Form 3160-5 (June 2015)

1. Type of Well

2. Name of Operator

☑ Oil Well ☐ Gas Well ☐ Other

CONOCOPHILLIPS COMPANY

925 N ELDRIDGE PARKWAY HOUSTON, TX 77079

Sec 19 T26S R32E 2487FNL 430FWL

32.028702 N Lat, 103.721657 W Lon

UNITED STATES DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT**

abandoned well. Use form

4. Location of Well (Footage, Sec., T., R., M., or Survey Description)

SUBMIT IN TRIPLICATE

SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for pr

FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018

5. Lease Serial No. NMLC062749B

11. County or Parish, State

LEA COUNTY, NM

or proposals to drill or to re-enter an form 3160-3 (APD) for such proposals.	6. If Indian, Allottee or Tribe Name		
ATE - Other instructions on page QBBS OCD	7. If Unit or CA/Agreement, Name and/or No. NMNM138329X		
JUL 0 3 2019	8. Well Name and No. ZIA HILLS 19 FEDERAL COM 101H		
Contact: JEREMY LEE E-Mail: Jeremy.L.Lee@cop.com	9. API Well No. 30-025-44215-00-X1		
3b. Phone No. (include area code) Ph: 832-486-2510	10. Field and Pool or Exploratory Area WOLFCAMP		

12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA

TYPE OF SUBMISSION	TYPE OF ACTION					
Notice of Intent☐ Subsequent Report☐ Final Abandonment Notice	☐ Acidize ☐ Alter Casing ☐ Casing Repair ☐ Change Plans ☐ Convert to Injection	☐ Deepen ☐ Hydraulic Fracturing ☐ New Construction ☐ Plug and Abandon ☐ Plug Back	☐ Production (Start/Resume) ☐ Reclamation ☐ Recomplete ☐ Temporarily Abandon ☐ Water Disposal	☐ Water Shut-Off ☐ Well Integrity ☑ Other Change to Original A PD		

13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has determined that the site is ready for final inspection.

ConocoPhillips respectfully requests to change the approved drilling plan as reflected in the attached documents:

Zia Hills 19 Fed Com 101H Kelly Cock Zia Hills 19 Fed Com 101H Choke Manifold

Zia Hills 19 Fed Com 101H BOPE

(Instructions on page 2)

Zia Hills 19 Fed Com 101H Csg Design

Zia Hills 19 Fed Com 101H Cement

Zia Hills 19 Fed Com 101H Drill Plan

Carlsbad Field Office

In particular the casing design is being modified due to availability of casing. As such we request to the casing design is being modified due to availability of casing. approval at your earliest convenience.

•					
	onic Submission #468145 verified For CONOCOPHILLIPS COM	PĂNY,)	
Name (Printed/Typed) JEREMY LEE		Title	REGULATORY COORDINATOR	₹	
Signature (Electronic Submissi	on)	Date	06/07/2019		
,	THIS SPACE FOR FEDERAL	OR	STATE OFFICE USE		
Approved By LONG VO			ETROLEUM ENGINEER		Date 06/13/2019
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.		Office	Hobbs		
THE 10 11 0 C O .: 1001 1 THE 40 11 0 C O	. 1010 1		. 1 1 110 11		0.1

Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

** BLM REVISED ** BLM REVISED ** BLM REVISED ** BLM REVISED **

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: **Conocophilips Company**

> LEASE NO.: NMLC062749B

WELL NAME & NO.: 101H-Zia Hills 19 Federal Com

SURFACE HOLE FOOTAGE: 2487'/N & 430'/W **BOTTOM HOLE FOOTAGE** 50'/N & 0'/W

LOCATION: Section 19, T.26 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

COA

H2S	∩ Yes	€ No	
Potash	• None	Secretary	← R-111-P
Cave/Karst Potential	CLow	○ Medium	
Variance	None	Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other		Capitan Reef	☐ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements		I COM	┌ Unit

All Previous COAs Still Apply

A. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1200 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8 hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- ❖ In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

B. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

C. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - \[
 \] Chaves and Roosevelt Counties
 \[
 \] Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 \[
 \] During office hours call (575) 627-0272.
 \[
 \] After office hours call (575)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ∠ Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)
 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ConocoPhillips Prepared by: M. Callahan 1280 Extended Reach Single Lateral COUNTY,STATE: Lea, Co NM AFE: WAF,OND. WELL: Zia Hills 19 101H API No.: Drilling Network No.: invoice Handler ID: VENNECP

