761 MASP is withi 1 & Alt Collap Internet Burst 1.53 1.53 Totals: urface or a Calc MASP	<u>Σ CuFt</u> 6223 in 10% of 500 see = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23
D V Tool(s): by stage % : class 'H' tail cn surst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cn 0 Segment "A"	nt yld > 1.20 dient(s) for Se em!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20	126 gment(s): A, side the Grade HCP CSg Test psig: te(s) are inte 1 Stage Cmt Sx 5082	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810	2, b, c, d Coupling BUTT BUTT leve a top of Min Cu Ft 5805	Body 2.57 11.82 0 1 Stage % Excess 17	Burst = 1.07 > <u>Design Fa</u> <u>Collapse</u> 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u>	sum of sx 2761 MASP is withi 1 & Alt Collap Cetors Burst 1.53 1.53 Totals: urface or a Calc MASP	<u>Σ CuFt</u> 6223 in 10% of 500 see = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cm 0 Segment "A" "B"	nt yld > 1.20 dient(s) for Se m!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20 #/ft	126 gment(s): A, side the Grade HCP HCP Cosg Test psig: te(s) are inte 1 Stage Cmt Sx 5082	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810 5 1/2	2, b, c, d Coupling BUTT BUTT leve a top of Min Cu Ft 5805	Body 2.57 11.82 0 1 Stage % Excess 17	Burst = 1.07 > <u>Design Fa</u> <u>Collapse</u> 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u>	sum of sx 2761 MASP is withi 1 & Alt Collap Contemporal Burst 1.53 1.53 Totals: urface or a Calc MASP Factors Burst	<u>Σ CuFt</u> 6223 in 10% of 500 see = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0 0	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cm 0 Segment "A" "B" w/8.4#/g	nt yld > 1.20 dient(s) for Se m!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20 #/ft mud, 30min Sfo	126 gment(s): A, side the Grade HCP HCP Csg Test psig: ne(s) are inte 1 Stage Cmt Sx 5082 Grade	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810 5 1/2	2, b, c, d Coupling BUTT BUTT ieve a top of Min Cu Ft 5805	Body 2.57 11.82 0 1 Stage % Excess 17 Joint	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u> Collapse	sum of sx 2761 MASP is withi 1 & Alt Collap Contemporal Burst 1.53 1.53 Totals: urface or a Calc MASP Factors Burst	<u>Σ CuFt</u> 6223 in 10% of 500 use = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0 0 0	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23 Weigh 0 0 0
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cm 0 Segment "A" "B" w/8.4#/g Cm	nt yld > 1.20 dient(s) for Se m!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20 #/ft mud, 30min Sfo nt vol calc be	126 gment(s): A, side the Grade HCP HCP Cosg Test psig: ne(s) are inte 1 Stage Cmt Sx 5082 Grade	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810 5 1/2 5 1/2	2, b, c, d Coupling BUTT BUTT ieve a top of Min Cu Ft 5805 Coupling OC intended	Body 2.57 11.82 0 1 Stage % Excess 17 Joint	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u> Collapse ft from si	sum of sx 2761 MASP is withi 1 & Alt Collap Burst 1.53 1.53 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	<u>Σ CuFt</u> 6223 in 10% of 500 use = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0 0 0 23800	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23 Weigh 0 0 0 overlap.
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grac (0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cm "A" "B" w/8.4#/g Cn Hole Segment "A"	nt yld > 1.20 dient(s) for Se m!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20 #/ft mud, 30min Sfo nt vol calc be Annular	126 gment(s): A, side the Grade HCP HCP CSg Test psig: te(s) are inte 1 Stage Cmt Sx 5082 Grade	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810 5 1/2 5 1/2 s this csg, T 1 Stage	2, b, c, d Coupling BUTT BUTT ieve a top of Min Cu Ft 5805 Coupling OC intended Min	Body 2.57 11.82 0 1 Stage % Excess 17 Joint Joint	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u> Collapse ft from si Drilling	sum of sx 2761 MASP is withi 1 & Alt Collap Burst 1.53 1.53 Totals: urface or a Calc MASP Factors Burst Totals: urface or a Calc	<u>Σ CuFt</u> 6223 in 10% of 500 ise = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0 0 0 23800 Req'd	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23 Weigh 0 0 0 overlap. Min Dis
D V Tool(s): by stage % : class 'H' tail cm burst Frac Grac 0.70 a Proble Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g The c Hole Size 8 1/2 class 'H' tail cm 0 Segment "A" "B" w/8.4#/g Cm	nt yld > 1.20 dient(s) for Se m!! casing in #/ft 20.00 20.00 mud, 30min Sfo ement volum Annular Volume 0.2291 nt yld > 1.20 #/ft mud, 30min Sfo nt vol calc be	126 gment(s): A, side the Grade HCP HCP Cosg Test psig: ne(s) are inte 1 Stage Cmt Sx 5082 Grade	4993 21 B, C, D = 0.5 9 5/8 110 110 2,640 nded to ach 1 Stage CuFt Cmt 6810 5 1/2 5 1/2	2, b, c, d Coupling BUTT BUTT ieve a top of Min Cu Ft 5805 Coupling OC intended	Body 2.57 11.82 0 1 Stage % Excess 17 Joint	Burst = 1.07 > <u>Design Fa</u> Collapse 1.42 1.31 ft from si Drilling Mud Wt 12.50 <u>Design</u> Collapse ft from si	sum of sx 2761 MASP is withi 1 & Alt Collap Burst 1.53 1.53 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	<u>Σ CuFt</u> 6223 in 10% of 500 use = 1.19 > 1 PROD Length 12,000 11,800 23,800 10966 Req'd BOPE Length 0 0 0 23800	78 00psig, nee 1.125 UCTION Weigh 240,00 236,00 476,00 overlap. Min Dis Hole-Cp 1.23 Weigh 0 0 0 overlap.

Carlsbad Field Office

Approval Date: 05/15/2019

5/13/2019

263628C APD Camellia Fed Com 26 36 21 124H 30015 NMNM023199 Ameredev 12-55 03192019 NMK_ContigencyPlan

Сар

13 3/8	surface	csg in a	17 1/2	inch hole.		Design	Factors	SUR	FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	54.50	J	55	BUTT	7.73	1.25	1.12	2,025	110,363
"B"								0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig:	1,027	Tail Cmt	does not	circ to sfc.	Totals:	2,025	110,363
omparison o	of Proposed t	o Minimum I	Required Ce	ment Volumes					
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpi
17 1/2	0.6946	1537	2621	1461	79	8.60	1345	2M	1.56
	· ·				Sit_pit (nt 10 total 	- 1 per 0.0.1.	i i i i i i i i i i i i i i i i i i i	ંગ તે.
	· · · · · · · · · · · · · · · · · · ·			· _ · · · · · ·				 	AEDIATE
9 5/8	casing in		13 3/8		Deale		Factors		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	40.00	HCL	80	BUTT	4.57	1.73	0.62	5,013	200,520
"B"						· · · · · · · · · · · · · · · · · · ·	——————————————————————————————————————	0	0
	mud, 30min Sfo				•		Totals:	5,013	200,52
				chieve a top of	•	ft from su		2025	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
12 1/4	0.3132	look ¥) 0	1689	J	9.40	6485	10M	0.81
			0000				sum of sx	<u>Σ CuFt</u>	Σ%exces
V Tool(s):			3262						
y stage % : urst Frac Grac 70, OK.	dient(s) for Se		36 B, C, D = 1.1!				1357 MASP is withi Burst = 0.89 > 0).70 	
y stage % : urst Frac Grac 70, OK. 75/8	casing in	gment(s): A, side the	36	<u>Á Buo</u>		Design Fa	1357 MASP is withi lurst = 0.89 > 0 	n 10% of 500 0.70 INTERN	DOpsig, need
y stage % : urst Frac Grac 70, OK. 75/8 Segment	casing in: #/ft	gment(s): A, side the Grade	36 B, C, D = 1.19 9 5/8	<u>Á Buo</u> Coupling	Joint	Design Fa Collapse	1357 MASP is withi Jurst = 0.89 > 0 Ctors Burst	n 10% of 500 0.70 INTERN Length	DOpsig, need AEDIATE Weight
y stage % : urst Frac Grac 70, OK. 75/8	casing in	gment(s): A, side the	36 B, C, D = 1.19 9 5/8	<u>Á Buo</u>		Design Fa	1357 MASP is withi lurst = 0.89 > 0 	n 10% of 500 0.70 INTERN	Dopsig, need AEDIATE Weigh
y stage % : urst Frac Grac 70, OK. 7 5/8 3egment "A" "B"	casing in: #/ft 29.70	gment(s): A, side the Grade HCL	36 B, C, D = 1.19 9 5/8 80	<u>Á Buo</u> Coupling	Joint	Design Fa Collapse	1357 MASP is withi Burst = 0.89 > 0 Control of the second	n 10% of 500 0.70 INTERN Length 11,147 0	AEDIATE Weigh 331,060 0
y stage % : urst Frac Grac 70, OK. 7 5/8 Segment "A" "B" w/8.4#/8	casing in: #/ft 29.70 mud, 30min Sfc	gment(s): A, side the Grade HCL	36 B, C, D = 1.19 9 5/8 80 2,452	<u>A Buo</u> Coupling FJM	Joint 2.00	Design Fa Collapse 0.83	1357 MASP is withi surst = 0.89 > 0 content of the second	n 10% of 500 0.70 INTERN Length 11,147	00psig, need AEDIATE Weigh 331,060 0 331,060
y stage % : urst Frac Grac 70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The	casing in: #/ft 29.70 mud, 30min Sfc e cement volu	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a	<u>A Buo</u> Coupling FJM	Joint 2.00	Design Fa Collapse 0.83	1357 MASP is withi surst = 0.89 > 0 contents Burst 1.02 Totals: unface or a	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013	MEDIATE Weigh 331,060 0 331,060 overlap.
y stage % : urst Frac Grac 70, OK. 7 5/8 Segment "A" "B" w/8.4#/8 The Hole	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage	<u>A Buo</u> Coupling FJM Inchieve a top of Min	Joint 2.00 0 1 Stage	Design Fa Collapse 0.83 ft from su Drilling	1357 MASP is withi surst = 0.89 > 0 ctors Burst 1.02 Totals: urface or a Calc	n 10% of 500 0.70 INTERM Length 11,147 0 11,147 5013 Req'd	MEDIATE Weigh 331,060 0 331,060 overlap. Min Dis
y stage % : urst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage Cmt Sx	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt	<u>A Buo</u> Coupling FJM Inchieve a top of Min Cu Ft	Joint 2.00 0 1 Stage % Excess	Design Fa Collapse 0.83 ft from su Drilling Mud Wt	1357 MASP is withi Burst = 0.89 > 0 Contemporal Burst 1.02 Totals: unface or a Calc MASP	n 10% of 500 0.70 INTERM Length 11,147 0 11,147 5013 Req'd BOPE	MEDIATE Weigh 331,060 0 331,060 overlap. Min Dis Hole-Cpl
y stage % : urst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339	<u>A Buo</u> Coupling FJM Inchieve a top of Min	Joint 2.00 1 Stage % Excess 14	Design Fa Collapse 0.83 ft from su Drilling Mud Wt 14.00	1357 MASP is withi surst = 0.89 > 0 ctors Burst 1.02 Totals: urface or a Calc	n 10% of 500 0.70 INTERM Length 11,147 0 11,147 5013 Req'd	MEDIATE Weigh 331,060 0 331,060 overlap. Min Dis
y stage % : urst Frac Grac 70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail crr	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage Cmt Sx	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339	<u>A Buo</u> Coupling FJM Inchieve a top of Min Cu Ft 1172	Joint 2.00 1 Stage % Excess 14 psig, need exr	Design Fa Collapse 0.83 ft from su Drilling Mud Wt 14.00	1357 MASP is withi Burst = 0.89 > 0 Contemporation Burst 1.02 Totals: urface or a Calc MASP 6326	n 10% of 500 0.70 INTERM Length 11,147 0 11,147 5013 Req'd BOPE	MEDIATE Weight 331,060 0 331,060 overlap. Min Dist Hole-Cpl
70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 lass 'H' tail cm Tail cmt	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit	<u>A Buo</u> Coupling FJM Inchieve a top of Min Cu Ft 1172	Joint 2.00 1 Stage % Excess 14 psig, need exr	Design Fa Collapse 0.83 ft from su Drilling Mud Wt 14.00 ta equip?	1357 MASP is withi Burst = 0.89 > 0 Content of the second	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M	MEDIATE Weight 331,060 0 331,060 overlap. Min Dist Hole-Cpl 0.56
y stage % : urst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail cmt 5 1/2	casing in: #/ft 29.70 mud, 30min Sfo e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000	Joint 2.00 1 Stage % Excess 14 psig, need exr	Design Fa Collapse 0.83 ft from su Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design	1357 MASP is withi Burst = 0.89 > 0 Content of the second second Burst 1.02 Totals: Unface or a Calc MASP 6326	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU	MEDIATE Weight 331,060 0 331,060 overlap. Min Dist Hole-Cpl 0.56
y stage % : JITST Frac Grac 70, OK. 75/8 Segment "A" "B" W/8.4#/8 The Hole Size 8 3/4 ass 'H' tail cm Tail cmt 5 1/2 Segment	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint	Design Fa Collapse 0.83 ft from st Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse	1357 MASP is withi burst = 0.89 > 0 ictors Burst 1.02 Totals: urface or a Calc MASP 6326 1.25 > 1.125 Factors Burst	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length	MEDIATE Weight 331,060 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y stage % : Jirst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A"	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint 2.52	Design Fa Collapse 0.83 ft from su Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62	1357 MASP is withi burst = 0.89 > 0 ictors Burst 1.02 Totals: urface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147	MEDIATE Weigh 331,060 0 331,060 0 0 331,060 0 0 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y stage % : Jirst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail cmt 5 1/2 Segment "A" "B"	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint	Design Fa Collapse 0.83 ft from st Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse	1357 MASP is withi burst = 0.89 > 0 ictors Burst 1.02 Totals: urface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58 1.58	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653	AEDIATE Weight 331,060 0 331,060 0 331,060 0 0 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y stage % : JITST Frac Grac 70, OK. 75/8 Segment "A" "B" W/8.4#/8 The Hole Size 8 3/4 ass 'H' tail cmt 5 1/2 Segment "A" "B" W/8.4#/8 Yesting and the second se	casing in: #/ft 29.70 mud, 30min Sfo e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfo	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig:	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint 2.52 8.80	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39	1357 MASP is withi burst = 0.89 > 0 Content of the second second Burst 1.02 Totals: Unface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58 1.58 1.58 Totals:	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800	Dopsig, need AEDIATE Weigh 331,060 0 331,060 overlap. Min Dist Hole-Cpl 0.56 UCTION Weigh 222,944 253,066 476,000
y stage % : urst Frac Grac 70, OK. 75/8 iegment "A" "B" w/8.4#/g Size 8 3/4 ass 'H' tail cm Tail cmt 5 1/2 iegment "A" "B" w/8.4#/g Bie	casing in #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 mud, 30min Sfc agment Desi	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig: gn Factors	36 B, C, D = 1.11 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be:	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 psig, need exr Joint 2.52 8.80 23.73	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39	1357 MASP is withi burst = 0.89 > 0 Content of the second second Burst 1.02 Totals: urface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58 1.58 1.58 Totals: if it were a verticed	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800 ertical wellb	Dopsig, need AEDIATE Weigh 331,060 0 331,060 overlap. Min Dist Hole-Cpl 0.56 UCTION Weigh 222,940 253,060 476,000 ore.
y stage % : urst Frac Grac 70, OK. 75/8 iegment "A" "B" w/8.4#/g Size 8 3/4 ass 'H' tail cm Tail cmt 5 1/2 iegment "A" "B" w/8.4#/g Bie	casing in: #/ft 29.70 mud, 30min Sfo e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfo	gment(s): A, side the Grade HCL : Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig: gn Factors	36 B, C, D = 1.19 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be: MTD	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 psig, need exr Joint 2.52 8.80 23.73 Csg VD	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39 1.45 Curve KOP	1357 MASP is withi burst = 0.89 > 0 Content of the second second Burst 1.02 Totals: Unface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58 1.58 1.58 Totals: if it were a very Dogleg ^o	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800 ertical wellb Severity ^o	AEDIATE Weigh 331,060 0 331,060 0 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y stage % : JITST Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile	casing in: #/ft 29.70 mud, 30min Sfo e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfo egment Desi ot Hole Plan	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig: gn Factors nned	36 B, C, D = 1.11 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be: MTD 23800	A Buo Coupling FJM Inchieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint 2.52 8.80 23.73 Csg VD 12470	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39 1.45 Curve KOP 12000	1357 MASP is withi burst = 0.89 > 0 Content of the second	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODI Length 11,147 12,653 23,800 ertical wellb Severity ^o 6	Dopsig, need AEDIATE Weigh 331,060 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0
y stage % : JITST Frac Grac 70, OK. 75/8 Segment "A" "B" W/8.4#/g The Hole Size 8 3/4 ass 'H' tail cmt 5 1/2 Segment "A" "B" W/8.4#/g Bie No Pile The	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfc egment Desi ot Hole Plan e cement volu	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig: gn Factors nned ume(s) are in	36 B, C, D = 1.11 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be: MTD 23800 ntended to a	A Buo Coupling FJM chieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF TMK UPSF Max VTD 12470 chieve a top of	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint 2.52 8.80 23.73 Csg VD 12470 0	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39 1.45 Curve KOP 12000 ft from si	1357 MASP is withi burst = 0.89 > 0 Content of the second	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800 ertical wellb Severity ^o 6 11147	DOpsig, need MEDIATE Weigh 331,060 0 331,060 overlap. Min Dis Hole-Cpl 0.56 UCTION Weigh 222,940 253,060 476,000 ore. MEOC 13390.3 overlap.
y stage % : urst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 ass 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile Hole	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfc egment Desi ot Hole Plan e cement volu Annular	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P Csg Test psig: gn Factors nned ume(s) are in 1 Stage	36 B, C, D = 1.11 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be: MTD 23800 ntended to a 1 Stage	A Buo Coupling FJM chieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF TMK UPSF Max VTD 12470 chieve a top of Min	Joint 2.00 1 Stage % Excess 14 psig, need exr Joint 2.52 8.80 23.73 Csg VD 12470 0 1 Stage	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39 1.45 Curve KOP 12000 ft from si Drilling	1357 MASP is withi burst = 0.89 > 0 Inctors Burst 1.02 Totals: urface or a Calc MASP 6326 1.25 > 1.125 Factors Burst 1.58 1.58 1.58 Totals: if it were a ve Dogleg° 90 urface or a Calc	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800 ertical wellb Severity° 6 11147 Req'd	AEDIATE Weigh 331,060 0 331,060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
by stage % : urst Frac Grac 70, OK. 75/8 Segment "A" "B" w/8.4#/g The Hole Size 8 3/4 lass 'H' tail cmt Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pilk	casing in: #/ft 29.70 mud, 30min Sfc e cement volu Annular Volume 0.1005 nt yld > 1.20 casing in: #/ft 20.00 20.00 mud, 30min Sfc egment Desi ot Hole Plan e cement volu	gment(s): A, side the Grade HCL Csg Test psig: ume(s) are in 1 Stage Cmt Sx 683 side the Grade P P Csg Test psig: gn Factors nned ume(s) are in	36 B, C, D = 1.11 9 5/8 80 2,452 ntended to a 1 Stage CuFt Cmt 1339 MASP is wit 7 5/8 110 110 2,452 would be: MTD 23800 ntended to a	A Buo Coupling FJM chieve a top of Min Cu Ft 1172 hin 10% of 5000 Coupling TMK UPSF TMK UPSF TMK UPSF Max VTD 12470 chieve a top of	Joint 2.00 1 Stage % Excess 14 psig, need exr A Joint 2.52 8.80 23.73 Csg VD 12470 0	Design Fa Collapse 0.83 ft from si Drilling Mud Wt 14.00 ta equip? Mt Collapse = 1 Design Collapse 1.62 1.39 1.45 Curve KOP 12000 ft from si	1357 MASP is withi burst = 0.89 > 0 Content of the second	n 10% of 500 0.70 INTERN Length 11,147 0 11,147 5013 Req'd BOPE 10M PRODU Length 11,147 12,653 23,800 ertical wellb Severity ^o 6 11147	Dopsig, need MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cpl 0.56 UCTION Weight 222,940 253,068 476,008 ore. MEOC 13390.5

Carlsbad Field Office

Approval Date: 05/15/2019

5/13/2019

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Ameredev Operating LLC
LEASE NO.:	NMNM023199
	Camellia Fed Com 26 36 21 124H
SURFACE HOLE FOOTAGE:	
BOTTOM HOLE FOOTAGE	
	Section 28, T.26 S., R.36 E., NMPM
	Lea County, New Mexico

COA

H2S	r Yes	r No	
Potash		C Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	C High
Variance	C None	Flex Hose	C Other
Wellhead	C Conventional	Multibowl	Both ■
Other	☐ 4 String Area	Capitan Reef	□ WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 2025 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Page 2 of 9

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Excess calculates to 21% - additional cement might be required.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 17% additional cement might be required.

Alternate Casing Design:

2nd Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 14% additional cement might be required.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 12%
 additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Page 3 of 9

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

- Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

b. When the operator proposes to set surface casing with Spudder Rig

- Notify the BLM when moving in and removing the Spudder Rig.
- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK5132019

Page 9 of 9

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/10/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: Zachary Boyd

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

State: TX

State: TX

City: AUSTIN

Zip: 78735

Phone: (737)300-4700

Email address: zboyd@ameredev.com

Operator Certification Data Report

05/16/2019

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400030103

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 124H

Submission Date: 05/10/2018

Well Work Type: Drill

Section 1 - General APD ID: 10400030103 Tie to previous NOS? 10400028718 Submission Date: 05/10/2018 **BLM Office: CARLSBAD User:** Christie Hanna Title: Senior Engineering Technician Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM023199 Lease Acres: 320 Surface access agreement in place? Allotted? **Reservation:** Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? NO Permitting Agent? NO APD Operator: AMEREDEV OPERATING LLC **Operator letter of designation:**

Operator Info

Operator Organization Name: AMEREDEV		
Operator Address: 5707 Southwest Parkwa		70705
Operator PO Box:	∠ıp:	78735
Operator City: Austin State:	тх	
Operator Phone: (737)300-4700		
Operator Internet Address:		
Section 2 - Well Informa	tion	
Well in Master Development Plan? NO	Master Development Pla	in name:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan nan	ne:
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 124H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: JAL	Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Page 1 of 3

Well Name: CAMELLIA FED COM 26 36 21

Describe other minerals: Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance? Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: CAM Number: 5SX Well Class: HORIZONTAL Number of Legs: 1 Well Work Type: Drill Well Type: OIL WELL **Describe Well Type:** Well sub-Type: INFILL Describe sub-type: **Distance to town:** 5 Miles Distance to nearest well: 1057 FT Distance to lease line: 670 FT Reservoir well spacing assigned acres Measurement: 320 Acres Well plat: JEFF_20190402135339.pdf CAMELLIA_FED_COM_26_36_21_124H___BLM_LEASES_20190402135401.pdf CAMELLIA_FED_COM_26_36_21_124H___EXHIBIT_2A_2B_20190402135402.pdf CAMELLIA_FED_COM_26_36_21_124H___VICINITY_MAP_20190402135402.pdf CAMELLIA_FED_COM_26_36_21_124H_C_102_REV_SIG_20190402135403.pdf CAMELLIA_FED_COM_26_36_21_124H___GAS_CAPTURE_PLAN_20190402135418.pdf Well work start Date: 12/01/2019 **Duration: 90 DAYS**

Well Number: 124H

Section 3 - Well Location Table

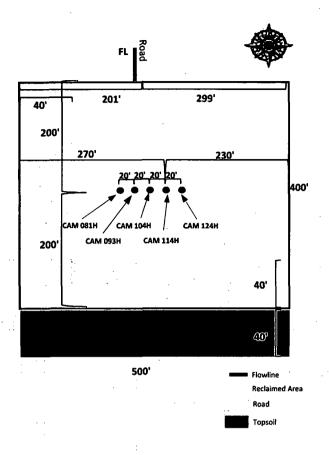
Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

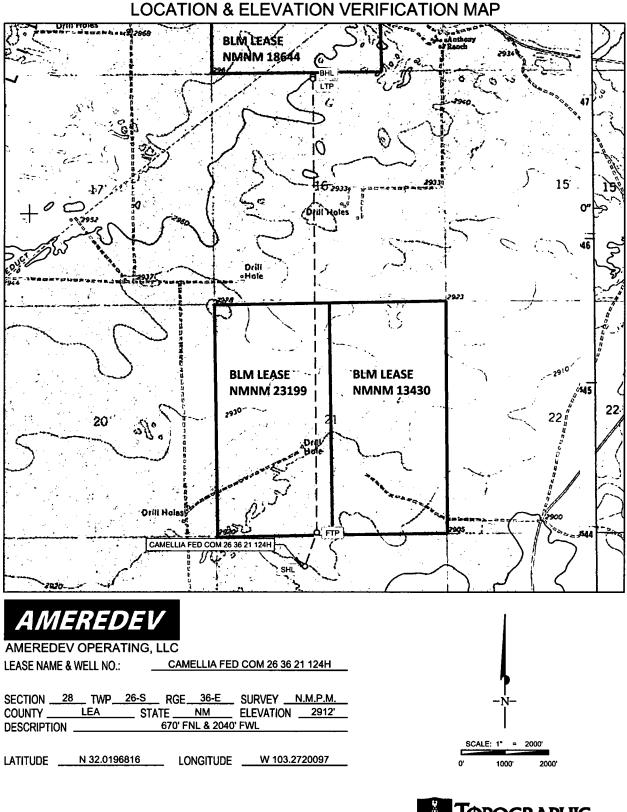
Vertical Datum: NAVD88

Survey number: 19642


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	670	FNL	204	FWL	26S	36E	28	Lot	32.01968	-	LEA	NEW	NEW	s	STATE	291	0	0
Leg			0					c	16	103.2720		MEXI	MEXI			2		
#1				· ·						097		со	co					

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	
KOP Leg #1	622	FNL	231 0	FWL	26S	36E	28	Aliquot NENW	32.01981 3	- 103.2711 38	LEA	NEW MEXI CO	NEW MEXI CO	s	STATE	- 898 5	119 06	118 97
PPP Leg #1	670	FNL	204 0	FWL	26S	36E	28	Aliquot NENW	32.01968 16	- 103.2720 097	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	291 2	0	0
PPP Leg #1	264 1	FNL	231 8	FWL	26S	36E	16	Aliquot NESW	32.04328 5	- 103.2711 23	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 955 8	207 73	124 70
PPP Leg #1	0	FNL	231 7	FWL	26S	36E	28	Aliquot NENW	32.02152 6	- 103.2711 1	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 955 8	128 56	124 70
PPP Leg #1	0	FNL	231 7	FWL	26S	36E	21	Aliquot SESW	32.02152 6	- 103.2711 16	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 023199	- 955 8	128 56	124 70
PPP Leg #1	0	FNL	231 8	FWL	26S	36E	21	Aliquot NENW	32.03603 1	- 103.2711 2	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 023199	- 955 8	181 34	124 70
PPP Leg #1	0	FSL	231 8	FWL	26S	36E	16	Aliquot SESW	32.03603 1	- 103.2711 2	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 955 8	181 34	124 70
EXIT Leg #1	264 1	FNL	231 8	FWL	26S	36E	16	Aliquot SENW	32.04328 5	- 103.2711 23	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 955 8	207 73	124 70
BHL Leg #1	200	FNL	231 8	FWL	26S	36E	16	Lot C	32.04999 88	- 103.2711 25	LEA	NEW MEXI CO	NEW MEXI CO	S	STATE	- 955 8	232 16	124 70

Page 3 of 3

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

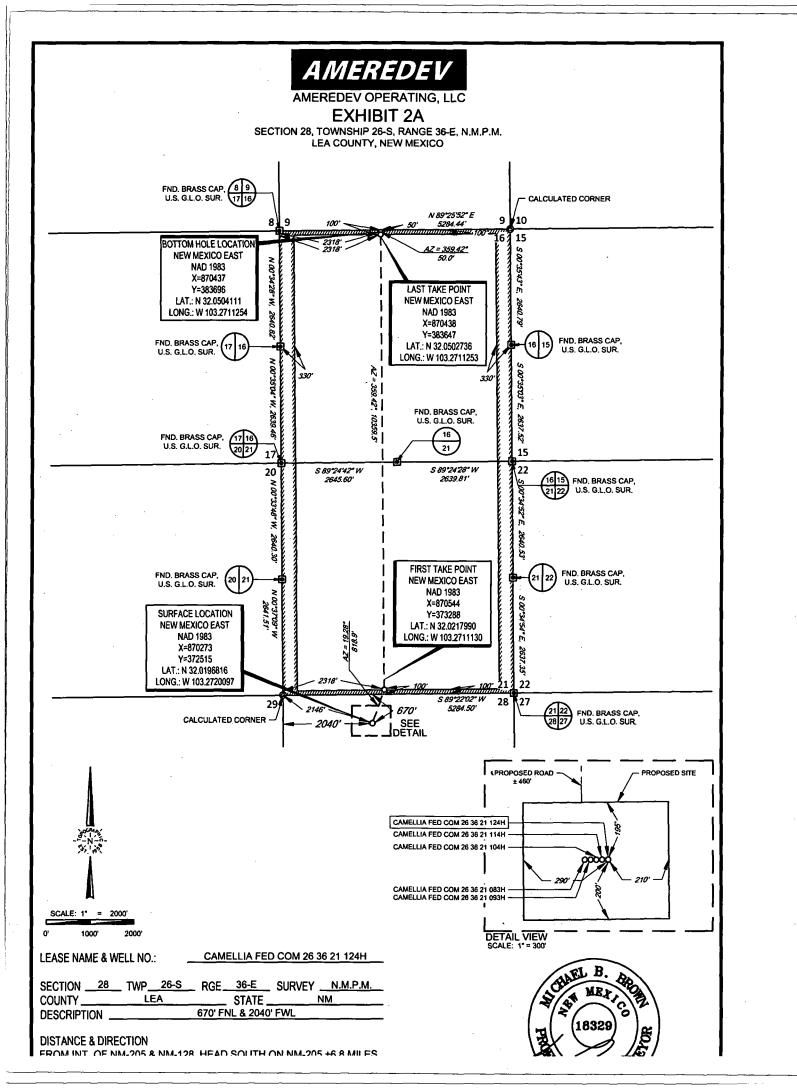
WELLSITE DIAGRAM

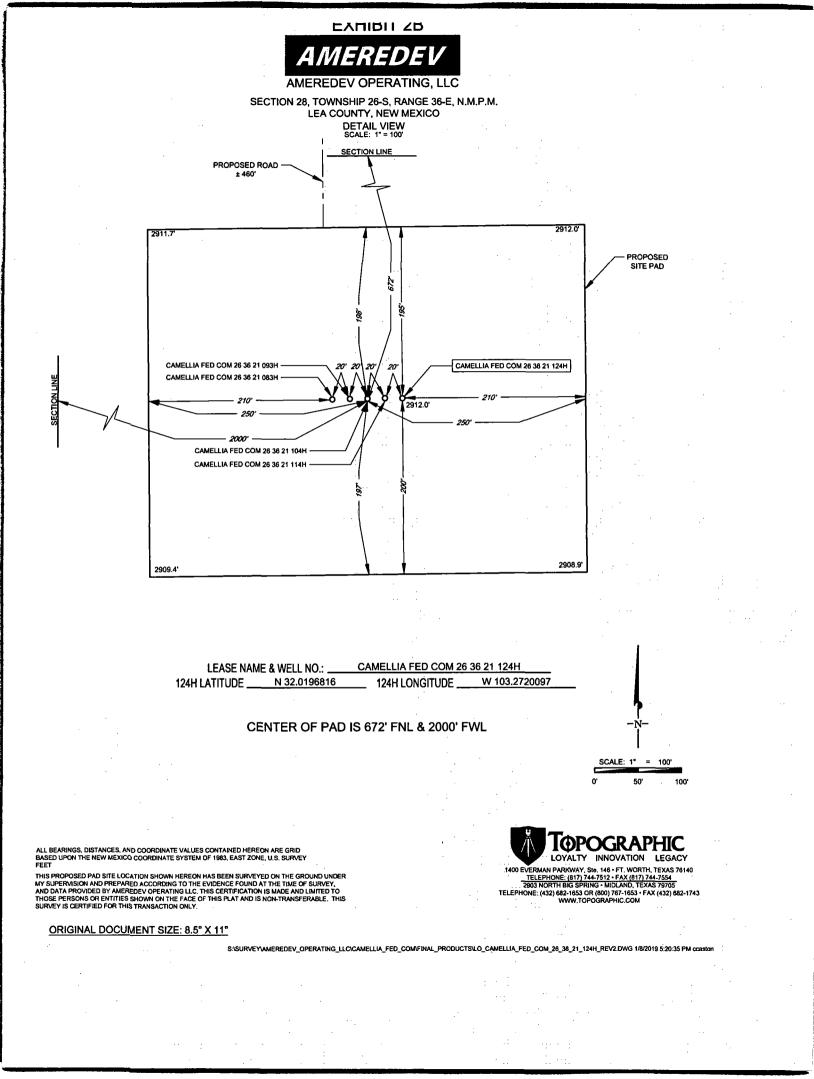
THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

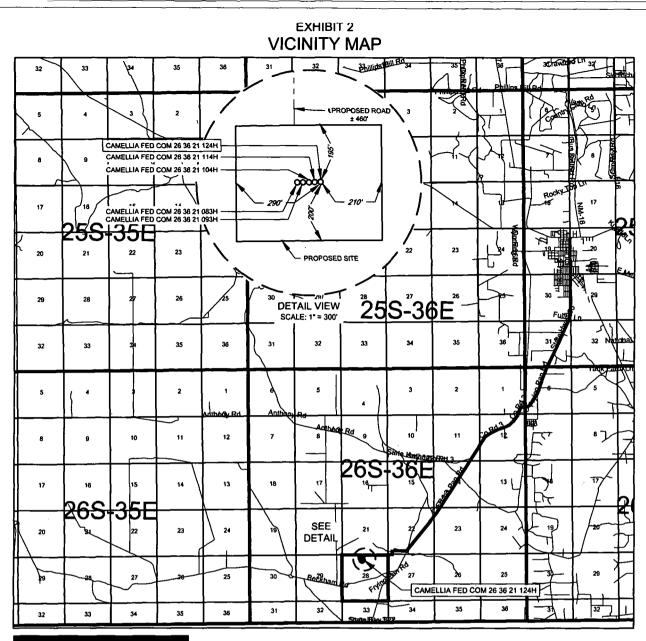
ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.

