Form 31,5385 OCD JUL 16 2019 UNITED STATES DEPARTMENT OF THE INTEL DEPARTMENT OF LAND MANAGE REFERENCE OF DEPARTMENT TO DRILL	RIOR MENT L OR REENTER	OMB No	APPROVED 5. 1004-0137 nuary 31, 2018 or Tribe Name					
Ia. Type of work: Ib. Type of Well: Ib. Type of Well:			eement, Name and No.					
Ic. Type of Completion: Hydraulic Fracturing Single 2	Zone 🗌 Multiple Zone	8. Lease Name and VACA DRAW 9418 18H						
2. Name of Operator BTA OIL PRODUCERS LLC (2602 97)	9. API Well No.	4/22/1						
3a. Address 3b. 1	Phone No. <i>(include area code)</i> 2)682-3753	10 Field and Pool, o	VPPER WOLFCAMP					
4. Location of Well (Report location clearly and in accordance with an At surface SESE / 220 FSL / 1305 FEL / LAT 32.138411 / L	ONG -103.55587	SEC 107 T255 / R	Blk. and Survey or Area 33E / NMP					
At proposed prod. zone NWNE / 50 FNL / 990 FEL / LAT 32.1	152193 / LONG -103.554859							
14. Distance in miles and direction from nearest town or post office* 20 miles		12. County or Parish LEA	n 13. State NM					
15. Distance from proposed* 50 feet 16. 1 location to nearest 50 feet 640 (Also to nearest drig. unit line, if any)		7. Spacing Unit dedicated to the	nis well					
18. Distance from proposed location* 19. I to nearest well, drilling, completed, applied for, on this lease, ft. 30 feet 1250	0/BLM/BIA Bond No. in file ED: NM1195							
3376 feet 09/0								
	. Attachments		. <u></u>					
 The following, completed in accordance with the requirements of Onst (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lan SUPO must be filed with the appropriate Forest Service Office) 	4. Bond to cover the o Item 20 above). 5. Operator certificati	perations unless covered by ar	n existing bond on file (see					
25. Signature (Electronic Submission)	Name (Printed/Typed) Sammy Hajar / Ph: (432)68	92-3753	Date 05/16/2018					
Title (Regulatory Analyst								
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575)234	1-5959	Date 07/05/2019					
Title Assistant Field Manager Lands & Minerals	Office CARLSBAD							
Application approval does not warrant or certify that the applicant hold applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ds legal or equitable title to thos	e rights in the subject lease w	hich would entitle the					
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make in of the United States any false, fictitious or fraudulent statements or rep			any department or agency					
GCA Requested 07/46/17 GCA DEC. 07/16/19	D WITH CONDITION	NB KZ 16	,[19]					
(Continued on page 2) 5.4.	Date: 07/05/2019	*(In Double	structions on page 2)					

7

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

The Privacy Act of 1974 and regulation in 43 CFR 2,48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response; including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Additional Operator Remarks

Location of Well

1. SHL: SESE / 220 FSL / 1305 FEL / TWSP: 25S / RANGE: 33E / SECTION: 10 / LAT: 32.138411 / LONG: -103.55587 (TVD: 0 feet) PPP: SESE / 330 FSL / 990 FEL / TWSP: 25S / RANGE: 33E / SECTION: 10 / LAT: 32.138714 / LONG: -103.554852 (TVD: 12504) feet, ND: 12840 feet) BHL: NWNE / 50 FNL / 990 FEL / TWSP: 25S / RANGE: 33E / SECTION: 10 / LAT: 32.152193 / LONG: -103.554859 ((TVD: 12504) feet, ND: 17479 feet)

BLM Point of Contact

Name: Tenille Ortiz Title: Legal Instruments Examiner Phone: 5752342224 Email: tortiz@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

١.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BTA OIL PRODUCERS LLC
LEASE NO.:	NMNM097153
WELL NAME & NO.:	18H – VACA DRAW 9418 10 FED
SURFACE HOLE FOOTAGE:	220'/S & 1305'/E
BOTTOM HOLE FOOTAGE	50'/N & 1656'/E
LOCATION:	SECTION 10, T25S, R33E, NMPM
COUNTY:	LEA

COA

H2S		C No	
Potash	None	C Secretary	
Cave/Karst Potential	C Low	C Medium	
Variance	∩ None	Flex Hose	C Other
Wellhead	Conventional	Multibowl	🚱 Both
Other	☐4 String Area	Capitan Reef	└ WIPP
Other	Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	✓ Water Disposal	ГСОМ	🔽 Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Wildcat Pool** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1400 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to

Page 1 of 8

include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 5030 feet is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
- 3. The minimum required fill of cement behind the 7 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back 100 feet into the previous casing. Operator shall provide method of verification. Cement excess is less than 25%, more cement might be required.

Page 2 of 8

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Page 3 of 8

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

- Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

Page 4 of 8

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

Page 5 of 8

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

Page 6 of 8

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BTA OIL PRODUCERS LLC
LEASE NO.:	
WELL NAME & NO.:	18H – VACA DRAW 9418 10 FED
SURFACE HOLE FOOTAGE:	220'/S & 1305'/E
BOTTOM HOLE FOOTAGE	50'/N & 1656'/E
LOCATION:	SECTION 10, T25S, R33E, NMPM
COUNTY:	LEA

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🔀 Special Requirements
Lesser Prairie-Chicken Timing Stipulations
Ground-level Abandoned Well Marker
Hydrology
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

Page 1 of 12

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 12 Approval Date: 07/05/2019

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Timing Limitation Exceptions:

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

Hydrology

The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 $\frac{1}{2}$ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems

Page 3 of 12

will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 12

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

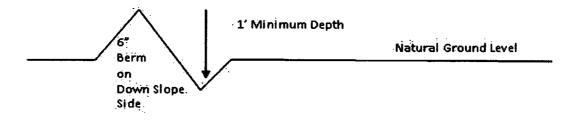
Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Page 6 of 12