COST ESTIMATE

DRILLING TRRC Permit: SURFACE LOC: Sec 19 T26S R32E 2487' FNL 430' FWL 0' FWL 3.179.2 ELEVATIONS: WH Coord.: (NAD-27) 42,88" N 16,27" W LAT COMPLETION 32° 103° 43 +30.5 **FACILITIES** FORMATION TOP: TVC SUBSEA 0 Objective Quaternary Fill 13_3/8" Base of Fresh Water 300 300 Fresh Wat his well is to be drilled with safety and protection of the environment as the primary objectives, 2,060 1,900 Fresh Wa Top of Satt 1.279 Salt The objective is to drill a 1280 single lateral well in the Wolfcamp formation and completed with 5-1/2*cemented Castille 2,629 550 Salt ware Base of Satt 4,229 (1,050) Gas / Oil Ford Shate 4,354 (1,175)Notes 5 154 Cherry Canyon (1.975)Gas / Oi (3,450) (4,850) Gas / Oil Gas / Oil 6,629 Refer to drilling procedure for additional detail and information 2.) The primary regulatory agency is the BLM. 3.) Surface 2 max. 1 / 100° DLS, svy every 500° 4.) Int: 90 max., 8°/ 100°, svy every 90° (svy every 30° in build and drop, 30° in curve) Bone Springs one Springs 1st Sand 8.029 9,204 9,879 10,339 (6.025) Gas / Oil (6,700) (7,160) Gas / Oil Bone Springs 2nd Sand Bone Springs 3rd Carb Gas / Oil 5.) Losses to be expected in Cherry and Brushy Carryon formations, Overpressure may be encountered throughout 11,379 11,604 (8,200) (8,425) Wolfcamp 1 Gas / Oi Goals Have no lost time or recordable accidents. Have no spills or adverse environmental impact. Have no stuck pipe incidents. Avoid lost circulation incidents. Maintain well control and follow ConocoPhillips well control policy. Obtain good mud log data. Deliver usable wellbore to production department. The second was the second as Dicontacts 8-1/2" X 5-1/2" Office <u>Cell</u> Gas / Oil TARGET 19.303 11,708 Drilling Engineer: Mike Callahan 832-486-2480 907-231-2176 9 5/8 in. shoe 12242.91 MD 3098.9'FNL Formation Dip Rate: est 90.1° (up dip) PBTD Geologist: Josh Day 281-206-5620 423-512-0347 19.303 11,708 Gas / Oil Onsite Drilling Rep.: Greg Rivera 432-309-9007 Manny Castillo Estimated BH Static Temperature (°F): 185 James Taylor 830-583-4828 956-229-1393 432-215-7079 Max, Anticipated BH Pressure: 0.700 psuft 8,195 psi 13,5 ppg Patrick Wellman Troy McGinn 832-486-2575 346-242-4551 e Pressure 1,902 ps Type Density ΥP LGS interval NaCI Remarks (MD) Surface - 1,169' 1169' - 12243' 35.7 сP % by vol < 5.0 < 5.0 ppb sol 10,000 Rig Tanks 28-50 Fresh Water 1-5 2-6 2-6 7.5-8.5 180,000 Rig Tanks 400 - 00 Rig Tanks **Emulsified Brine** 28-50 7.5-8.5 OBM 12243' - 19303' 9,5-10 < 8.0 g Fiulas Progra TOP (MD) COP Class 3 Well Control Requirements ACP/D\ Rig -13-5/8"x10M psi Rams / 4-1/16"x10M psi Manifold 12.212 - Rotating Head, Annular Preventer, Pipe Ram, Blind Ram, Mud Cross (Choke & Kill Valves), Waste Closed loop cuttings disposal system with haul off to andling: approved facility.
Float Based Electronic PVT with Flow Sensor and CENTRALIZATION: Surface Casing 1 oer 4 loksts Gravity Trip Tank, Alarms +/- 10 BBLS fiate Casing: hoe joint 1 per j int from FC to 7,800'. 1 per 2 joints 7,800' to 2,300', 1 per 4 joints 2,300' to surface ow Spring 1 per 2 joints bit shoe to 100' above KOP. 1 per 4 joints to surface

D Spacer
20 bbl FW Lead
control Set 'C' + adds 13-5/8" x 10M psi (Casing Head - "A" Section)