 TOPOGRAPHIC

 1400 EVERMAN PARKWAY, SLe. 146 • FT. WORTH, TEXAS 76140


 TELEPHONE: (817) 744-7512 • FAX (817) 744-7551


 2903 NORTH BIG SPRING • MIDLAND, TEXAS 78705


 TELEPHONE: (432) 882-1653 00 (800) 767-1653 • FAX (432) 882-1743

 WWW.TOPOGRAPHIC.COM

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COMFINAL_PRODUCTSULO_CAMELLIA_FED_COM_26_36_21_124H_REV2.DWG 1/8/2019 5:20:33 PM ccaston

AMEREDEV

AMERE	DEV (OPERA	TING,	LLC				
LEASE NAM	/E & W	ELL NO.	: _	CAM	<u>ELLIA FE</u>	D COM 26 3	<u>6 21 124H</u>	_
SECTION	28		26-S	PCE	36-F		N M P M	

SECTION	. IWP_ <u>20-5</u>	. RGE_ <u>30-E</u>	SURVEY <u>N.M.P.M.</u>
COUNTY	LEA	STATE _	NM
DESCRIPTION		670' FNL & 2040'	FWL

DISTANCE & DIRECTION

FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205 ±8.0 MILES, THENCE WEST (RIGHT) ON A PROPOSED RD. ±1.2 MILES, THENCE SOUTH (LEFT) ON A PROPOSED RD. ±460 FEET TO A POINT ±214 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM of 1983, EAST ZONE, U.S. SURVEY FEET. -N-SCALE: 1" = 10000' 0' 5000' 10000'

SISURVEYIAMEREDEV_OPERATING_LLCICAMELLIA_FED_COMFINAL_PRODUCTSILO_CAMELLIA_FED_COM_28_36_21_124H_REV2.DWG 1/8/2019 5:20:34 PM ccaston

AFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

States of

05/16/2019

APD ID: 10400030103

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Submission Date: 05/10/2018

Well Number: 124H

ميردين

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured	,		Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER ANHYDRITE	2912	2038	2038	ANHYDRITE	NONE	No
2	SALADO	566	2345	2345	SALT	NONE	No
3	TANSILL	-268	3179	3179	LIMESTONE	NONE	No
4	CAPITAN REEF	-730	3642	3642	LIMESTONE	USEABLE WATER	No
5	LAMAR	-2032	4943	4943	LIMESTONE	NONE	No
6	BELL CANYON	-2202	5113	5113	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-4099	7010	7010	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-5140	8051	8051	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-6634	9545	9545	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7266	10177	10177	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-7930	10841	10841	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8531	11442	11442	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-8753	11664	11664	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Pressure Rating (PSI): 10M Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190402135912.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190402140021.pdf

5M_BOP_System_20190402140022.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190402140022.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190402140033.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing tength MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
			13.375	NEW	API	·	·		0		2912			J-55	68		<u> </u>	0.64		5.55		6.49
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10966	0	10966	2912		10966	HCL -80		OTHER - BTC	1.25	1.17	DRY	2.19	DRY	2.14
	PRODUCTI ON	8.5	5.5	NEW	API	N	0	23800	0	12470	2912		23800	P- 110	1 ·	OTHER - BTC	1.17	1.77	DRY	2.63	DRY	2.92

Casing Attachments

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68.00__J55_BTC_20190402140240.pdf

Camellia_Fed_Com_26_36_21_124H___Wellbore_Diagram_and_CDA_20190402140248.pdf

Casing ID: 2 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Camellia_Fed_Com_26_36_21_124H Wellbore_Diagram_and_CDA_20190402140459.pdf

9.625_40_SeAH80HC_4100_Collapse_20190402140507.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.5_20_P110HP_Eagle_SFH_20190402140719.pdf

Camellia_Fed_Com_26_36_21_124H___Wellbore_Diagram_and_CDA_20190402140727.pdf

Page 3 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Section	4 - Co	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	2038	1282	1.76	13.5	2255. 68	50	CLASS C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		2038	2424	200	1.34	14.8	268	100	CLASS C	Salt
INTERMEDIATE	Lead	4993	0	4143	683	2.47	11.9	1687. 11	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-settling Expansion Additive
INTERMEDIATE	Tail		4143	4993	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	4993	0	9710	1578	2.47	11.9	3896. 58	25	CLASS H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-settling Expansion Additive
INTERMEDIATE	Tail		9710	1096 6	300	1.24	14.5	371.1	25	CLASS H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2380 0	5082	1.34	14.2	6809. 5	25	Class H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
109	6 1247 0	OIL-BASED MUD	10.5	12.5							
0	2424	WATER-BASED MUD	8.4	8.6							
242	4 1096 6	OTHER : Diesel Brine Emulsion	8.5	9.4							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2256.6

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan:

H2S_Plan_20180510091517.pdf

Page 5 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

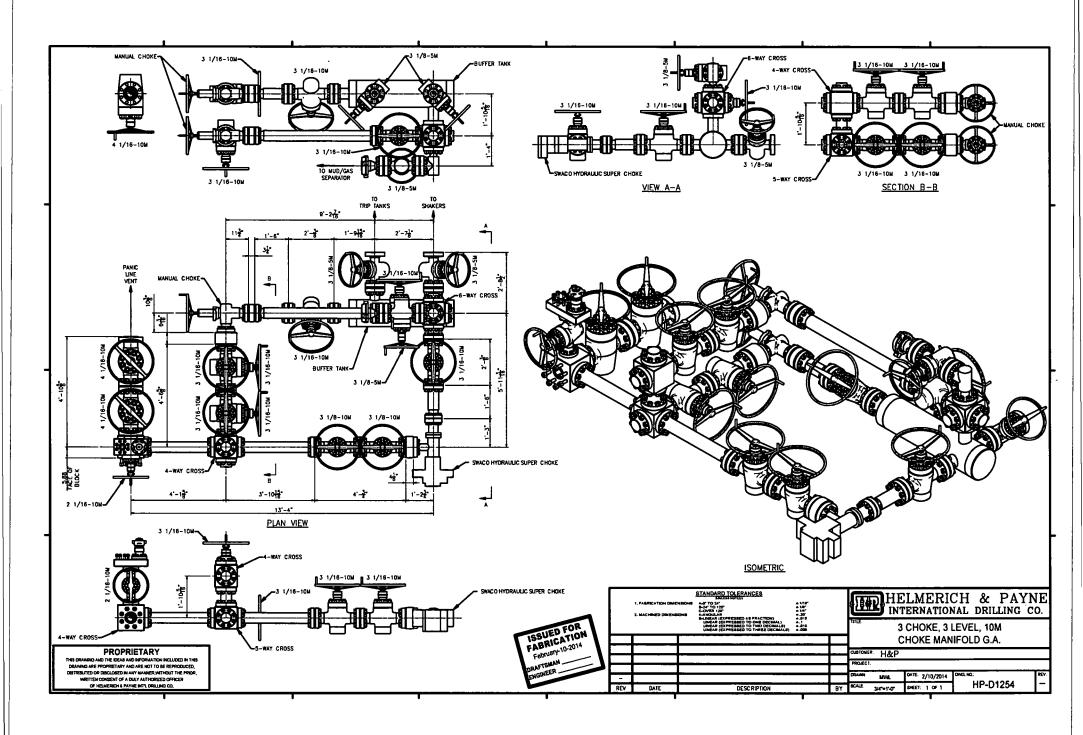
Cam124_DR_20190402142446.pdf

Cam124_LLR_20190402142447.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190402142537.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190402142538.pdf

Other proposed operations facets description:


4-STRING CONTINGENCY PLAN ATTACHED

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190402142638.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190402142755.pdf Requested_Exceptions___3_String_Revised_03252019_20190402142755.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDI

- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier Lower Pipe Rams	
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams		
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams	
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams	
Production Casing 3-1/2"-5-1/2"		Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams	
Open Hole	13-5/8	Drilling Fluid	Blind Rams		
	for system design.	Kill line with minimu	at will allow full Opera m 2" ID will be availab		

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

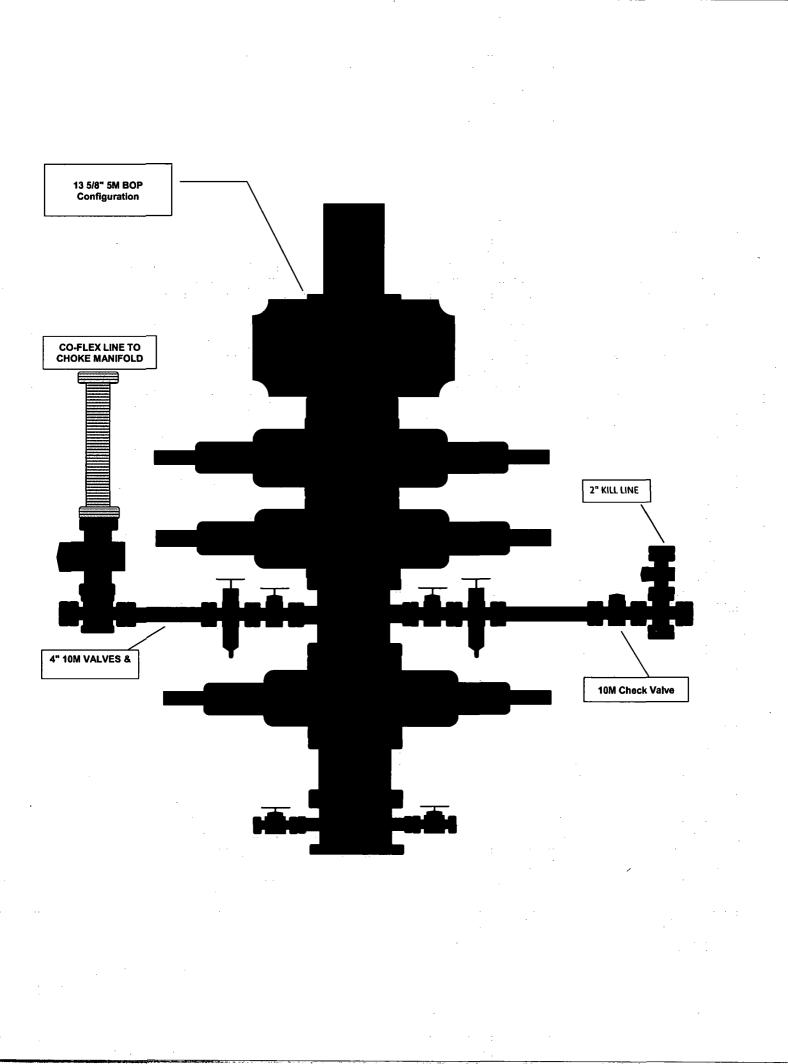
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

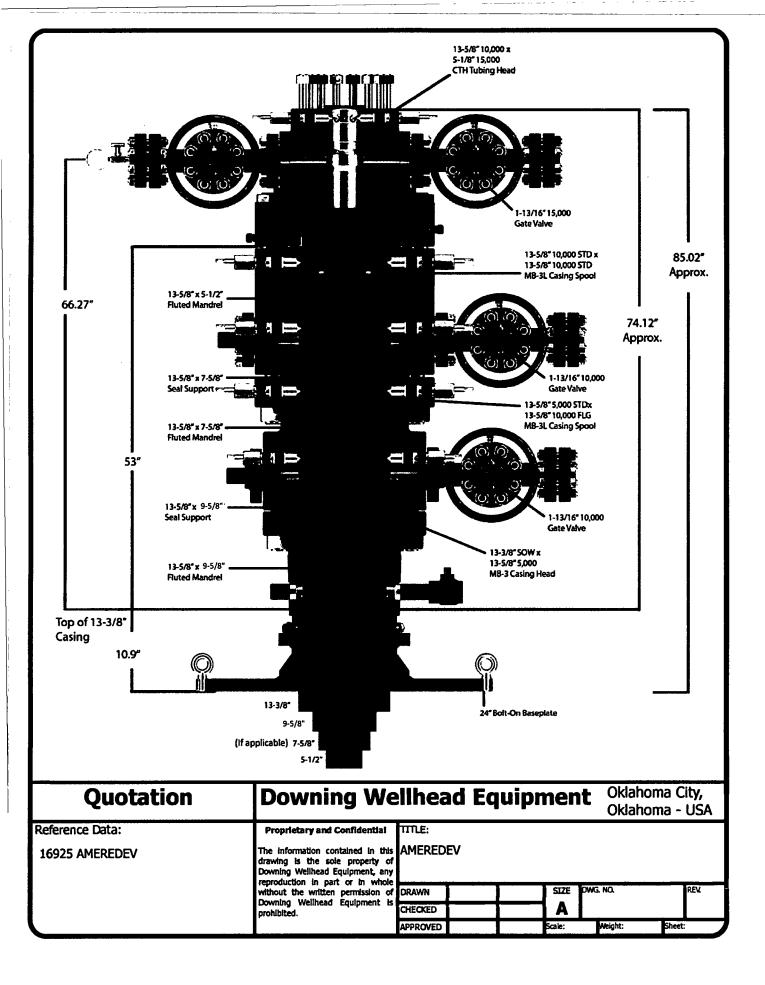
- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

. .

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 124H	Co. Well ID:	xxxxx
SHL:	Sec. 28 26S-36E 670' FNL & 2040' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,912'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,470'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,800'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemer	t	Mud Weight
17.5"		Rustler	2,299'		1,482 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,424'		1 4 1 0	100	8.4
	2	Salado	2,350'		[
		Tansill	3,179'				
		Capitan Reef	3,642'		883 Sacks TOC 0'	SSS	u
		Lamar	4,943'			50% Excess	mulsi
		DV Tool	4,993'		883 Sa TOC 0'	50%	ine E
12.25"		Bell Canyon	5,113'				8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,010'				g Die:
		Bone Spring Lime	8,051'				.4 pp
		First Bone Spring	9,545'				3.5 - 5
		Second Bone Spring	10,177'		cks	ess	Ű
		Third Bone Spring Upper	10,841'	1,723 Sacks TOC 0'	50% Excess		
		9.625" 40# L-80HC BTC	10,966'		1,7 10	50%	
8.5"		Third Bone Spring	11,442'				
0.0		Wolfcamp A	11,664'				DBM
12° Build @		Wolfcamp B	12,120'				10.5 - 12.5 ppg OBM
11,975' MD							12.5
thru	5.5"	20# P-110CYHP BTC	23,800'		sks	ess	.5
13,391' MD	Target Wolfca	mp B 12470 TVD // 23800 MD			o' Sat	Exc	6
<u></u>		· · · · · · · · · · · · · · · · · · ·			5,082 Sacks TOC 0'	25% Excess	
				1	<u>ו מו</u>	2	

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	2,424'	13.375	68	J-55	BTC	
Intermediate	12.25	10,966'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,975'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	23,800'	5.5	20	CYHP-110	BTC	

Casing Design and Safety Factor Check

Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	S	afety Facto	ors			
1.56	6.49	5.55	3.79	0.64		
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
Safety Factors						
2.31	2.14	2.19	1.25	1.17		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	2.92	2.63	1.64	1.77		
Check Prod Casing, Segment B						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	73.54	66.16	1.58	1.77		

40#

SEAH-80 HIGH COLLAPSE (SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

<u>9.625"</u>

Outside Diameter 9.625 in. Wall 0.395 in. **Inside Diameter** 8.835 in. Drift 8.750 in. Weight, T&C 40.000 lbs./ft. Weight, PE 38.970 lbs./ft.

<u>.395"</u>

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
BTC	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U.S. Steel Tubular Products

	5	1/2	20.00 lb	(0.361)	P110 HP
--	---	-----	----------	---------	---------

USS-EAGLE SFH™

· · · · · · · · · · · · · · · · · · ·	PIPE	CONNECTION	
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprletary collapse and connection values, performance properties have been calculated using standard equations defined by API SC3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 124H	Co. Well ID:	XXXXX
SHL:	Sec. 28 26S-36E 670' FNL & 2040' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXXX
	Lea, NM	GL:	2,912'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,470'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,800'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops		Logs	Cement	Mud Weight
17.5"	Rustler	2,299'		1,482 Sacks TOC 0'	8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC	2,424'		1,4 10	δ - œ
	Salado	2,350'			
	Tansill	3,179'			
	Capitan Reef	3,642'		s	
	Lamar	4,943'		883 Sacks TOC 0'	ou% Excess
	DV Tool	4,993'			ine l
12.25"	Bell Canyon	5,113'			- 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon	7,010'	ł		pg Die
	Bone Spring Lime	8,051'	· .		9.4 pp
	First Bone Spring	9,545'			8.5 - 9
	Second Bone Spring	10,177		cks	
	Third Bone Spring Upper	10,841'	1,723 Sacks TOC 0'	1,723 Sa TOC 0'	
	9.625" 40# L-80HC BTC	10,966'		1,7 TO	
8.5"	Third Bone Spring	11,442'			
0.0	Wolfcamp A	11,664'			OBM
12° Build @	Wolfcamp B	12,120'			toess 10.5 - 12.5 ppg OBM
11,975' MD			1		12.5
thru	5.5" 20# P-110CYHP BTC	23,800'		s:	s - s
13,391' MD	Target Wolfcamp B 12470 TVD // 23800 MD			5,082 Sacks TOC 0'	10.5 -
				5,082 S TOC 0'	% C
				<u>5 1</u> 2	Ň

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,424'	13.375	68	J-55	BTC
Intermediate	12.25	10,966'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	11,975'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	23,800'	5.5	20	CYHP-110	BTC

Casing Design and Safety Factor Check

-	Chec	k Surface (Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	S	afety Facto	ors			
1.56	6.49	5.55	3.79	0.64		
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
Safety Factors						
2.31	2.14	2.19	1.25	1.17		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	2.92	2.63	1.64	1.77		
Check Prod Casing, Segment B						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
Safety Factors						
1.36	73.54	66.16	1.58	1.77		

PERFORMANCE DATA

API BTC Technical Data Sheet

13.375 in

68.00 lbs/ft

J-55

Tubular Parameters Size 13.375 in Minimum Yield 55,000 psi 68.00 **Minimum Tensile** 75,000 Nominal Weight lbs/ft psi Grade J-55 Yield Load 1,069,000 lbs PE Weight 66.10 lbs/ft **Tensile Load** 1,458,000 lbs Wall Thickness 0.480 Min. Internal Yield Pressure 3,500 in psi Nominal ID 12.415 in **Collapse Pressure** 1,950 psi **Drift Diameter** 12.259 in Nom. Pipe Body Area 19.445 in²

Connection Parameters Connection OD

Connection OD	14.3/5	IN
Coupling Length	10.625	in
Threads Per Inch	5.000	in
Standoff Thread Turns	1.000	
Make-Up Loss	4.513	in
Yield Load In Tension		lbs
Min. Internal Yield Pressure	3,500	psi

5.000	in	
1.000		
4.513	in	
	lbs	

44 075

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 124H	Co. Well ID:	xxxxx
SHL:	Sec. 28 26S-36E 670' FNL & 2040' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,912'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,470'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,800'
Xmas Tree	2-9/16" 10M	Rig:	TBD KB : 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size				1	Comor		Mud Moinht
		Formation Tops		Logs	Cemer		Mud Weight
17.5"		Rustler	2,299'		1,482 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,424'	·	4, D	100	®.
		Salado	2,350'				
		Tansill	3,179'				
		Capitan Reef	3,642'		s	ess	u
		Lamar	4,943'		883 Sacks TOC 0'	50% Excess	muls
		DV Tool	4,993'		883 TO(50%	je E
12.25"		Bell Canyon	5,113'				8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,010'				g Die
		Bone Spring Lime	8,051'				9.4 pp
		First Bone Spring	9,545'				3.5 - (
		Second Bone Spring	10,177'		cks	ess	
		Third Bone Spring Upper	10,841'		1,723 Sacks TOC 0'	50% Excess	
		9.625" 40# L-80HC BTC	10,966'		1,7 T 0	50,	
8.5"		Third Bone Spring	11,442'				
0.5		Wolfcamp A	11,664'				OBM
12° Build @		Wolfcamp B	12,120'				10.5 - 12.5 ppg OBM
11,975' MD			/				12.5
thru	5.5" 2	0# P-110CYHP BTC	23,800'		cks	ess	.5 -
13,391' MD	Target Wolfcar	mp B 12470 TVD // 23800 MD			2 Sa	ŬХ Ш	10
					5,082 Sacks TOC 0'	25% Excess	

Casing Design and Safety Factor Check

Casing Specifications								
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling		
Surface	17.5	2,424'	13.375	68	J-55	BTC		
Intermediate	12.25	10,966'	9.625	40	HCL-80	BTC		
Prod Segment A	8.5	11,975'	5.5	20	CYHP-110	BTC		
Prod Segment B	8.5	23,800'	5.5	20	CYHP-110	BTC		

	Chec	k Surface	Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	S	afety Facto	ors			
1.56	6.49	5.55	3.79	0.64		
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
Safety Factors						
2.31	2.14	2.19	1.25	1.17		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	2.92	2.63	1.64	1.77		
	Check Pro	od Casing,	Segment B			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	73.54	66.16	1.58	1.77		

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - **b.** Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- **b.** Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. <u>Mud program:</u>

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799								
Key Personnel:								
Name	Title	Office	Mobile					
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810					
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996					
Blake Estrada	Construction Foreman		432-385-5831					

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
<u>Carlsbad</u>	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

CAM/AZ CAM/AZ #5SX Camellia 124H

Wellbore #1

Plan: Design #1

Standard Planning Report

05 March, 2019

AMEREDEV

Ameredev Operating, LLC

Planning Report

Database:	EDM5000			Local Co-ord	nate Refe	rence:	Well Ca	ameilia 124H	
Company:	Ameredev Opera	ating, LLC.		TVD Reference	6;		KB @ 3	2939.0usft	
Project:	CAM/AZ			MD Reference	n -		KB @ 3	2939.0usft	
Site:	CAM/AZ #5SX			North Referen	ice:		Grid		
Well:	Camellia 124H			Survey Calcu	lation Me	thod:	Minimu	m Curvature	
Welibore:	Wellbore #1								
Design:	Design #1			•··· ·		-			
Project	CAM/AZ								
Map System:	US State Plane 198	83		System Datum	:		Mean Se	a Level	
Geo Datum:	North American Dat	tum 1983							
Map Zone:	New Mexico Easter	n Zone							
Site	CAM/AZ #5SX								
Site Position:			Northing:	372,513	.64 usft	Latitude	:		32° 1' 10.853 I
From:	Lat/Long		Easting:	870,193	.17 usft	Longitu	de:		103° 16' 20.164 V
Position Uncertainty:		0.0 usft	Slot Radius:	1	3-3/16 "	Grid Co	nvergence:		0.56
Well	Camellia 124H			<u> </u>	.				
Well Position	+N/-S	0.9 usft	Northing:	3	72,514.5) usft	Latitude:		32° 1' 10.854 !
	+E/-W	80.0 usft	Easting:	8	70,273.10	6 usft	Longitude	:	103° 16' 19.235 V
Position Uncertainty		0.0 usft	Wellhead Elev				Ground Lo		2,912.0 ust
Wellbore	Wellbore #1								
Magnetics	Model Name		Sample Date	Declination (°)			Dip Angle (°)		Field Strength (nT)
· ··	IGRF20	015	3/5/2019		6.61			59.90	47,675.26337606
Design	Design #1		· · · · ·				<u> </u>		
Audit Notes:									
Version:			Phase:	PROTOTYPE	Ti	e On Dept	h:	0.0	
Vertical Section:		Depth F	rom (TVD)	+N/-S	+	E/-W		Direction	
		(1	ısft)	(usft)	(1	usft)		(°)	
			0.0	0.0		0.0		0.84	
Plan Survey Tool Pro	gram Da	ate 3/5/20	019		·			i	
Depth From	Depth To								
(usft)	•	vey (Wellb	ore)	Tool Name		Rema	ks		
1 0.0	23,800.4 Des	sign #1 (We	libore #1)	MWD					
				OWSG MWD - Sta	ndard				

3/5/2019 12:30:53PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Plan Sections

Measured			Vertical			Dogleg	Build	Turn		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	138.00	2,299.5	-11.7	10.5	2.00	2.00	0.00	138.00	
6,724.8	6.00	138.00	6,700.0	-355.4	320.0	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-367.0	330.5	2.00	-2.00	0.00	180.00	
11,975.3	0.00	0.00	11,950.0	-367.0	330.5	0.00	0.00	0.00	0.00	
12,694.7	86.32	356.94	12,426.5	79.1	306.6	12.00	12.00	0.00	356.94	
13,353.9	86.32	356.94	12,468.8	736.1	271.5	0.00	0.00	0.00	0.00	
13,390.9	90.00	359.42	12,470.0	773.0	270.4	12.00	9.96	6.70	33.94	Cam124 FTP
23,800.4	90.00	359,42	12,470.0	11,182.0	164.1	0.00	0.00	0.00	0.00	Cam124 BHL

3/5/2019 12:30:53PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Cameilia 124H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(*/100usft)
0.0	0.00	0.00	0.0	0.0	0,0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	138.00	2,100.0	-1.3	1.2	-1.3	2.00	2.00	0.00
2,100.0	4.00	138.00	2,199.8	-5.2	4.7	-5.1	2.00	2.00	0.00
2,200.0	6.00	138.00	2,299.5	-11.7	10.5	-11.5	2.00	2.00	0.00
						-19.2	0.00	0.00	0.00
2,400.0	6.00	138.00	2,398.9	-19.4	17.5				
2,500.0	6.00	138.00	2,498.4	-27.2	24.5	-26.8	0.00	0.00	0.00
2,600.0	6.00	138.00	2,597.8	-35.0	31.5	-34.5	0.00	0.00	0.00
2,700.0	6.00	138.00	2,697.3	-42.7	38.5	-42.2	0.00	0.00	0.00
2,800.0	6.00	138.00	2,796.7	-50.5	45.5	-49.8	0.00	0.00	0.00
2,900.0	6.00	138.00	2,896.2	-58.3	52.5	-57.5	0.00	0.00	0.00
3,000.0	6.00	138.00	2,995.6	-66.0	59.5	-65.2	0.00	0.00	0.00
3,100.0	6.00	138.00	3,095.1	-73.8	66.5	-72.8	0.00	0.00	0.00
3,200.0	6.00	138.00	3,194.5	-81.6	73.4	-80.5	0.00	0.00	0.00
3,300.0	6.00	138.00	3,294.0	-89.3	80.4	-88.2	0.00	0.00	0.00
3,400.0	6.00	138.00	3,393.4	-97.1	87.4	-95.8	0.00	0.00	0.00
3,500.0	6.00	138.00	3,492.9	-104.9	94.4	-103.5	0.00	0.00	0.00
3,600.0	6.00	138.00	3,592.3	-112.6	101.4	-111.1	0.00	0.00	0.00
3,700.0	6.00	138.00	3,691.8	-120.4	108.4	-118.8	0.00	0.00	0.00
3,800.0	6.00	138.00	3,791.2	-128.2	115.4	-126.5	0.00	0.00	0.00
3,900.0	6.00	138.00	3,890.7	-136.0	122.4	-134.1	0.00	0.00	0.00
4,000.0	6.00	138.00	3,990.1	-143.7	129.4	-141.8	0.00	0.00	0.00
4,100.0	6.00	138.00	4,089.6	-151.5	136.4	-149.5	0.00	0.00	0.00
4,200.0	6.00	138.00	4,189.0	-159.3	143.4	-157.1	0.00	0.00	0.00
4,300.0	6.00	138.00	4,288.5	-167.0	150.4	-164.8	0.00	0.00	0.00
4,400.0	6.00	138.00	4,387.9	-174.8	157.4	-172.5	0.00	0.00	0.00
4,500.0	6.00	138.00	4,487.4	-182.6	164.4	-180.1	0.00	0.00	0.00
4,600.0	6.00	138.00	4,586.9	-190.3	171.4	-187.8	0.00	0.00	0.00
4,700.0	6.00	138.00	4,686.3	-198.1	178.4	-195.5	0.00	0.00	0.00
4,800.0	6.00	138.00	4,785.8	-205.9	185.4	-203.1	0.00	0.00	0.00
4,900.0	6.00	138.00	4,885.2	-213.6	192.4	-210.8	0.00	0.00	0.00
5,000.0	6.00	138.00	4,984.7	-221.4	199.3	-218.4	0.00	0.00	0.00
5,100.0	6.00	138.00	5,084.1	-229.2	206.3	-226.1	0.00	0.00	0.00
5,200.0	6.00	138.00	5,183.6	-236.9	213.3	-233.8	0.00	0.00	0.00
5,300.0	6.00	138.00	5,283.0	-244.7	220.3	-241.4	0.00	0.00	0.00

3/5/2019 12:30:53PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Tum Rate (°/100usft)
	······•								
5,400.0	6.00	138.00	5,382.5	-252.5	227.3	-249.1	0.00	0.00	0.00
5,500.0	6.00	138.00	5,481.9	-260.2	234.3	-256.8	0.00	0.00	0.00
5,600.0	6.00	138.00	5,581.4	-268.0	241.3	-264.4	0.00	0.00	0.00
5,700.0	6.00	138.00	5,680.8	-275.8	248.3	-272.1	0.00	0.00	0.00
5,800.0	6.00	138.00	5,780.3	-283.5	255.3	-279.8	0.00	0.00	0.00
5,900.0	6.00	138.00	5,879.7	-291.3	262.3	-287.4	0.00	0.00	0.00
6,000.0	6.00	138.00	5,979.2	-299.1	269.3	-295.1	0.00	0.00	0.0
6,100.0	6.00	138.00	6,078.6	-306.8	276.3	-302.8	0.00	0.00	0.0
6,200.0	6.00	138.00	6,178.1	-314.6	283.3	-310.4	0.00	0.00	0.00
6,300.0	6.00	138.00	6,277.5	-322.4	290.3	-318.1	0.00	0.00	0.0
6,400.0	6.00	138.00	6,377.0	-330.1	297.3	-325.8	0.00	0.00	0.00
6,500.0	6.00	138.00	6,476.4	-337.9	304.3	-333.4	0.00	0.00	0.0
6,600.0	6.00	138.00	6,575.9	-345.7	311.3	-341.1	0.00	0.00	0.0
6,700.0	6.00	138.00	6,675.3	-353.5	318.3	-348.7	0.00	0.00	0.0
6,724.8	6.00	138.00	6,700.0	-355.4	320.0	-350.6	0.00	0.00	0.00
6,800.0	4.50	138.00	6,774.9	-360.5	324.6	-355.7	2.00	-2.00	0.0
6,900.0	2.50	138.00	6,874.7	-365.0	328.7	-360.2	2.00	-2.00	0.00
7,000.0	0.50	138.00	6,974.7	-367.0	330.4	-362.1	2.00	-2.00	0.0
7,024.8	0.00	0.00	6,999.5	-367.0	330.5	-362.2	2.00	-2.00	0.0
7,100.0	0.00	0.00	7,074.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,200.0	0.00	0.00	7,174.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,300.0	0.00	0.00	7,274.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,400.0	0.00	0.00	7,374.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,500.0	0.00	0.00	7,474.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,600.0	0.00	0.00	7,574.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,700.0	0.00	0.00	7,674.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,800.0	0.00	0.00	7,774.7	-367.0	330.5	-362.2	0.00	0.00	0.0
7,900.0	0.00	0.00	7,874.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,000.0	0.00	0.00	7,974.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,100.0	0.00	0.00	8,074.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,200.0	0.00	0.00	8,174.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,300.0	0.00	0.00	8,274.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,400.0	0.00	0.00	8,374.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,500.0	0.00	0.00	8,474.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,600.0	0.00	0.00	8,574.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,700.0	0.00	0.00	8,674.7	-367.0	330.5	-362.2	0.00	0.00	0.0
8,800.0	0.00	0.00	8,774.7	-367.0	330.5	-362,2	0.00	0.00	0.0
8,900.0	0.00	0.00	8,874.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,000.0	0.00	0.00	8,974.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,100.0	0.00	0.00	9,074.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,200.0	0.00	0.00	9,174.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,300.0	0.00	0.00	9,274.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,400.0	0.00	0.00	9,374.7	-367.0	330.5	-362.2	0.00	0.00	0.00
9,500.0	0.00	0.00	9,474.7	-367.0	330.5	-362.2	0.00	0.00	0.0
9,600.0	0.00	0.00	9,574.7	-367.0	330.5	-362.2	0.00	0.00	0.00
9,700.0	0.00	0.00	9,674.7	-367.0	330.5	-362.2	0.00	0.00	0.00
9,800.0	0.00	0.00	9,774.7	-367.0	330.5	-362.2	0.00	0.00	0.00
9,900.0	0.00	0.00	9,874.7	-367.0	330.5	-362.2	0.00	0.00	0.00
10,000.0	0.00	0.00	9,974.7	-367.0	330.5	-362.2	0.00	0.00	0.00
10,100.0	0.00	0.00	10,074.7	-367.0	330.5	-362.2	0.00	0.00	0.0
10,200.0	0.00	0.00	10,174.7	-367.0	330.5	-362.2	0.00	0.00	0.0
10,300.0	0.00	0.00	10,274.7	-367.0	330.5	-362.2	0.00	0.00	0.0
10,400.0	0.00	0.00	10,374.7	-367.0	330.5	-362.2	0.00	0.00	0.00
10,500.0	0.00	0.00	10,474.7	-367.0	330.5	-362.2	0.00	0.00	0.00