Approval Date: 07/05/2019

-i

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

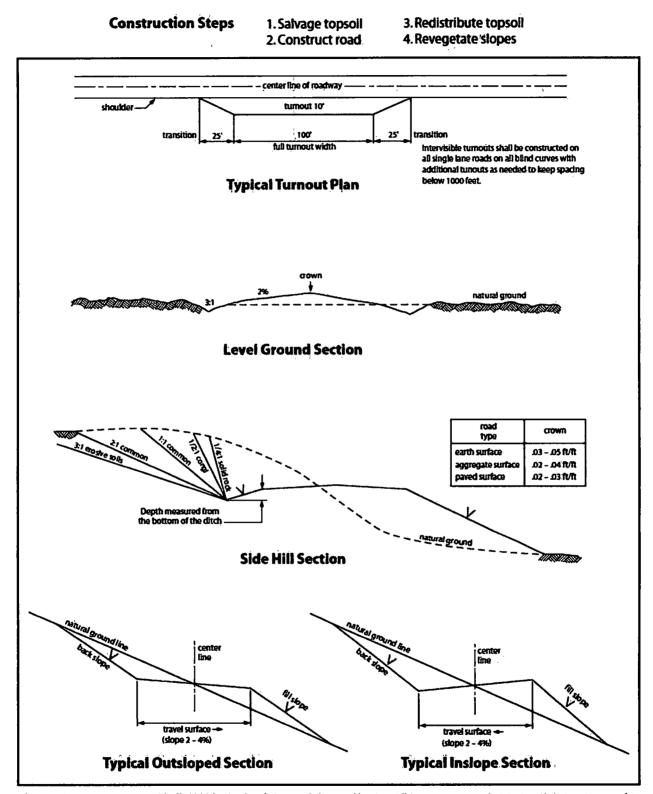
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 12

Page 8 of 12

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 12

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 10 of 12

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 11 of 12

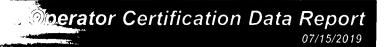
Seed Mixture for LPC Sand/Shinnery Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed shall be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. Seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains Bristlegrass	5lbs/A
Sand Bluestem	5lbs/A
Little Bluestem	3lbs/A
Big Bluestem	6lbs/A
Plains Coreopsis	2lbs/A
Sand Dropseed	1lbs/A


*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

Page 12 of 12

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Sammy Hajar		Signed on: 04/24/2018					
Title: Regulatory Analysi	t						
Street Address: 104 S F	Pecos Street						
City: Midland	State: TX	Zip : 79701					
Phone: (432)682-3753							
Email address: SHajar@) btaoil.com						
Field Represe	entative						
Representative Name	o: Nick Eaton						
Street Address: 104 S	South Pecos						
City: Midland	State: TX	Zip: 79701					

Phone: (432)682-3753

Email address: neaton@btaoil.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 05/16/2018

APD ID: 10400029775

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FED

Well Type: OIL WELL

Well Number: 18H Well Work Type: Drill Show Final Text

07/15/2019

Application Data Report

2000

Section 1 - General			•									
APD ID: 10400029775	Tie to previous NOS?	10400013967	Submission Date: 05/16/2018									
BLM Office: CARLSBAD	User: Sammy Hajar	User: Sammy Hajar Title:										
Federal/Indian APD: FED	is the first lease penet	rated for product	ion Federal or Indian? FED									
Lease number: NMNM097153	Lease Acres: 640											
Surface access agreement in place?	Allotted?	Reservation:										
Agreement in place? NO	Federal or Indian agree	Federal or Indian agreement:										
Agreement number:												
Agreement name:												
Keep application confidential? YES												
Permitting Agent? NO	APD Operator: BTA OI	L PRODUCERS L	LC									
Operator letter of designation:												
Operator Phone: (432)682-3753 Operator Internet Address:	ə: TX	Zip: 79701										
Section 2 - Well Inform	ation											
Well in Master Development Plan? NO	Master Devel	opment Plan nam	le:									
Well in Master SUPO? NO	Master SUPO	name:										
Well in Master Drilling Plan? NO	Master Drillin	g Plan name:										
Well Name: VACA DRAW 9418 10 FED	Well Number	: 18H	Well API Number:									
Field/Pool or Exploratory? Field and Pool	Field Name: E	Field Name: BOBCAT DRAW Pool Name: UPPE WOLFCAMP										

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Page 1 of 3

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Desc	ribe c	other	miner	als:															
is th	e prop	osed	well	in a H	elium	prod	uctio	n area?	N Use E	Existing W	ell Pa	d? YES	5 No	e we	surface o	distur	bance	9 ? Y	
Туре	o of W	ell Pa	d: ML	ILTIPL	.E WE	ELL				Multiple Well Pad Name: VACA Number: 16H-19H DRAW 9418 10 FED									
Well	Class	: HOF	RIZON	ITAL						V 9418 10 ber of Leg									
Well Work Type: Drill																			
Well Type: OIL WELL													•		:				
Describe Well Type:																			
Well	sub-T	уре:	EXPL	ORAT	ORY	(WILC	CAT)				•							
Desc	ribe s	ub-ty	pe:																
Dista	ince t	o tow	n: 2 0	Miles			Dis	tance to	o nearest v	vell: 30 F1	Ē.	Dist	ance t	o le	ase line	: 50 F	т		
Reservoir well spacing assigned acres Measurement: 160 Acres																			
Well	plat:	Va	ica_Di	raw_9	418_1	0_Fe	d_18ł	H_C102	_20180424	1122024.pd	df								
Well	work	start	Date:	09/03	/2018				Durat	t ion: 45 D/	AYS								
					<u>.</u>			· · · ·	-1										
	Sec	tion	3 - V	Vell	Loca	ation	Tal	ble											
Surv	ey Tyj	pe: R	ECTA	NGUL	AR				· ·										
Desc	ribe S	urvey	у Туре	ə:			۰.												
Datu	m: NA	D83					• • .		Vertic	al Datum:	NGV	029							
Surv	ey nu	mber:			· ·														
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	DVT	
SHL Leg #1	220	FSL	130 5	FEL	25S	33E	10	Aliquot SESE	32.13841 1	- 103.5558 7	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 097153	337 6	0	0	
KOP Leg #1	330	FSL	130 5	FEL	25S	33E	10	Aliquot SESE	32.13841 1	- 103.5558 7	LEA	MEXI	NEW MEXI CO		NMNM 097153	- 125 4	463 0	463 0	
PPP Leg #1	330	FSL	990	FEL	25S	33E	10	Aliquot SESE	32.13871 4	- 103.5548 52	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 097153	- 912 8	128 40	125 04	