COMMENTS
+ adds

Cernented to surface w/ 200%XS Rigid body 1 per 2 joints TD to Int Shoe, B Wellhead: Tail ype 'iii' + adds pg 1.34 ft3/sk 2.66 ft3/sk Add FiberBlock 12,243 12-1/4"X9-5/8" 11,708 11.5ppg 1.77 ft3/sk + 100 bbi SW 15ppg 1.63 ft3/sk w/ 70%L / 30%T XS calc'd on 12.25 Add FiberBlock Cemented to TOL w/ 10% XS calc'd 19,303 11,708 40 bbl Visweep :1:0 'Poz:Lafarge G' + 20% Silica Flour + 8% Silica Fume + adds on 8,5" hote, Displ. = votume to float Reference Cementing Re DIRECTIONAL PLAN: 15.6 ppg 1.19ft3/sk collar +/- half shoe track TVD (ft) 5 000 5 476 SEC-T-R Section Line Distance Comments (deg) (deg) (11) (#) ("/100") (m) (ft) 5,000 0 -7 -97 Build @ 1.5°/100 0 7 0 -29 0 1.5 0 -5 Sec 19 T26S R32E 2487' FNL 430' FWL End Build @ 7° Drop @ 1.5°/100' 2480' FNL 2390' FNL 401' FWL 30' FWL 5,478 Sec 19 T26S R32E Sec 19 T26S R32E 8 540 256 8 515 400 0.0 -72 mplete Drop, Hold to KOP KOP Build @ 8°/100 -104 -104 -429 -429 -78 -78 1' FWL 1' FWL 9 0 1 8 ٥ 0 8 992 1.5 0 Sec 19 T26S R32E 2383' FNL 11 018 Sec 19 T26S R32E 2383' FNL 10,992 Curve LP Toe Sleeve 2 4 FWL 12,143 90 360 11,708 612 434 638 Sec 19 T26S R32E 3099' FNL 7872 19,203 150' FNL 0 11 708 -481 7,687 Sec 18 T26S R32E Toe Sleeve 1 19 253 90 90 11 708 7822 -481 7 737 Sec 18 T26S R32E 100' FNL O' FWL Sec 18 T26S R32E 50' FNL Reference Directional Plan MWD Surveys will be tak on at 90' i surface casing, 30' while building curve, and every 90' while drilling lateral. FORMATION EVALUATION Mud Logging -Mud Logging -One-Man: First surface hole to TD, First intermediate hole to TD Correlation Well: liate Casing Point to TD Two-Man: Open Hole -PEX None Cased Hole -GR/CBL/USIT MWD -GR OUR WORK IS NEVER SO URGENT OR IMPORTANT THAT WE CANNOT TAKE THE TIME TO DO IT SAFELY!

WELL PLAN SUMMARY

Date: Jun 05, 2019

Version: 1

Lea, Co, NM

6/5/2019

SURFACE CASING DESIGN INFORMATION

Setting Depth:

PIPE BODY DIMENSIONAL / PERFORMANCE DATA:

SIZE	WEIGHT	GRADE	CPLG	BORE ID	DRIFTID	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(Inches)	(LB/FT)	Groupe	TYPE	(Inches)	(Inches)	API / CoP	API / CoP	API / CoP
				12.612	12.459	1,130 / 960	2,730 / 2,320	909 / 772

CONNECTION DIMENSIONAL / PERFORMANCE DATA:

OD	ID	DRIFT	CPLG	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(Inches)	(tnches)	(Inches)	TYPE	API / CoP	API / CoP	API / CoP
14.375	12.612	12.459	втс	1,130 / 960	. 2,730 / 2,320	909 / 772

Surface Casing Test Pressure = 1,500 psi Pressure Test Prior to Drill Out

	Minimum Design	/ Safety Factors Co	OP.
Burst 1.15	Collapse 1.05	Tension (Body & 1.40	
	Actual Desig	ın / Safety Factors	
Burst	Collapse	Tension (Body)	
5.22	3.23	14.27	Dry
		18.42	Bouyed

INTERMEDIATE CASING DESIGN INFORMATION

Setting Depth:

PIPE BODY DIMENSIONAL / PERFORMANCE DATA:

SIZE	WEIGHT	GRADE	CPLG	BORE ID	DRIFTID	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(Inches)	(LB/FT)	GRADE	TYPE	(Inches)	(Inches)	API / CoP	API / CoP	API / CoP
				8.835	8.75	3,870 / 3,685	5,750 / 5000	916 / 654

Production Casing Test Pressure = TBD

Minin	num Design / Sa	fety Factors	
Burst	Collapse	Tension (Body & Connection)	
1.15	1.05	1.40	
	Actual Desig	n / Safety Factors	
Burst	Collapse	Tension (Body)	
1.67	2.52	1.89	Dry
		2.21	Bouyed

CONNECTION DIMENSIONAL / PERFORMANCE DATA:

OD	1D	DRIFT	CPLG	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(inches)	(Inches)	(Inches)	TYPE	API / CoP	API / CoP	API / CoP
10,625	8,835	8.75	BTC	3,870 / 3,685	5,750 / 5000	947 / 676

PRODUCTION CASING DESIGN INFORMATION

Setting Depth:

PIPE BODY DIMENSIONAL / PERFORMANCE DATA:								
SIZE	WEIGHT	CHARS	CPLG	BORE ID	DRIFT ID	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(Inches)	(LB/FT)	GRADE	TYPE	(inches)	(inches)	API / CoP	API / CoP	API / CoP
3.0				4,778		12,100 / 11,524	14,360 / 12,487	729 / 521

Production Casing Test Pressure = TBD

Minin	num Design / Sa	fety Factors
Burst	Collapse	Tension (Body & Connection)
1.15	1.05	1.40
	Actual Desig	n / Safety Factors
Burst	Collapse	Tension (Body)
2.44	3.83	3.11

urst	Collapse	Tension (Body)	
.44	3.83	3.11	Dry
		3.92	Bouye

CONNECTION DIMENSIONAL / PERFORMANCE DATA:

OD	ID	DRIFT	CPLG	COLLAPSE (PSI)	BURST (PSI)	TENSION (1k LBS)
(Inches)	(Inches)	(Inches)	TYPE	API / CoP	APL/CoP	API / CoP
				1,524	12,487	9 / 521

Zia Hills 19 totil

Sec 19 T263 R32E					
Surface Casing O.D. (in.) Surface Casing O.D. (in.) Surface Casing ID (in)	1,189 13 3/8 12,612	Production Casing ID (In)	9,625 8,635 12,25	Production Casting O.D. (In.) Production Casting ID (In.)	12,245 9,825 8,835
Hale O.D. (In)	17 1/2	Excess (%)	70%	Hole O.D. (In) Excess (%) KOP	12,25 30% 11,016
Yatd Lead (Cu. FL/St) Shoe Joint (Ft)	1.73 40	Vield Lead (Cu. Fl/Sx)	2.7	Top Tell (Ft) - 1000' above KOP Yield Tell (Cu. Pt/Sx) Shoe Joint (Ft)	10,516' 1,59 90
Shoe Volume (Cu. FI) Tall feel of carners Celculated Total Volume (Cu. FL) Calc. Tall Volume (Cu. FL)	34.7 400 2,471 868	Calculated Total Lead (Cu. FL)	2,856	Shoe Volume (Cu. Ft) Calo, Yali Volume (Cu. Ft.)	38.3 741
	1,803	Lead Volume (bb/s)		Yal Volume (uppr) Displacement Volume (bbis)	
Lead Volume (bbis) Tail volume (bbis) Displacement Volume (bbis)	285,4 154,6 174,5				•
Lead Coment Description;		Intermediate Lend Coment Description;		Intermediate Tell Coment Description:	

Mit Weight 12.8 ppg Control Set °C* 1.0% CeCl₂ 1.0% SMS 1.0% SGC-80 1/4 (b/sk Polytiaka 1/4 ppb FiberBlock Itil Coment Description: Mb Weight 14.6 ppg 0:10 Type III: 0.5% CaCl₂ % Ib/sk Polyllates % ppb FiberBlock

Mis Weight 11 ppg WBL 0.5% CFL-4 0.6% LTR 0.2% SPC-8 0.4% CDF-4P ½ Ibrisk Polytiske ½ ppb FiberBlock

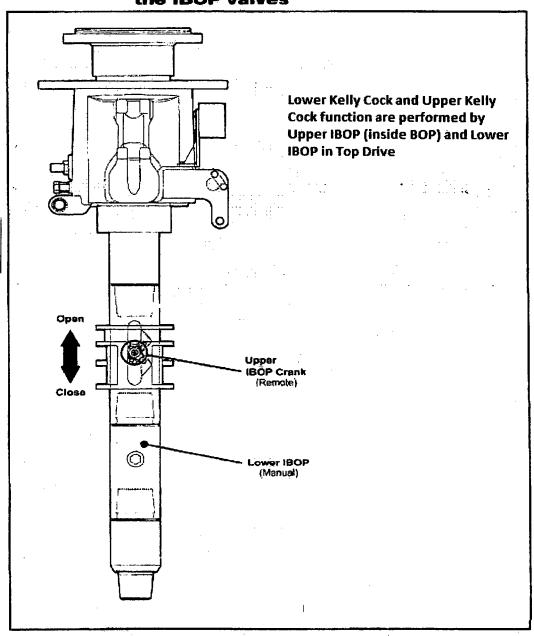
Intermediate Tell Ce Mix Weight 13.2 ppg Thermal 35 10% NaCi 0.9% CFR 0.7% CFL-4 0.1% LTR 0.2% SPC-8 0.4% CDF-4P 16 fb/sk Pchylates 16 ppb FiberGlock