3/5/2019 12:30:53PM

Planning Report

,				
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1	-		
Design:	Design #1			

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0	0.00	0.00	10,574.7	-367.0	330,5	-362.2	0.00	0.00	0.00
10,700.0	0.00	0.00	10,674.7	-367.0	330.5	-362.2	0.00	0.00	0.00
10,800.0	0.00	0.00	10,774.7	-367.0	330.5	-362.2	0.00	0.00	0.00
10,900.0	0.00	0.00	10,874.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,000.0	0.00	0.00	10,974.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,100.0	0.00	0.00	11,074.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,200.0	0.00	0.00	11,174.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,300.0	0.00	0.00	11,274.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,400.0	0.00	0.00	11,374.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,500.0	0.00	0.00	11,474.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,600.0	0.00	0.00	11,574.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,700.0	0.00	0.00	11,674.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,800.0	0.00	0.00	11,774.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,900.0	0.00	0.00	11,874.7	-367.0	330.5	-362.2	0.00	0.00	0.00
11,975.3	0.00	0.00	11,950.0	-367.0	330.5	-362.2	0.00	0.00	0,00
Cam124 KO									
12,000.0	2.96	356.94	11,974.7	-366.4	330.5	-361.5	12.00	12.00	0.00
12,100.0	14.96	356.94	12,073.3	-350.9	329.6	-346.0	12.00	12.00	0.00
12,200.0	26.96	356.94	10 166 5	-315.2	327.7	-310.4	12.00	12.00	0.00
12,200.0	38.96	356.94	12,166.5 12,250.2	-315.2		-256.2		12.00	0.00
			•		324.8		12.00		
12,400.0	50.96	356.94	12,320.8	-190.6	321.1	-185.8	12.00	12.00	0.00
12,500.0	62.96	356.94	12,375.3	-107.0	316.6	-102.4	12.00	12.00	0.00
12,600.0	74.96	356.94	12,411.1	-14.0	311.6	-9.4	12.00	12.00	0.00
12,694.7	86.32	356.94	12,426.5	79.1	306.6	83.6	12.00	12.00	0.00
12,700.0	86.32	356.94	12,426.8	84.5	306.4	88.9	0.00	0.00	0.00
12,800.0	86.32	356.94	12,433.2	184.1	301.0	188.5	0.00	0.00	0.00
12,900.0	86.32	356.94	12,439.7	283.8	295.7	288.1	0.00	0.00	0.00
13,000.0	86.32	356.94	12,446.1	383.4	290.4	387.6	0.00	0.00	0.00
13,100.0	86.32	356.94	12,452.5	483.1	285.1	487.2	0.00	0.00	0.00
13,200.0	86.32	356.94	12,458.9	582.7	279.7	586.8	0.00	0.00	0.00
13,287.0	86.32	356.94	12,464.5	669.4	. 275.1	673.4	0.00	0.00	0.00
	NMNM23199	550.54	12,404.5	003.4	~ 2/0.1	0/0.4	0.00	0.00	0.00
13,300.0	86.32	356.94	12,465.3	682.4	274.4	686.3	0.00	0.00	0.00
13,353.9	86.32	356.94	12,468.8	736.1	271.5	740.0	0.00	0.00	0.00
13,390.9	90.00	359.42	12,470.0	773.0	270.4	776.9	12.00	9.96	6.70
Cam124 FTF									
13,400.0	90.00	359.42	12,470.0	782.1	270.3	786.0	0.00	0.00	0.00
13,500.0	90.00	359.42	12,470.0	882.1	269.2	886.0	0.00	0.00	0.00
13,600.0	90.00	359.42	12,470.0	982.1	268.2	985.9	0.00	0.00	0.00
13,700.0	90.00	359.42	12,470.0	1,082.1	267.2	1,085. 9	0.00	0.00	0.00
13,800.0	90.00	359.42	12,470.0	1,182.1	266.2	1,185.9	0.00	0.00	0.00
13,900.0	90.00	359.42	12,470.0	1,282.1	265.2	1,285.9	0.00	0.00	0.00
14,000.0	90.00	359.42	12,470.0	1,382.1	264.1	1,385.8	0.00	0.00	0.00
14,100.0	90.00	359.42	12,470.0	1,482.1	263.1	1,485.8	0.00	0.00	0.00
14,200.0	90.00	359.42	12,470.0	1,582.1	262.1	1,585.8	0.00	0.00	0.00
14,300.0	90.00	359.42	12,470.0	1,682.1	261.1	1,685.7	0.00	0.00	0.00
14,300.0	90.00	359.42	12,470.0	1,782.1	260.1	1,785.7	0.00	0.00	0.00
14,400.0	90.00	359.42	12,470.0	1,882.1	259.0	1,885.7	0.00	0.00	0.00
14,500.0	90.00	359.42	12,470.0	1,002.1	259.0	1,985.6	0.00	0.00	0.00
						2,085.6	0.00	0.00	0.00
14,700.0	90.00	359.42	12,470.0	2,082.1	257.0				
14,800.0	90.00	359.42	12,470.0	2,182.1	256.0	2,185.6	0.00	0.00	0.00
14,900.0	90.00	359.42	12,470.0	2,282.0	255.0	2,285.5	0.00	0.00	0.00
15,000.0	90.00	359.42	12,470.0	2,382.0	253.9	2,385.5	0.00	0.00	0.00

3/5/2019 12:30:53PM

AMEREDEV

Ameredev Operating, LLC

Planning Report

<u> </u>			
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
15,100.0	90.00	359.42	12,470.0	2,482.0	252.9	2,485.5	0.00	0.00	0.00
15,200.0	90.00	359.42	12,470.0	2,582.0	251. 9	2,585.5	0.00	0.00	0.00
45 200 0	00.00	359.42	10 470 0	2 692 0	250.9	2,685.4	0.00	0.00	0.00
15,300.0	90.00		12,470.0	2,682.0			0.00	0.00	0.00
15,400.0	90.00	359.42	12,470.0	2,782.0	249.9	2,785.4			
15,500.0	90.00	359.42	12,470.0	2,882.0	248.8	2,885.4	0.00	0.00	0.00
15,600.0	90.00	359.42	12,470.0	2,982.0	247.8	2,985.3	0.00	0.00	0.00
15,700.0	90.00	359.42	12,470.0	3,082.0	246.8	3,085.3	0.00	0.00	0.00
15,800.0	90.00	359.42	12,470.0	3,182.0	245.8	3,185.3	0.00	0.00	0.00
15,900.0	90.00	359.42	12,470.0	3,282.0	244.8	3,285.2	0.00	0.00	0.00
16,000.0	90.00	359.42	12,470.0	3,382.0	243.7	3,385.2	0.00	0.00	0.00
16,100.0	90.00	359.42	12,470.0	3,482.0	242.7	3,485.2	0.00	0.00	0.00
16,200.0	90.00	359.42	12,470.0	3,582.0	241.7	3,585.1	0.00	0.00	0.00
16,300.0	90.00	359.42	12,470.0	3,682.0	240.7	3,685.1	0.00	0.00	0.00
16,400.0	90.00	359.42	12,470.0	3,782.0	239.7	3,785.1	0.00	0.00	0.00
16,500.0	90.00	359.42	12,470.0	3,882.0	238.6	3,885.0	0.00	0.00	0.00
16,600.0	90.00	359.42	12,470.0	3,982.0	237.6	3,985.0	0.00	0.00	0.00
16,700.0	90.00	359.42	12,470.0	4,082.0	236.6	4,085.0	0.00	0.00	0.00
16,800.0	90.00	359.42	12,470.0	4,181.9	235.6	4,185.0	0.00	0.00	0.00
16,900.0	90.00	359.42	12,470.0	4,281.9	234.5	4,284.9	0.00	0.00	0.00
17,000.0	90.00	359.42	12,470.0	4,381.9	233.5	4,384.9	0.00	0.00	0.00
17,100.0	90.00	359.42	12,470.0	4,481.9	232.5	4,484.9	0.00	0.00	0.00
17,200.0	90.00	359.42	12,470.0	4,581.9	231.5	4,584.8	0.00	0.00	0.00
17,300.0	90.00	359.42	12,470.0	4,681.9	230.5	4,684.8	0.00	0.00	0.00
17,400.0	90.00	359.42	12,470.0	4,781.9	229.4	4,784.8	0.00	0.00	0.00
17,500.0	90.00	359.42	12,470.0	4,881.9	228.4	4,884.7	0.00	0.00	0.00
17,600.0	90.00	359.42	12,470.0	4,981.9	227.4	4,984.7	0.00	0.00	0.00
17,700.0	90.00	359.42	12,470.0	5,081.9	226.4	5,084.7	0.00	0.00	0.00
17,800.0	90.00	359.42	12,470.0	5,181.9	225.4	5,184.6	0.00	0.00	0.00
17,900.0	90.00	359.42	12,470.0	5,281.9	224.3	5,284.6	0.00	0.00	0.00
18,000.0	90.00	359.42	12,470.0	5,381.9	223.3	5,384.6	0.00	0.00	0.00
	90.00	359.42	12,470.0	5,481.9	223.3	5,484.6	0.00	0.00	0.00
18,100.0							0.00	0.00	0.00
18,200.0	90.00	359.42	12,470.0	5,581.9	221.3	5,584.5	0.00	0.00	
18,300.0	90.00	359.42	12,470.0	5,681. 9	220.3	5,684.5	0.00	0.00	0.00
18,400.0	90.00	359.42	12,470.0	5,781.9	219.2	5,784.5	0.00	0.00	0.00
18,500.0	90.00	359.42	12,470.0	5,881.9	218.2	5,884.4	0.00	0.00	0.00
18,600.0	90.00	359.42	12,470.0	5,981.9	217.2	5,984.4	0.00	0.00	0.00
18,700.0	90.00	359.42	12,470.0	6,081.9	216.2	6,084.4	0.00	0.00	0.00
18,800.0	90.00	359.42	12,470.0	6,181.8	215.2	6,184.3	0.00	0.00	0.00
18,900.0	90.00	359.42	12,470.0	6,281.8	215.2	6,284.3	0.00	0.00	0.00
19,000.0	90.00	359.42	12,470.0	6,381.8	214.1	6,384.3	0.00	0.00	0.00
19,100.0	90.00	359.42	12,470.0	6,481.8	213.1	6,484.2	0.00	0.00	0.00
19,200.0	90.00	359.42	12,470.0	6,581.8	212.1	6,584.2	0.00	0.00	0.00
19,300.0	90.00	359.42	12,470.0	6,681.8	210.1	6,684.2	0.00	0.00	0.00
19,400.0	90.00	359.42	12,470.0	6,781.8	209.0	6,784.2	0.00	0.00	0.00
19,500.0	90.00	359.42	12,470.0	6,881.8	208.0	6,884.1	0.00	0.00	0.00
19,600.0	90.00	359.42	12,470.0	6,981.8	207.0	6,984.1	0.00	0.00	0.00
19,700.0	90.00	359.42	12,470.0	7,081.8	206.0	7,084.1	0.00	0.00	0.00
19,800.0	90.00	359.42	12,470.0	7,181.8	205.0	7,184.0	0.00	0.00	0.00
19,900.0	90.00	359.42	12,470.0	7,281.8	203.0	7,184.0	0.00	0.00	0.00
20,000.0	90.00	359.42	12,470.0	7,381.8	203.9	7,284.0	0.00	0.00	0.00
•					202.9	7,384.0	0.00	0.00	0.00
20,100.0	90.00	359.42	12,470.0	7,481.8 7 591 9				0.00	0.00
20,200.0	90.00	359,42	12,470.0	7,581.8	200.9	7,583.9	0.00	0.00	0.00
20,300.0	90.00	359.42	12,470.0	7,681.8	199.9	7,683.9	0.00	0.00	0.00
20,400.0	90.00	359.42	12,470.0	7,781.8	198.8	7,783.8	0.00	0.00	0.00

3/5/2019 12:30:53PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Depth (usft) Inc (usft) 20,500.0 20,600.0 20,600.0 20,700.0 20,800.0 20,900.0 21,000.0 21,000.0 21,200.0 21,200.0 21,300.0 21,500.0 21,600.0 21,600.0 21,900.0 22,000.0 22,000.0 22,000.0 22,000.0 22,200.0 22,300.0 22,400.0 22,500.0 22,500.0	clination (*) 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	Azimuth (*) 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	Depth (usft) 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	+N/-S (usft) 7,881.8 7,981.8 8,081.7 8,181.7 8,281.7 8,381.7 8,481.7 8,681.7 8,681.7 8,681.7 8,681.7 9,081.7 9,081.7 9,181.7 9,281.7	+E/-W (usft) 197.8 196.8 195.8 194.8 193.7 192.7 191.7 190.7 189.7 188.6 187.6 186.6 185.6 184.5	Section (usft) 7,883.8 7,983.8 8,083.7 8,183.7 8,283.7 8,283.7 8,483.6 8,583.6 8,583.6 8,683.6 8,683.5 8,983.5 9,083.4	Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
20,600.0 20,700.0 20,900.0 21,000.0 21,000.0 21,200.0 21,200.0 21,300.0 21,400.0 21,500.0 21,500.0 21,600.0 21,600.0 21,600.0 21,900.0 22,000.0 22,100.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	7,981.8 8,081.7 8,181.7 8,281.7 8,381.7 8,481.7 8,581.7 8,681.7 8,681.7 8,881.7 9,081.7 9,181.7 9,281.7	196.8 195.8 194.8 193.7 192.7 191.7 190.7 189.7 188.6 187.6 186.6 185.6 185.6	7,983.8 8,083.7 8,183.7 8,283.7 8,383.7 8,483.6 8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
20,700.0 20,800.0 21,000.0 21,000.0 21,200.0 21,200.0 21,200.0 21,400.0 21,500.0 21,600.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,300.0 22,300.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,081.7 8,181.7 8,281.7 8,381.7 8,481.7 8,581.7 8,681.7 8,781.7 8,881.7 9,081.7 9,081.7 9,181.7 9,281.7	195.8 194.8 193.7 192.7 191.7 190.7 189.7 188.6 187.6 186.6 185.6 185.6 184.5	8,083.7 8,183.7 8,283.7 8,483.6 8,583.6 8,683.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
20,800.0 20,900.0 21,000.0 21,100.0 21,200.0 21,200.0 21,400.0 21,500.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,000.0 22,200.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,181.7 8,281.7 8,381.7 8,581.7 8,581.7 8,681.7 8,781.7 8,881.7 9,081.7 9,081.7 9,181.7 9,281.7	194.8 193.7 192.7 191.7 190.7 189.7 188.6 187.6 186.6 185.6 185.6	8,183.7 8,283.7 8,383.7 8,483.6 8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
20,900.0 21,000.0 21,100.0 21,200.0 21,200.0 21,300.0 21,500.0 21,500.0 21,600.0 21,700.0 21,900.0 21,900.0 22,000.0 22,100.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,281.7 8,381.7 8,481.7 8,581.7 8,681.7 8,781.7 8,881.7 9,081.7 9,081.7 9,181.7 9,281.7	193.7 192.7 191.7 180.7 188.6 187.6 186.6 185.6 185.6 184.5	8,283.7 8,383.7 8,483.6 8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
21,000.0 21,100.0 21,200.0 21,300.0 21,400.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,381.7 8,481.7 8,581.7 8,681.7 8,781.7 8,881.7 9,081.7 9,081.7 9,181.7 9,281.7	192.7 191.7 190.7 188.6 188.6 186.6 186.6 185.6 184.5	8,383.7 8,483.6 8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
21,100.0 21,200.0 21,300.0 21,400.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,000.0 22,200.0 22,200.0 22,200.0 22,300.0 22,300.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,481.7 8,581.7 8,681.7 8,781.7 8,881.7 8,981.7 9,081.7 9,181.7 9,281.7	191.7 190.7 189.7 188.6 187.6 186.6 185.6 185.6 184.5	8,483.6 8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
21,200.0 21,300.0 21,400.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,000.0 22,200.0 22,200.0 22,300.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,581.7 8,681.7 8,781.7 8,881.7 8,981.7 9,081.7 9,181.7 9,281.7	190.7 189.7 188.6 187.6 186.6 185.6 184.5	8,583.6 8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
21,300.0 21,400.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,681.7 8,781.7 8,881.7 8,981.7 9,081.7 9,181.7 9,281.7	189.7 188.6 187.6 186.6 185.6 184.5	8,683.6 8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
21,400.0 21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,000.0 22,200.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,781.7 8,881.7 8,981.7 9,081.7 9,181.7 9,281.7	188.6 187.6 186.6 185.6 185.6	8,783.5 8,883.5 8,983.5 9,083.4	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
21,500.0 21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,881.7 8,981.7 9,081.7 9,181.7 9,281.7	187.6 186.6 185.6 184.5	8,883.5 8,983.5 9,083.4	0.00 0.00 0.00	0.00 0.00	0.00 0.00
21,600.0 21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0 12,470.0 12,470.0	8,981.7 9,081.7 9,181.7 9,281.7	186.6 185.6 184.5	8,983.5 9,083.4	0.00 0.00	0.00	0.00
21,700.0 21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00 90.00 90.00	359.42 359.42 359.42 359.42	12,470.0 12,470.0 12,470.0 12,470.0	9,081.7 9,181.7 9,281.7	185.6 184.5	9,083.4	0.00		
21,800.0 21,900.0 22,000.0 22,100.0 22,200.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00 90.00	359.42 359.42 359.42	12,470.0 12,470.0 12,470.0	9,181.7 9,281.7	184.5			0.00	0.00
21,900.0 22,000.0 22,100.0 22,200.0 22,300.0 22,400.0	90.00 90.00 90.00	359.42 359.42	12,470.0 12,470.0	9,281.7		0.400.4			5.00
22,000.0 22,100.0 22,200.0 22,300.0 22,400.0	90.00 90.00	359.42	12,470.0			9,183.4	0.00	0.00	0.00
22,100.0 22,200.0 22,300.0 22,400.0	90.00				183.5	9,283,4	0.00	0.00	0.00
22,200.0 22,300.0 22,400.0		359 42		9,381.7	182.5	9,383.3	0.00	0.00	0.00
22,300.0 22,400.0	90.00	000.42	12,470.0	9,481.7	181.5	9,483.3	0.00	0.00	0.00
22,400.0	50.00	359.42	12,470.0	9,581.7	180.5	9,583.3	0.00	0.00	0.00
	90.00	359.42	12,470.0	9,681.7	179.4	9,683.3	0.00	0.00	0.00
22.500.0	90.00	359.42	12,470.0	9,781.7	178.4	9,783.2	0.00	0.00	0.00
	90.00	359.42	12,470.0	9,881.7	177.4	9,883.2	0.00	0.00	0.00
22,600.0	90.00	359.42	12,470.0	9,981.6	176.4	9,983.2	0.00	0.00	0.00
22,700.0	90.00	359.42	12,470.0	10,081.6	175.4	10,083.1	0.00	0.00	0.00
22,800.0	90.00	359.42	12,470.0	10,181.6	174.3	10,183.1	0.00	0.00	0.00
22,900.0	90.00	359.42	12,470.0	10,281.6	173.3	10,283.1	0.00	0.00	0.00
23,000.0	90.00	359.42	12,470.0	10,381.6	172.3	10,383.0	0.00	0.00	0.00
23,100.0	90.00	359.42	12,470.0	10,481.6	171.3	10,483.0	0.00	0.00	0.00
23,200.0	90.00	359.42	12,470.0	10,581.6	170.3	10,583.0	0.00	0.00	0.00
23,300.0	90.00	359.42	12,470.0	10,681.6	169.2	10,682.9	0.00	0.00	0.00
23,400.0	90.00	359.42	12,470.0	10,781.6	168.2	10,782.9	0.00	0.00 、	0.00
23,500.0	90.00	359.42	12,470.0	10,881.6	167.2	10,882.9	0.00	0.00	0.00
23,600.0	90.00	359.42	12,470.0	10,981.6	166.2	10,982.9	0.00	0.00	0.00
23,700.0	90.00	359.42	12,470.0	11,081.6	165.2	11,082.8	0.00	0.00	0.00
23,750.4	90.00	359.42	12,470.0	11,132.0	164.6	11,133.2	0.00	0.00	0.00
Cam124 LTP									
23,800.0	90.00	359.42	12,470.0	11,181.6	164.1	11,182.8	0.00	0.00	0.00
23,800.4	90.00	359.42	12,470.0	11,182.0	164.1	11,183.2	0.00	0.00	0.00

3/5/2019 12:30:53PM

Planning Report

provide the state of the state			
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 124H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2939.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 124H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	,	1
Design:	Design #1		

Design Targets ٤ ----**Target Name** - hit/miss target Dip Angle Dip Dir. TVD +N/-S +E/-W Northing Easting - Shape (usft) (°) (usft) (usft) (usft) (usft) (°) Latitude Longitude Cam124 KOP 0.00 0.00 11,950.0 -367.0 330.5 372,147.46 870,603.65 32° 1' 7.190 N 103° 16' 15.439 W plan hits target center Point Cam124 BHL 0.00 0.00 12,470.0 11,182.0 164.1 383,696.51 870,437.30 32° 3' 1.480 N 103° 16' 16.051 W - plan hits target center - Point Cam124 FTP 0.00 270.4 0.00 12,470.0 773.0 373,287.53 870,543.52 32° 1' 18.476 N 103° 16' 16.007 W - plan hits target center - Point Cam124 LTP 0.00 0.00 12,470.0 11,132.0 164.7 383,646.49 870,437.82 32° 3' 0.985 N 103° 16' 16.051 W - plan hits target center - Point 3 Plan Annotations

Measured	Vertical	Local Coon	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
13.287.0	12,464.5	669.4	275.1	Cam124 into NMNM23199

3/5/2019 12:30:53PM

Page 9

CAM/AZ CAM/AZ #5SX Camellia 124H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

05 March, 2019

	REDE	V		-	erating, LLC tion Line Footag	es '		
Company: Project: Site: Well: Wellbore: Design:	Ameredev Operati CAM/AZ CAM/AZ #5SX Carnellia 124H Wellbore #1 Design #1	ing, LLC.		TVD Refere MD Referer North Refe	nce:	Well Camellia 1 KB @ 2939.0us KB @ 2939.0us Grid Minimum Curva EDM5000	ift	
Project	CAM/AZ							
Map System: Geo Datum: Map Zone:	US State Plane North America New Mexico Ea	n Datum 1983		System D)atum:	Mean Sea Lev	el	
Site	CAM/AZ #5S	x						
Site Position: From: Position Uncertain	Lat/Long	0.0 usft	Northing: Easting: Slot Radius:		70,193.17 usft Lon	tude: gitude: I Convergence:		32° 1' 10.853 103° 16' 20.164 V 0.56 °
Well	Camellia 124	H						
Well Position Position Uncertain	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Weilhead Ele	vetion:	372,514.50 usft 870,273.16 usft usft	Latitude: Longitude: Ground Level:		32° 1' 10.854 103° 16' 19.235 V 2,912.0 usi
					usit	Ground Level.		
Wellbore	Wellbore #1							
Magnetics	Model Na	ame	Sample Date		nation °)	Dip Angle (°)	Field Str (n1	
	IG	RF2015	3/5/2019	-	6.61	59.90	9 47,67	5.26337607
Audit Notes: Version:	IG Design #1		Phase:	PROTOTYPE	Tie On (Depth:	0.0	5.26337607
Design Audit Notes: Version: Vertical Section:		Depth Fr		PROTOTYPE +N/-S (usft)		Depth:		5.26337607
Audit Notes: Version:		Depth Fr (u	Phase: om (TVD)	+N/-S	Tie On I +E/-W	Depth:	0.0 Direction	5.26337607
Audit Notes: Version: Vertical Section:	Design #1	Depth Fr (u 0	Phase: om (TVD) sft) .0	+N/-S (usft)	Tie On +E/-W (usft)	Depth:	0.0 Direction (°)	5.26337607
Audit Notes: Version: Vertical Section:	Design #1	Depth Fr (u	Phase: om (TVD) sft) .0	+N/-S (usft) 0.0	Tie On +E/-W (usft)	Depth:	0.0 Direction (°)	5.26337607
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft)	Design #1 ram To (usft)	Depth Fr (u 0 Date 3/5/20	Phase: om (TVD) sft) .0 19 re)	+N/-S (usft) 0.0 T	Tie On +E/-₩ (usft) 0.0	Depth:	0.0 Direction (°) 0.84	5.26337607
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft)	Design #1 ram To (usft)	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo	Phase: om (TVD) sft) .0 19 re)	+N/-S (usft) 0.0 T	Tie On +E/-W (usft) 0.0	Depth:	0.0 Direction (°) 0.84	5.26337607
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft)	Design #1 ram To (usft)	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo	Phase: om (TVD) sft) .0 19 re) bore #1) muth)	+N/-S (usft) 0.0 T	Tie On +E/-W (usft) 0.0	Depth:	0.0 Direction (°) 0.84	Longitude
Audit Notes: /ersion: /ertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft)	Design #1 ram To (usft) 0.0 23,800.4 Inc (°) 0.0	Depth Fr (u: 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Design #1 (Well Azi (azi (°	Phase: om (TVD) sft) .0 19 re) bore #1) muth)) 0.00	+N/-S (usft) 0.0 T T N (usft) 0.0	Tie On +E/-W (usft) 0.0 Tool Name /WD +FSL/-FNL (usft) -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0	0.0 Direction (°) 0.84 - Standard Latitude 32° 1' 10.854 N	Longitude 103° 16' 19.235 V
Audit Notes: /ersion: /ertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft)	Design #1 ram To (usft) 0.0 23,800.4 Inc (°) 0.0 0.0	Depth Fr (u: 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00	Phase: om (TVD) sft) .0 19 top: top: top: top: top: top: top: top:	+N/-S (usft) 0.0 T T M (usft) 0.0 100.0	Tie On I +E/-W (usft) 0.0 Tool Name /WD +FSL/-FNL (usft) -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0	0.0 Direction (°) 0.84 - Standard Latitude 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: /ersion: /ertical Section: iurvey Tool Prog From (usft) 0 /lanned Survey MD (usft) 100 200	Design #1 To (usft) 0.0 23,800.4 Inc (°) 0.0 0.0 0.0	Depth Fr (u: 0 Date 3/5/20 Survey (Wetibo Design #1 (Weli Design #1 (Weli Azi (azi (° 0.00 0.00 0.00	Phase: om (TVD) sft) .0 19 top top top top top top top top	+N/-S (usft) 0.0 T T M (usft) 0.0 100.0 200.0	Tie On I +E/-W (usft) 0.0 Tool Name MWD +FSL/-FNL (usft) -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0	0.0 Direction (°) 0.84 - Standard Letitude 32° 1' 10.854 N 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: /ersion: /ertical Section: Survey Tool Prog From (usft) 0 'lanned Survey MD (usft)	Design #1 To (usft) 0.0 23,800.4 Inc (°) 0.0 0.0 0.0 0.0 0.0	Depth Fr (u: 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00	Phase: om (TVD) sft) .0 19 top: top: top: top: top: top: top: top:	+N/-S (usft) 0.0 T T M (usft) 0.0 100.0	Tie On I +E/-W (usft) 0.0 Tool Name /WD +FSL/-FNL (usft) -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0	0.0 Direction (°) 0.84 - Standard Latitude 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: /ersion: /ertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 200 300 400	Design #1 To (usft) 0.0 23,800.4 (°) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Depth Fr (u 0 Date 3/5/20 Survey (Welibo Design #1 (Weli Azi (azi (° 0.00 0.00 0.00 0.00 0.00	Phase: om (TVD) sft) .0 19 top: bore #1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0	Tie On +E/-W (usft) 0.0 fool Name /WD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard - Standard 32° 1' 10.854 N 32° 1' 10.854 N 32° 1' 10.854 N 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V 103° 16' 19.235 V 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 200 300	Design #1 To (usft) 0.0 23,800.4 (°) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Depth Fr (u: 0 Date 3/5/20 Survey (Wetibo Design #1 (Weli Azi (azi (° 0.00 0.00 0.00 0.00	Phase: om (TVD) sft) .0 19 tre) bore #1) muth) 0.00 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 T T (usft) 0.0 100.0 200.0 300.0	Tie On 1 +E/-W (usft) 0.0 Tool Name /WD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (°) 0.84 - Standard - Standar	Longitude 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 2 Planned Survey MD (usft) 100 300 400 500	Design #1 To (usft) 0.0 23,800.4 (°) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: om (TVD) sft) .0 19 tore #1) bore #1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0	Tie On I +E/-W (usft) 0.0 fool Name /WD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard - Standard 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 300 400 500 600	Design #1 To (usft) 0.0 23,800.4 (°) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: om (TVD) sft) .0 19 19 bore #1) 0.00 0.	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	Tie On I +E/-W (usft) 0.0 fool Name /WD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard - Standard 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 \ 103° 16' 19.235 \
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 200 300 400 500 600 700	Design #1 To (usft) 0.0 23,800.4 (*) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: om (TVD) sft) .0 19 19 bore #1) 0.00 0.	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	Tie On I +E/-W (usft) 0.0 Fool Name AWD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard - Standar	Longitude 103° 16' 19.235 \ 103° 16' 19.235 \
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 200 300 400 500 600 700 800 900	Design #1	Depth Fr (u Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: om (TVD) sft) .0 19 re) bore #1) 0.00 0	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	Tie On 1 +E/-W (usft) 0.0 *FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard - St	Longitude 103° 16' 19.235 V 103° 16' 19.235 V
Audit Notes: Version: Vertical Section: Survey Tool Prog From (usft) 0 Planned Survey MD (usft) 100 200 300 400 500 600 700 800	Design #1	Depth Fr (u 0 Date 3/5/20 Survey (Wellbo Design #1 (Well Azi (azi (° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: om (TVD) sft) .0 19 tore #1) bore #1) 0.00 0.	+N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	Tie On I +E/-W (usft) 0.0 Tool Name AWD +FSL/-FNL (usft) -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1 -669.1	Depth: Description OWSG MWD +FWL/-FEL (usft) 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0 2,040.0	0.0 Direction (*) 0.84 - Standard Latitude 32° 1' 10.854 N 32° 1' 10.854 N	Longitude 103° 16' 19.235 V 103° 16' 19.235 V

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 124H
Project:	CAM/AZ	TVD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2939.0usft
Neil:	Camellia 124H	North Reference:	Grid
Vellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

	MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
	1,200.0	0.00	0.00	1,200.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,300.0	0.00	0.00	1,300.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,400.0	0.00	0.00	1,400.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,500.0	0.00	0.00	1,500.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,600.0	0.00	0.00	1,600.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,700.0	0.00	0.00	1,700.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,800.0	0.00	0.00	1,800.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	1,900.0	0.00	0.00	1,900.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	2,000.0	0.00	0.00	2,000.0	-669.1	2,040.0	32° 1' 10.854 N	103° 16' 19.235 W
	2,100.0	2.00	138.00	2,100.0	-670.4	2,041.2	32° 1' 10.841 N	103° 16' 19.222 W
	2,200.0	4.00	138.00	2,199.8	-674.3	2,044.7	32° 1' 10.802 N	103° 16' 19.181 W
	2,300.0	6.00	138.00	2,299.5	-680.8	2,050.5	32° 1' 10.737 N	103° 16' 19.114 W
	2,400.0	6.00	138.00	2,398.9	-688.6	2,057.5	32° 1' 10.660 N	103° 16' 19.034 W
	2,500.0	6.00	138.00	2,498.4	-696.3	2,064.5	32° 1' 10.582 N	103° 16' 18.954 W
	2,600.0	6.00	138.00	2,597.8	-704.1	2,071.5	32° 1' 10.505 N	103° 16' 18.873 W
	2,700.0	6.00	138.00	2,697.3	-711.9	2,078.5	32° 1' 10.427 N	103° 16' 18.793 W
	2,800.0	6.00	138.00	2,796.7	-719.6	2,085.5	32° 1' 10.350 N	103° 16' 18.713 W
	2,900.0	6.00	138.00	2,896.2	-727.4	2,092.5	32° 1' 10.272 N	103° 16' 18.632 W
	3,000.0	6.00	138.00	2,995.6	-735.2	2,099.5	32° 1' 10.195 N	103° 16' 18.552 W
	3,100.0	6.00	138.00	3,095.1	-742.9	2,106.5	32° 1' 10.117 N	103° 16' 18.472 W
	3,200.0	6.00	138.00	3,194.5	-750.7	2,113.4	32° 1' 10.039 N	103° 16' 18.391 W
	3,300.0	6.00	138.00	3,294.0	-758.5	2,120.4	32° 1' 9.962 N	103° 16' 18.311 W
	3,400.0	6.00	138.00	3,393.4	-766.3	2,127.4	32° 1' 9.884 N	103° 16' 18.231 W
	3,500.0	6.00	138.00	3,492.9	-774.0	2,134.4	32° 1' 9.807 N	103° 16' 18.150 W
	3,600.0	6.00	138.00	3,592.3	-781.8	2,141.4	32° 1' 9.729 N	103° 16' 18.070 W
	3,700.0	6.00	138.00	3,691.8	-789.6	2,148.4	32° 1' 9.652 N	103° 16' 17.989 W
	3,800.0	6.00	138.00	3,791.2	-797.3	2,155.4	32° 1' 9.574 N	103° 16' 17.909 W
	3,900.0	6.00	138.00	3,890.7	-805.1	2,162.4	32° 1' 9.497 N	103° 16' 17.829 W
	4,000.0	6.00	138.00	3,990.1	-812.9	2,169.4	32° 1' 9.419 N	103° 16' 17.748 W
	4,100.0	6.00	138.00	4,089.6	-820.6	2,176.4	32° 1' 9.342 N	103° 16' 17.668 W
	4,200.0	6.00	138.00	4,189.0	-828.4	2,183.4	32° 1' 9.264 N	103° 16' 17.588 W
	4,300.0	6.00	138.00	4,288.5	-836.2	2,190.4	32° 1' 9.187 N	103° 16' 17.507 W
	4,400.0	6.00	138.00	4,387.9	-843.9	2,197.4	32° 1' 9.109 N	103° 16' 17.427 W
	4,500.0	6.00	138.00	4,487.4	-851.7	2,204.4	32° 1' 9.031 N	103° 16' 17.347 W
	4,600.0	6.00	138.00	4,586.9	-859.5	2,211.4	32° 1' 8.954 N	103° 16' 17.266 W
	4,700.0	6.00	138.00	4,686.3	-867.2	2,218.4	32° 1' 8.876 N	103° 16' 17.186 W
	4,800.0	6.00	138.00	4,785.8	-875.0	2,225.4	32° 1' 8.799 N	103° 16' 17.106 W
	4,900.0	6.00	138.00	4,885.2	-882.8	2,232.3	32° 1' 8.721 N	103° 16' 17.025 W
1	5,000.0	6.00	138.00	4,984.7	-890.5	2,239.3	32° 1' 8.644 N	103° 16' 16.945 W
	5,100.0	6.00	138.00	5,084.1	-898.3	2,246.3	32° 1' 8.566 N	103° 16' 16.865 W
1	5,200.0	6.00	138.00	5,183.6	-906.1	2,253.3	32° 1' 8.489 N	103° 16' 16.784 W
	5,300.0	6.00	138.00	5,283.0	-913.8	2,260.3	32° 1' 8.411 N	103° 16' 16.704 W
	5,400.0	6.00	138.00	5,382.5	-921.6	2,267.3	32° 1' 8.334 N	103° 16' 16.624 W
	5,500.0	6.00	138.00	5,481.9	-929.4	2,274.3	32° 1' 8.256 N	103° 16' 16.543 W