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

	_				1.3%	J * 1							-			-	_	
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County State		Meridian		Lease Number	Elevation	QW	TVD
EXIT Leg #1	330	FNL	990	FEL	255	33E	10	Aliquot NENE	32.15142 3	- 103.5548 59	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 097153	- 912 8	172 04	125 04
BHL Leg #1	50	FNL	990	FEL	25S	33E	10	Aliquot NWNE	32.15219 3	- 103.5548 59	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 097153	- 912 8	174 79	125 04

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Choke Diagram Attachment:

10M_choke_mannifold_20190425081345.pdf

Choke_Hose___Test_Chart_and_Specs_20190425081345.pdf

BOP Diagram Attachment:

5M_annular_well_control_plan_for_BLM_20190425081357.docx

10M_annular_variance_20190425081358.pdf

BLM_10M_BOP_with_5M_annular_20190425081358.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1450	0	1450	3414	2314	1450	J-55	54.5	STC	2.4	5.9	DRY	9.01	DRY	14.9
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5030	0	5030			5030	J-55	40	LTC	1.7	2.6	DRY	2.6	DRY	3.1
3	PRODUCTI ON	8.75	7.0	NEW	API	N	0	12540	0	12427	3414	-6686	12540	P- 110	29	LTC	1.4	1.6	DRY	2.1	DRY	2.5
4	LINER	6.12 5	4.5	NEW	API	N	11940	17484	11931	12504			5544	P- 110	11.6	LTC	1.6	2.2	DRY	2	DRY	2.6

Casing Attachments

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Casing Attachments

Casing ID: 1 String Type: SURFAC	E
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s	• • • • • • • • • • • • • • • • • • •
Vaca_Draw_9418_10_Fed_18H_CASING_	ASSUMPTION20180424122648.pdf
Casing ID: 2 String Type: INTERM	EDIATE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s	
Vaca_Draw_9418_10_Fed_18H_CASING_/	ASSUMPTION20180424122701.pdf
Casing ID: 3 String Type:PRODUC	TION
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s)	
Vaca_Draw_9418_10_Fed_18H_CASING_/	ASSUMPTION20180424122723.pdf

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Casing Attachments

Casing ID: 4 String Type:LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_9418_10_Fed_18H_CASING_ASSUMPTION__20180424122809.pdf

Section	4 - Ce	emen	t									
String Type	Lead/Tail Stage Tool Depth		Top MD Bottom MD		Quantity(sx) Yield		Density Cu Ft		Excess%	Cement type	Additives	
SURFACE	Lead		0	1259	690	1.73	13.5	1193	100	Class C	2% CaCl2	
SURFACE	Tail		1259	1450	200	1.33	14.8	266	100	Class C	2% CaCl2	
INTERMEDIATE	Lead		0	4180	1240	2.08	12.9	2579	100	Class C	6% Gel	
INTERMEDIATE	Tail	•	4180	5030	250	1.33	14.8	332	25	Class C	0.004 GPS cf-41L	
PRODUCTION	Lead	·. · .	4000	1120 0	530	2.87	10.5	1173	40	100% TXL	Plus Additives	
PRODUCTION	Tail		1120 0	1258 1	200	1.18	15.6	236	15	Class H	2% Gel	
LINER	Lead		1190 0	1748 4	470	1.22	14.4	561	10	50:50 H	50% Class H POZ. 2% Gel 1 Gal / 1000 sx CF- 41L	

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1450	SPUD MUD	8.3	8.4							
1450	5030	SALT SATURATED	10	10.2							
5030	1242 7	OTHER : Cut Brine	8.6	9.2							
1242 7	1250 4	OIL-BASED MUD	11	11.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

No DST Planned

List of open and cased hole logs run in the well:

GR

Coring operation description for the well:

No cores are currently planned

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7475

Anticipated Surface Pressure: 4724.12

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen suifide drilling operations plan:

BTA_Oil_Producers_LLC___EMERGENCY_CALL_LIST_20190425081447.pdf

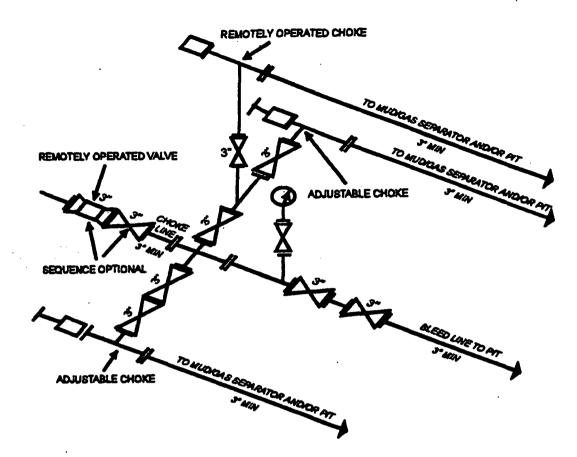
H2S_Equipment_Schematic__20190425081447.pdf

H2S_Plan_20190425081447.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Vaca_Draw_9418_10_Fed_18H_Directional_Plan_20180424122911.pdf


Other proposed operations facets description:

A variance is requested for a Multi Bowl Wellhead. See the attached schematic and running procedure.

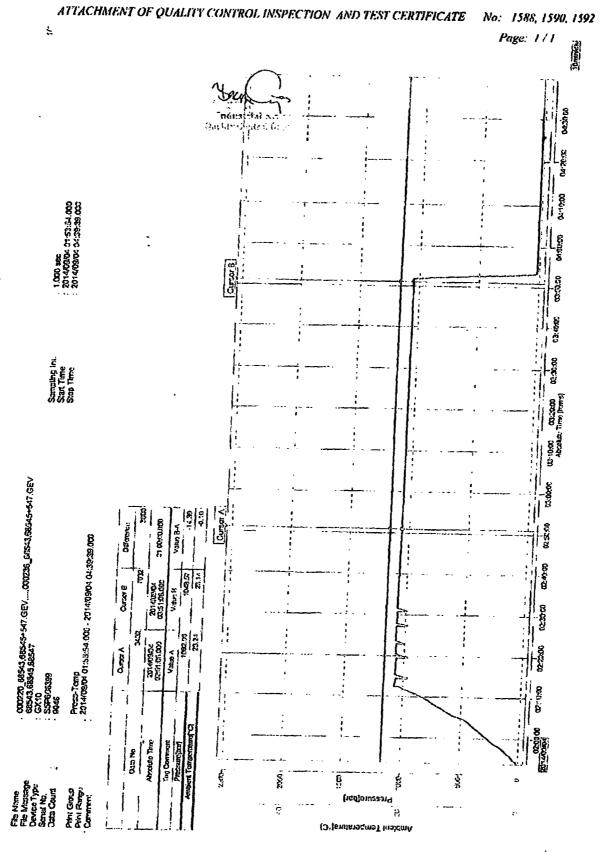
Other proposed operations facets attachment:

Other Variance attachment:

Multi_Bowl_Diagram_20180420093359.pdf Wellhead System and Testing_12-08-2016.pdf

10M AND 15M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY [53 FR 49661, Dec. 9, 1988 and 54 FR 39528, Sept. 27, 1989]

Ontine	4	CONTITECH RUBI Industrial Kft.										
	Contifiech		1						•			
Rig 94	anna 200 an 1-01 - 110		2.74200147823		f	1226	$\mathcal{T}_{\mathcal{S}}$	244	<u>55</u>			
QUAL INSPECTION	ITY CONT		311FIG	CATE		CERT.	N°:	159	2			
PURCHASER:	ContiTech C		11042.01486 6623			P.O. N*	8 00 00-00 1-00 -0000,72	450048	1753			
CONTITECH ORDER Nº:	539225	HOSE	TYPE:	3"	ID		Choke & Kill Hose					
HOSE SERIAL Nº:		NOMI	NAL / AC	TUAL LI	ENGT	1: 7,62 m / 7,66 m						
W.P. 68,9 MPa	10000 psl	T.P.	103,4	MPa	150)00 psi	Duration	60	mi			
Pressure test with water at ambient temperature	1.4782.590000000000000000000000	åooo n aa		******	161 23 1 2	tin distini of	destantes and second	21.12 23.246 462.8	945-36-3512678715894			
> 10 Mir ↑ 50 MF			attach			Partition - entry in a			A			
COUPLINGS Ty 3" coupling wit			Serial	553	 2	AISI		A1582N	H8672			
4 1/16* 10K API Swivel	1	23		555	3	AISI			855			
Hub					AISI	4130	A1199N	A1423N				
Not Designed For	Nell Testing	8						API Spec				
Fire Rated							Ten	nperature	rate:"B'			
All motal parts are flawless WE CERTIFY THAT THE ABOV	E HOSE HAS BEI	EN MAN	UFACTUR	ED IN A	CCORD	ANCE WIT	I THE TER	MS OF THE O	RDER			
INSPECTED AND PRESSURE 1 STATEMENT OF CONFORM conditions and specifications accordance with the referenced	IY: We hereby c of the sbove Purci	cortify the	it the sbov der and th	e items/c at these i	quipms items/e	nt supplied I quipment we	re lebricate	d inspected an	d tesled in			
Date:	Inspector			1	y Contr	100000000000000000000000000000000000000						
04. September 2014.	Relative Section Der Stand											


- ,

.

1

The second se

Contri en fastan Indiana IKI (Budapata & 10, II, 6728 Sanged (II, 6701 PONE), 12 Sangao, Hungany Phone - 136 62 666 737 (Fair - 58 62 536 738) clansk integrifikad nariferin hit (hagnest waw contractivader au www.contractivader. The Guart of Gauginad Guardy as Registry Count (Registry Count No. Co. 08 69 602522) FTP VAT Sin, Hit 1087/08 Bonk ente Connecedard, 201, Budapata (1420/105 6603) (03

Well control plan for 10M BOPE with 5M annular

Drilling

- 1. Sound alarm (alert crew).
- 2. Space out drill string.
- 3. Shut down pumps (stop pumps and rotary).
- 4. Shut-in Well with annular with HCR and choke in closed position.
- 5. Confirm shut-in.
- 6. Notify tool pusher/company representative.
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Time of shut in
- c. Pit gain

8. Regroup and identify forward plan. If pressure has increased to 2500 psi, confirm spacing and close the upper variable bore rams.

9. Prepare for well kill operation.

Tripping

- 1. Sound alarm (alert rig crew)
- 2. Stab full opening safety valve and close valve
- 3. Sapce out drill string
- 4. Shut in the well with the annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
- a. Time of shut in
- b. SIDPP and SICP
- c. Pit gain

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

While Running Casing

- 1. Sound alarm (alert rig crew)
- 2. Stab crossover and full opening safety valve and close valve
- 3. Space out casing string
- 4. Shut in well with annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Pit gain
- c. Time

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

No Pipe In Hole (Open Hole)

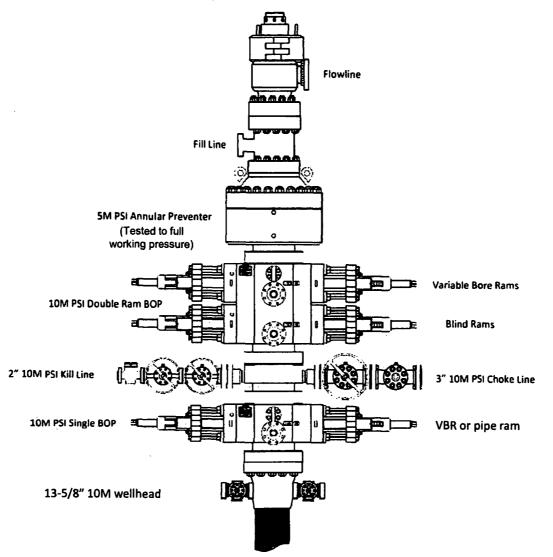
1. Sound alarm (alert rig crew)

Well control plan for 10M BOPE with 5M annular

- 2. Shut in blind rams with HCR and choke in closed position
- Confirm shut in 3.
- Notify tool pusher/company representative 4.
- Read and record the following: 5.
- SICP а.
- Pit gain b.
- Time C.
- Prepare for well kill operation 6.