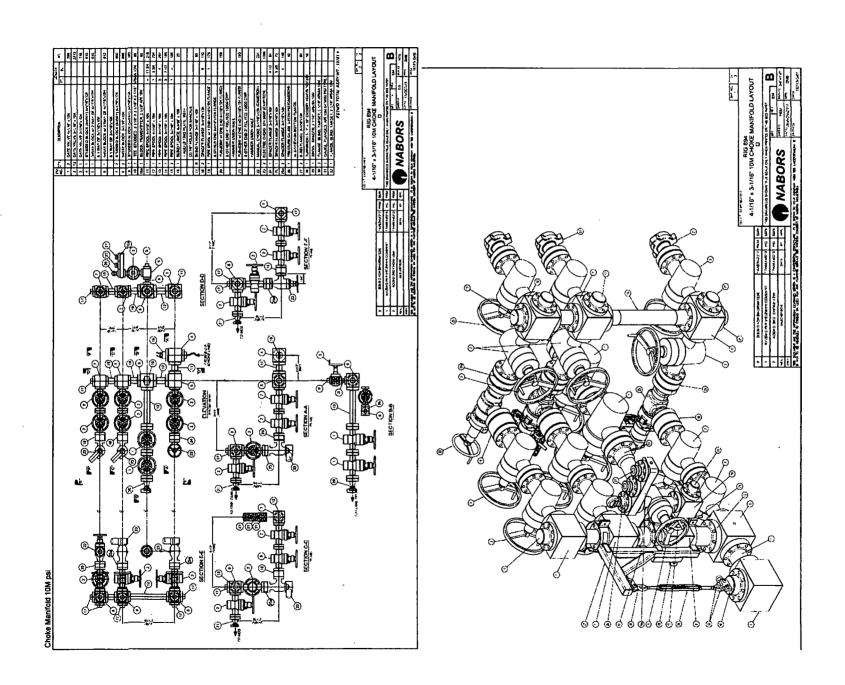
Production Casing O.D. (In.) Production Casing (D (In) Hate O.D. (In) 9,625 0,835 12,25 200% 31' Excess (%)
Top Cement (Surface) Yield Tell (Cu. FL/Sx)

4,167

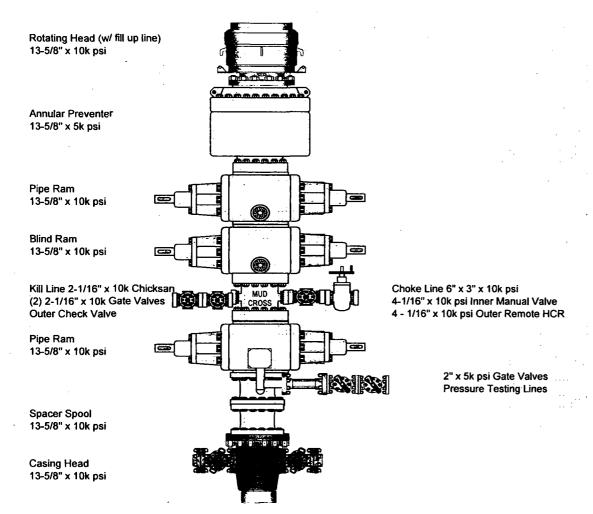
Catc. Tall Volume (Cu. Fl.)

Intermediate Tail General Description;
Mic Weight pop
Thermal 35
10% NoC
10% N


12,243 9,625 8,635 10,016 19,303 5,500 4,778 8,50 10% 1,19 12 1,5 Calc, Tail Volume (Cu, FL) 2,359 420,2568136


Production Liner Tell Cornect Description; sits Weight 15.8 pag. 12.25 State State of 225 St

Total properties						
Material to Lately down orders of	15 DOI 0 Dord char					
Volume to Latch down collar +4 ,15 BBLS (half shee track)						
Component	Capacity	Length	Votume			
Orlii Pipe	.0108 666/8		Ô			
Liner (Liner top to Float Collar)	.01493564/8	9	9			
Total			8			


the IBOP valves

residence of handren and see

BOPE Configuration & Specifications 13-5/8" x 10,000 psi System

1. DRILLING WELL CONTROL PLAN

1.1 WELL CONTROL - CERTIFICATIONS

Required IADC/IWCF Well Control Certifications Supervisor Level:

Any personnel who supervises or operates the BOP must possess a valid current IADC training certification and photo identification. This would include the onsite drilling supervisor, tool pusher/rig manager, driller, and any personnel that will be acting in these capacities. Another example of this may be a wireline or snubbing crew rigged up on the rig to assist the rig, the operator of each system must also have a valid control certification for their level of operation.

BLM recognizes IADC training as the industry approved <u>accredited</u> training. Online self-certifications will not be acceptable. Enforcement actions for the lack of a valid Supervisory Level certificate shall be prompt action to correct the deficiency. **Enforcement actions** include but are not limited to immediate replacement of personnel lacking certifications, drilling operations being shut down or installment of a 10M annular.