3/5/2019 12:31:10PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 124H
Project:	CAM/AZ	TVD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2939.0usft
Well:	Carnellia 124H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000
<u> </u>			<u> </u>

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,600.0	6.00	138.00	5,581.4	-937.1	2,281.3	32° 1' 8.178 N	103° 16' 16.463 W
5,700.0	6.00	138.00	5,680.8	- 944 .9	2,288.3	32° 1' 8.101 N	103° 16' 16.383 W
5,800.0	6.00	138.00	5,780.3	-952.7	2,295.3	32° 1' 8.023 N	103° 16' 16.302 W
5,900.0	6.00	138.00	5,879.7	-960.5	2,302.3	32° 1' 7.946 N	103° 16' 16.222 W
6,000.0	6.00	138.00	5,979.2	-968.2	2,309.3	32° 1' 7.868 N	103° 16' 16.142 W
6,100.0	6.00	138.00	6,078.6	-976.0	2,316.3	32° 1' 7.791 N	103° 16' 16.061 W
6,200.0	6.00	138.00	6,178.1	-983.8	2,323.3	32° 1' 7.713 N	103° 16' 15.981 W
6,300.0	6.00	138.00	6,277.5	-991.5	2,330.3	32° 1' 7.636 N	103° 16' 15.901 W
6,400.0	6.00	138.00	6,377.0	-999.3	2,337.3	32° 1' 7.558 N	103° 16' 15.820 W
6,500.0	6.00	138.00	6,476.4	-1,007.1	2,344.3	32° 1' 7.481 N	103° 16' 15.740 W
6,600.0	6.00	138.00	6,575. 9	-1,014.8	2,351.3	32° 1' 7.403 N	103° 16' 15.660 W
6,700.0	6.00	138.00	6,675.3	-1,022.6	2,358.2	32° 1' 7.326 N	103° 16' 15.579 W
6,724.8	6.00	138.00	6,700.0	-1,024.5	2,360.0	32° 1' 7.306 N	103° 16' 15.559 W
6,800.0	4.50	138.00	6,774.9	-1,029.6	2,364.6	32° 1' 7.255 N	103° 16' 15.506 W
6,900.0	2.50	138.00	6,874.7	-1,034.2	2,368.7	32° 1' 7.210 N	103° 16' 15.460 W
7,000.0	0.50	138.00	6,974.7	-1,036.1	2,370.4	32° 1' 7.191 N	103° 16' 15.439 W
7,024.8	0.00	0.00	6,999.5	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,100.0	0.00	0.00	7,074.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,200.0	0.00	0.00	7,174.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,300.0	0.00	0.00	7,274.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,400.0	0.00	0.00	7,374.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,500.0	0.00	0.00	7,474.7	-1,036.2	2,370.5	32° 1' 7,190 N	103° 16' 15.439 W
7,600.0	0.00	0.00	7,574.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,700.0	0.00	0.00	7,674.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15,439 W
7,800.0	0.00	0.00	7,774.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
7,900.0	0.00	0.00	7,874.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,000.0	0.00	0.00	7,974.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,100.0	0.00	0.00	8,074.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,200.0	0.00	0.00	8,174.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,300.0	0.00	0.00	8,274.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,400.0	0.00	0.00	8,374.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,500.0	0.00	0.00	8,474.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,600.0	0.00	0.00	8,574.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,700.0	0.00	0.00	8,674.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,800.0	0.00	0.00	8,774.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
8,900.0	0.00	0.00	8,874.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,000.0	0.00	0.00	8,974.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,100.0	0.00	0.00	9,074.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,200.0	0.00	0.00	9,174.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,300.0	0.00	0.00	9,274.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,400.0	0.00	0.00	9,374.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,500.0	0.00	0.00	9,474.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,600.0	0.00	0.00	9,574.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
9,700.0	0.00	0.00	9,674.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W

3/5/2019 12:31:10PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 124H
Project:	CAM/AZ	TVD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2939.0usft
Well:	Camellia 124H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

	MD (usft)	lnc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
·····	9,800.0	0.00	0.00	9,774.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	9,900.0	0.00	0.00	9,874.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,000.0	0.00	0.00	9,974.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,100.0	0.00	0.00	10,074.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,200.0	0.00	0.00	10,174.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,300.0	0.00	0.00	10,274.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,400.0	0.00	0.00	10,374.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	10,500.0	0.00	0.00	10,474.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	10,600.0	0.00	0.00	10,574.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	10,700.0	0.00	0.00	10,674.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	10,800.0	0.00	0.00	10,774.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	10,900.0	0.00	0.00	10,874.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,000.0	0.00	0.00	10,974.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	11,100.0	0.00	0.00	11,074.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 W
	11,200.0	0.00	0.00	11,174.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,300.0	0.00	0.00	11,274.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,400.0	0.00	0.00	11,374.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,500.0	0.00	0.00	11,474.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,600.0	0.00	0.00	11,574.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,700.0	0.00	0.00	11,674.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,800.0	0.00	0.00	11,774.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,900.0	0.00	0.00	11,874.7	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
	11,975.3	0.00	0.00	11,950.0	-1,036.2	2,370.5	32° 1' 7.190 N	103° 16' 15.439 V
[Cam124 KOP		250.04	44 074 7	4 005 5	0.070.4	201 41 7 400 N	4029 461 45 420 1
	12,000.0 12,100.0	2.96 14.96	356.94 356.94	11,974.7 12,073.3	-1,035.5 -1,020.0	2,370.4 2,369.6	32° 1' 7.196 N 32° 1' 7.350 N	103° 16' 15.439 V 103° 16' 15.447 V
	12,200.0	26.96	356.94	12,166.5	-984.4	2,367.7	32° 1' 7.703 N 32° 1' 8.240 N	103° 16' 15.465 V 103° 16' 15.492 V
	12,300.0	38.96	356.94	12,250.2	-930.1	2,364.8		103° 16' 15.528 W
	12,400.0	50.96	356.94	12,320.8	-859.7	2,361.1	32° 1' 8.937 N	
	12,500.0 12,600.0	62.96 74.96	356.94 356.94	12,375.3 12,411.1	-776.2 -683.1	2,356.6 2,351.6	32° 1' 9.764 N 32° 1' 10.685 N	103° 16' 15.570 V 103° 16' 15.617 V
								103° 16' 15.665 V
	12,694.7	86.32 86.32	356.94 356.94	12,426.5 12,426.8	-590.0 -584.7	2,346.6 2,346.4	32° 1' 11.607 N 32° 1' 11.660 N	103 16 15.667 V
	12,700.0	86.32	356.94		-384.7 -485.0	2,340.4 2,341.0	32° 1' 12.646 N	103° 16' 15.718 V
	12,800.0	86.32	356.94	12,433.2	-385.4	2,341.0	32° 1' 13.633 N	103° 16' 15.768 V
	12,900.0 13,000.0	86.32 86.32	356.94	12,439.7 12,446.1	-365.4 -285.7	2,335.7	32° 1' 14.619 N	103 16 15.768 V
	13,100.0	86.32	356.94	12,452.5	-186.1	2,325.0		103° 16' 15.869 V
	13,200.0	86.32	356.94	12,458.9	-86.4	2,319.7		103° 16' 15.920 V
	13,287.0	86.32	356.94	12,458.5	-00.4	2,315.1		103° 16' 15.964 V
	Cam124 into NMi		000.04		0.0	2,010.1		
	13,300.0	86.32	356.94	12,465.3	13.2	2,314.4	32° 1' 17.579 N	103° 16' 15.970 V
	13,353.9	86.32	356.94	12,468.8	67.0	2,311.5	32° 1' 18.111 N	103° 16' 15.997 V
	13,390.9	90.00	359.42	12,470.0	103.9	2,310.4	32° 1' 18.476 N	103° 16' 16.007 V
	Cam124 FTP							
	13,400.0	90.00	359.42	12,470.0	113.0	2,310.3	32° 1' 18.566 N	103° 16' 16.007 V

3/5/2019 12:31:10PM

1

Lease Penetration Section Line Footages

(
· · · · · · · · · · · · · · · · · · ·			
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 124H
Project:	CAM/AZ	TVD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2939.0usft
Well:	Camellia 124H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,500.0	90.00	359.42	12,470.0	213.0	2,309.2	32° 1' 19.556 N	103° 16' 16.007 W
13,600.0	90.00	359.42	12,470.0	313.0	2,308.2	32° 1' 20.545 N	103° 16' 16.008 W
13,700.0	90.00	359.42	12,470.0	413.0	2,307.2	32° 1' 21.535 N	103° 16' 16.008 W
13,800.0	90.00	359.42	12,470.0	513.0	2,306.2	32° 1' 22.524 N	103° 16' 16.009 W
13,900.0	90.00	359.42	12,470.0	613.0	2,305.2	32° 1' 23.514 N	103° 16' 16.009 W
14,000.0	90.00	359.42	12,470.0	713.0	2,304.1	32° 1' 24,503 N	103° 16' 16.009 W
14,100.0	90.00	359.42	12,470.0	812.9	2,303.1	32° 1' 25.493 N	103° 16' 16.010 W
14,200.0	90.00	359.42	12,470.0	912.9	2,302.1	32° 1' 26.482 N	103° 16' 16.010 W
14,300.0	90.00	359.42	12,470.0	1,012.9	2,301.1	32° 1' 27.472 N	103° 16' 16.011 W
14,400.0	90.00	359.42	12,470.0	1,112.9	2,300.1	32° 1' 28.462 N	103° 16' 16.011 W
14,500.0	90.00	359.42	12,470.0	1,212.9	2,299.0	32° 1' 29.451 N	103° 16' 16.012 W
14,600.0	90.00	359.42	12,470.0	1,312.9	2,298.0	32° 1' 30.441 N	103° 16' 16.012 W
14,700.0	90.00	359.42	12,470.0	1,412.9	2,297.0	32° 1' 31.430 N	103° 16' 16.012 W
14,800.0	90.00	359.42	12,470.0	1,512.9	2,296.0	32° 1' 32.420 N	103° 16' 16.013 W
14,900.0	90.00	359.42	12,470.0	1,612.9	2,295.0	32° 1' 33.409 N	103° 16' 16.013 W
15,000.0	90.00	359.42	12,470.0	1,712.9	2,293.9	32° 1' 34.399 N	103° 16' 16.014 W
15,100.0	90.00	359.42	12,470.0	1,812.9	2,292.9	32° 1' 35.388 N	103° 16' 16.014 W
15,200.0	90.00	359.42	12,470.0	1,912.9	2,291.9	32° 1' 36.378 N	103° 16' 16.015 W
15,300.0	90.00	359.42	12,470.0	2,012.9	2,290.9	32° 1' 37.367 N	103° 16' 16.015 W
15,400.0	90.00	359.42	12,470.0	2,112.9	2,289.9	32° 1' 38.357 N	103° 16' 16.015 W
15,500.0	90.00	359.42	12,470.0	2,212.9	2,288.8	32° 1' 39.346 N	103° 16' 16.016 W
15,600.0	90.00	359.42	12,470.0	2,312.9	2,287.8	32° 1' 40.336 N	103° 16' 16.016 W
15,700.0	90.00	359.42	12,470.0	2,412.9	2,286.8	32° 1' 41.325 N	103° 16' 16.017 W
15,800.0	90.00	359.42	12,470.0	2,512.9	2,285.8	32° 1' 42.315 N	103° 16' 16.017 W
15,900.0	90.00	359.42	12,470.0	2,612.9	2,284.7	32° 1' 43.304 N	103° 16' 16.018 W
16,000.0	90.00	359.42	12,470.0	2,712.8	2,283.7	32° 1' 44.294 N	103° 16' 16.018 W
16,100.0	90.00	359.42	12,470.0	2,812.8	2,282.7	32° 1' 45.283 N	103° 16' 16.019 W
16,200.0	90.00	359.42	12,470.0	2,912.8	2,281.7	32° 1' 46.273 N	103° 16' 16.019 W
16,300.0	90.00	359.42	12,470.0	3,012.8	2,280.7	32° 1' 47.262 N	103° 16' 16.019 W
16,400.0	90.00	359.42	12,470.0	3,112.8	2,279.6	32° 1' 48.252 N	103° 16' 16.020 W
16,500.0	90.00	359.42	12,470.0	3,212.8	2,278.6	32° 1' 49.241 N	103° 16' 16.020 W
16,600.0	90.00	359.42	12,470.0	3,312.8	2,277.6	32° 1' 50.231 N	103° 16' 16.021 W
16,700.0	90.00	359.42	12,470.0	3,412.8	2,276.6	32° 1' 51.220 N	103° 16' 16.021 W
16,800.0	90.00	359.42	12,470.0	3,512.8	2,275.6	32° 1' 52.210 N	103° 16' 16.022 W
16,900.0	90.00	359.42	12,470.0	3,612.8	2,274.5	32° 1' 53.199 N	103° 16' 16.022 W
17,000.0	90.00	359.42	12,470.0	3,712.8	2,273.5	32° 1' 54.189 N	103° 16' 16.022 W
17,100.0	90.00	359.42	12,470.0	3,812.8	2,272.5	32° 1' 55.178 N	103° 16' 16.023 W
17,200.0	90.00	359.42	12,470.0	3,912.8	2,271.5	32° 1' 56.168 N	103° 16' 16.023 W
17,300.0	90.00	359.42	12,470.0	4,012.8	2,270.5	32° 1' 57.157 N	103° 16' 16.024 W
17,400.0	90.00	359.42	12,470.0	4,112.8	2,269.4	32° 1' 58,147 N	103° 16' 16.024 W
17,500.0	90.00	359.42	12,470.0	4,212.8	2,268.4	32° 1' 59.136 N	103° 16' 16.025 W
17,600.0	90.00	359.42	12,470.0	4,312.8	2,267.4	32° 2' 0.126 N	103° 16' 16.025 W
17,700.0	90.00	359.42	12,470.0	4,412.8	2,266.4	32° 2' 1.115 N	103° 16' 16.025 W
17,800.0	90.00	359.42	12,470.0	4,512.8	2,265.4	32° 2' 2.105 N	103° 16' 16.026 W

3/5/2019 12:31:10PM

Lease Penetration Section Line Footages

C			
	······································]
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 124H
Project:	CAM/AZ	TVD Reference:	KB @ 2939.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2939.0usft
Well:	Camellia 124H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000
1			

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
17,900.0	90.00	359.42	12,470.0	4,612.8	2,264.3	32° 2' 3.095 N	103° 16' 16.026 W
18,000.0	90.00	359.42	12,470.0	4,712.7	2,263.3	32° 2' 4.084 N	103° 16' 16.027 W
18,100.0	90.00	359.42	12,470.0	4,812.7	2,262.3	32° 2' 5.074 N	103° 16' 16.027 W
18,200.0	90.00	359.42	12,470.0	4,912.7	2,261.3	32° 2' 6.063 N	103° 16' 16.028 W
18,300.0	90.00	359.42	12,470.0	5,012.7	2,260.3	32° 2' 7.053 N	103° 16' 16.028 W
18,400.0	90.00	359.42	12,470.0	5,112.7	2,259.2	32° 2' 8.042 N	103° 16' 16.028 W
18,500.0	90.00	359.42	12,470.0	5,212.7	2,258.2	32° 2' 9.032 N	103° 16' 16.029 W
18,600.0	90.00	359.42	12,470.0	5,312.7	2,257.2	32° 2' 10.021 N	103° 16' 16.029 W
18,700.0	90.00	359.42	12,470.0	5,412.7	2,256.2	32° 2' 11.011 N	103° 16' 16.030 W
18,800.0	90.00	359.42	12,470.0	5,512.7	2,255.2	32° 2' 12.000 N	103° 16' 16.030 W
18,900.0	90.00	359.42	12,470.0	5,612.7	2,254.1	32° 2' 12.990 N	103° 16' 16.031 W
19,000.0	90.00	359.42	12,470.0	5,712.7	2,253.1	32° 2' 13.979 N	103° 16' 16.031 W
19,100.0	90.00	359.42	12,470.0	5,812.7	2,252.1	32° 2' 14.969 N	103° 16' 16.031 W
19,200.0	90.00	359,42	12,470.0	5,912.7	2,251.1	32° 2' 15.958 N	103° 16' 16.032 W
19,300.0	90.00	359.42	12,470.0	6,012.7	2,250.1	32° 2' 16.948 N	103° 16' 16.032 W
19,400.0	90.00	359.42	12,470.0	6,112.7	2,249.0	32° 2' 17.937 N	103° 16' 16.033 W
19,500.0	90.00	359.42	12,470.0	6,212.7	2,248.0	32° 2' 18.927 N	103° 16' 16.033 W
19,600.0	90.00	359.42	12,470.0	6,312.7	2,247.0	32° 2' 19.916 N	103° 16' 16.034 W
19,700.0	90.00	359.42	12,470.0	6,412.7	2,246.0	32° 2' 20.906 N	103° 16' 16.034 W
19,800.0	90.00	359.42	12,470.0	6,512.7	2,245.0	32° 2' 21.895 N	103° 16' 16.034 W
19,900.0	90.00	359.42	12,470.0	6,612.6	2,243.9	32° 2' 22.885 N	103° 16' 16.035 W
20,000.0	90.00	359.42	12,470.0	6,712.6	2,242.9	32° 2' 23.874 N	103° 16' 16.035 W
20,100.0	90.00	359.42	12,470.0	6,812.6	2,241.9	32° 2' 24.864 N	103° 16' 16.036 W
20,200.0	90.00	359.42	12,470.0	6,912.6	2,240.9	32° 2' 25.853 N	103° 16' 16.036 W
20,300.0	90.00	359.42	12,470.0	7,012.6	2,239.9	32° 2' 26.843 N	103° 16' 16.037 W
20,400.0	90.00	359.42	12,470.0	7,112.6	2,238.8	32° 2' 27.832 N	103° 16' 16.037 W
20,500.0	90.00	359.42	12,470.0	7,212.6	2,237.8	32° 2' 28.822 N	103° 16' 16.037 W
20,600.0	90.00	359.42	12,470.0	7,312.6	2,236.8	32° 2' 29.811 N	103° 16' 16.038 W
20,700.0	90.00	359.42	12,470.0	7,412.6	2,235.8	32° 2' 30.801 N	103° 16' 16.038 W
20,800.0	90.00	359.42	12,470.0	7,512.6	2,234.7	32° 2' 31.790 N	103° 16' 16.039 W
20,900.0	90.00	359.42	12,470.0	7,612.6	2,233.7	32° 2' 32,780 N	103° 16' 16.039 W
21,000.0	90.00	359.42	12,470.0	7,712.6	2,232.7	32° 2' 33,769 N	103° 16' 16.040 W
21,100.0	90.00	359.42	12,470.0	7,812.6	2,231.7	32° 2' 34.759 N	103° 16' 16.040 W
21,200.0	90.00	359.42	12,470.0	7,912.6	2,230.7	32° 2' 35.748 N	103° 16' 16.040 W
21,300.0	90.00	359.42	12,470.0	8,012.6	2,229.6	32° 2' 36.738 N	103° 16' 16.041 W
21,400.0	90.00	359.42	12,470.0	8,112.6	2,228.6	32° 2' 37.727 N	103° 16' 16.041 W
21,500.0	90.00	359.42	12,470.0	8,212.6	2,227.6	32° 2' 38.717 N	103° 16' 16.042 W
21,600.0	90.00	359.42	12,470.0	8,312.6	2,226.6	32° 2' 39.706 N	103° 16' 16.042 W
21,700.0	90.00	359.42	12,470.0	8,412.6	2,225.6	32° 2' 40.696 N	103° 16' 16.043 W
21,800.0	90.00	359.42	12,470.0	8,512.5	2,224.5	32° 2' 41.686 N	103° 16' 16.043 W
21,900.0	90.00	359.42	12,470.0	8,612.5	2,223.5	32° 2' 42.675 N	103° 16' 16.043 W
22,000.0	90.00	359.42	12,470.0	8,712.5	2,222.5	32° 2' 43.665 N	103° 16' 16.044 W
22,100.0	90.00	359.42	12,470.0	8,812.5	2,221.5	32° 2' 44.654 N	103° 16' 16.044 W
22,200.0	90.00	359.42	12,470.0	8,912.5	2,220.5	32° 2' 45.644 N	103° 16' 16.045 W

3/5/2019 12:31:10PM

Lease Penetration Section Line Footages

Companys Project Stor Walk Wellbore: Destign:	Ameredev Open CAM/AZ CAM/AZ #5SX Carnellia 124H Wellbore #1 Design #1	ating, LL(D.	TVD Ratara MD Ratara North Rata	100:	Well Camellia 1 KB @ 2939.0us KB @ 2939.0us Grid Minimum Curva EDM5000	ft	
Planned Survey								
(115i)	(P)		کتا: (وکامس ال) (۹)	TVID (DEEGI)	OFSLÆFNL (DSÚ)	AFALLAFEL (Deul)	Lettines	Longitude
22,3	00.0	90.00	359.42	12,470.0	9,012.5	2,219.4	32° 2' 46.633 N	103° 16' 16.045 W
22,40	00.0	90.00	359.42	12,470.0	9,112.5	2,218.4	32° 2' 47.623 N	103° 16' 16.045 W
22,5	00.0	90.00	359.42	12,470.0	9,212.5	2,217.4	32° 2' 48.612 N	103° 16' 16.046 W
22,60	00.0	90.00	359.42	12,470.0	9,312.5	2,216.4	32° 2' 49.602 N	103° 16' 16.046 W
22,70	00.0	90.00	359.42	12,470.0	9,412,5	2,215.4	32° 2' 50.591 N	103° 16' 16.047 W
22,80	00.0	90.00	359.42	12,470.0	9,512.5	2,214.3	32° 2' 51,581 N	103° 16' 16.047 W
22,90	00.0	90.00	359.42	12,470.0	9,612.5	2,213.3	32° 2' 52.570 N	103° 16' 16.048 W
23,00	0.00	90.00	359.42	12,470.0	9,712.5	2,212.3	32° 2' 53.560 N	103° 16' 16.048 W
23,10	00.0	90.00	359.42	12,470.0	9,812.5	2,211.3	32° 2' 54.549 N	103° 16' 16.048 W
23,20	00.0	90.00	359.42	12,470.0	9,912.5	2,210.3	32° 2' 55.539 N	103° 16' 16.049 W
23,30	00.0	90.00	359.42	12,470.0	10,012.5	2,209.2	32° 2' 56.528 N	103° 16' 16.049 W
23,40	00.0	90.00	359.42	12,470.0	10,112.5	2,208.2	32° 2' 57.518 N	103° 16' 16.050 W
23,50	00.0	90.00	359.42	12,470.0	10,212.5	2,207.2	32° 2' 58.507 N	103° 16' 16.050 W
23,60	00.0	90.00	359.42	12,470.0	10,312.5	2,206.2	32° 2' 59.497 N	103° 16' 16.051 W
23,70	00.0	90.00	359.42	12,470.0	10,412.4	2,205.2	32° 3' 0.486 N	103° 16' 16.051 W
23,7	50.4	90.00	359.42	12,470.0	10,462.8	2,204.6	32° 3' 0.985 N	103° 16' 16.051 W
Cam124	LTP							
23,80	0.00	90.00	359.42	12,470.0	10,512.4	2,204.1	32° 3' 1.476 N	103° 16' 16.051 W
23,80	00.4	90.00	359.42	12,470.0	10,512.9	2,204.1	32° 3' 1.480 N	103° 16' 16.051 W
Cam124	BHL							

Plan Annotations

يتركين والمعاول المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

Measured Dopth (USi)

Varileal Depid (030) 13,287.0 12,464.5

Lecel Coordinates ¢er (**DE**II) Comment 275.1 Cam124 into NMNM23199

Date:

Checked By:

AN POS

(USII)

669.4

Approved By:

3/5/2019 12:31:10PM

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEV

- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
0pen Hole	13-5/8	Drilling Fluid	Blind Rams	
	for system design.	Kill line with minimu	at will allow full Opera m 2" ID will be availat	

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

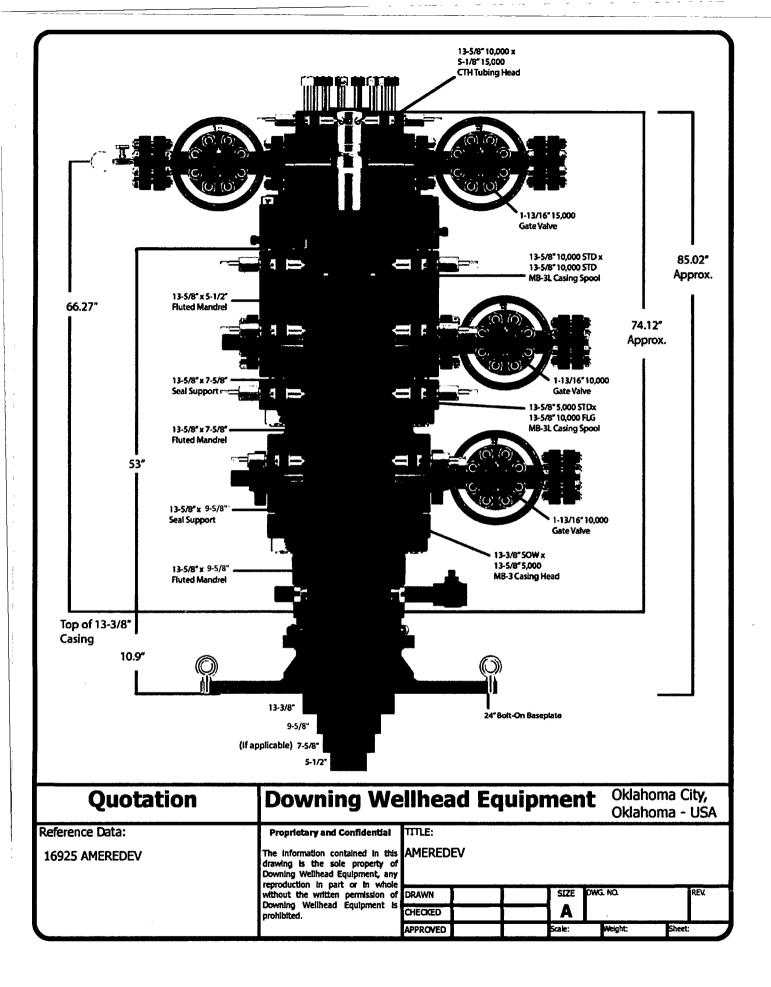
Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic


Well:	(Well Name)	Co. Well ID:	xxxxxx
SHL:	(SHL)	AFE No.:	xxxx-xxx
BHL:	(BHL)	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	(Elevation)'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree	: 2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625'' 29.7# L-80HC FJM TBSG Upper		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

Contingency Casing Design and Safety Factor Check

		Casing	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

	Chec	k Surface (Casing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
14.38	853	909	1,130	2,730
	5	afety Facto	ors	
1.56	8.29	8.83	1.15	0.91
	Che	ck Int #1 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
10.625	916	1042	4230	5750
	S	afety Facto	ors	
0.81	4.57	5.20	1.41	0.95
	Che	ck Int #2 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
7.625	940	558	6700	9460
	S	afety Facto	ors	
0.56	2.84	1.96	1.10	1.24
	Check Pro	od Casing,	Segment A	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
	S	afety Facto	ors	
0.49	3.11	2.79	1.77	1.89
	Check Pro	od Casing,	Segment B	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
		afety Facto		· · · · ·
0.49	63.53	57.16	1.68	1.89

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888		1.76	13.5	
		Bbl/Sk				0.31372549		
		bbis				419.402246		
	1	Stage Tool Depth	1			N/A		
		Top MD of Segm				0		
		Bottom MD of Se				1502		
		Cement Type	×			с		
		Additves	Bentonite, Accele	rator, Kolseal, Defe	oamer, Celloflak	e		
Lead Lead						_		
		Quantity (sks)				1,337		
		Yield (cu ft/sk)				1.76		
		Density (Ibs/gal)				13.5		
		Volume (cu ft)				2,352.85		
1		Percent Excess				100%	Target %	100%
		Column Height			~	3,389.88		
			Target TOC	0				
			Calc TOC	-1888	bbl	25% Excess	100%	
			calc vol	0.12372195	233.587041	291.9838012	467.174082	
			calc voi	0.125/2155	235.507041	201.0000012	407.174002	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888		1.34	14.8	
- 1		Bbi/Sk				0.23885918		
		bbls				47.77183601		
1		Top MD of Segm	ent	•		1502		
	•	Bottom MD of Se				1888		
		Cement Type	<u></u>			c		
		Additives						
Tall								
Tail								
		Quantity (sks)				200		
		Yield (cu ft/sk)				1.34		
		Density (lbs/gal)				14.8		
- 1		Volume (cu ft)				268		
		Percent Excess Column Height				100% 386.1225606		

SURFACE CEMENT

	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	12.25	9.625	5013		3.5	9	
	Bbl/Sk bbls Stage Tool Depth Top MD of Segm				0.623885918 372.0365733 N/A 0		
	Bottom MD of Se				4163		
	Cement Type				C		
-	Additves	Bentonite,Salt,Ko	olseal, Defoarner, Ce	lloclake			
Stage 1 Lead	Quantity (sks)				596		
	Yield (cu ft/sk)				3.5		
	Density (lbs/gal)				9		
	Volume (cu ft)				2,087.13		
	Percent Excess				50%	Target %	50%
	Column Height				6,669.49		
		Target TOC Calc TOC calc vol	0 -2506.5 0.055781888	ьы 279.6346021	25% Excess 349.5432526	50% 419.4519031	
	Hole Size	Contine Circ	Death	Sacks	Yield	Density	
	12.25	Casing Size 9.625	Depth 5013	Sacks	1.33	Density 14.8	
	Bbl/Sk	3.023	5015		0.237076649	14/0	
	bbls				47.41532977		
	Top MD of Segm	ent			4163		
	Bottom MD of Se				5013		
	Cement Type	* · · ·			C		
_	Additives						
Tall							
'n	Quantity (sks)				200		
	Yield (cu ft/sk)				1.33		
	Density (lbs/gal)				14.8		
	Volume (cu ft)				266		
	volume (curit)						
	Percent Excess				25%		

INTERMEDIATE 1 CEMENT - STAGE 1

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	1	12.25	9.625	3262		3.5	9		
		Bbl/Sk				0.623885918			
		bbls				225.5254458			
		Stage Tool Depth				N/A			
		Top MD of Segm				0			
		Bottom MD of Se	egment			2412			
	1	Cement Type				<u>c</u>			
<u>2</u> –		Additves	Bentonite,Salt,Ko	olseal, Defoamer, Ce	loclake				
Stage 2 Lead									
ъ –		Quantity (sks)			· · · · ·	361			
		Yield (cu ft/sk)				3.5			
	1	Density (lbs/gal)				9			
	1	Volume (cu ft)				1,265.20			
	1	Percent Excess				50%	Target %	50%	
	1	Column Height				4,042.99			
						.,			
			Target TOC	0					
			Calc TOC	-1631	bbi	25% Excess	50%		
			calc vol	0.055781888	181.960517	227.4506463	272.9407756		
	1								
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		12.25	9.625	3262		1.33	14.8		
		Bbl/Sk				0.237076649			
		bbls				47.41532977			
	1	Top MD of Segm	ent			2412			
	1	Bottom MD of Se				3262			
	1	Cement Type				C			
		Additives							
Tail Tail	1								
Stage 2 Tail		Quantity (sks)				200			
		Yield (cu ft/sk)				1.33			
	1	Density (lbs/gal)				1.55			
	1	Volume (cu ft)				266			
		volume (culit)	····			25%			
	[Percent Excess							
		Percent Excess Column Height				850.013004			