Pulling BHA thru Stack T. Prior to pulling last joint of drill pipe thru the stack

- Perform flow check, if flowing: a.
- Sound Alarm (alert crew) **a**.i.
- Stab full opening safety valve and close valve a.ii.
- Space out drill string a.iii.
- Shut in using upper most VBR, choke and HCR in closed positon a.iv.
- Confirm shut in a.v.
- Notify tool pusher/company representative. a.vi.
- Read and record the following: a.vii.
 - a.vii.1. SIDPP and SICP
 - a.vii.2. Pit gain
 - a.vii.3. Time
- Prepare for well kill operation a.viii.
 - With BHA in the stack: 2.
 - If possible pull BHA clear of stack а.
 - Follow 'open hole' procedure above a.i.
 - If unable to pull BHA clear of stack b.
 - Stab crossover with full opening safety valve, close valve. b.i.
 - b.ii. Space out
- Shut in using upper most VBR. HCR and choke in closed position. b.iii.
- Confirm shut in b.iv.
- Notify tool pusher/company rep b.v.
- Read and record the following: b.vi.
 - b.vi.1. SIDPP and SICP
 - b.vi.2. Pit gain
 - b.vi.3. Time
- b.vii. Prepare for well kill operation


Drilling component and preventer compatibility table for 10M approval

The following table outlines the drilling and production liner components for Wolfcamp targets requiring 10M BOPE approval. Variance is requested to utilize a 5M annular preventer in 6-1/8" hole as all components can be covered using 10M rated VBR's (variable bore rams). 5M annular on the 10M system will be tested to 100% of rated working pressure.

6-1/8" hole section – 10M BOPE requirement (13-5/8" BOP)								
Component	OD	Preventer	RWP					
Drill pipe	4″	3.5"-5.5" VBR	10M					
HWDP	4″	3.5"-5.5" VBR	10M					
Jars	5″	3.5"-5.5" VBR	10M					
DC's and NMDC's	4-3/4"	3.5"-5.5" VBR	10M					
Mud motor	5″	3.5"-5.5" VBR	10M					
Casing	4-1/2"	3.5"-5.5" VBR	10M					
Open hole	NA	Blind rams	10M					

12-1/4" & 8-3/4" hole sections – 5M BOPE requirement (13-5/8" BOP)									
Component	OD	Preventer	RWP						
Drill pipe	5″	3.5"-5.5" VBR or 5" pipe rams	10M						
HWDP	5″	3.5"-5.5" VBR or 5" pipe rams	10M						
Jars	6-1/4"	Annular	5M						
DC's and NMDC's	7″-8″	Annular	5M						
Mud motor	7"-8"	Annular	5M						
Casing	9-5/8" & 7"	Annular	5M						
Open hole	NA	Blind rams	10M						

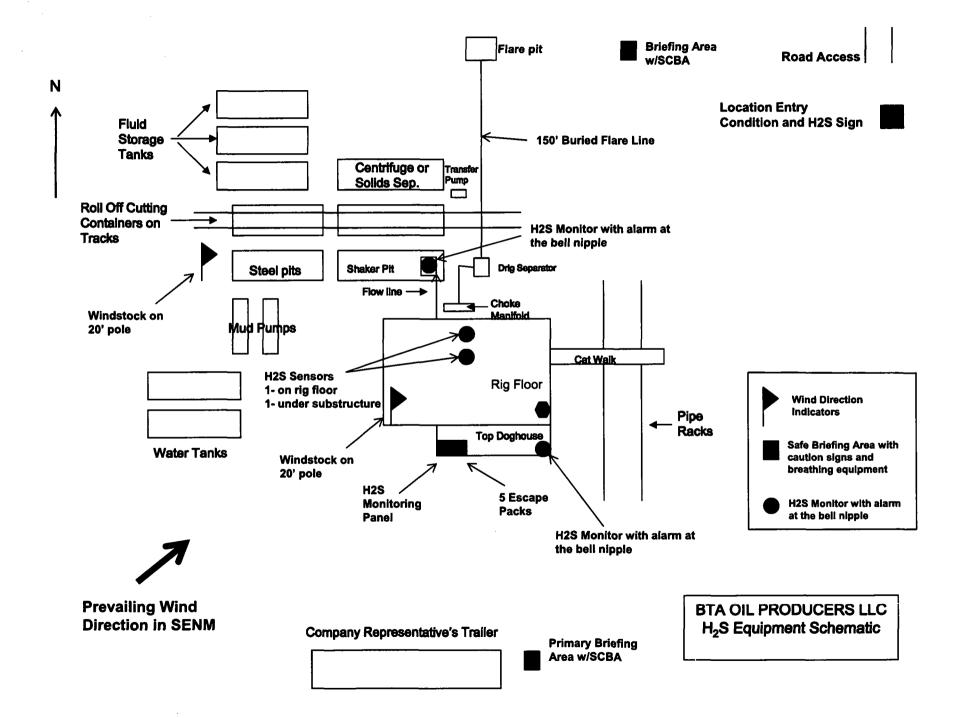
13-5/8" 10M PSI BOP Stack

-						Casing As					··· Baa.	100 210		• • • • •	
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
17.500	13.375	0	1450	0	1450	No	54.5	J-55	STC	2.40	5.90	14.90	9.01	Dry	8.4
12.250	9.625	0	5030	0	5030	No	40.0	J-55	LTC	1.70	2.60	3.10	2.60	Dry	10.0
8.750	7.000	0	12540	0	12427	No	29.0	P-110	LTC	1.40	1.90	2.50	2.10	Dry	9.2
6.125	4.500	11940	17484	11931	12504	No	11.6	P-110	LTC	1.60	2.20	2.60	2.00	Dry	11.50

	10040013,1		-			Casing As	sumption	-				-		-	
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	T₀ (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
17.500	13.375	0	1450	0	1450	No	54.5	J-55	STC	2.40	5.90	14.90	9.01	Dry	8.4
12.250	9.625	0	5030	0	5030	No	40.0	J-55	LTC	1.70	2.60	3.10	2.60	Dry	10.0
8.750	7.000	0	12540	0	12427	No	29.0	P-110	LTC	1.40	1.90	2.50	2.10	Dry	9.2
6.125	4.500	11940	17484	11931	12504	No	11.6	P-110	LTC	1.60	2.20	2.60	2.00	Dry	11.50

	roducers, r					·		•		· ·	WELL:	Vaca Draw 941	8 IV Fed #181		
						Casing As	sumption								
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
17.500	13.375	0	1450	0	1450	No	54.5	J-55	STC	2.40	5.90	14.90	9.01	Dry	8.4
12.250	9.625	0	5030	0	5030	No	40.0	J-55	LTC	1.70	2.60	3.10	2.60	Dry	10.0
8.750	7.000	0	12540	0	12427	No	29.0	P-110	LTC	1.40	1.90	2.50	2.10	Dry	9.2
6.125	4.500	11940	17484	11931	12504	No	11.6	P-110	LTC	1.60	2.20	2.60	2.00	Dry	11.50