IADC Driller Level for all Drillers and general knowledge for the Assistant Driller, Derrick Hands, Floor Hands and Motor Hands is recognized by the BLM; however, a Driller Level certification will need to be presented only if acting in a temporary Driller Level certification capacity.

Well Control-Position/Roles

IADC Well control training and certification is targeted toward each role, e.g., Supervisor Level toward those who direct, Driller Level to those who act, Introductory to those who need to know.

Supervisor Level

- Specifies and has oversight that the correct actions are carried out
- Role is to supervise well control equipment, training, testing, and well control events
- Directs the testing of BOP and other well control equipment
- o Regularly direct well control crew drills
- o Land based rigs usually runs the choke during a well kill operation
- Due to role on the rig, training and certification is targeted more toward management of well control and managing an influx out of the well

Driller Level

- o Performs an action to prevent or respond to well control accident
- Role is to monitor the well via electronic devices while drilling and detect unplanned influxes
- Assist with the testing of BOP and other well control equipment
- Regularly assist with well control crew drills
- When influx is detected, responsible to close the BOP
- Due to role on the rig, training and certification is targeted more toward monitoring and shutting the well in (closing the BOP) when an influx is detected

(Well Control-Positions/Roles Continued)

Derrick Hand, Assistant Driller Introductory Level

- Role is to assist Driller with kick detection by physically monitoring the well at the mixing pits/tanks
- Regularly record mud weights/viscosity for analysis by the Supervisor level and mud engineer so pre-influx signs can be detected
- o Mix required kill fluids as directed by Supervisor or Driller
- Due to role on the rig, training and certification is targeted more toward monitoring for influxes, either via mud samples or visual signs on the pits/tanks

Motorman, Floor Hand Introductory Level

- o Role is to assist the Supervisor, Driller, or Derrick Hand with detecting influxes
- o Be certain all valves are aligned for proper well control as directed by Supervisor
- o Perform Supervisor or Driller assigned tasks during a well control event
- Due to role on the rig, training and certification is targeted more toward monitoring for influxes

1.2 WELL CONTROL-COMPONENT AND PREVENTER COMPATIBILITY CHECKLIST

The table below, which covers the drilling and casing of the 10M Stack portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

o Example 8-3/4" Production hole section, 10M requirement

Component	OD	Preventer	RWP
Drill pipe	5"	Fixed lower 5" Upper 4.5-7" VBR	10M
HWDP	5"	Fixed lower 5" Upper 4.5-7" VBR	10M
Drill collars and MWD tools	6.25-6.75"	Upper 4.5-7" VBR	10M
Mud Motor	6.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

• VBR = Variable Bore Ram. Compatible range listed in chart.

1.3 WELL CONTROL-BOP TESTING

BOP Test will be completed per Onshore Oil and Gas Order #2 Well Control requirements. The 5M Annular Preventer on a required 10M BOP stack will be tested to 70 % of rated working pressure including a 10 minute low pressure test. Pressure shall be maintained at least 10 minutes.

1.4 WELL CONTROL - DRILLS

The following drills are conducted and recorded in the Daily Drilling Report and the Contractor's reporting system while engaged in drilling operations:

Туре	Frequency	Objective	Comments	
Shallow gas kick drill - drilling	Once per well with crew on tour	Response training to a shallow gas influx	To be done prior to drilling surface hole if shallow gas is noted	
Kick drill - drilling	Once per week per crew	Response training to an influx while drilling (bit on bottom)	Only one kick drill per week	
Kick drill - tripping	Once per week per crew	Response training to an influx while tripping (bit off bottom). Practice stabbing TIW valve	alternating between drilling and tripping.	
Choke drill	Once per well with crew on tour	Practice in operating the remotely operated choke with pressure in the well	Before drilling out of the last casing set above a prospective reservoir Include the scenario of flowing well with gas on drill floor as a table top	
H₂S drill	Prior to drilling into a potential H ₂ S zone/reservoir	Practice in use of respiratory equipment		

1.5 WELL CONTROL - MONITORING

- Drilling operations which utilize static fluid levels in the wellbore as the active barrier element, a
 means of accurately monitoring fill-up and displacement volumes during trips are available to the
 driller and operator. A recirculating trip tank is installed and equipped with a volume indicator
 easily read from the driller's / operator's position. This data is recorded on a calibrated chart
 recorder or digitally. The actual volumes are compared to the calculated volumes.
- The On-Site Supervisor ensures hole-filling and pit monitoring procedures are established and documented for every rig operation.
- The well is kept full of fluid with a known density and monitored at all times even when out of the hole.
- Flow checks are a minimum of 15 minutes.
- A flow check is made:
 - In the event of a drilling break.
 - After indications of down hole gains or losses.
 - Prior to all trips out of the hole.
 - After pulling into the casing shoe.
 - Before the BHA enters the BOP stack.
 - If trip displacement is incorrect.