INTERMEDIATE 1 CEMENT - STAGE 2

	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	8.75	7.625	10670		2.47	9		
Stage 1 Lead	Expansion Additi Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess	ent egment Bentonite,Retard ve	10670	er,Celloflake, Ani	383 2.47 9 946.02 25%	9 Target %	25%	
	Column Height	Target TOC Caic TOC caic voi	0 -2667.5 0.01789574	bbi 190.9475483	9,422.97 25% Excess 238.6844354	25% 238.6844354		
	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	8.75	7.625	10670	JUCK	1.31	14.2		
1 25	Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves	egment	etarder, Dispersant,	Fluid Loss	0.233511586 70.05347594 6755 10670 H			
Tall	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess		······	······	300 1.31 14.2 393 25%			

INTERMEDIATE 2 CEMENT

			-						
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496		1.34	14.2		
		Bbl/Sk bbls				0.23885918			
1									
		Stage Tool Depth Top MD of Segm				<u>N/A</u>			
		Bottom MD of Segm				22496			
ł		Cement Type	egment			22496 H			
			Salt Bentonite	luid Loss Dispars	ant, Retarder, Def				
Stage 1 Lead		Additives	Salt, Dentointe, I	Tulu 2035, Dispers	ant, Retarder, Der				
ι» –		Quantity (sks)				1,751			
	1	Yield (cu ft/sk)				1.34			
		Density (lbs/gal)				14.2			
		Volume (cu ft)				2,346.61			
		Percent Excess				25%	Target %	25%	
		Column Height				28,120.00			
			Target TOC	0	•				
			Calc TOC		bbl	25% Excess	25%		
			calc vol	-5624 0.01487517	334.6318244	418.2897805	418.2897805		
<u> </u>				0.01487517	334.0310244	418.2837803	410.2057005		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496	0	0	0		
		0.75	5.5	12490		<u> </u>			
		Bbl/Sk		······		0			
		bbis							
1		Top MD of Segm Bottom MD of Se				22496 22496			
1		Cement Type	egment			22496 H			
1		Additives				<u> </u>			
Stage 1 Tail		Additives							
Sta T		Quantity (sks)				0			
		Yield (cu ft/sk)				0			
	1	Density (lbs/gal)				0			
		Volume (cu ft)				0			
		Percent Excess							
		Column Height				0			
					* * * * *				

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results-Lead

Job Inform	and the state of the									
		1) 2488456/2		Die Neme		•		Dete	18/DEC/201	0
Request/Slurr Submitted By		Dillon Briers		Rig Name Job Type	Intern	ediate Casing		Date Bulk Plant	18/DEC/201	0
Customer		Ameredev		Location	Lea	culate Cashig		Well		
Customer		Ameredev		Location	Lea			wen		
Well Info	rmatio	on								
Casing/Liner S	Size	7.625 in	•	Depth MD	5013 f	f		BHST	165°F	,
Hole Size		8.75 in		Depth TVD	5013 f	t		внст	130°F	
Cement In	forma	tion - Lead D	Design		·				• •	
Conc UOM	M	Cement/Additive	2					Сет	ent Properties	
	woc	NeoCem	•				Slurry D		9	lbm/gal
14.68 gal/s	sack	Heated Fresh Wat	er				Slurry Y	ield	3.5	ft3/sack
-							Water R	equirement	14.68	gal/sack
			a 400 4 5	<i></i>						
		ts Request ID Request Test I								
Temp (degF)	300	200			60	30	6	3		Cond Time
Temp (degF)	300	- · · ·			60	30	6	3		Cond Time (min)
, · · · ·		200	1((min)
80 (up)	300 82 82	- · · ·		9	60 42 26	30 39 18	6 36 10	3	8	
80 (up) 80 (down)	82	200	10	9 · · · ·	42	39	36	2	8	(min) 0
80 (up) 80 (down) 80 (avg.)	82 82 82	200 67 59 63	10 49 3:	9 · · · ·	42 26 34	39 18	36 10	2: 9	8	(min) 0 0
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (l	82 82 82 82 Ibs/100ft	200 67 59 63 2): 61.73	10 49 32 42 22.32	9 5 2	42 26 34 method)	39 18 29	36 10	2: 9	8	(min) 0 0
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (l VV (cP) & YP (l	82 82 82 Ibs/100ft Ibs/100ft	200 67 59 63 2): 61.73	10 49 33 42 22.32 22	00 9 5 2 (Least-squares 1 (Traditional me	42 26 34 method) thod (300 & 100	39 18 29	36 10	2: 9	8	(min) 0 0
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (l VV (cP) & YP (l Generalized Her	82 82 82 Ibs/100ft Ibs/100ft rschel-Bu	200 67 59 63 2): 61.73 2): 60	1(49 33 42 22.32 22 22 0ft2)=20.33	00 9 5 2 (Least-squares i (Traditional me MuInf(cP)=52	42 26 34 method) thod (300 & 100	39 18 29 O rpm based))	36 10	2: 9	8	(min) 0 0
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (l VV (cP) & YP (l Generalized Her	82 82 82 Ibs/100ft Ibs/100ft rschel-Bu ogy, R	200 67 59 63 2): 61.73 2): 60 ulkley 4: YP(lbf/10	1(49 33 42 22.32 22 22 0ft2)=20.33	00 9 5 2 (Least-squares i (Traditional me MuInf(cP)=52	42 26 34 method) thod (300 & 100	39 18 29 O rpm based))	36 10 23	2: 9	8	(min) 0 0
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (1 WV (cP) & YP (1 Generalized Hern API Rheol Temp (degF)	82 82 82 Ibs/100ft Ibs/100ft rschel-Bu ogy, R	200 67 59 63 2): 61.73 2): 60 ulkley 4: YP(lbf/10 Request Test 1	10 49 33 42 22.32 22 0ft2)=20.33 ID:35665	00 9 5 2 (Least-squares i (Traditional me MuInf(cP)=52.: 5341	42 26 34 method) thod (300 & 10 39 m=0.81	39 18 29 0 rpm based)) n=0.81	36 10 23	2: 9 1:	8 9 Cond Time	(min) 0 0 0 Cond Tem
80 (up) 80 (down) 80 (avg.) V (cP) & YP (1 V (cP) & YP (1 Generalized Hern API Rheol Temp (degF) 134 (up)	82 82 82 Ibs/100ft Ibs/100ft rschel-Bu ogy, F 300	200 67 59 63 2): 61.73 2): 60 ulkley 4: YP(lbf/10 Request Test 1 200	10 49 33 42 22.32 22 0ft2)=20.33 [D:35665 100	00 9 5 2 (Least-squares f (Traditional me MuInf(cP)=52.3 5341 60	42 26 34 method) thod (300 & 100 39 m=0.81 30	39 18 29 0 rpm based)) n=0.81 6	36 10 23	2: 9 1: 3	8 9 Cond Time (min)	(min) 0 0 0 Cond Tem (degF)
80 (up) 80 (down) 80 (avg.) VV (cP) & YP (1 Generalized Hern API Rheol Temp (degF) 134 (up) 134 (down)	82 82 82 lbs/100ft lbs/100ft rschel-Bu ogy, F 300	200 67 59 63 2): 61.73 2): 60 ulkley 4: YP(lbf/10 Request Test 1 200 47	10 49 33 42 22.32 22 0ft2)=20.33 (D:35665 100 29	00 9 5 2 (Least-squares of (Traditional me MuInf(cP)=52.3 5341 60 21	42 26 34 method) thod (300 & 100 39 m=0.81 30	39 18 29 0 rpm based)) n=0.81 6 7	36 10 23	2: 9 1: 3	8 9 Cond Time (min) 30	(min) 0 0 0 Cond Tem (degF) 134

PV (cP) & YP (lbs/100ft2): 51 12 (Traditional method (300 & 100 rpm based))

Generalized Herschel-Bulkley 4: YP(lbf/100ft2)=2.26 MuInf(cP)=30.64 m=0.41 n=0.41

API Fluid Los	s, Request Test	ID:35665342				
Test Temp (degF)	Test Pressure (psi)	Test Time (min)	Meas. Vol.	Calculated FL (<30 min)	Conditioning time (min)	Conditioning Temp (degF)
134	1000	9.12	52	189	30	134

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

Page 1 of 2

Con. Temp (degF)	Cond. Time (min)	Static T. (F)	Static time (min)	Incl. (deg)	% Fluid	
134	30	80	120	0		
Pilot Test Rest	lts Request ID 25	04116/5				
Thickening Ti	ne - ON-OFF-ON	, Request Test ID:3	35852392			
Test Temp P (degF)	ressure (psi) Reache	d in (min) 70 Bc (hh:min) Start Bc			
126 53	800 40	6:18	16			
UCA Comp. St	rength, Request 7	est ID:35852394	<u> </u>			
	÷ · -		r CS (psi) 24 hr CS (ps	i) 48 hr CS (psi)		_

456

749

681

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

(degF) 159

4000

8:55

12:23

Page 2 of 2

U. S. Steel Tubular Products

F

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM [®]	
Minimum Yield Strength	110,000		psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	125,000	-	psi
DIMENSIONS	Pipe	USS-LIBERTY FJM [®]	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375		in,
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	ín.
Alternate Drift	-	_	in.
Nominal Linear Weight, T&C	29.70	-	lbs/ft
Plain End Weight	29.06		lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency	<u></u> ·	59.4	%
PERFORMANCE	P1)90	USSALEERIV FUN ^G	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	 .	lbs
Joint Strength	-	558,000	lbs
Compression Rating	_ ·	558,000	lbs
Reference Length	-	12,810	ft
Maximum Uniaxial Bend Rating	-	39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque		10,800	ft-Ibs
		15,250	ft-lbs

Legal Notice

USS-LIBERTY FJM[®] is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

· · · · · · · · · · · · · · · · · · ·	PIPE	CONNECTION	· · ·
MECHANICAL PROPERTIES			e de la composición d Composición de la composición de la comp
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
SECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	<i>deg/100 ft</i>
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API SC3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- 6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com Ontinental & CONTITECH

QUALITY CONTROL	No.: QC-DB- 651 / 2013						
	Page : 1 / 44						
Hose No.:	Revision : 0						
66551, 66552, 66553, 66554	Date: 14. November 2013.						
	Prepared by : Scala Lander						
	Appr. by: Appr. Such						

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ContiTech Rubber Industrial Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +36 62 566 737 Fac: +36 62 566 738 e-mail: info@fluid.contitech.hu Internet: www.contitech-nuber.hu The Court of Csongrád County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

No.: QC- DB- 651 / 2013 CONTITECH RUBBER Industrial Kft. Page: 2/44

CONTENT

		-
1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8 .	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11 .	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	3/44

Certificate of Authority to use the Official API Monogram License Number: 16C-0004 ORIGINAL The American Petroleum Institute hereby grants to CONTITECH RUBBER INDUSTRIAL LTD **Budapesti ut 10** Szeged Hungary. the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec 01° and API Spec 16C and in accordance with the provisions of the License Agreement. American In all cases where the Official API Monogram is applied, the API Monogram shalli be used in conjunction with this certificate number: Petroleum 16C-0004 Institute The American Petroleum Institute reserves the right to savake this authorization to use the Official API Manogram for any reason satisfactory to the Board of Shectors of the American Patroleum Institute. The scope of this license includes the following product: Plexible Choke and Kill Lines QMS Exclusions: No Exclusions Identified as Applicable American Petroleum Institute Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016 2011/11 To verify the authenticity of this license, go to www.apl.org/compositelist. Director of Global Industry Service

CONTITECH RUBBER Industrial Kft. Page:

No:QC-DB- 651 /2013 4/44

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	5/44

QUALI INSPECTION A	TY CONT ND TEST		ATE	CERT.	Nº:	1905	
PURCHASER: C	ontiTech (Dil & Marine Co	orp.	P.O. N).	4500370505	
CONTITECH RUBBER order N°:	537587	HOSE TYPE:	3" ID		Choke an	d Kill Hose	
HOSE SERIAL Nº:	66551	NOMINAL / ACT	UAL LENG	TH:	10,67 n	n / 10,75 m	
W.P. 68,9 MPa 100	00 psi	т.р. 103,4	MPa 1	5000 рві	Duration:	60	min
Pressure test with water at ambient temperature	· · · · · ·	· · · · · · · · · · · · · · · · · · ·					
	ç	See attachme	nt (1 na	nue)			
				.go /	:		
↑ 10 mm = 10 Min. → 10 mm = 25 MPa							
COUPLINGS Type		Serial	N°		Quality	Heat N ^o	0
3" coupling with		8084	8083	Al	SI 4130	24613	1
4 1/16" 10K API Flange	end			AI	SI 4130	034939	Ð
NOT DESIGNED			3		A	PI Spec 16	С
All metal parts are flawless WE CERTIFY THAT THE ABOVE H					•	S OF THE ORDER	
INSPECTED AND PRESSURE TES STATEMENT OF CONFORMITY: conditions and specifications of the accordance with the referenced stand	We hereby o above Purch dards, codes a	ertify that the above aser Order and the and specifications ar	e items/equip at these item ad meet the r	ment supplie Is/equipment elevant accep	were fabricate	d inspected and to	ested in
	C	OUNTRY OF ORIG					
Date: Ir 13. November 2013.	spector	• :	Quality Co	Cont Ind	tiTech Rubbe dustrial Kft. y Control Dep		

Fac +36 62 566 738 e-mail: info@fluid.contitech.hu internet: www.contitech-rubber.hu

Hungary

Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209

Commercial and Creditbank Szeged 10402805-28014250-00000000

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1904, 1905

Page: 1/1

15						-	I													Q	I.	hd iiy	i Ca	it Ru rial i atroi
RD	+2	8.6	5	90	†	+	ł		9		8	++			H	+	Ħ		-		-	┝┼╸		
	- 11	94			╺╡┼╴		₩	iŧ	Ø	힘	Ð	i į		1					÷		i	1		
CN RD BL RD			8	q	Ħ		Ħ	H	9	H		H	$\frac{1}{1}$	+	1	∔- 5	İ.	Ħ	:	-	T	<u>+</u> +		-
	+1	34	7						5				[]				1		!			1		
	-		7	dc	#		1	L.	ø		bļ.		4	Ļ	4	<u>!</u>	ļļ	4	÷		-	Ŀ	Ц	H
RD	+2		9	90	1			2			2			1		Ī	i		1	İ÷		1		
BL GN				00	1				2	Ľ					i	li			;	İ				
rici (+2	a ji	7	-6			T	l	9	55	5		Π		!	F		1			1			7
	+1	853		bd.	4		ł	1	9	5	9	I į	11		į	{ }			1	1	i	•		
백	1	9-19	19	99	+		╬	H	3		9	H		Ť	÷	H	H	i	+	H	+	1		H
		8.2	ē	90 150		.,		li	5			11			÷			ł		ļ	i			
dN .		, Lie	9	90	1	Ľ,		L	9	-8	a	1	!!	H	÷				1.	Ľ				4
RO	1211	.	7	90			#	ļ	9		9				i	1.		1						
		1 59	Ŀ	bd or	1		II.		7	Ľ					:	ŀ			ł					
RD	13	9 a	a	or			U	ſ	6	Ē	8 2	!	1	Ť			t		1	ļ+		÷		H
	+1	264		٢đ				1	9	20	2	i (:		1	!	i.		: ;	1		:	1		1
			1÷				34	ł-	+	+	Ļ	ļ.	ļļ	÷	÷	H	+ + +	+	+	ļ÷	÷	÷	4	H
	11 11	201	3.			Ø			: '					١.	'			1	ł	i	-	:		
	<u>"[]</u>	11	111			4			; ;	L		1	ļĺ	1 :	:		<u>i :</u>	1		1	i	:		
\square		Π					Ē		:	Π	:				-	:	1					i		j
	1 b i i	12	Þ		b!	1	御	5	:]	5þ	:	6	0	!	7	D.	: •	B)		9	0	10	Q.

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	6/44

INSPECTION	LITY CON AND TES		CERT. N	1 °:	1906						
PURCHASER:	ContiTech	Oil & Marine C	orp.		P.O. Nº:		4500370505				
CONTITECH RUBBER order N	. 537587	HOSE TYPE:	3"	ID	· · · · · ·	Choke an	nd Kill Hose				
HOSE SERIAL Nº:	66552	NOMINAL / AC	TUAL LE	NGTH:		10,67 ו	m / 10,73 m				
W.P. 68,9 MPa 10	000 psi	T.P. 103,4	MPa	1500)O psi	Duration:	60	min.			
Pressure test with water at ambient temperature											
See attachment. (1 page)											
	· .										
↑ 10 mm = 10 Min. → 10 mm = 25 MPa							· · · · · · · · · · · · · · · · · · ·				
COUPLINGS Typ	e	Seria	l N°		Q	uality	Heat N°				
3" coupling with		8088	808	5	AIS	61 4130	24613				
4 1/16" 10K API Flang	e end				AIS	61 4130	034939				
NOT DESIGNI	ED FOR W	ELL TESTIN	IG				API Spec 16 C				
All metal parts are flawless						Temp	perature rate:"	'B"			
WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE T						H THE TERM	IS OF THE ORDER				
STATEMENT OF CONFORMITY: conditions and specifications of t accordance with the referenced st	the above Purch	naser Order and ti	hat these	items/ec	uipment v	were fabricate	ed inspected and test	ted in			
	(COUNTRY OF ORI	GIN HUN	GARY/E	U						
Date: 13. November 2013.	Inspector		Quality	Contro	Contifu Indus Quality C	ech Rubber trial Kft. ontrol Dept.	Haga yos				

ContiTech Rubbar Industrial Kft. Budapesti úr 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +36 62 568 737 Fax: +38 62 568 738 e-mail: Info@fuld.contitech.hu Internet: www.contitech-rubber.hu The Court of Csongrad County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	7 / 44

QUAL INSPECTION	LITY CON AND TES		ATE		CERT. N	1 °:	1907		
PURCHASER:	ContiTech	Oil & I	Marine C	Corp.		P.O. №:		45003705	05
CONTITECH RUBBER order N	•: 537587	HOSI	E TYPE:	3"	D		Choke and	d Kill Hose	
HOSE SERIAL Nº:	66553	NOM	INAL / AC	TUAL LE	ENGTH:	10,67 m	/ 10,745 m	1	
W.P. 68,9 MPa 10)000 psi	T.P.	103,4	MPa	1500)O psi	Duration:	60	min.
Pressure test with water at ambient temperature See attachment. (1 page) ↑ 10 mm = 10 Min. → 10 mm = 25 MPa									
COUPLINGS Typ	e		Seria	l Nº		Q	uality	Hea	it N°
3" coupling with		8	089	808	7	AIS	61 4130	23171	24613
4 1/16" 10K API Flang	ge end					AIS	SI 4130	034	939
NOT DESIGN	ED FOR W	ELL	TESTIN	IG			A	PI Spec 1	6 C
All metal parts are flawless							Temp	erature ra	ate:"B"
WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE T							H THE TERMS	S OF THE ORD)ER
STATEMENT OF CONFORMITY conditions and specifications of a accordance with the referenced st	the above Purch andards, codes (haser C and spe	order and t	hat these and meet	items/ea the relev	ant accept	were fabricate	d inspected an	nd tested in
0-4-1				<u> </u>					
Date: 13. November 2013.	Inspector			Re	y Contro	Conti Indi	Terte Brithin ustrigh Militin Control Ord	ter Bocn	(et)

ContiTech Rubber Industrial Kit. Budapesti (t 10., Szeged H-8728 P.O.Box 152 Szeged H-6701 Hungary Phone: +38 62 566 737 Fax: +36 62 566 738 e-mail: info@fluid.contitech.hu Internet: www.contitech.rubber.hu The Court of Ceongrád County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209

Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	8/44

QUA INSPECTION	LITY CON AND TES		ATE	CERT. N	1º:	1908	
PURCHASER:	ContiTech	Oil & Marine C	corp.	P.O. Nº:		450037050	5
CONTITECH RUBBER order N	e: 53758 7	HOSE TYPE:	3" ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	66554	NOMINAL / AC	TUAL LENGTH	:	10,67 m	/ 10,71 m	
W.P. 68,9 MPa 1	0000 psi	Т.Р. 103,4	MPa 150	00 psi	Duration:	60	min.
Pressure test with water at ambient temperature							
		See attachme	ent.(1 page	ə)			
				•			
↑ 10 mm = 10 Min					;		
→ 10 mm = 25 MP	a						
COUPLINGS Ty		Serial	N°	Q	uality	Heat I	N°
3" coupling wit	h	8090	8086	AIS	si 4130	23171 :	24613
4 1/16" 10K API Flan	ge end			AIS	SI 4130	03493	39
NOT DESIGN	ED FOR W	ELL TESTIN	IG		AF	PI Spec 16	C
			· .		Tempe	rature rat	e:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE 1					H THE TERMS	OF THE ORDE	R
STATEMENT OF CONFORMIT conditions and specifications of accordance with the referenced s	the above Purc	haser Order and the	hat these items/	equipment	were fabricated	inspected and	tested in
		COUNTRY OF ORI	GIN HUNGARY/	EU			
Date: 13. November 2013.	Inspector		Quality Contr	Cun	tiTech Rubha dustrial Kft. ity Control Dec))
Budapesti út 10., Szeged H-6728 Fax: P.O.Box 152 Szeged H-6701 e-ma	e: +38 62 568 737 +38 62 568 738 il: info@fuld.contitech iet: www.contitech-rub	Registry Cou 1.hu Registry Cou	rt No: HU 06-09-00250	2 Szeged	al and Creditbank -28014250-0000000)	

SZEGED -670 ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1906, 1907, 1908

No:1906, 1907, 1908 Page: 1/1

١

ech Rubher urial Kft.

	ContiTech Rubier
	adustrial Kft.
Gi +19.00 40 +7+00 R0 +19.02 40 17*20 S1 +19.42 40 17*20 S1 +19.42 40 17*20 GN +19.42 40 17*20	
RO +19.64 °C 17:10 9. +1956. bar 17:10	
	90. 100
R0 +19.77 90 16 50 BL +1953 bar 16 50 M +19 51 90 16 50	
BL 11859 bdr 16149	
R0 +19 73 9C 16 30 BU +1055. bar 16 30	
R0 +19.78 -C 16:28 BL +1.62. bd - 16:20	
12-11-2913-16-001-4 66552-66553-66554 57-00	

•

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	9/44

Onfinental & CONTITECH

والمرابع فليستعط فمنامع وجارهما ومستمرة فالمستماسهم أأكمت ماران مسماع والمقارمين فالمستاد فالمستاد فالمستاد فالمستاد

والمتلك والمستقدم والمترك والمتحر والمتقالية والمترك والمستعدان والمناكر والمناكر

Hose Data Sheet

Inside dia in inches3Length35 ftType of coupling one endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVEType of coupling other endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound lubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoSafety chainNoSafety chainNoSafety chainNoBarent CNoSafety chainNoSafety chainNoSafety chainNoSafety chainNoBarent CNoMax.design temperature [°C]100Min. design temperature [°C]20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	CRI Order No.	537587
Item No. 1 Hose Type Flexible Hose Standard API SPEC 16 C Inside dia in inches 3 Length 35 ft Type of coupling one end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX15SSTANDARD RING GROOVE Type of coupling other end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX15SSTANDARD RING GROOVE H2S service NACE MR0175 Yes Working Pressure 10 000 psi Design Pressure 10 000 psi Test Pressure 15 000 psi Safety Factor 2,25 Marking USUAL PHOENIX Cover NOT FIRE RESISTANT Outside protection St.steel outer wrap Internal stripwound tube No Lining OIL RESISTANT Safety clamp No Element C No Safety vire rope No Safety wire rope No Max.design temperature [°C] 100 Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90 Min. Bend Radius storage [m] 0,90	Customer	ContiTech Oil & Marine Corp.
Hose TypeFlexible HoseStandardAPI SPEC 16 CInside dia in inches3Length35 ftType of coupling one endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVEType of coupling other endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiDesign Pressure10 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoSafety chainNoSafety chainNoSafety chainNoElement CNoSafety chainNoSafety chainNoSafety chainNoSafety chainNoSafety chainNoElement CNoMax. design temperature [°C]20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Min. Bend Radius storage [m]0,90Min. Bend Radius storage [m]0,90	Customer Order No	4500370505
Standard API SPEC 16 C Inside dia in inches 3 Length 35 ft Type of coupling one end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE Type of coupling other end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE H2S service NACE MR0175 Yes Working Pressure 10 000 psi Design Pressure 10 000 psi Test Pressure 15 000 psi Safety Factor 2,25 Marking USUAL PHOENIX Cover NOT FIRE RESISTANT Outside protection St.steel outer wrap Internal stripwound tube No Lining OIL RESISTANT Safety clamp No Lifting collar No Safety chain No Safety wire rope No Max. design temperature [*C] 20 Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90	Item No.	1
Inside dia in inches3Length35 ftType of coupling one endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVEType of coupling other endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoSafety chainNoSafety chainNoSafety chainNoBarder (C)NoSafety chainNoSafety chainNoSafety chainNoSafety chainNoSafety chainNoSafety chainNoBarder (C)100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,80Electrical continuityThe Hose is electrically continuous	Hose Type	Flexible Hose
Length35 ftType of coupling one endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVEType of coupling other endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoSafety chainNoSafety chain <td< td=""><td>Standard</td><td>API SPEC 16 C</td></td<>	Standard	API SPEC 16 C
Type of coupling one end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE Type of coupling other end FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE H2S service NACE MR0175 Yes Working Pressure 10 000 psi Design Pressure 10 000 psi Test Pressure 15 000 psi Safety Factor 2,25 Marking USUAL PHOENIX Cover NOT FIRE RESISTANT Outside protection St.steel outer wrap Internal stripwound tube No Lifting collar No Safety champ No Safety champ No Safety champ No Lifting collar No Safety chain No Safety wire rope No Max.design temperature [°C] -20 Min. Bend Radius operating [m] 0,90 Electrical continuity The Hose is electrically continuous	Inside dia in inches	3
C/W BX155STANDARD RING GROOVEType of coupling other endFLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2.25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoSafety chainNoSafety chainNoBarent CNoSafety chainNoMax.design temperature [*C]100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuousThe Hose is electrically continuous	Length	35 ft
C/W BX155 STANDARD RING GROOVEH2S service NACE MR0175YesWorking Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety wire ropeNoMax.design temperature [°C]100Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Type of coupling one end	
Working Pressure10 000 psiDesign Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoSafety chainNoSafety chainNoSafety wire ropeNoMax design temperature [°C]100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Type of coupling other end	
Design Pressure10 000 psiTest Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoSafety chainNoSafety wire ropeNoMax design temperature [°C]100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	H2S service NACE MR0175	Yes
Test Pressure15 000 psiSafety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety vine ropeNoMax design temperature [°C]100Min. design temperature [°C]-20Min. Bend Radius operating [m]0,90Electrical continuityThe Hose is electrically continuous	Working Pressure	10 000 psi
Safety Factor2,25MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety wire ropeNoMax.design temperature [°C]100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Design Pressure	10 000 psi
MarkingUSUAL PHOENIXCoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Test Pressure	15 000 psi
CoverNOT FIRE RESISTANTOutside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min. design temperature [°C]-20Min. Bend Radius operating [m]0,90Electrical continuityThe Hose is electrically continuous	Safety Factor	2,25
Outside protectionSt.steel outer wrapInternal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min. design temperature [°C]-20Min. Bend Radius operating [m]0,90Electrical continuityThe Hose is electrically continuous	Marking	USUAL PHOENIX
Internal stripwound tubeNoLiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Electrical continuityThe Hose is electrically continuous	Cover	NOT FIRE RESISTANT
LiningOIL RESISTANTSafety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Outside protection	St.steel outer wrap
Safety clampNoLifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Internal stripwound tube	No
Lifting collarNoElement CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Lining	OIL RESISTANT
Element CNoSafety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Safety clamp	No
Safety chainNoSafety wire ropeNoMax.design temperature [°C]100Min.design temperature [°C]-20Min. Bend Radius operating [m]0,90Min. Bend Radius storage [m]0,90Electrical continuityThe Hose is electrically continuous	Lifting collar	No
Safety wire rope No Max.design temperature [°C] 100 Min.design temperature [°C] -20 Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90 Electrical continuity The Hose is electrically continuous	Element C	No
Max.design temperature [°C] 100 Min.design temperature [°C] -20 Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90 Electrical continuity The Hose is electrically continuous	Safety chain	No
Min. design temperature [°C] -20 Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90 Electrical continuity The Hose is electrically continuous	Safety wire rope	No
Min. Bend Radius operating [m] 0,90 Min. Bend Radius storage [m] 0,90 Electrical continuity The Hose is electrically continuous	Max.design temperature [°C]	100
Min. Bend Radius storage [m] 0,90 Electrical continuity The Hose is electrically continuous	Min.design temperature [°C]	-20
Electrical continuity The Hose is electrically continuous	Min. Bend Radius operating [m]	0,90
	Min. Bend Radius storage (m)	0,90
Type of packing WOODEN CRATE ISPM-15	Electrical continuity	The Hose is electrically continuous
	Type of packing	WOODEN CRATE ISPM-15

								No:QC		51 /20	13
				CONT	ITECH				-00-0	10/4	
				11	ndustri			Page:		1074	
	Customer: Order Number: Parl Number: Our Ref: Date: Certificate Number: Approved Signatories R M Greaves Description AISI4133/BLACK ROLL 197-238 BHN, 655MPA MIN ELONGATION, CH (OR COLDER) LATER/ REDUCTION 3:1 MIN, I TAKEN FROM A4* SQ	ED BAR, HEA MIN TENSILE MIN TENSILE ARPY IMPAC AL EXPANSIO NI 1% MAX &	J Jarvia J J Jarvia J AT TREATEL E. 517MPA N TT TESTING DN 0.38 MIN. CE 0.82 MAN	32 4205 S(h Februa Rev. 18/0 A Pears S CERTI D & TESTEC AIN YIELD, 27J MIN @ ROLLING X, TESTS M	258500 1160045 064201 ry 2013 672013) Setman FFICATE 0 10 18% -30C	G 2 DF CONFO HARDENED TEMPERED WATER TEM TEMP. MEAL COMPONEN	- SISS - SISS - SISS - OSI ORMITY FROM 880 AT 670C I APERATUR SUREMENT IT HARDNE	- 14 6 00 *C FOR 53 •OR 10 HOL E BEFORE 7, FURNACE \$S\$ E10 - 21	HOURS (V GG HOURS (V IRS (AIR CO OUENCH, 2 ATMOSPH 11 HBW10/3	Heat VATER QUI DOL) B*C, AFTER UERE THER 000	Treatment ENCH) R, 35°C. MOCOUPLE
	MECHANICAL TEST SI NACE MR0175/ISO151	PECIMEN TO				TEST COUP REDUCTION REDUCTION FURNACE C	N RATIO - 6 N RATIO & 1	.2 IT APPLY T	o Both Jo	18 & TEST I	
	APPROX 20 TONNES CERTS TO EN10204 3				11	C/E = 0.693					
					CAST	24613)			· · · · · · · · · · · · · · · · · · ·	
	C Si	Mn	S	P	Ni	er	Mo	AI	Cu	Sn	Nb
	0.3200 0.259		0.0090			1.0560				0.0070	
·	V Ta 0.0010	TI 0.0010	Nb+Ta	Co	N 0.0079	B 0.0001	W	Ce	Fe	As	Sb
	Pb Ca				0.0010	0.0001					<u></u>
		1.20	0.69		L	l					
	Tempera	hure	TES	T SPECIF	CATION	517 N/ms	m2 MIN Y	IELD Impa		Temp,	Hardness
•	RT			517.000		~~				renge.	
	L		Epung 2	Nimm2	Kimm2	40	ĺ]			
	Test Number	Dir./Temp	. Re	Rp	TEST F Rm	ESULTS	Z %	oL	ules	Charpy Direction	•
	ST22561N	20,0°C		524.000	698.000	GAL 50.00mm 27.60		KCV -46°C	60 50 78	LONG	HUW100000
•.	Specimen @ 12.500m	m						KCV -BOC		LONG	
·								% Shear Su 62.0% 5	2.0% 80.0%		
								Lala-a) Expa 0.840 0	nston (mm) 0.740 1.020	LONG]
				A (cK	лà			ntiTech Rub Industrial Kr CERTIFICAT ACCEPTABL		
	For and on Behalf d	of TM Steels	i Lid.	<i>4. [</i> 0				DAT	: /1-06 .	R 21.	•
		of TM Steels	s Liid.	4.[0		J		DATI	14.06.	<u>21.</u>	
	For and on Behaif o TM Stees Ltd Forwood Way	of TM Sleals	s Liid.	4.[0				DATI	: [1.06.	2 <u>1.</u> Te: •4	4 (0)1248 266312 4 (0)1246 268313
	TH Stees Ltd	of TM Steels	s Lid.	4.[0				DAŤI	<u>:: /1. oc.</u>	Tei +4 Salos Fax +4	4 (0)1248 26831; 4 (0)1246 26831; 4 (0)1248 268841
	TM Stees Ltd Faxwood Way	of TM Steels	s Ltd.	Steel for t	he Oil and	Engineerin Boring Fai	-	<u>DAT</u> I	Prode	Tel +4 Salos Fax +4 Jocon Fax +4 Amati Jalo	4 (0)1246 28831:

									_											•					
	VO	3						<	Bo	dy)			·					T	est	t Ce	ert	ific	at	e
CHRCO METAL	DUP							8	089-	8091	0		Custom	er Order		322!	52193 - 1	 D1	Test N	umber			402483		
Carbrook Sheffield	Street						To: CONTITE	CH RUE	IBER ÍNC	USTRIA	L KFT		Custor Date	ar Ordai	•	2	7Feb12		Part N	umber		4	20516004	5	
Felephon Facsimile							1-6728, SZEGED SUDAPE	ອີກາ ມາ -	o. K.	1562	-KI	ST	Sales C			EUF	-35206	7-1	Cast I	lumber			23171	>	
and the second						11	HUNGAF	₹Y,					Report			2	5Sep12		Cort	lumber		E	JR-2658	5	
\mathbf{O}	À. R:						HUNGAF	ir L	1205	-16 .	0043	5	Quantil		14 Pr			0 mm Dia					011-2000		
U	2 2						Descript	ion AISI	4130 75K	81 .2% P	S API Q	rc							Steel	Туре	ALLOY	Y 4130			
Results que	-	refer to	the items	testeg	4	L			· · · ·										-J						
Material S	pocificat	ion	AISI4130	57.																					
Heat Trea	tment St	Xec	197-237	BHN	-		_			Te	st Spec	517N/M	AZMIN.YLC)		<u> </u>		Test Sp	ec			*****			<u> </u>
Melt Pract	ice		EFNO			1	Producti	ion Meth	xd .	FORG	ED														
Hest	Treatm	ent	Tamp(C)		Soak		Cod	lant	Che	inge Ref.	Init	Max(C)	Be	toh	Төтр п	bebrooe	using	CONT	ACT THE	RMOCOU	PLE			
HARDEN			860		3 HR	19	İv	VATER	UENCH	· SHF-	158284	20	30	09120	91308	Nature	of T/P		Sepan	te		·····			
TEMPER	<u> </u>		650		4 HR	នេ		ABLEC	001	SHF-	158284			10120	91319	Oto siz	e 4ln	ah SQ X 6	nch LON	G					
												1			_					Req. Min	Max	[Achi	eved	
	<u></u>													<u> </u>		Handra	ess on T	7P	197	237	HBW	229	2	29	HBW
												1				Hardn	ess an A	latertal	197	237	HBW	218	2	35	HBW
Tensile -														Impaot											
	allon		Directio	·		Rp 0.2	_		m		A%		Z%		Location			ection	<u> </u>	CVN		Lat Exp.			Shear
	14T		ONGITUE	ANAL	\bot	517 M	ĥ		008 ci	+	Min (4d)		0 Min		1/4T			TUDINAL		7 Min Ave		0.380			0
Results (I	Vmm2)					580		,7	85	25	(50.0mm)) 84.1	0 (12.56mm) Resul	ls (Joules)	-30 C	entigrade	10	6 104 10	2	1.44 1.4	2 1.4	40	40 40
Results			<u> </u>		┼╌				·					Resul	bsi										
Corrosion			<u>,</u>		1					<u></u>									1	_				Ļ	
Pittina Re					T.F.	mile								Micros	tructure		·						<u> </u>		
Carbon E			+		1.0			7 7				· 07	ala Size	Min		8	Мал	. <u> </u>	6						
C	3	Mn	P	5		Gr	Mo	N	Cu		T	<u> </u>			T	<u> </u>			·1	┱┸╍╍╸	11				т—
0.2940	0.2920	0,5370	0.0110	0.005	50	1.0620	0.2290	0.1860	0.2430				1		t	<u> </u>	+		:	+	1	-			+
Certs to E NACE MI FE = BAL REDUCT	9-01-75			.							Industrial CERTIFIC ACCEPTA OC INSPE	Kh. ATE ABLE			· · ·	L			load/pen ASTM E1	etration (0.	rms to API lepth - HBV				
Names o This repo	1 Appro rt is not	ived Sign to be rep	natories : roduced i	S.Max without	ted (t writi	G.Smith ten appr	S.Suter ovel.	P.Rogen	MBrow		18: 2 ·						Signatur	·M	5			Page	1 of 1		

CONTITECH RUBBER Industrial Kft. No:QC-DB- 651 /2013 Page: 11 / 44

	,			СО	NTITEC		BER		B- 651 /2013]
					indust	rial Kft.		Page:	12 / 44	
	HAM(= ç(ç T-TREA		3: 4205		284 1	ÉMI-TÜV	
H-353.	L M18KOL				V CE				'ax: 36/46/3	
ACCEPT	ANCE ACC	ORDING	; EN 10	 204-05	/3.1			ertificat	e No.: 8698	9/13
Date of	f issue:	2013.	03.27	Hámo	r No.:	98-391	35263	Order N	o.: 3225978	4/13
Custome	er: Cont : 6728		Rubber d Buda			Kft.				
Dimensi	lon: MSO	-10059	7-002/	A/H mm				315/19 nent:Quen	3×182 ched & temp	ered
Quantit	y: 30	0 pcs	Weigi	ht:	73.0	kg/pc	Tot	al weigh	t: 219	0.00
nomir	nation of	f prod	uct: F	orged,	machine	ad disc	;			
	Chemical	l anal	ysis %	. .		Steel		t No.: 0	34939 Hutaostrowi	ec P
Test No.	Spec. value Min. Max.				P 5			00 V 000 0.300	Ce 0.82	
	Result	0.28	0.56 0	.20 0.	006 0.0	03 0.9	9 0.1	70 0.003	0.62	
	Mechanic	al pr	operti	98: 						
Test No.	Spec. value Min. Max.	HB 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27		ContiTech Rubbe Industrial Kft. CERTIFICATE ACCEPTABLE		
L13314	Result Result	235 238	525	662	19.50	35 52 82		ac INSPECTOR DATE: 11.03.2	3	
Dimens Ultras Steel NACE HB-E10	par from nional ar making (MR 0175/ ,Mechani Of forgi	nd vis st acc (meltin 'ISO 1 .ka:AS'	ual con . to SH ng) pro 5156+AH TM A370	EP 192: DCESS: PI 17K	1-84 sp UHP-AS	l bec. is SEA vac	uum-t 3.	sfactory reated. /series.	C/c	
•	- <u></u> /. E	xecut:	ive n	lámor ^{Ös} ég elle Osztá lj	ZKL nôrze:			MÜ	Expèrt	••

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	13/44

																Ρ	RO	то	co	LI	NUI	MM	ER	: 9	8-3	9B	52
						HE	A	T-]	R	EA	TI	ME	N'	Ť	P	RC	T	DC	:0								
			E	JU	YEF	₹:										C	Orde	er N	lo.	of	Buy	yer:					_
CONTIT	ſEC	;H F					DU	STF	ria	LΚ	ft.						32	225	978	34/ [,]	13/2	2					
					geo														-								
	ł	Bud	ape	esti	Űt	10.	. SZ	-			ľ	Wo	irk l	No.	of	Buy	er:										
			PR	10	200	CT:						C	<u>v</u> UA	NT	TT	/: P	IEC	E	Γ		No). O	f dr	awi	ing:		-
			f	for	ged										30					MS	SO-	100	0597-002/A/H				
AISI		ATI								3			C	hai	rge 493		.:		\uparrow			Te	st N	No.:			
<u>HEAT-T</u> Typ of f							um:						laro						wa T	iter							
T/°	<u>C/</u>				.					· · · · ·	·														,		_
1000	┣—	\square	\vdash	-	┢		<u> </u>		_							_											-
900	┢──	┝─┥	┝─┤	<u>4</u> 8	<u>h</u> 7	0 0	u °	r C	S			╂—			-					_			-			i	┝
F	┢──			F,	É	Ĕ	<u> </u>	Ĕ															\vdash			\vdash	F
800				\Box					T																		Ē
				\downarrow	L.				\Box																		L
	T				1		1	l w l	a	kt'	le.	l r							6	2	0	0	C		1		
700	\square		┝─┤	4	┣─-	\vdash				1			t			_				-							r
700 600				F						T										5	h	0	u	ſ	S		L

Miskolc, Hámor ZRt. 2013-03-26.

3 h o u r s

time(hour) Kando head of heat-treatment

W а t е r

3 h o u r s

Hámor zRt. Ilinőség ellenőrzés Osztály

winword/doc/HOKEZ-K\CONTITEC/4130-620

500

400

300

200

100

0

72.

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:14 / 44

61344 Felado : 19/18/13 gamma controll kft 12:54 Lap: 2 HARDNESS TEST GAMMA-CONTROLL Report No: 561/13. REPORT 1700 Auge, concernantial au Bald and and Riskeria. Hore CLIENT: JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22. TEST EQUIPMENT; TH 160-D Hardness tester PROCEDURE: QCP-45-R1 DESCRIPTION OF COUPLING: coupling(s) after PWHT DRAWING NUMBER: MT-3121-3000 SERIAL NUMBER; 8083; 8084; 8085; 8086 ACTUAL HARDNESS BRINELL HARDNESS SERIAL NO OF PART OF THE REQUIREMENT COUPLING COUPLING RESULT (HB) body 224 8083 weld 222 Min HB 197 flange 236 Max HB 238 connection face 238 body 213 / 8084 weld 208 flange 220 connection face 238 body 214 1 8085 weld 214 flange 219 connection face 222 body 232 / 8086 weld 237 flange 238 connection face 197 The coupling(s) conform to API Spec 6A requirements. DATE: PREPARED: APPROVED ONTROLL KFT. Alayo, Kaitertilet 01884714, brsz Addszam: THOSAB 192-95 60 679 2013. október 30. Ménesi István CAVERED WAR QCP-03 HB/11

CONTITECH RUBBER	No:QC-DE	B- 651 /2013
Industrial Kft.	Page:	15 / 44

gamma controll kft

Felado : 61344

!

ļ 1

19/18/13 12:54 Lap: 3

į

GAMMA-CONTRUCT		ESS TEST PORT	Report No	: 562/13 .
6780 Appe, sineria dillaria, ms. Talifini, 400 62/517-400 / 01244	:			
CLIENT:	JE-ZO KFT	SZEGED, KÜLTE	RULET, 01404	3/22.
TEST EQUIPMENT:	TH 160-D H	ardness tester		
PROCEDURE:	QCP-45-R1			
DESCRIPTION OF COU DRAWING NUMBER:				
SERIAL NUMBER:	MT-3121-30 8087; 8088;	••		
	0401; 0400;	avas; auso	······	
BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF 1 COUPLIN		ACTUAL HARDNE8S RESULT (HB)
Min HB 197 Max HB 238	J 8087	body weld flange connection	face	213 216 220 225
	/ 8088	body weld flange connection f	ace	229 212 223 213
	√ 8089	body weld flange connection fi	300	219 229 231 238
	8090	body weld flange connection fa		207 210 226 234
e coupling(s) conform t	o API Spec 6A requi	irements.		
ATE:	PREPARED:	AI	PROMED	ONTROLL KFT.
2013. október 30.	Ménesi Is	ilván	AdoSzatitis	TTO STOLED DE DE DE DE DE DE DE DE DE DE DE DE D

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	16 / 44	

GAMMA-CONTROLL

Www.com/second/d.log

6750 Algyő, külterület 01884/14, braz. 181/Faz.: +38 62/517-400 / 81344 A KAT élai MAT-1-1160/2010 azérson atáradálit vizugitéletbant

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT 513/13

r									
Vizsgálat tár	gya / Obje	ct of te	st			Coupl	ing (Body)	<u>D</u>	
Gyántó			Megrendelő JE-ZO Kft. Szeged						
Manufacturer Gyáriszám				Customer Customer Customer					
Gyanszam Senal-No.				I Corder-No.					
Azonositó jel 2000 2000				Követelmény			· ····		
Identification 8083-8088			•	Requirement ASTM			ASTM A38	38	
Geometriai kialakítás / Rajzszám			· · · · · ·	Vizsgálati h		\$	előtt		
Geometric configuratio				Test heat treatment prior					
MT-3121-3000	· .	ø	200xø70x491				· ·		
Anyagminőség			130 / Letapogatási ir		si irányo	k	axiális és radiális		
Material		AI31 4	130 /	Direction of scanning		19	axialis es radialis		
Adagszám		24613	1						
Heat-No.		24013		<u> </u>					
Vizsgálati felület állapo	ita	forgácso		Vizsgálati te	•	n	100%		
Surface condition		machine	d	Exted of Te	Exted of Test		100 %		
Vizsgált darabszám		6 db							
Testing pieces				<u> </u>					
	Viz	sgálati	adatok / E	xamina	tion	data			
Készülék típusa		USM2	E	Készülék gy	yári szár	na	7875f		
Type of US-equipment		USINZ	D	Serial-No. C	-No. Of US-equipment		10101	0/01	
Vizsgálófej(ek)		SEB-2,		Frekvencia	(k)			2 MHz	
Searc unit(s)		SEB4H		Frequency(les)			4 MHz		
								MHz	
		•	·	<u> </u>				MHz	
Kalibrációs blokk			ET1,ET2	Erősítés(ek) axiálisan Gain		axiálisan	1	8 dB	
Calibration standard ide	entrication							dB	
				:		radiálisan		dB e dB	
Csatoló kôzeg		olaj		Hanggyeng	nlás	Tauransan	<u> </u>	6 dB	
Couplant		oil		Attenuation dB/m			dB/m		
Értékelés / észl	elt kijelzésel		ation / record			0.8			
- -			-						
Ertékelés Evaluation	X	megfel satisfa			nem	megfelelő	/ not accept	able	
Megjegyzés(ek) Remark(s)									
Hely / kelt Piace / date Gamma-Control! Kft Algyő, 2013.10.17		Vizsgálatot végezte Tested by		GAMMA CONTROLL AST. 6750 Algye Karter (1994) hrsz. Adoszant 1094614.2 V6 www.gamgesentroll.hu Tel.: 06-30-218-2040 Approved by					
		Tóth Ákos UT20103090307		Benkő Péter - Felelős vezetőh.					

Ez a jegyzőkönyv részleteiben nem másolható! / Copying details is prohibited!

No:QC-DB- 651 /2013 CONTITECH RUBBER Industrial Kft. 17/44 Page: Vizsoálati szám: **ULTRAHANG VIZSGÁLATI** Report No.: GAMMA-CONTROLL **JEGYZŐKÖNYV** 514/13 ULTRASONIC EXAMINATION 6750 Alayo, kolkerüllet 01684/14. brsz. REPORT Tel/Fex.: +38 62/517-400 / 61344 the state NAT-1-110072010 statement attaneously when Coupling (Body) Vizsgálat tárgya / Object of test Gyártó Megrendelő JE-ZO Kft. Szeged Manufacturer Customer Gyáriszám Rendelési szám Serial-No. Order-No. Azonosító jel Követelmény 8089-8090 ASTM A388 Identification Requirement Geometriai kialakítás / Rajzszám Vizsgálati hőkezelés előtt Geometric configuration / Drawing-No. Test heat treatment prior MT-3121-3000 ø200xø70x491 Anyagminőség Letapogatási irányok AISI 4130 / axiális és radiális Material Direction of scanning Adagszám 23171 / teat-No. Vizsgálati felület állapota forgácsolt Vizsgalati terjedelem 100% machined Surface condition Exted of Test Vizsgált darabszám 2 db Testing pieces Vizsgálati adatok / Examination data Készülék típusa lészülék gyári száma USM25 7875f Type of US-equipment Serial-No. Of US-equipment Vizsgálófej(ek) SEB-2. Frekvencla(k) 2 MHz Searc unit(s) SEB4H Frequency(ies) 4 MHz MHz MHz Kalibrációs blokk Erősítés(ek) axiálisan 18 dB ET1.ET2 Calibration standard identification Gain dB dB radiálisan 6 dB Csatoló közeg Hanggyengülés olaj dB/m Couplant oil Attenuation Értékelés / észlelt kijelzések / Evaluation / recordable indications Ertékelés megfelelő Х nem megfelelő / not acceptable Evaluation atisfactory Megjegyzés(ek) Remark(s) GAMMA - CONTROLL KFT. 5750 Alexy Filenter 8188/14. hrsz. Hely / kelt Place / date ide Gamma-Controll Kft. www.gamma-controll.hu Tel. 06 909 98-2640 Algyő, 2013.10.17 Vizsgálatot végezte Tested by Approved by Tóth Ákos UT20103090307 Benkő Péter - Felelős vezetőh

Ez a jegyzőkönyv részleteiben nem másolhatól / Copying details is prohibited!

3.változat 2013.07.16

CONTITECH RUBBER Industrial Kft.	No:QC-DB- 651 /2013		
	Page:	18 / 44	

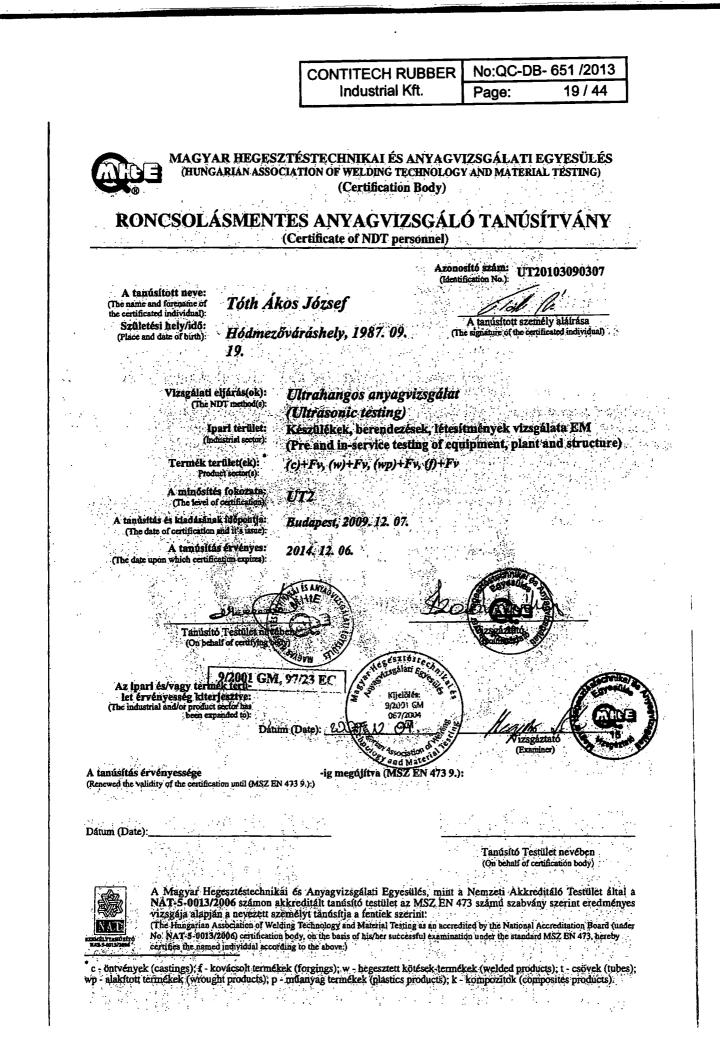
Vizsgálati szám:

515/13

Report No .:

GAMMA-CONTROLL

ervine gata mid-dooktuili ku GPSO Akgus hiskandat DASSArt4 haaz Tauffacu - 30 62617400+8 kista Aktor Kua mid-1-1407570 aakaan aikeeddiki etagaintaassa


ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION REPORT

Vizsgálat tárgya / Object of test				Flange		
Gyártó Manufacturer			Megrendelő Customer	I JE-ZO KH Special		
Gvárlazám		······································	Rendslési szám		, 	
Senal-No.			Order-No.			
Azonositó jer 8083-8090		· · · · · · · · · · · · · · · · · · ·	Követelmény Requirement	ASTM	A388	
Geometriai kialakitás /	Rajzszám		Vizsgálati hőkezel	6a	előtt	
Geometric configuration	n / Drawing-No.		Test heat treatmen	vt	prior	
MT-3121-3000		#315x85x6190x94xp7	ro		•	
Anyagminöség Materiai		AISI 4130 /	Letapogatasi irany Direction of scanni	aviália.	és radiális	
Adagszáni Heat-No:		034939 /				
Vizsgétati felület álkapot Surfzos condition		forgicsolt machined	Vozsgálati terjedele Exted of Test	^m 100%		
Vizsigat darabazam Teating pieces		8 db				
	Vize	gálati adatok /	Examination	data		
Készűlék típusa USM25 Type of US-equipment USM25		USM25	•••	Készülék gyári száma. Serlai-No. Of US-equipment 7875!		
Vizegálófej(ek)		SEB-2	Frekvencia(k)		2 MHz	
Searc unit(s)		SEB4H	Frequency(les)		4 MHz	
					MHz	
					MHz	
Kalibrációs blokk		ET1,ET2	Erősités(ek)	axiálisen	6 dB	
Calibration standard ide	intfication	611,612	Gain		đB	
				· · · ·	đB	
				rediálisen	6 dB	
Cestolė kūzeg		olaj .	Hanggyengülés		dB/m	
Couplant		oli / Evaluation / reco	Attenuation			
	CIT ENFINEER					
Ertèkelés Evaluation	X	megfelelő satisfictory	пет	megfelelő / not a	cceptable	
Megjegyzés(ek) Remark(s)					-	
		T	Matot végezte ested by	GANING CUR	#19389.14.5056 24614-2306 Statuoll ha Mc2640	
		012010300030/	Benkő Péter - Felelős vezetőh			

Ez a jegyzőkönyv részleteiben nem másolható: / Copying datails is prohibited!

3.változat 2013.07.16

		CONTI	CONTITECH RUBBER No:(- 651 /2013
			dustrial Kft.	Page:	20 / 44
(HUN Meghatalmazzuk a tar (MSZ EN 473 3.21) (The bolder of this certificat GA 6722 S Munkáltató aláírása	NGARIAN ASSO núsítvány tulajde e has been authorised AMA - CONT z ged, Gyertyán dozzánz 11024	CIATION OF W (C niosát, hogy vizsa to perform tests and ROLL KFT os u. 1256/A		GY AND MATER ok eredményéért fe	LAL TESTING) leiősséget vállaljon. .21)
(3) guature of the entproyer.)	www.gamma-con Tel.: 06 30 218	2640		(Uare:)	
	Folyan (E	atos munkaveg	tés igazolása (MSZ EN work activity (MSZ EN 473 9	473 9.) »	
Sorsz.:	Munk (Signatu	Altato aláírása re of the employer)	-CONTRO		Dátum (Date)
i .	MI	$u \gamma$	Mindesepellen Crifs K	811 20	. 01:04.
2.	Nr S	sat	Constant Const	10 IC	N. 01. 06
3.				5 Kg. 00	12 01.09.
4	, ∫] ⊂		-GANMA CONT		3.01.09
5.		17	Anyasolasola	6 Kft	
6.	NA.				
7.					
8.					
10.					
				- 4. 50 5	
Klegészítések:				a sector de	
Additional remarks;);	A vice				
			an an an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao Tao an tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang tao ang t		
	1.1				

:

• A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer)

.

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	21 / 44

•

PHOENIX		TECHN	ICAL D	ATA SHEET		TDS	Page
Phoenix hubber Industrial Ltd.	WEL	DING PR	OCEDUR	E SPECIFICA	ΓION	WPS	Nº 1 of 2
CLIENT		THIS SP	ECIFICAT	ION IS BASED	WPS N°	140-71	REV 4
IDENTITY CODE		ON AS	ME CODE	SECTION IX	SUPPOR	-	R N° JD 0700002/
Ітем	Qty	WELDING P	ROCESS: G	TAW-SMAW	Perform	ED BY:	
DATA FOR ACCEPTA	NCE	Types: MA	NUAL		WELDER'	s Stamp	
JOINTS (QW-402)	75 . 1.5 x	B A	I	Sequences	of weld see	e on adder	ndum
JOINT DESIGN	BA	CKING: Y	<u>es</u> /NO	WELD SEQUEN	NCE		
BASE METALS (Q	₩-403)			PART "A	"	PAR	Т "В"
DRW Nº	•						
GRADE:	<u>_ ,, , , , , , , , , , , , , , , , , , </u>	WNG	o.:1 .7220	ASTM A 322-9	1: AISI 41: EN 10083-		Mo4 (MSZ
CARBON EQUIVALE	NT T	тах.С	e *	0.82		0.	82
MECHANICAL PROPI	ERTIES:	_					
Tensil	e Strength	N/mm ²	min.	655		6	55
DUCTIL	JTY	%	min.	18			8
HARDN		HB	max.	238		2:	38
IMPACT	TEST -30°C		Average	27			7
THICKNESS:		-38 mm		OUTSIDE DIAMET	ER : (ØD = 60-2	280 mm
FILLER METALS (QW	· · · ·	_					1 -
	DIAMETER	BRA			NDARD		SUPPLIER
Rod	2.4 mm	EM		AWS A5.18			Böhler
Electrode	3.2; 4.0	T-PUT Nil		AWS A 5.5-96: 1	C 10018-D	2 (mod.)	Böhler
LAPSE BETWEEN OF		MIN./m	in 				
POSITIONS (QW-40	•			PREHEAT (QW-4	-		
POSITIONS: 1G RO	-	-		PREHEAT TEMP.			
WELDING PROGRE				INTERPASS TEM			
Position of fille		to the top		PREHEAT MAIN postweld he			gining of
OTHER				METHOD OF PRE			

CONTITECH RUBBER	No:QC-D	DB- 651 /2013
Industrial Kft.	Page:	22 / 44

			NO 140 71 De					
			Nº 140-71 Rev			(00)		age Nº 2 of 2
		· · · · · · · · · · · · · · · · · · ·	(ENT (QW-407)		GAS (QW			
;		TEMP. RANG	620 +20 / -	0.00		NG GAS A	rgon for rool	
		TEMP. TIME	<u>4 HR</u>	·				
		RATE MAX.:		····	PERCEN	TAGE COMPOS	-	.Е)
		RATE MAX.:	80 °C/HR				.995 %	
	LOCATION	OF THERMOO	COUPLE		FLOW R		-12 LITRES	
			· · · · · · · · · · · · · · · · · · ·		{	CKING: Argon	•	
	1	ATMOSPHERE	Air		FLOW R	, ,	9 Litres/min	
ľ	TYPE:			·····	TRAILIN	G SHIELDING C		<u> </u>
	ELECTRICAL	DC	ISTICS (QW-40	9)	ELECTRO	DE POLARITY	lst 2nd-28th	pass: - passes: +
	TUNGSTEN	ELEKTRODE SI	ze/type: Ø3.2	mm thoriated	tungsten			
	MODE OF TR	ANSFER FOR	GMAW					
	ELECTRODE	/ WIRE FEED	SPEED RANGE					
	Weld	PROCESS	FILLER	METAL	Cu	RRENT	VOLT	HEAT
	LAYERS	and the second	CLASS	DIAMETER	Type	AMP.	RANGE	INPUT
		GTAW	ED 6	24	POLAR.	RANGE	11-12	(KJ/cm)
ille ann an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an An t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an t-airte an	1 2-3	SMAW	EML 5 T-PUT NiMo 100	2.4 mm 3.2 mm	+	110-130 120-140	24-26	5-8.4 12-19.6
	4-28	SMA₩	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5
	TRAVEL SPE	ED RANGE	100-130 r	nm/min				
	TECHNIQUE	(QW-410)						
	STRING OR V	WEAVE BEAD			ORIPACE C	OR GAS CUP SIZ	e Ø9mm	
	INITAL/INTE	RPASS CLEAN	ING: Brushing,	Grinding				
	EQUIPMENT	S FOR WELDIN	10:					
	OTHER:	· · · · · · · · · · · · · · · · · · ·						
	EXAMINA	TION -		T	REMARKS			<u> </u>
			eptance instruct			y CMo3 (MS	-	
	N	' MIO-FB 2 E	Based on ASME	3 IX .		tent less than		
					- Before we 350 °C	elding bake el	ectrodes for	2 hours at
	BY		TECH	NICAL D	ATA SHI	EET		
	Desig8	1002	WELDING F				HOSETE	ECHNICAL
	Appr. C	Kn 14.062 S	UBJECT: Butt	weld of hose	coupling for	H2S service;	DEPAR	RTMENT
	Chek'd			Strenghi	75K		WPS Nº 14	10-71 Rev.4
1								

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page Nº:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bain 41
for the approved wall thickness range 5-38 mm	Checked:	1.14
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Sefen

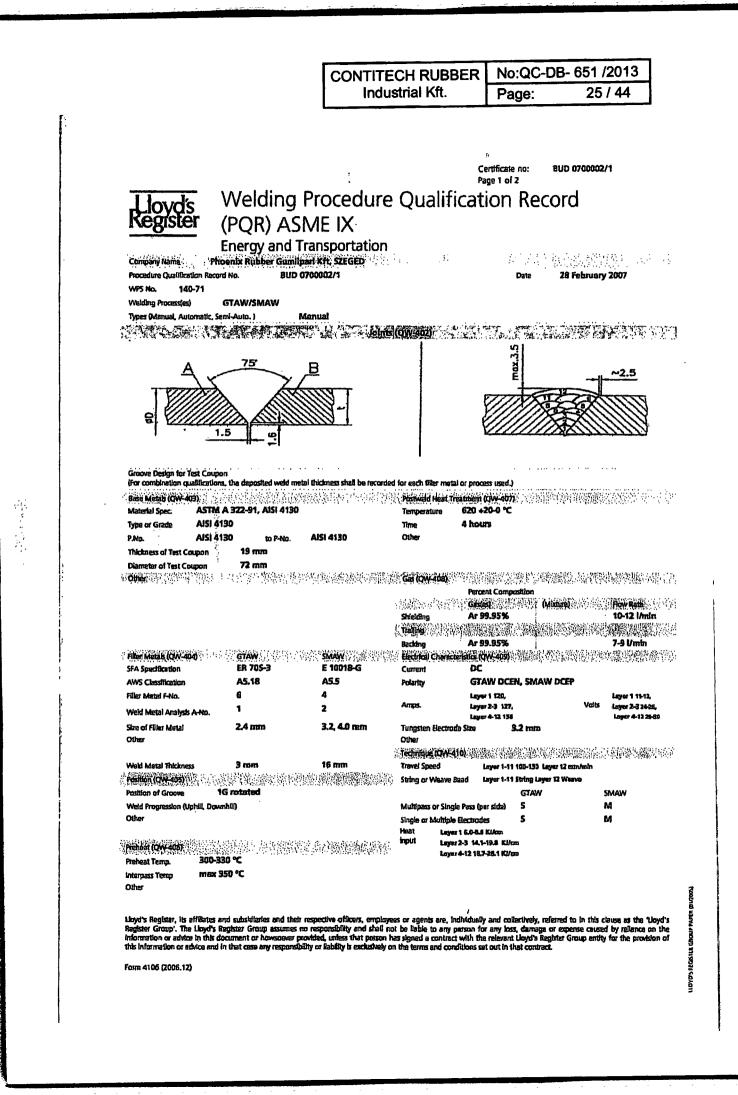
No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		l 2	3,2 3,2
2.	7-9		i 2-3	3,2 3,2
3.	9-11		l 2-3 4-5	3,2 3,2 4,0
3	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		} 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		1 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm Rod EML 5; for the others: SMAW with electrode T-PUT NiMo 100

فالكعيمية المرادية والمستمالية والمراجعة والمراجع والمستعمل والمحافظ والمحاف

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	24 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1	Page Nº:	2/2


n estas presenten on tripotation of printing to the second of the second of the sound and the sound of the seco

:

No.	Wall thickness [mm]	Weld layers		Electrode Ø (mm)
10.	26-29		} 2-3 4-19	3,2 3,2 4,0
11.	29-32		l 2-3 4-23	3,2 3,2 4,0
	32-35		i 2-3 4-24	3,2 3,2 4,0
13.	35-38		1 2-3 4-28	3,2 3,2 4,0

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm wire EML 5; for the others: SMAW with electrode T-PUT NiMo 100

.