1.1.1						Casing As	sumption								
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
17.500	13.375	0	1450	0	1450	No	54.5	J-55	STC	2.40	5.90	14.90	9.01	Dry	8.4
12.250	9.625	0	5030	0	5030	No	40.0	J-55	LTC	1.70	2.60	3.10	2.60	Dry	10.0
8.750	7.000	0	12540	0	12427	No	29.0	P-110	LTC	1.40	1.90	2.50	2.10	Dry	9.2
6.125	4.500	11940	17484	11931	12504	No	11.6	P-110	LTC	1.60	2.20	2.60	2.00	Dry	11.50


,

EMERGENCY CALL LIST

	OFFICE	MOBILE
BTA Oil Producers LLC OFFICE	432-682-3753	
BEN GRIMES, Operations	432-682-3753	432-559-4309
NICK EATON, Drilling	432-682-3753	432-260-7841
TRACE WOHLFAHRT, Completions	432-682-3753	

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

BTA OIL PRODUCERS LLC

HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with

properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy: All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication: Company vehicles equipped with cellular telephone.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH BTA OIL PRODUCERS LLC FOREMAN AT MAIN OFFICE

BTA OIL PRODUCERS LLC

1-432-682-3753

Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Vaca Draw #18H

Wellbore #1

Plan: Design #1

Standard Planning Report - Geographic

08 March, 2018

						<u></u>		·····		· · · · · · · · · · · · · · · · · · ·
Database:	EDM	5000.1 Single	User Db		Local Co	ordinate Refe	rence:	Well Vaca Draw	#18H	
Company:	BTA C	il Producers, L	LC		TVD Refe	rence:		GL @ 3376.0ust	ft	
Project:	Lea C	ounty, NM (NA	ND 83)		MD Refer	ence:		GL @ 3376.0usi	R .	
Site:	Vaca	Draw Sec 10, 1	125S, R33E		North Ref					
Well:	Vaca	Draw #18H			Survey C	alculation Met	hod:	Minimum Curvat	ture	
Wellbore:	Wellb	ore #1								
Design:	Desig	n #1								
Project	Lea Co	unty, NM (NAI	D 83), Lea Cou	nty, NM	-				•	
Map System:	US State	Plane 1983			System Da	tum:	Gr	ound Level		
Geo Datum:	North An	nerican Datum	1983		-					
Map Zone:	New Me	xico Eastern Zo	one				Us	ing geodetic sca	ale factor	
Site	Vaca D	raw Sec 10, T	25S, R33E							
Site Position:			North	ng:	419),812.34 usft	Latitude:			32° 9' 6.483 N
From:	Maj)	Eastin	g:	779	,596.21 usft	Longitude:			103° 33' 48.478 W
Position Uncert	ainty:	0.	0 usft Slot R	adius:		13-3/16 "	Grid Converg	ence:		0.41 °
Well	Vaca D	raw #18H								
Well Position	+N/-S		0.0 usft No	orthing:	· · · · ·	414.958.00)usft Lati	tude:		32° 8' 18.278 N
	+E/-W			sting:		781.982.00		gitude:		103* 33' 21.136 W
Position Uncert				allhead Elevat	lion.			und Level:		3,376.0 usft
Fosition Oncen	amy									0,010.0 03.
Weilbore	Wellbo	ore #1								·· ·· ·· ·
Magnetics	Mo	del Name	Sampl	e Date	Declina		Dip A	•		Strength
		1005000010		0/04/0000	(°)		*)			nT)
		IGRF200510	1	2/31/2009		7.74		60.16		48,743
Design	Design	#1								
Audit Notes:										
Version:			Phase	9: F	ROTOTYPE	Tie	On Depth:		0.0	
Vertical Section):		Depth From (T)	/D)	+N/-S	+E	:/-W	Dire	ection	
			(usft)		(usft)	(u	sft)		(°)	
			0.0		0.0	0	0.0	3	.16	
Plan Sections										· · · · ·
Measured			Vertical			Dogleg	Build	Turn		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Rate	Rate	Rate	TFO	
(usft)	(*)	(*)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
4,630.2	0.00	0.00	4,630.2	0.0	0.0	0.00	0.00	0.00	0.00	
4,780.2	3.00	122.41	4,780.2	-2.1	3.3	2.00	2.00	0.00	122.41	
11,759.7	3.00	122.41	11,750.1	-197.9	311.7	0.00	0.00	0.00	0.00	
11,909.7	0.00	0.00	11,900.0	-200.0	315.0	2.00	-2.00	0.00	180.00	
11,940.7	0.00	0.00	11,931.0	-200.0	315.0	0.00	0.00	0.00	0.00	
12,840.7	90.00	359.58	12,504.0	372.9	310.8	10.00	10.00	0.00	359.58	
17,484.0	90.00	359.58	12,504.0	5,016.1	277.0	0.00	0.00	0.00		Vaca Draw #18H BHL
	00.00		,		2.7.0	2.00	2.00	0.50	0.00	

3/8/2018 9:18:24AM

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Vaca Draw #18H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3376.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3376.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Weil:	Vaca Draw #18H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