Well Control-Monitoring (Continued)

- Prior to dropping a survey instrument.
- Prior to dropping a core ball.
- After a well kill operation.
- When the mud density is reduced in the well.
- Flow checks may be made at any time at the sole discretion of the driller or his designate. The
 Onsite Supervisor ensures that personnel are aware of this authority and the authority to close
 the well in immediately without further consultation.
- Record slow circulating rates (SCR) after each crew change, bit trip, and 500' of new hole drilled
 and after any variance greater than 0.2 ppg in MW. Slow pump rate recordings should include
 return flow percent, TVD, MD & pressure. SCR's will be done on all pumps at 30, 40 & 50 SPM.
 Pressures will be recorded at the choke panel. SCR will be recorded in the IADC daily report and
 MRO Wellview daily report
- Drilling blind (i.e. without returns) is permissible only in known lithology where the absence of hydrocarbons has been predetermined and written approval of the Drilling Manager.
- All open hole logs to be run with pack-off, lubricator or Drilling Manager approved alternative means
- The Drilling Contractor has a fully working pit level totalizer / monitoring system with read out for the driller and an audible alarm set to 10 BBL gain / loss volume. Systems are selectable to enable monitoring of all pits in use. Pit volumes are monitored at all times, especially when transferring fluids. Both systems data is recorded on a calibrated chart recorder or electronically.
- The Drilling Contractor has a fully working return mud flow indicator with drillers display and an audible alarm, and is adjustable to record any variance in return volumes.

1.6 WELL CONTROL - SHUT IN

- The "hard shut in" method (i.e. against a closed choke using either an annular or ram type preventer) is the Company standard.
- The HCR(s) or failsafe valves are left closed during drilling to prevent any erosion and buildup of solids. The adjustable choke should also be left closed.
- The rig specific shut in procedure, the BOP configuration along with space-out position for the tool joints is posted in the Driller's control cabin or doghouse.
- No well kill operation commences until there is a plan agreed by the Superintendent, On-Site Supervisor and the Drilling Manager.
- During a well kill by circulation, constant bottom hole pressure is maintained throughout.
- Kill sheets are maintained by the Driller and posted in the Driller's control cabin or doghouse. The sheet is updated at a minimum every 500 feet.

2. SHUT-IN PROCEDURES:

2.1 PROCEDURE WHILE DRILLING

- Sound alarm (alert crew)
- Space out drill string Stop rotating, pick the drill string up off bottom, and space out to ensure
 no tool joint is located in the BOP element selected for initial closure.
- Shut down pumps (stop pumps and observe well.)
- Shut-in Well If flow is suspected or confirmed, close uppermost applicable BOP element. (HCR and choke will already be in the closed position.)
 - o Note: Either the uppermost pipe ram or annular preventer can be used.
- Confirm shut-in
- Notify toolpusher/company representative
- Gather all relevant data required:
 - o SIDPP and SICP
 - o Hole Depth and Hole TVD
 - o Pit gain
 - o Time
 - o Kick Volume .
 - o Pipe depth
 - o MW in, MW out
 - SPR's (Slow Pump Rate's)
- Regroup and identify forward plan (let well stabilize, update kill sheet, inventory mud additives and mud volumes on location)
- Company Representative, Drilling Superintendent, Drilling Engineer and Drilling Manager will
 discuss well control kill method to be utilized. A verbal Risk Assessment and preferred kill
 method will be finalized. Initial Risk Assessment will be finalized within 1 hour of initial shut in.
- No well kill operation commences until there is a plan agreed by the Superintendent, On-Site Supervisor and the Drilling Contractor PIC.
- Recheck all pressures and fluid volume on accumulator unit
- If pressure has built or is anticipated during the kill to reach 2,500 psi or greater, the annular
 preventer CANNOT be used as per Oil Company Well Control Policy, swap to the upper BOP
 pipe ram.

2.2 PROCEDURE WHILE TRIPPING

- Sound alarm (alert crew)
- Stab full opening safety valve in the drill string and close.
- Space out drill string (ensure no tool joint is located in the BOP element selected for initial closure).
- Shut down pumps (stop pumps and observe well.)
- Shut-in Well If flow is suspected or confirmed, close uppermost applicable BOP element. (HCR and choke will already be in the closed position.)
 - o Note: Either the uppermost pipe ram or annular preventer can be used.
- Confirm shut-in
- Notify tool pusher/company representative
- Gather all relevant data required:
 - o SIDPP and SICP
 - o Hole Depth and Hole TVD
 - o Pit gain

Procedure While Tripping (Continued)