		CONTITECH RUBBER		<u>B- 651 /201</u>
		Industrial Kft.	Page:	26 / 44
		•	k	
			erdificate no: Bi ige 2 of 2	UD 0700002/1
Specimen No.	th Thickness	Litimate Total Litimate Unit	141 (A) PO	R No. BUD 07(
39/1 18		nim Load KN Stress MPa Tyr	pe of Faikire & Location	
39/2 18.			se material	
;				
Type and Figure No.	E(QW/160). /	Results		
180° Band roller o	lla: 36 mm 2+2 pcs	Satisfactory		
				NASSE BULLING AND AND AND AND AND AND AND AND AND AND
Specimen No.	Not-th Location Spec	tmen Size Test Temp. Impact Value		Drop Weig
. 39 39	in the second of the second states and second	-C J 10435 30	% Shear 1	alis (YAN)
39.20	5	10x55 -30 49 10x55 -30 41		含沙漠的 正常
39 39	· · · · · · · · · · · · · · · · · · ·	10x53 -30 39 10x55 -30 97	in an an an an an an an an an an an an an	
39	HAZ 10x	10x55 -30 62	erganet an orden. Neberskon ordensko	engrandi ya 191 1 Miliandi ya 191
	 A. C. S. C. Starten and C. S. C. S. C. S. S. S. S. S. S. S. S. S. S. S. S. S.		a a constant a s	
		日本國政治 在 國際的 中 國際的 建立	口中的学者依靠	
Comments:	Reading and a state of the second second second second second second second second second second second second		(A.S. 1997)	
Rende Falabase				
Result- Satisfactory: Macro - Results	Yes No	Penetration into Parent Metal:	Yes 🚺	No 🚺
Type of Test	Hardness test			
Deposit Analysis Other	Macro - Satisfactory			
Welder's Name	X-ray - Satisfactory Tivadar Szabo DC-IL 378258	Clock No. (BC 15)	Stamm Al-	
Test Conducted By:	DKG EAST Anyagvizsgalati L		Stamp No. 107-7/07 VJK 1207/2	8007
We certify that the st	atements in this record are correct	and that the test welds were prepared, welde	d, and tested in acco	rdance with the
requirements of Secti Data Issued:	on IX of the ASME Code. 28 February 2007	Lloyd's Hegisty Lung)]
	Bar and	Birdaper Coffe	K Lloyds	
Manufacturer's Represen	tative Laszlo Bajusz	Leszlo Penzes	<u> </u>	
Manufacturer Phoe	nix Rubber Gumilpari Kft, SZEGED	Surveyor to Lloyd's F	legister EMEA	
		A member of the Lic	yd's Register Group	

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	27 / 44

tonitessites CONTIFECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

		Weld test details		Range of a	pproval	Photo (if required)	
Welding proces	Welding process		W				
	Тура	Rod / Electro	ode				
Filler metal	Designation	AWS 5.18; ER AWS 5.5; E9					
Parent metal gr	oup(s)	ASTM A 322-91 4130	I; AISI	ASTM A 322 4130			
Plate or pipe		Pipe		Pipe/P	late		
Welding position	n _z	1G		1G/FI	at		
Outside diamete	er (mm)	72 mm		> 25 п	າມ	Identification of test	
Test piece thick	ness (mm)	19		Max to be	beblew	pieces.	
Single/ both side	e welding	Single				WPS No.: 140-60 Rev.4	
Gouging/ backir	ng						
Joint type		Groove		Groove / Fillet		Testing standard: ASME IX	
Shielding/ backi	ng gas(ses)	Argon (99,95	5%)				
Welding carried	out, place: Sze	eged	Dat	e: Iding Engineer:	29 April 20 László Bai	April 2010 zló Bajusz Beeter	
Type of test	Pe	rformed and accepted		Not required		e and date:	
Visual	Accer	oted (Vjk-1738/10)			5	Szeged, 18-Jun-2010	
Radiography	Accer	oted (Vjk-1739/10)				-	
Ultrasonic				+	Surv	еуог:	
Magnetic particl	e			+		Péter Szabó	
Penetrant				+		on and circulate o:	
Macro				+		np and store and	
Fracture				+			
Bend				+		The Andrew Ares T	
				+		- TVV	

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:28 / 44

Continental * CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

	PROLON	IGATION OF APPROVAL BY EMPLOY	ER
Piace	Date	Name/ position/ title	Stamp and signature
Szeged	29, 10. 2010.	Lasslo Bajusz / uchting beduno logist	Barred
Szequel	29.04.2011.	Lasslo Boyuss / Welding telesolog to	Begref
Szeged	29.10.2011	Lasslo Banon Welding Jedens byist	Beerer
Sreged	29.04.2012.	Caselo Bainen (Webling Lecterologit	Barr
sz eject	29. 10. 2017.	12526 Daira / Ubbling dale walgigt	Beach
2 gal	29.04.2018	lasilo Baius / Welting Laderalagest	Baral
ngel	29,10,2013	lasilo Daires / Weblie fale wolgest	Barcol
		· · · ·	· · · · · · · · · · · · · · · · · · ·
			<u> </u>
	1		·····

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 29 / 44

Seged, K	20 KFT. Diterület 01408/2	2 h 🗤	W		IG L	OG S	HEE		WLS N ^g Száma:	2013.	2898	2
Donk	: 13341039-2-06 3zámlaszám: 01: 7677.06100			BESZI					PAGE /c			
CLIENT	· C	ONTI	TECH R	UBBER I	ndustria	al Kft.		CH.ORDER	Nº. 3	2261592	P .	
CONTR Kötéssz	ACT N ^O . Ám			L/JOB N ^O . I m.szám	2898	- 2905		WPS N ^Q . Heg.ut.sz		40-71		r. /. 7
	OF WEDED PAR atrész megneve		Bad	(+]]	one	·.		DRWG N Rajzszám	· \	- 3121 -	3000 .	
	N ^o . OF WELDER Io neve és számi		Stabo	livador	loszle	5. <u>B.C</u>	15.	LOCATIO Munkavég	<mark>gzés hel</mark> y	le Derdeo	1. Tope	szele G.
	2013.10.2	T	QUANT Darabs	zám	8.			SERIAL N Sorszámo	ok 📃	KORS ~	80 90	4- 89 M
1. MATE			NECT 1 gy 1	boo	ły	MATERIA Anyag	L	AISI . 413	e Ad	AST N ^O . tagszám		8083-10
Anyag m azonosii	negfelelőség tása	SUB	JECT 2	Flor	ae	MATERIA	u l	HSI. his	C/	NST N ^Q . lagszám		<u>, 1000 (</u> 739 .
2. FiLLE	R METAL a minőség	WE	ny 2 D LAYER: atszám		 	Anyag	r	-3.	T	r - H ,	<u> </u>	
és mére	-	Түр	E		Ih.	б.	NIH	0. 100 .	NIM	0. IDD		<u> </u>
			AETER		2	4.		3.2 .	1	4.		
			ER CAST tr.adagaz		800	303.	112	4075	112	7750.		
	3. ELECTRICAL TYPE CHARACTERISTICS Elektromos adatok VOLT		E POLAR					+		+		
Elektron			T (V) ERE (A)			12.		24. 140.		26 . 180 .		
	EAT TREATME				.0	<u>.</u> 300 .		°.		<u>8</u> .		Hours
5. APPL!	oda felhasználás ED SHILDING G vazott védőgáz	AS	TYPE Tipus Ar		Percent Tisztasi	age Comp	osition Qi	⊥_ ନ୍ଦ\$ି.	%	Flow Rati Áramlási		<u> </u>
	TREATMENT (p				7. POS		·	atott .		Vmin	···	
	OF TRAVELS	າກຕ)÷130.			E BEETW	EN OF	PASSES	8			
	ztési sebesség WELD HEAT		Ta	ne	Te	tfelrakási s mperature		Fumac	e atmos		Cool	min ing rate
	MENT Jezelési edatok		10 240	-			на Leve	töközeg 200 ¹¹ .		Hülési 80	sebesség). Cº/H	
11. RADI Radic	OGRAPHIC TES gráfiai vizsg, biz	T CEI	RT. N ^Q . Ia	2450	115 ,	2451	14	<u>.</u>	·	.		·
REPAIR Javitas	YES/ Ige			· ·		X	NO/ Ne					
Jar125	PLACE OF DE Hiba helye						OF DE			<u></u>		
	METHOD OF F Javítási módsz		₹					. <u>.</u>				
VISUAL I	NSPECTION telezes	}	tegfelel	å 5on	hsfact	ory.						
REMARK Megjegyz		Ŧ	ionius .	Magic	. Wa	ve :	600,	_			JE-ZO	
Date, end	of coling down t hūlės vėge			MENOSIT KOVIČERI	ETT H	EGESZT ARSASÁ lé széle 6. Heller köz 290-2-06		SC INSI		6728 Szeg	ea, Külter	rület 01408/ 341039-2-06 pfaszám: 7077-001000

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	30 / 44

Felado :

61344

gamma controll kft

19/10/13 12:50 Lap: 1

	SZEMREVÉTELEZÉSES	Record No.
GAMMA-CONTROLL	VIZSGÁLATI JEGYZŐKÖNYV	Jegyzőkönyv száma:
(232)(632) = (6.35)(-1.39H)(62)(763)(510)(511)(51)		813/13
WWW.garpers-control.hu STED Algod, kindecite (1834/A. 1982, Tel/Fac, 428 (2537/420) (2537/ A MAT 688 NAT-1-14(22910) ezhapa ezayezhi skenjelindoathan	VISUAL EXAMINATION REPORT	610/10
Oblast Openking		

Object Tárgy	Coupling welding Caatlakozó hegesztés	Serial No. Gyári szám	8083-8090
Customer Megrendel	JE-20 Kft. Szeged	Orawing No. M Rajzszám	r- 3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AI8I 4130 115/77
Quantity Mennyisé	8 đb	Extent of examination Vizsgalat terjedelme	100%
Requirements ASME code VIII/1 Követelmények		Heat treatment Hökezelés	after PWHT
Written Procedure N Vizsgálati eljárás sz	OCP-09-1	Welder Hegesztő	BC15
	Visual examination / Sze	mrevételezéses vizsgálat	

Technique Módszer	Direct visual	•
Instrument Készülék	•	•
Visual aids Segédeszközök	3x magnifiying lens	-

Measurement / Mérés

Equipment		
Készülék	-	-
Instrument		· ·
Készülék	· · ·	-
Surface temperature	Surface	Lighting intensity
A felület 20 °C hömérséklete		Megvilágítás 1000lx
Test results	· · · · · · · · · · · · · · · · · · ·	
Eredmények :	SATISFACTORY	
	megfelelö8	pc(a)/db
	not accepted nem megíclelö0	pc(s)/db
Vizsgálat helye és ideje:	Vizsgálatot végezte:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	GAMMA CONTRACTO
Gamma-Controli Kft. Aigyö, 2013.10.30. (10h)	Kis Gabor VT20203130102	Address Links and a

ta n jegyzőkönyv részleteiben nem másolhatól / Conving dotalla is prohibitetti

1.vitorat 2013.0/.10

	CONTITECH RUBBER Industrial Kft.	No:QC-DB- 651 /2013 Page: 31 / 44
MAGYAR HEG	ESZTÉSTECHNIKAI ÉS ANYAGVI OCIATION OF WELDING TECHNOLOGY	ZSGÁLATI EGYESÜLÉS
CHUNGARIAN ASS	OCIATION OF WELDING TECHNOLOGY (Certification Body)	Y AND MATERIAL TESTING)
RONCSOL ASTAT	TES ANYAGVIZSGÁLÓ	TA BITTO TOTAL
	(Certificate of NDT personnel)	LANUSIIVANY
		ang kanang ang kanang
	Azonosi	to szám: VT20103130102
A tanúsított neve: (The name and forename of Kir C.		ation No.): V120109130102
the certificated individual): ALS Gi Születési hely/idő:	ábor Balázs	UAN
(Place and date of birth): Szeged	A 1980. 02. 29.	tamúsituti személy aláírása igname of the certificated individual)
Vizegéleti cijárés(ok): (The NDT method(s):	Szemrevételezéses anyagvizsgá	U S
Ipari tertilet:	(Visual testing)	te de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp
(Industrial sector);	Készülékek, berendezések, létesítm (Pre and in-service testing of equip	enyek vizsgálata EM
Termék terület(ek): Product sector(s):	(c), (w), (wp), (f)	
A minosites fokozata: (The level of centification):	VT2	
A tandsitis és kiadásának ldőpontja: (The date of certification and it's issue):	Budapest, 2013. 02. 19.	Edward Ba
A tanúsítús érvéinves	2018, 02, 18.	
(The date upon which certification expires):		
•••	1	
chosea	2 ANHING	form T.
Tanústió Testillet nev (On behalf of certifying t		/// Fizzgáztató
	THE STOCK	(commer)
Az ipari és/vagy termék terü- let érvényesség kitarjesztve:	TON THE	
let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):	· · ·	
	um (Date):	
		l'anúsító Testillet nevében
•	`	(On behalf of certifying body)
tamúsítás érvényessége enewed the validity of the certification until (MSZ	-ig megójítva (MSZ EN ISO 9712 EN ISO 9712 10.);)	10.):
·· .		
átum Date):		
······	Tamisit	ó Testület nevében
		If of certification body)
		,
		•
- Öniveriyek (castings): f - krussentt torma	& (Freeinge) m. harmout to A	
vezetékek (tubes); wp - alakitott termékek (v	k (forgings), w - begesztett és forrasztott terméleek (w wought products), k - kompozit anyagak (composites	reicea products); t - csövek és 5 products).

	Meghatz	MAGYAR HEGESZTÉ (HUNGARIAN ASSOCIATIO Imazzuk a tamisiwany tulajdonosát, N ISO 9712 3.21)	STECHNIKAI ÉS ANYAGV ON OF WELDING TECHNOLOG (Certification Body) hogy vizzgálatokat végezzen és azok		
.•	(The holder	of this additionant the entranged property 0726 Szened, Tuzok b. 8/A 6 aláírásar dószámi 11004614 2.000 www.8ammis.com	A lesss and take responsibility for the test results. F 1. Dátum: \$4 (Dute.)	MEZ EN 150 9712 3 21))
	Sorsz.:	Municalitato alatraza	Figure 1 gazzalása (MSZ EN 150 9712 10 med wat attivity (MSZ EN 150 9712 10.)) Ph		
• •	1	Signature of the employer)	"GAMMA CONSTICLI."	Dătu (Date	
	2.		Miniseler Gins K/r.	2012.02.	26.
į	3.		-	1	
					· · · · · · · ·
	4.				
-	5.				
· .]	6.				
ŀ	7.				······
-	8.	· · · · · · · · · · · · · · · · · · ·			
	9.				
Ĺ	10.				
j	Riegészítések	:			i
C	Additional remark	(

.

-

.

.....

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

.

..

.

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
	Page:	33 / 44

Felado :

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

61344

gamma controll kft

19/18/13 12:54 Lap: 1

711/2 (2014), and the first stand of the second standards and the secon	RADIOGRAPHIC EXAMINATION REPORT	Kiállilás dátumu; Dale of report: 2013.10.30
GAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV	Report No.: 2431/13

Object:	t: Couping				Clien					JE-20	Kft. Szeg	ed			
Murikasız Job Na.:	Ām;						Rendulési szám: Order No:								
Rajzszóm Drewing			MT-3121-3000					minfist	g:		AISI 4130				
VizsgAint	szabvány)CP-13-	1		Vizag	álat terj	edcime:			1	00%	
Testing st Atveteli k	andard: öveteimén	Y:				<u></u>		Exten	t of testi while:	ing:					
	co criteriu:			A	STM E					a condition:	··		After	PWHT	
Code:			N	1 SZ E	IN ISO	6520-	!		zil) jete; r stamp				B	CIS	
Borondeze Type of ea	s tipuse: wipment:			GA	MMAM	AT		Ксрта Тура (tző típusa;			ASTM	set B typ	e
Sugarford					Jr192			Képm	indaég J	etző halye:				F	
Source; Sugarford	s mérete:								tent of l képmini						
ioures siz	:			3	x1,5mm) 		Requir	ed IQI:				7%	(2-2T)	
Aktivites: Activity:			_	. (),4 TBq			Film T					FON	1A R5	
Filmkido)(Film proce	gozás mód	ja:	Kezi: Manual:		Automat		X			astagsåg: id thick:				0,027	
nina proce	asuig:	T				<u> </u>		150700	T	L		Hibák/	Defects		
		L H		38			f.	4	N.	Giáz	Salak	Kötés Let a	Gyök Lack ef	Repeder	
-Яс		N R		-	y wyferfe		a .	4 A 4	ð	Porosity	Slag	fusioe	penatradan	Crack	Surfac
rvez		r sta		븮		F F		li i i	ų.	A	B	С	D	E	F
Megnevezés Designation	Méret Size	Februardats azámaz Nemeber of cadiographic	kragtant anyngraspig: Procteted dichange	Sogiefornis film tévoledig Source to film diamoe:	Fina the, a they suggered was obstate Distance from source side of object to film	Felender.	Megyikgitahi (dik Expos. Tane:	Madaiks: A-meglelek NA-new meglelek Reaft A-zerendi NA-nei zerend	Virrgålst killipostja, Dare of test	200	300	401	402	100	500
20	2.07	27 60	-3.£ mm	88 mm	E 888	124	Х ш Imin					·			
8083	115/77	4	19	96	19	2,4	0,5	A	10,30						
8084	115/77	4	19	96	19	2,4	0,5	A	10,30 10b	┢╼╴╴┤					
8085	115/77	4	19	96	19	2.4	0,5	A	10,10	┝╼╴┥					
	115/77	4	19	96	19		0,5	A	105 10,30	<u> </u>					
8086						2,4			10b . 10.30.		<u></u>				
8087	115/77	4	19	. 96	19	2,4	0,5	A	101						
8088	115/77	4	19	96	19	2.4	0,5	A	105,101 105						
					•			-		it terhell.					
		-	and we	ids ar	e identic	al, the	sir ide	ntifica	tion Is	the task o	f the cos	tumer,			
/ izsgala erforme	tot végez a by:	18: 1						•		Ménesi I.	- Szabó	Т.	•		
iogáist h					Értékelt	e:	_					Jovehocy	las . re	NTROI	1. KF7
ince of les	it:				Evaluate	ed by:		The states of the second state	A jo			^ %%	Ho, Kaln	NTROI	hrs.
	6750	Algyö					и М	Aénesi István					1001611 1001611 1001611		
Gamm	a-Contro		-	ly				20101		7		I I	Welcios	1 621836	М
											s is ombit				

Ez a jegyzőkönyv részleteiben nem másulhutót / Copying detaits is prohibitedt

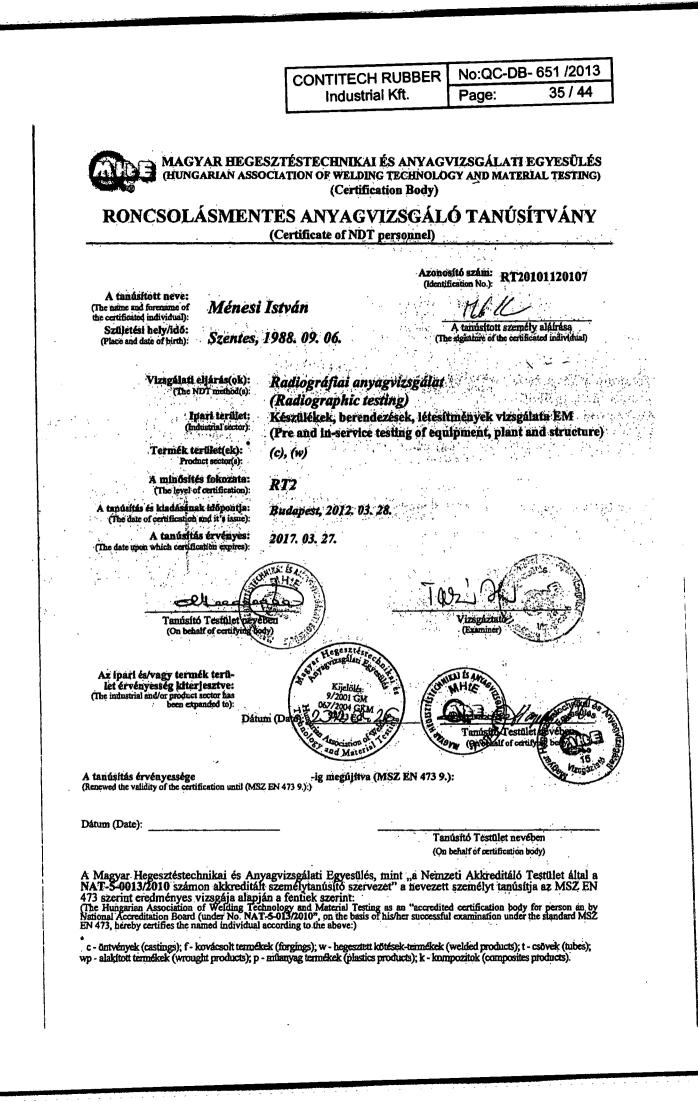
8. változat.2013.07.16

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	34 / 44			

Felado :

61344

gamma controll kft


19/10/13 12:49 Lap: 1

GAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV	Jegyzőkönyv szám: Report No.: 2430/13
utwalparatakantekin 6760 AgyA, Inizardik (1894/4, Irak, 761/721, 429 037617-409 / 4344 Alwan (1967204) estent sibustat (1967204) Alwa Mat (1967204) estent sibustat (1967204)	RADIUGRAPHIC	Kialilitas datumu: Izute of report: 2013.10.30

Object;						Megrendelő: Client: JE-ZO KR. Szej				ed					
Munkusz Job No.:						Rendelési sztm:									
μου Νο.: Rejeosim	kolm:						Order Nu: Anyagminöség:								
Drawing		_	MT-3121-3000				Mate	Anyagminosce: Material: AISI 4130 Vizsgálat terjedelme:			514130				
Testing s	tandurd:		•		QCP-13-	-1		Exten	t of test			_	1	00%	
Acceptan	ovetelmén ce criteria:			A	STM E	94) Mike Heat t		u condition;	_		After	PWHT	
Kād; Code;	÷		1	MSZ I	en iso	6520-	1		viā jelė # stome				6	CIS)	
Berendez Type of e	ts tipusa: aulpment:			GA	MMAM	IAT		Керт Турс е		iző tipusa:			ASTM	set B typ	
Sugarlam Source:	ts:				lr192			Képm		etző helye:		·		F	
Sugarform Source size	is méroto; z;			3	sx1,5cm	3	· ·	196tri	képmin red Kyl:	Oseg:			2%	(2-2T)	
Activities: Activity:			· .	·····	0,4 TBq			Film U Film T	pus:				FOR		
	pozás mód	ja;	Kćzi:		Automat	a.				astaesta:				A R5	
'lim proce	asing:		Manual:		Automat	la:	X			id thick:	. <u> </u>		Pb	0,027	
					3 .				_			Hibák/	Defucts		
				1 the set	ry ang Jemits fr Brute sids d	1	{	μЯ	2	Clar.	Salak	Kötés	Győk	Kepedés	Felale
-			Ž ž	Ĭ		Ľ	1	3 3 8	Å.	Porosity	Slag	Lack of Busices	Lack of Destroying	Crack	Surfac
12 8		11		114			圕		Ģ.		B	С	D	E	F
2 te		48	82	뜅축	i e e e e e e e e e e e e e e e e e e e	L L	調査	₿₽₹	8		5			r -	F
Megnevezés Designation	Méret Size	Fetretatol azlama: Number of cathographs:	A Autophradi anyagyastagalig Prostruted thickness	Best furtis film the diag	Fin the other anguants addutes Distance from source side o digits to firm	Februalds Denuity.	in Menthelikaine.	Kanbaites Armoglatelo: NArroan argatelabis Result Armoatted NArroa accented	ग्वडहरीक्ष संदेशक्योंच. Dave of tes	200	300	401	402	100	500
8089	115/77	4	19	96	19	2,4	0.5	A	10.30. 10h	╏───┤	··				
8090	115/77	4	19	96	19	2,4	0.5	A	10.30						
									1140				i		
									_	┝╌╾┥			• •		
									· · ·						
			·i		· · ·										
			ليب						·						
					ak, beazo										
he numi	bers of th	te films	and we	lds are	e identica	al, the	tr ider	ntificat	ion is	the task of	the cost	tumer.		_	
i7sgálat	ot végez	te:					- · ·			Ménesi I.	Queld	*			
orforme	d by:									weness I.	- 52800				
zagálas ho	alyo:				Ertékelte):	-				,	lováhogyta	;		
ece of test	b			ľ	Evaluato	d by:		A				Ap GhAAA A	MA - CO	NTROI.	L KFT
	6750	Algyő,		1			M	énesi l	∽~ stván			, Y	loszam: L	Here an	- 6
Gamm	a-Contro			iy				01011		7		ગેલ્	teleos	1-6000-011 0-577-264	, Mu
														1	<u>ا</u>

.

8. változat.2013.07.16

		CONTITECH RUBBER Industrial Kft.	No:QC-DE Page:	3- 651 /2013 36 / 44	
Meghatalım (MSZ EN 4 (The bolder of	nazzuk a tenúsítvány tulajdo	CTÉSTECHNIKAI ÉS ANYAG IATION OF WELDING TECHNOL (Certification Body) nosát, hogy vizsgálatokat végezzen és TROLL Ké 1. tagginguszta and take responsibility for the u orat 14-2-06	azok eredményéé	rt felelősséget vállaljo	
Munkáltató a (Signature of the d	employer.) OTPBank 11/3 www.gamma Tel.06-9 Folyamat	218-2640): os municavégzés iggzolása (MSZ EN 47	ate:) <u>• 01 -</u>	. 04.19.	1
Sorsz.:	(Eviden Munkáltató aláírása	ice of continued work activity (MSZ EN 473 9.) Ph.)	Dátum	••
1	(Signature of the employer)			(Date)	
	North	and the second second second second second second second second second second second second second second second			
2.	U YD	GAN March 10 14 4 Anyasvingala 4 Anyasvingala 4 Kindessellendriid Ki	<u>r (</u> 00	ol. 09	
3.	<u> </u>		<u></u>		
.4.					
5.					
 6.					
7.					,
8.					
9.					
10.					
 Kiegészítések:					
 Kiegészítések: (Additional remark	is:)				
		· · ·			
	- - -				
1		<i>4</i>			
		in a start			
-					

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	37 / 44			

ContiTech Rubber Industrial Kft. Szeged/Hungary	Vizsgálati Liquid penet Festékdiffú X Magnetic pe	ation record jegyzőkönyv rant examination zlós vizsgálat article examination epedésvizsgálat	Record No. Jegyzőkönyv száma : 1222/13
Manufacturer Gyártó	JE-ZO Kft.	Serial No. Gyári szám	8083-8090
Customer Megrendelő	ContiTech Rubber Industrial Kft.	Drawing No. Rajzszám	MT 3121-3000
Object Tárgy	coupling(s)	Material Anyagminőség	AISI 4130
Quantity Mennyiség	8 pc(s)	Extent of examinat Vizsgálat terjedelm	
Requirements Követelmények	ASTM E 709	Heat treatment Hőkezelés	yes
Written Procedure No. Vizsgálati eljárás szán	-	Welder: Hegesztő:	Szabó T.

Liquid penetrant examination /Folyadékbehatolásos vizsgálat

Penetrant	Remover	Developer	
Behatoló anyag	Tisztító	Előhívó	
Dwell time	Drying	Developing time	
Behatolási idő	Száritás	Előhívási idő	
Surface temperature	Surface condition	Lighting intensity	
A felület hömérséklete	Felület állapota	Megvilágítás	

Magnetic particle examination/Mágnesezhető poros vizsgálat

Equipment type Készülék típusa TSW 1000	Testing mate Vizsgáló anya		Magnetizing curren Mágnesező áram	t 1000 A
Black light type Superlight C UV-A lámpa típusa 10A-HE	Field strength Térerőmérő	checking Berth disc	Térerő	4,2 kA/m
Surface temperature 23 °C A felület hőmérséklete	Surface cond Felület állapo	machina	ed Lighting intensity Megvilágítás	1000 µW/cm ²
Test results Eredmények :	not accepte	ed əlelõ	pc(s)/db	
Performed by NDE Level II.	(AB	Revised by Q	.C. manager	
Vizsgálatot végezte	Halus of a	Ellenőrizte – I	In In	tiTech Rubber dustrial Kft. QC 1
Signature `Oravecz Gáb	or City is	Signature	Markó László	111
Aláírás	- V .	Aláírás		
Place/Date	_	Place/Date		
Kelt Szeged, 04.11.20	13.	Kelt	Szeged, 04.11.2013	3
QCP-12-1-MPT/07				

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	38 / 44

Azonosító szám:

(Identification No.):

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Oravecz Gábor Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

MT20103010506Ú

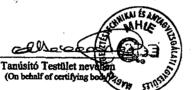
Vizsgálati eljárás(ok): (The NDT method(s): Mágnesezhető poros anyagvizsgáló (Magnetic particle testing) Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek): Product sector(s):

Ipari terület:

(Industrial sector):

A minősítés szintje: MT2 (The level of certification):


A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

A tanůsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

Budapest, 2012. 02. 21.

(c), (f), (w), (wp)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Tamisító Testület nevében (On behalf of certifying body)

A tanúsítás érvényessége -ig megújítva (MSZ EN 473 9.): (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	39 / 44			

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results, (MSZ EN 473 3.21))

Hacn

Munkáltató alálrása: (Signature of the employer:)

Dátum:	2012.	02.	21
(Date:)			

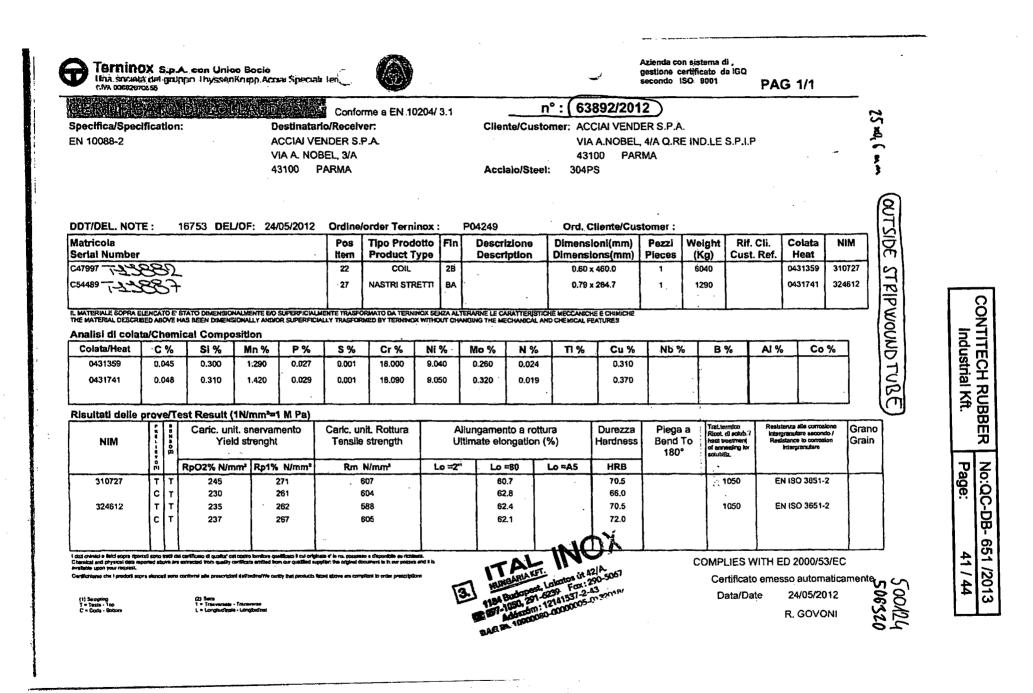
	Folyamatos munic (Evidence of cont	cavégzés igazolása (MSZ EN 473 9.) tinued work activity (MSZ EN 473 9.)	
Sorsz.:	Munkáltató alálrása (Signature of the employer)	Ph. Contil Shill hope	Dátum (Date)
1.	Hacen in	Industrial Kft. Quality Control Dept.	2013.01.24.
2.		(1)	
3.			
4.			
5.			
6.	1		
7.			
8.			
9.	_		
10.			

Kiegészítések:

(Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.) CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:40 / 44

Bekaert Hlohovec a.s. 505760 Mierová 2317 92028 Hichovec / Slovakia 00421337383111 Teł:: 00421337422742 Fex: **Certificate of Arialysis** STEELCORD Page: 1 / 1 **MANUFACTURER : BKHL** Delivery No. : (4046181212 Contitech Rubber Industrial Kft. Sales Order 3046059220/10 CONTITECH RUBBER IND SZEGED 32260330 Purchase Order Budapesti út 10 Inspection lot 090000200665/000001 H-6728 SZEGED 3500245379 Batch 01.07.2013 Date produced Date COA 09.08.2013 Spools 8 1 32 delivered from a batch of 32 produced Spec customer Contitech Rubber Industrial Kft. Units 18 delivered from a batch of 16 produced 14-15-07/1 Delivery net Qty. 10517 KG Your code REV.3 / 15.01.2002 Material Description Zinc coated steelcord 1X24DW/3.6 NT 20/36 ZZ B650 Your spec 5000 M H207297 / 26.10.2012 Our Spec Lay direction ZZ 20/36 Lay length Tests Speca Results Test Unit Alm Min, Min ind Procedure Avg. Max. Max ind M Cord diameter RA12-100 3,6000 3,4200 3,6845 3,6640 mm 3,7800 3.8930 Linear density RA30-110 65,000 61,700 65,632 65,300 g/m 68,300 65,870 Cord breaking strength 19337,0 19087,0 RA30-203 N 17900,0 19584,0 6 2,80 Cord elongation at break RA30-203 % 2,50 2,98 3,15 6 Zinc D1 RA40-741 40,057 37,870 g/m2 32,000 8 44,630 Zinc D2 45,350 RA40-741 g/m2 44,000 48,788 5<u>6,</u>100 6 Residual tonsions RA30-160 Nt 0,000 -3,000 -0,250 -0,500 3,000 0,000 6 Comments : D1: 0,54 D2: 0.73


Nominal Chemical composition of High Grade Oxysteet: %Carbon : 0.70-0.90 %Mianganase: 0.40-0.60 %Silicon: <0.230 %S: <0.011 %P: <0.012

)

Microstructure/Texture: Metallurgically the texture is known as a higty drawn, fine pertitic structure.

Electronically Signed by Quality Manager (Negy Marcel)

According DIN EN 10204 3.1

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 42 / 44

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztáiy Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927 Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No.: 32259470 Page 1/3 oldal Kiadva / Issued Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya:	villamos kimenőjelű nyomásmérő	
Object of calibration:	electrical-output manometer	
Gyártó / Manufacturer:	AFRISO-EURO-INDEX GmbH	
Típus / Type:	<u>DMU03 HD</u>	
Azonosító szám / Serial No.:	1518086	
Műszaki adatok / Technical data:	(02500) bar méréstartomány / measuring range (02500) bar	
-	(420) mA kimenöjel tartomány / output signal range (420) mA	

Kalibrálásra bemutatta: Customer:

and the second of the second

A kalibrálás helye és ideje: Place and date of calibration: ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

Magyar Kereskedelmi Engedélyezési Hivatal Hungarian Trade Licensing Office Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements Budapest, 2013.01.24.

A kalibrálást végezte: Calibrated by:

Szaulich Dénes metrológus / metrologist

A kalibrálásnál alkalmazott etalonok: Standards used for the calibration:

Gyártó: Manufacturer:	Típus: <i>Type</i> :	Gyártási szám: Serial No.:	Bizonyítvány szám: Certificate No.:
Budenberg	283	20603	NYO-0001/2013
Keithley	2000	0597910	ELD-0014/2012
ZIP	P 331	117530	ELD-0021/2012
GANZ MM	DTHI	33656	Hôm-0296/2012
	<i>Manufacturer</i> : Budenberg Keithley ZIP	Manufacturer:Type:Budenberg283Keithley2000ZIPP 331	Manufacturer: Type: Serial No.: Budenberg 283 20603 Keithley 2000 0597910 ZIP P 331 117530

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.bipm.org)</u>.