1

M	leasured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
	(usft)	(*)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
	0.0	0.00	0.00	0.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	100.0	0.00	0.00	100.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	200.0	0.00	0.00	200.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	300.0	0.00	0.00	300.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	400.0	0.00	0.00	400.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	500.0	0.00	0.00	500.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	600.0	0.00	0.00	600.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	700.0	0.00	0.00	700.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	800.0	0.00	0.00	800.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	900.0	0.00	0.00	900.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,000.0	0.00	0.00	1,000.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,100.0	0.00	0.00	1,100.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,200.0	0.00	0.00	1,200.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,300.0	0.00	0.00	1,300.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,400.0	0.00	0.00	1,400.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
1	1,500.0	0.00	0.00	1,500.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,600.0	0.00	0.00	1,600.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,700.0	0.00	0.00	1,700.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,800.0	0.00	0.00	1,800.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	1,900.0	0.00	0.00	1,900.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,000.0	0.00	0.00	2,000.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,100.0	0.00	0.00	2,100.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,200.0	0.00	0.00	2,200.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,300.0	0.00	0.00	2,300.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,400.0	0.00	0.00	2,400.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,500.0	0.00	0.00	2,500.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,600.0	0.00	0.00	2,600.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,700.0	0.00	0.00	2,700.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,800.0	0.00	0.00	2,800.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	2,900.0	0.00	0.00	2,900.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,000.0	0.00	0.00	3,000.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,100.0	0.00	0.00	3,100.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,200.0	0.00	0.00	3,200.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,300.0	0.00	0.00	3,300.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,400.0	0.00	0.00	3,400.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
1	3,500.0	0.00	0.00	3,500.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,600.0	0.00	0.00	3,600.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,700.0	0.00	0.00	3,700.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,800.0	0.00	0.00	3,800.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	3,900.0	0.00	0.00	3,900.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,000.0	0.00	0.00	4,000.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,100.0	0.00	0.00	4,100.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,200.0	0.00	0.00	4,200.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,300.0	0.00	0.00	4,300.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,400.0	0.00	0.00	4,400.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,500.0	0.00	0.00	4,500.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,600.0	0.00	0.00	4,600.0	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,630.2	0.00	0.00	4,630.2	0.0	0.0	414,958.00	781,982.00	32° 8' 18.278 N	103° 33' 21.136 W
	4,700.0	1.40	122.41	4,700.0	-0.5	0.7	414,957.54	781,982.71	32° 8' 18.274 N	103° 33' 21.128 W
	4,780.2	3.00	122.41	4,780.2	-2.1	3.3	414,955.89	781,985.31	32° 8' 18.257 N	103° 33' 21.098 W
1	4,800.0	3.00	122.41	4,799.9	-2.7	4.2	414,955.34	781,986.18	32° 8' 18.252 N	103° 33' 21.087 W
1	4,900.0	3.00	122.41	4,899.8	-5.5	8.6	414,952.54	781,990.60	32° 8' 18.223 N	103° 33' 21.036 W
	5,000.0	3.00	122.41	4,999.6	-8.3	13.0	414,949.73	781,995.02	32° 8' 18.195 N	103° 33' 20.985 W
1	5,100.0	3.00	122.41	5,099.5	-11.1	17.4	414,946.93	781,999.44	32° 8' 18.167 N	103° 33' 20.934 W
L	5,200.0	3.00	122.41	5,199.4	-13.9	21.9	414,944.12	782,003.86	32° 8' 18.139 N	103° 33' 20.883 W

3/8/2018 9:18:24AM

COMPASS 5000.1 Build 72

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Vaca Draw #18H	
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3376.0usft	
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3376.0usft	
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid	
Well:	Vaca Draw #18H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			