- o Time
- o Kick Volume
- o Pipe depth
- o MW in, MW out
- SPR's (Slow Pump Rate's)
- Regroup and identify forward plan (let well stabilize, update kill sheet, inventory mud additives and mud volumes on location)
- Company Representative, Drilling Superintendent, Drilling Engineer and Drilling Manager will
 discuss well control kill method to be utilized. A verbal Risk Assessment and preferred kill
 method will be finalized. Initial Risk Assessment will be finalized within 1 hour of initial shut in.
- No well kill operation commences until there is a plan agreed by the Superintendent, On-Site Supervisor and the Drilling Contractor PIC.
- Recheck all pressures and fluid volume on accumulator unit
 If pressure has built or is anticipated during the kill to reach X,XXX psi or greater, the annular
 preventer CANNOT be used as per Company Well Control Policy, swap to the upper BOP pipe
 ram.

2.3 PROCEDURE WHILE RUNNING CASING

- Sound alarm (alert crew)
- Stab crossover and full opening safety valve and close
- Space out casing (ensure no coupling is located in the BOP element selected for initial closure).
- Shut down pumps (stop pumps and observe well.)
- Shut-in Well If flow is suspected or confirmed, close uppermost applicable BOP element. (HCR and choke will already be in the closed position.)
 - o **Note:** Either the uppermost pipe ram or annular preventer can be used.
- Confirm shut-in
- Notify tool pusher/company representative
- Gather all relevant data required:
 - o SIDPP and SICP
 - o Hole Depth and Hole TVD
 - Pit gain
 - o Time
 - Kick Volume
 - Pipe depth
 - o MW in, MW out
 - SPR's (Slow Pump Rate's)
- Regroup and identify forward plan (let well stabilize, update kill sheet, inventory mud additives and mud volumes on location)
- Company Representative, Drilling Superintendent, Drilling Engineer and Drilling Manager will
 discuss well control kill method to be utilized. A verbal Risk Assessment and preferred kill
 method will be finalized. Initial Risk Assessment will be finalized within 1 hour of initial shut in.
- No well kill operation commences until there is a plan agreed by the Superintendent, On-Site Supervisor and the Drilling Contractor PIC.
- Recheck all pressures and fluid volume on accumulator unit
 If pressure has built or is anticipated during the kill to reach 2,500 psi or greater, the annular preventer CANNOT be used, swap to the upper BOP pipe ram.

2.4 PROCEDURE WITH NO PIPE IN HOLE (OPEN HOLE)

- Sound alarm (alert crew)
- Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- Confirm shut-in
- Notify toolpusher/company representative
- Gather all relevant data required:
 - o Shut-In Pressure
 - o Hole Depth and Hole TVD
 - o Pit gain
 - o Time
 - o Kick Volume
 - o MW in, MW out
 - SPR's (Slow Pump Rate's)
- Regroup and identify forward plan (let well stabilize, update kill sheet, inventory mud additives and mud volumes on location)
- Company Representative, Drilling Superintendent, Drilling Engineer and Drilling Manager will
 discuss well control kill method to be utilized. A verbal Risk Assessment and preferred kill
 method will be finalized. Initial Risk Assessment will be finalized within 1 hour of initial shut in.
- No well kill operation commences until there is a plan agreed by the Superintendent, On-Site Supervisor and the Drilling Contractor PIC.
- Recheck all pressures and fluid volume on accumulator unit.

2.5 PROCEDURE WHILE PULLING BHA THRU STACK

- PRIOR to pulling last joint of drill pipe thru the stack.
- Perform flow check, if flowing.
- Sound alarm (alert crew).
- Stab full opening safety valve and close
- Space out drill string with tool joint just beneath the upper pipe ram.
- Shut-in using upper pipe ram. (HCR and choke will already be in the closed position).
- Confirm shut-in.
- Notify toolpusher/company representative
- Read and record the following:
 - o SIDPP and SICP
 - o Pit gain
 - o Time
 - Regroup and identify forward plan
- With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - Sound alarm (alert crew)
 - Stab crossover and full opening safety valve and close
 - Space out drill string with upset just beneath the compatible pipe ram.
 - Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - Confirm shut-in
 - Notify toolpusher/company representative
 - Read and record the following:
 - o SIDPP and SICP
 - o Pit gain

Procedures While Pulling BHA thru Stack (Continued)

- o Time
- Regroup and identify forward plan
- With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - Sound alarm (alert crew)
 - If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - If impossible to pick up high enough to pull the string clear of the stack:
 - Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - Space out drill string with tool joint just beneath the upper pipe ram.
 - Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - Confirm shut-in
 - Notify toolpusher/company representative
 - Read and record the following:
 - o SIDPP and SICP
 - o Pit gain
 - o Time