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH! CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. 43/44 Page:

MKEH

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

21,1 °C

24V DC

olaj / oil

függőleges / vertical

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

körnvezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer nyomóközeg / Pressure transfer medium

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	. 8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 44 / 44

Metrológiai Hatóság/Metrology Authority Mechanikal Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No .: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No .: NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonvítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

AFMSS

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

SUPO Data Report 05/16/2019

Show Final Text

APD ID: 10400030103

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Submission Date: 05/10/2018

Well Number: 124H

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_124H___SITE_ACCESS_MAP_20190402142935.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAM_AZE_5SX_ROAD_20190402143221.pdf CAMELLIA_FED_COM_26_36_21_124H___SITE_ACCESS_MAP_20190402143234.pdf New road type: RESOURCE

Length: 455

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: CROWNED AND DITCHED

Feet

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: CALICHE

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: GRADER

Access other construction information: NM One Call (811) will be notified before construction start.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

New road drainage crossing: OTHER

Drainage Control

Drainage Control comments: CROWNED AND DITCHED

Road Drainage Control Structures (DCS) description: CROWNED AND DITCHED

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CAMELLIA_FED_COM_26_36_21_124H___1_MILE_RADIUS_WELLS_20190402143407.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production from the proposed well will be transported to an existing production facility, named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.

Production Facilities map:

BO_CAMELLIA_FED_COM_BATTERY_SITE_REV1_20190402143724.pdf

Operator Name: AMEREDEV OPERATING LLC	
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 124H
CAM_AZE_5SX_FLOWLINE_20190402143728.pdf	
Section 5 - Location and Types of W	Vater Supply
Water Source Table	
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATIO CASING	Water source type: GW WELL N, SURFACE
Describe type:	Source longitude:
Source latitude:	
Source datum:	
Water source permit type: PRIVATE CONTRACT	
Source land ownership: PRIVATE	
Water source transport method: PIPELINE, TRUCKING	3
Source transportation land ownership: FEDERAL	
Water source volume (barrels): 20000	Source volume (acre-feet): 2.577862
Source volume (gal): 840000	
Nater source and transportation map:	
CAMELLIA_FED_COM_26_36_21_124HWATER_MAP	20190402144354 pdf
CAMELLIA_FED_COM_26_36_21_124HWATER_WEL	
Water source comments: Water will be trucked or surface of available wells. NO	piped from existing water wells on private land. See attached list
New Water Well Info	
Well latitude: Well Longitude:	Well datum:
Well target aquifer:	

Est. depth to top of aquifer(ft):

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing outside diameter (in.):

New water well casing?

Drilling method:

Grout material:

Casing length (ft.):

Well Production type:

Est thickness of aquifer:

Well casing inside diameter (in.):

Drill material: Grout depth:

Used casing source:

Well casing type:

Casing top depth (ft.): **Completion Method:**

Page 3 of 10

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Dinwiddie Cattle Company) land in W2 08-25S-36E or an existing caliche pit on private (Dinwiddie Cattle Company) land in E2 17-25S-36E.

Construction Materials source location attachment:

CAMELLIA_FED_COM_26_36_21_124H___CALICHE_MAP_20180510093625.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CAMELLIA_FED_COM_26_36_21_124H___WELL_SITE_DIAGRAM_20190402144555.pdf BO_CAM_AZE_5XS_PAD_SITE_REV1_20190410120126.PDF Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CAM Multiple Well Pad Number: 5SX

Recontouring attachment:

CAMELLIA_FED_COM_26_36_21_124H___WELL_SITE_DIAGRAM_20190402144653.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Page 5 of 10

Operator Name: AMEREDEV OPERA Well Name: CAMELLIA FED COM 26 3		
Well pad proposed disturbance (acres): 4.53 Road proposed disturbance (acres):	Well pad interim reclamation (acres): 0.79 Road interim reclamation (acres): 0	Well pad long term disturbance (acres): 3.74 Road long term disturbance (acres):
0.313 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance	Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	0.313 Powerline long term disturbance (acres): 0 Pipeline long term disturbance
(acres): 1.8 Other proposed disturbance (acres): ((acres): 1.8 Other long term disturbance (acres): 0
Total proposed disturbance: 6.643	Total interim reclamation: 0.79	Total long term disturbance: 5.853

Disturbance Comments:

Reconstruction method: If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the south and west sides of the pad. This will leave 3.74 acres for producing 5 wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. All topsoil for the battery will be reseeded in place for the life of the battery.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed source:

Source address:

Proposed seeding season:

Seed Summary
Seed Type Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Phone: (580)940-5054

Last Name: Boyd

Email: zboyd@ameredev.com

Total pounds/Acre:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: PIPELINE

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: HOBBS

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD Describe: Surface Owner: STATE GOVERNMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: HOBBS

Military Local Office:

Page 8 of 10

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 124H

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: HOBBS

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Use APD as ROW?

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

ROW Applications

SUPO Additional Information:

Page 9 of 10

Operator Name: AMEREDEV OPERATING LLC

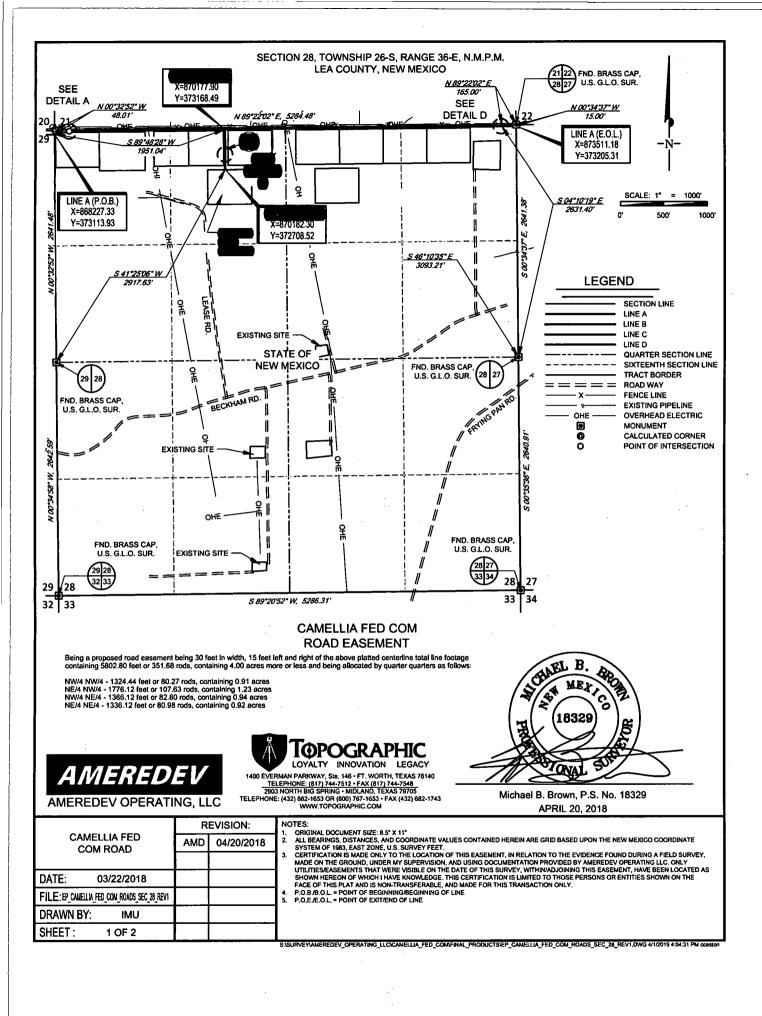
Well Name: CAMELLIA FED COM 26 36 21

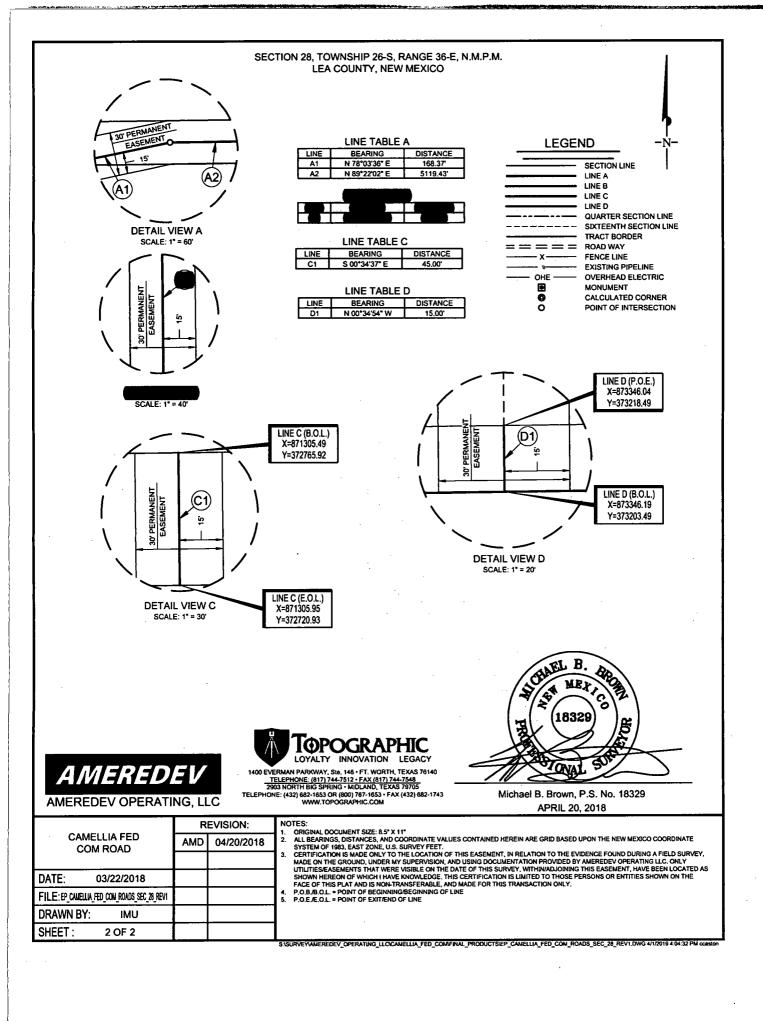
Well Number: 124H

.

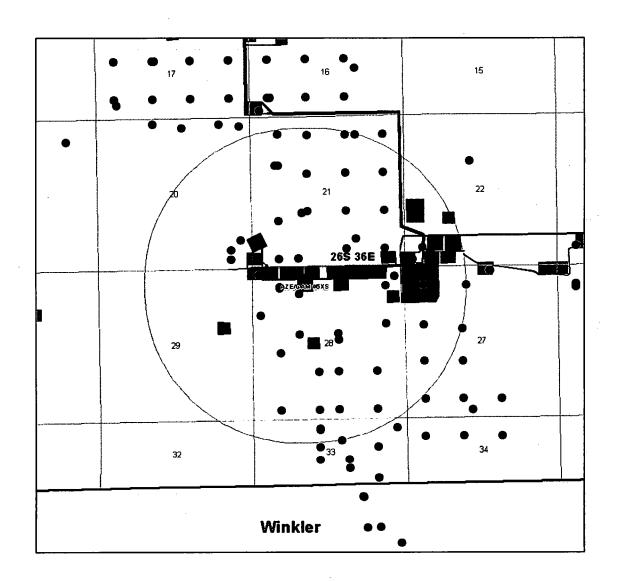
Use a previously conducted onsite? YES

Previous Onsite information: An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 124H was held on 3/29/18. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic). Ameredev made a donation with the MOU fund in lieu of an archaeology report.


Other SUPO Attachment


CAMELLIA_FED_COM_26_36_21_124H___SUPO_REV_20190402145427.pdf

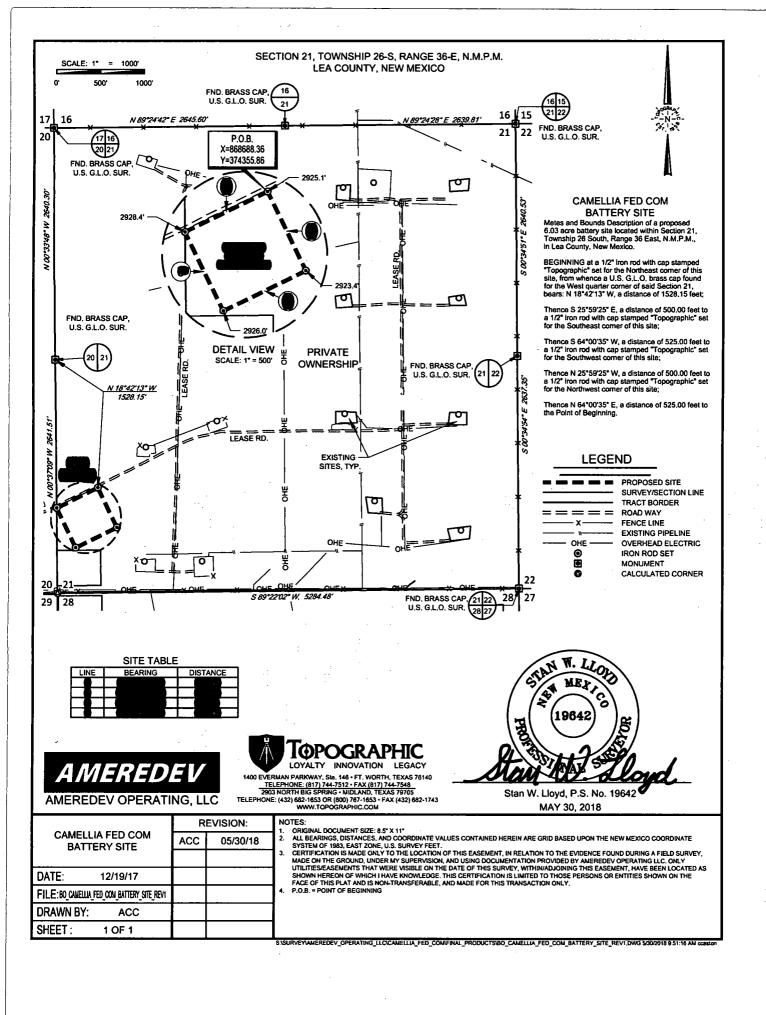
Page 10 of 10

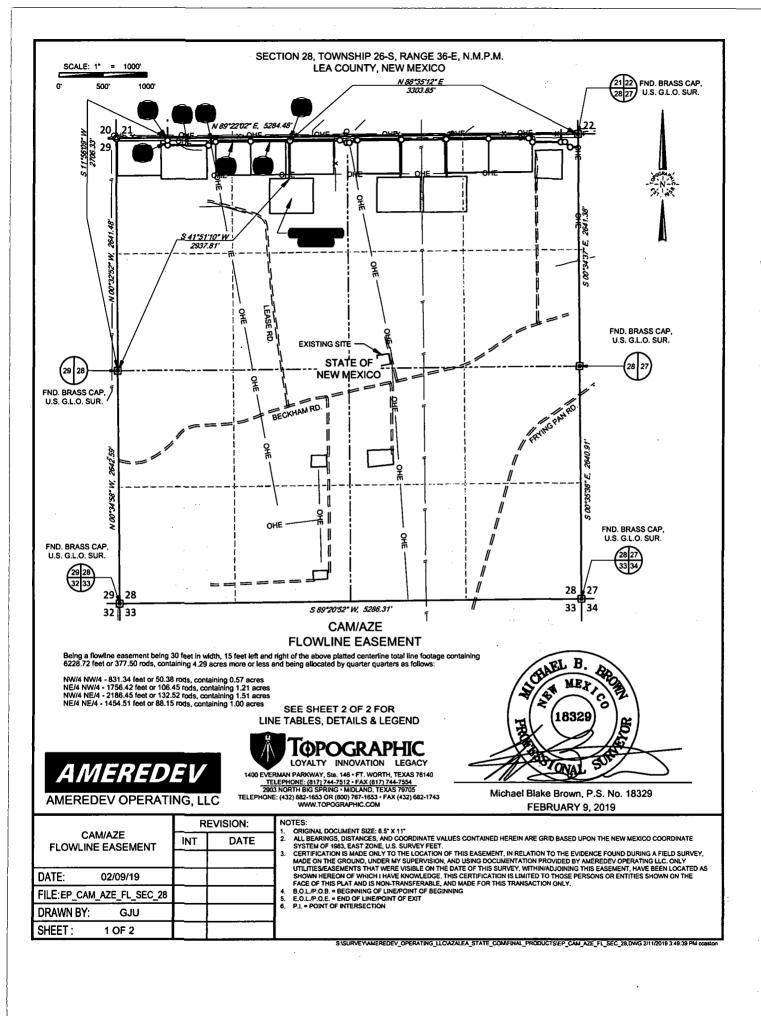


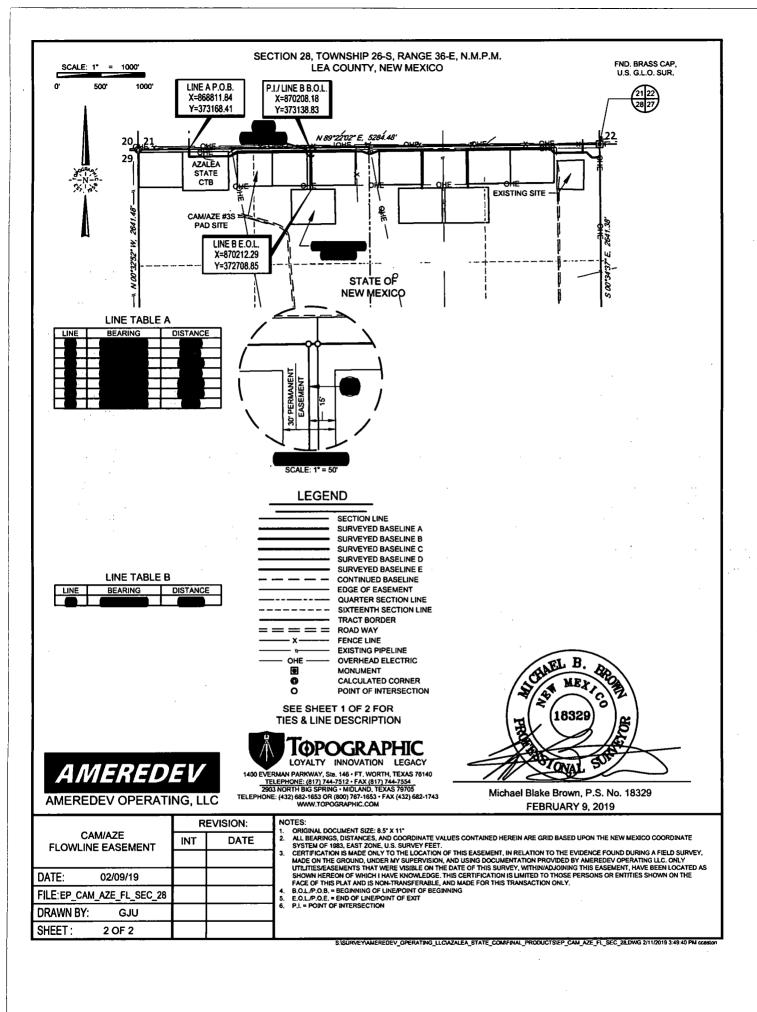
AMEREDEV

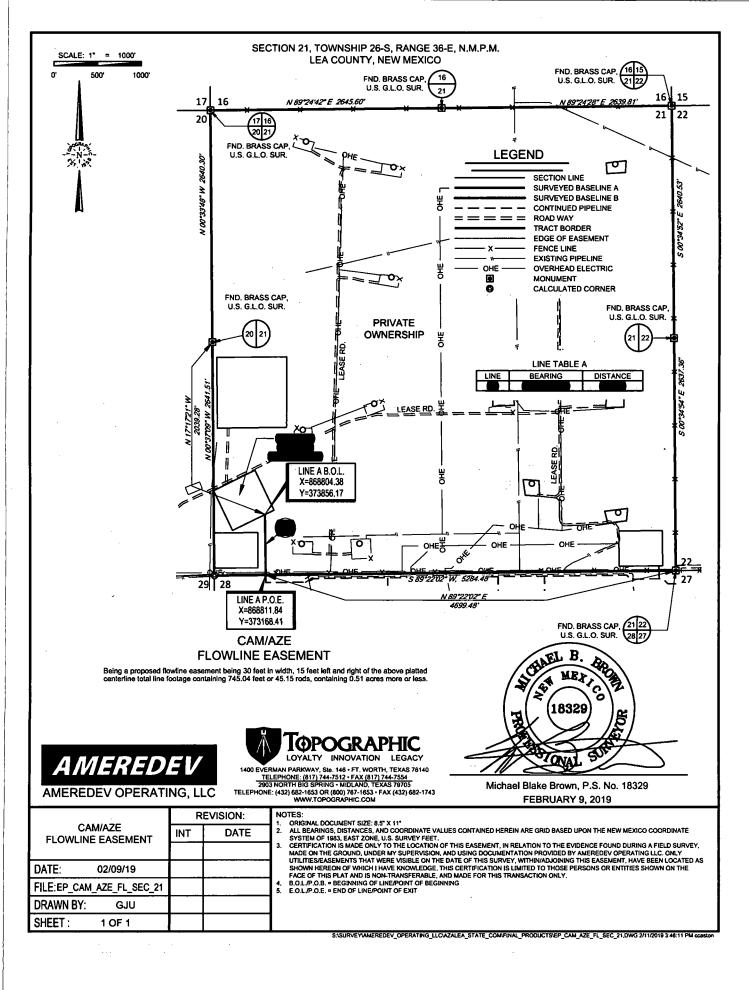
Ameredev Operating, LLC Section 28, Township 26S, Range 36E Lea County, New Mexico

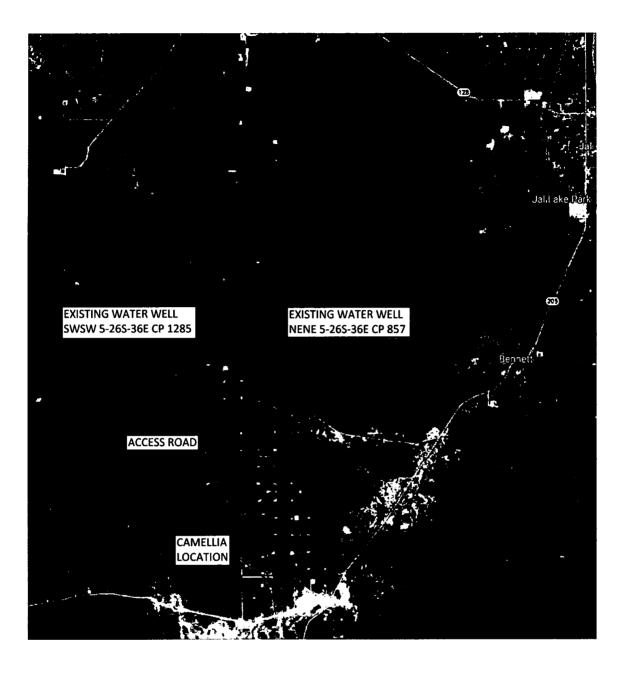
Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 124H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

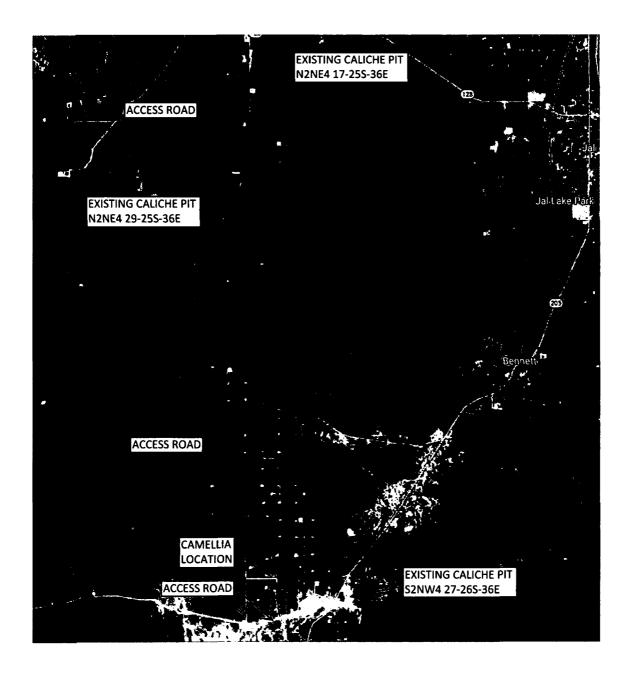



ΑΡΙ	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO `CV` STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	: 0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	່ 1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON `21` FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598

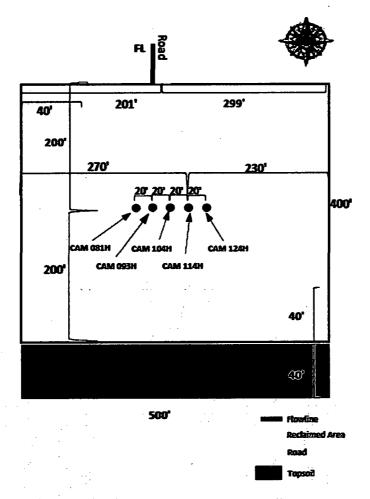

•


30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606
30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600
•			

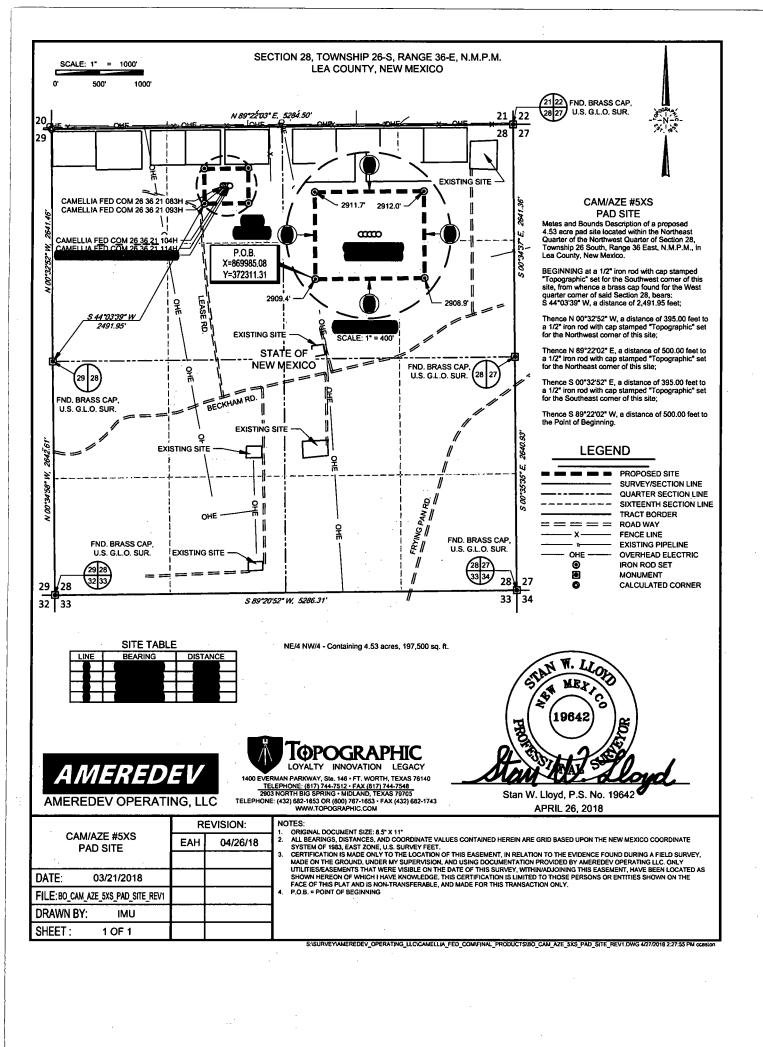

Exhibit 2a – One Mile Radius Existing Wells List



<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03'11.5" N, 103°17'02.0" W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	СВ 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	СВ 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	СВ 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13	•	32°02'41.5" N, 103°18'55.8" W
Tubibis A 14/man 14/all	le.	


Exhibit 4 – Water Wells

AMEREDEV


AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 124H Section 21, Township 26S, Range 36E Lea County, New Mexico

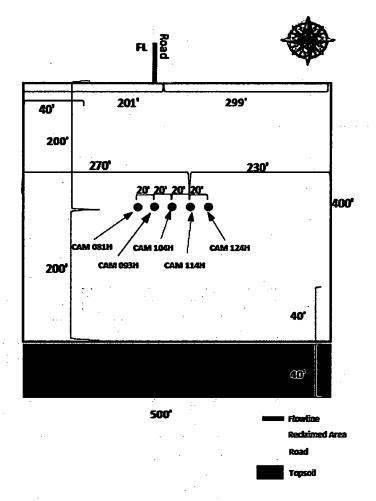

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 124H Section 21, Township 26S, Range 36E Lea County, New Mexico

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

AMEREDEV

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right-of-way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-205 and NM-128, head south on NM-205 approximately 8 miles. Turn west (right) on lease road and proceed approximately 1.2 miles. Turn south (left) on lease road and proceed approximately 460', to the northwest of the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

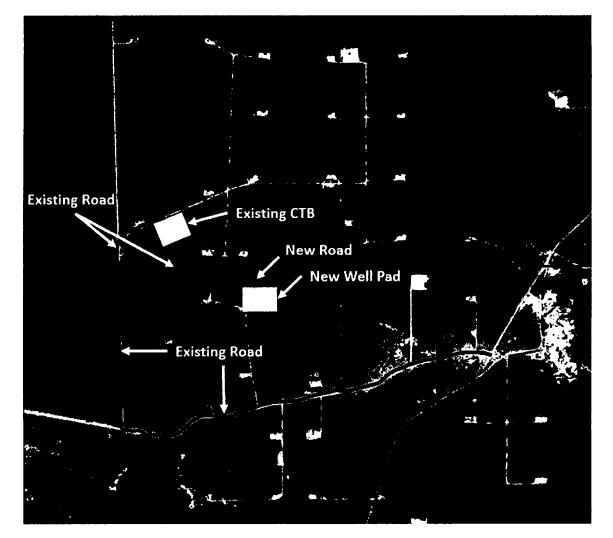


Exhibit 1 - Well Pad Access

Section 1 – Existing Roads

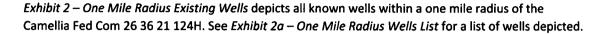
- A. The existing access road route to the proposed project is depicted on Exhibit 1 Well Pad Access. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** Any required right-of-way will be acquired before construction begins.
- **C.** The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement

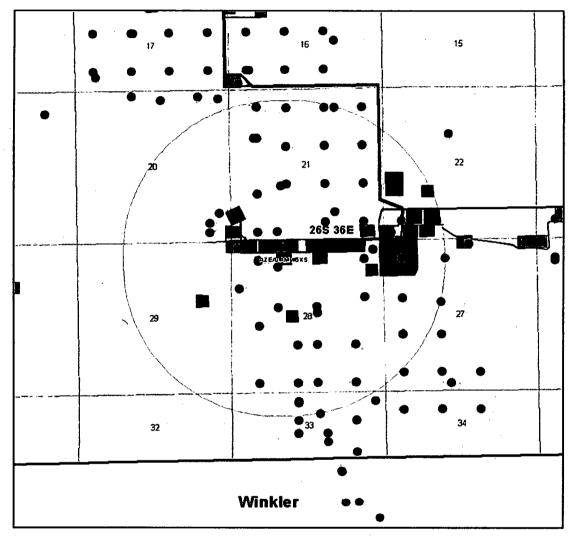
projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.

D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

AMEREDI

Section 2 – New or Reconstructed Access Roads


- A. A section of new access road will be needed for this proposed project. See Exhibit 1 Well Pad Access, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 455 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- **D.** The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:


CIDW natural ground

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-of-way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

AMEREDEV

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells

ΑΡΙ	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON `21` FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606

AMEREDE

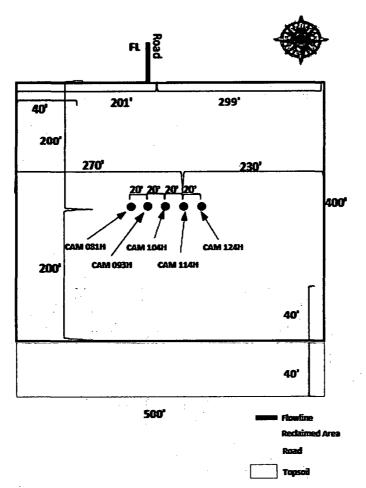

30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600

Exhibit 2a – One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on section 28, and will measure 395'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.
- **C.** All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- **D.** If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

AMEREDE

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62" N, 103°13' 35.26" W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5″ N, 103°33'8.4″ W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5		32°07'17.1" N, 103°17'48.0" W
CP 1263 POD 5	СВ 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	СВ 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13		32°02'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

A. Caliche will be obtained from the caliche pit located at Lat: 32° 8'0.90"N, Long: 103°16'45.05" or the caliche pit at Lat: 32° 6'28.34"N, Long: 103°16'58.48"W or the caliche pit at Lat: 32° 1'1.28"N, Long: 103°15'15.83"W.

AMEREDE

- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the south edge of the pad as depicted in *Exhibit 3 – Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

AMERED

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Proposed access road
 - 4. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

AMEREDI

E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. All topsoil remaining at the battery will be reseeded in place for the life of the battery.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

AMEREDI

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. New Mexico State Land Office has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 124H well was held on March 29, 2018. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- **C.** The well pad described in this document Camellia (CAM #5SX) will contain 5 wells that produce into an existing central tank battery (CTB) located northwest of the well pad. The wells share a common pad access road, and the five flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 083H, APD ID# 10400030726
 - Camellia Fed Com 26 36 21 093H, APD ID# 10400030569
 - Camellia Fed Com 26 36 21 104H, APD ID# 10400030326
 - Camellia Fed Com 26 36 21 114H, APD ID# 10400030038
 - Camellia Fed Com 26 36 21 124H, APD ID# 10400030103

Ameredev field representative: Zac Boyd, Operations Supervisor Cell: (432) 385-6996 Email: zboyd@ameredev.com

Christie Hanna, Regulatory Coordinator

Ameredev office contact:

Direct: (737) 300-4723

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 05/16/2019