Planned Survey

Depth (usft) Inclination (°) Azimuth (°) Depth (usft) +N/-S (usft) +E/-W (usft) Northing (usft) Easting 5,300.0 3.00 122.41 5,299.2 -16.7 26.3 414,941.31 782,008.28 32° 8' 18.11 5,400.0 3.00 122.41 5,399.1 -19.5 30.7 414,938.51 782,012.69 32° 8' 18.083 5,500.0 3.00 122.41 5,498.9 -22.3 35.1 414,935.70 782,017.11 32° 8' 18.083 5,600.0 3.00 122.41 5,598.8 -25.1 39.5 414,930.09 782,021.53 32° 8' 18.083 5,700.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,021.53 32° 8' 17.995 5,800.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.974 6,000.0 3.00 122.41 5,998.3 -36.3 57.2 414,924.48 782,030.478 32° 8' 17.943 6,100.0 3.00	3 N 103° 33' 20.781 W 5 N 103° 33' 20.729 W 7 N 103° 33' 20.678 W 9 N 103° 33' 20.627 W 1 N 103° 33' 20.627 W 1 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.474 W 7 N 103° 33' 20.321 W 8 N 103° 33' 20.320 W 9 N 103° 33' 20.202 W 1 N 103° 33' 20.228 W 2 N 103° 33' 20.218 W 3 N 103° 33' 20.167 W
5,400.0 3.00 122.41 5,399.1 -19.5 30.7 414,938.51 782,012.69 32° 8' 18.083 5,500.0 3.00 122.41 5,498.9 -22.3 35.1 414,935.70 782,017.11 32° 8' 18.083 5,600.0 3.00 122.41 5,598.8 -25.1 39.5 414,932.90 782,021.53 32° 8' 18.083 5,700.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,025.95 32° 8' 17.993 5,800.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.943 5,900.0 3.00 122.41 5,998.3 -36.3 57.2 414,921.68 782,039.20 32° 8' 17.943 6,000.0 3.00 122.41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.836 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.87 782,043.62 32° 8' 17.836 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,048.04 32	3 N 103° 33' 20.781 W 5 N 103° 33' 20.729 W 7 N 103° 33' 20.678 W 9 N 103° 33' 20.627 W 1 N 103° 33' 20.627 W 1 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.474 W 7 N 103° 33' 20.2371 W 8 N 103° 33' 20.220 W 9 N 103° 33' 20.2269 W 1 N 103° 33' 20.218 W 5 N 103° 33' 20.218 W 6 N 103° 33' 20.167 W
5,400.0 3.00 122,41 5,399.1 -19.5 30.7 414,938.51 782,012.69 32° 8' 18.083 5,500.0 3.00 122,41 5,498.9 -22.3 35.1 414,935.70 782,017.11 32° 8' 18.083 5,600.0 3.00 122,41 5,598.8 -25.1 39.5 414,932.90 782,021.53 32° 8' 18.083 5,700.0 3.00 122,41 5,698.7 -27.9 44.0 414,930.09 782,025.95 32° 8' 17.993 5,800.0 3.00 122,41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.943 5,900.0 3.00 122,41 5,998.3 -36.3 57.2 414,921.68 782,039.20 32° 8' 17.943 6,000.0 3.00 122,41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.836 6,200.0 3.00 122,41 6,198.0 -41.9 66.0 414,918.87 782,043.62 32° 8' 17.836 6,300.0 3.00 122,41 6,198.0 -41.9 66.0 414,918.67 782,048.04 32	3 N 103° 33' 20.781 W 5 N 103° 33' 20.729 W 7 N 103° 33' 20.678 W 9 N 103° 33' 20.627 W 1 N 103° 33' 20.627 W 1 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.525 W 5 N 103° 33' 20.474 W 7 N 103° 33' 20.2371 W 8 N 103° 33' 20.220 W 9 N 103° 33' 20.2269 W 1 N 103° 33' 20.218 W 5 N 103° 33' 20.218 W 6 N 103° 33' 20.167 W
5,500.0 3.00 122.41 5,498.9 -22.3 35.1 414,935.70 782,017.11 32° 8' 18.055 5,600.0 3.00 122.41 5,598.8 -25.1 39.5 414,932.90 782,021.53 32° 8' 18.055 5,700.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,025.95 32° 8' 17.995 5,800.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.995 5,900.0 3.00 122.41 5,998.3 -36.3 57.2 414,921.68 782,034.78 32° 8' 17.945 6,000.0 3.00 122.41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.895 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.87 782,043.62 32° 8' 17.895 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.87 782,043.62 32° 8' 17.895 6,300.0 3.00 122.41 6,397.7 -47.5 74.9 414,916.07 782,048.04 32	N 103° 33' 20.678 W P 103° 33' 20.627 W I 103° 33' 20.627 W I 103° 33' 20.525 W S 103° 33' 20.525 W 5 103° 33' 20.423 W 8 103° 33' 20.371 W 9 103° 33' 20.320 W 103° 33' 20.269 W 1 103° 33' 20.269 W 1 103° 33' 20.218 W 1 103° 33' 20.167 W
5,600.0 3.00 122.41 5,598.8 -25.1 39.5 414,932.90 782,021.53 32° 8' 18.027 5,700.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,021.53 32° 8' 18.027 5,800.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,025.95 32° 8' 17.993 5,800.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.943 6,000.0 3.00 122.41 5,998.3 -36.3 57.2 414,921.68 782,030.20 32° 8' 17.943 6,100.0 3.00 122.41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.803 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.67 782,043.62 32° 8' 17.803 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.67 782,048.04 32° 8' 17.803 6,600.0 3.00	Image: 3 minipage Image: 3 minipage <thimage: 3="" minipage<="" th=""> Image: 3 minipage</thimage:>
5,700.0 3.00 122.41 5,698.7 -27.9 44.0 414,930.09 782,025.95 32° 8' 17.995 5,800.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.995 5,900.0 3.00 122.41 5,798.5 -30.7 48.4 414,927.29 782,030.37 32° 8' 17.995 5,900.0 3.00 122.41 5,898.4 -33.5 52.8 414,924.48 782,039.20 32° 8' 17.995 6,000.0 3.00 122.41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.895 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,918.87 782,043.62 32° 8' 17.805 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,913.26 782,043.04 32° 8' 17.805 6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,910.46 782,052.46 32° 8' 17.805 6,600.0 3.00	I 103° 33' 20.576 W 3 103° 33' 20.525 W 5 103° 33' 20.525 W 5 103° 33' 20.474 W 7 103° 33' 20.423 W 8 103° 33' 20.423 W 9 103° 33' 20.371 W 0 103° 33' 20.320 W 2 103° 33' 20.269 W 4 103° 33' 20.218 W 5 103° 33' 20.167 W 3 103° 33' 20.116 W
5,900.0 3.00 122.41 5,898.4 -33.5 52.8 414,924.48 782,034.78 32° 8' 17.943 6,000.0 3.00 122.41 5,998.3 -36.3 57.2 414,921.68 782,039.20 32° 8' 17.943 6,100.0 3.00 122.41 6,998.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.887 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,048.04 32° 8' 17.887 6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,913.26 782,052.46 32° 8' 17.830 6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.802 6,500.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.802 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.74 6,600.0 3.00 1	3 N 103° 33' 20.525 W 5 N 103° 33' 20.474 W 7 N 103° 33' 20.423 W 8 N 103° 33' 20.371 W 9 N 103° 33' 20.320 W 2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W
6,000.0 3.00 122.41 5,998.3 -36.3 57.2 414,921.68 782,039.20 32° 8' 17.915 6,100.0 3.00 122.41 6,098.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.887 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,043.62 32° 8' 17.887 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,048.04 32° 8' 17.856 6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,913.26 782,052.46 32° 8' 17.830 6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.800 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.74 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.74 6,700.0 3.00 12	5 N 103° 33' 20.474 W 7 N 103° 33' 20.423 W 8 N 103° 33' 20.371 W 9 N 103° 33' 20.320 W 2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W
6,100.0 3.00 122.41 6,098.1 -39.1 61.6 414,918.87 782,043.62 32° 8' 17.887 6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,043.62 32° 8' 17.887 6,300.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,048.04 32° 8' 17.857 6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,913.26 782,052.46 32° 8' 17.837 6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.807 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.74 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.74 6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.74 6,800.0 3.00 122	Y N 103° 33' 20.423 W 3 N 103° 33' 20.371 W 3 N 103° 33' 20.320 W 2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W 8 N 103° 33' 20.116 W
6,200.0 3.00 122.41 6,198.0 -41.9 66.0 414,916.07 782,048.04 32° 8' 17.856 6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,913.26 782,052.46 32° 8' 17.856 6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.856 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,910.46 782,056.88 32° 8' 17.856 6,600.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.74 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.74 6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.74 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,074.55 32° 8' 17.690	3 N 103° 33' 20.371 W 0 N 103° 33' 20.320 W 2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W 3 N 103° 33' 20.116 W
6,300.0 3.00 122.41 6,297.8 -44.7 70.5 414,913.26 782,052.46 32° 8' 17.830 6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,052.46 32° 8' 17.830 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,910.46 782,056.88 32° 8' 17.830 6,600.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.774 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.74 6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.74 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,074.55 32° 8' 17.690	0 N 103° 33' 20.320 W 2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W 3 N 103° 33' 20.116 W
6,400.0 3.00 122.41 6,397.7 -47.5 74.9 414,910.46 782,056.88 32° 8' 17.802 6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414,907.65 782,061.29 32° 8' 17.802 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.74 6,600.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.74 6,800.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.74 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,071.455 32° 8' 17.690	2 N 103° 33' 20.269 W 4 N 103° 33' 20.218 W 5 N 103° 33' 20.167 W 3 N 103° 33' 20.167 W
6,500.0 3.00 122.41 6,497.6 -50.3 79.3 414.907.65 782,061.29 32° 8' 17.774 6,600.0 3.00 122.41 6,597.4 -53.2 83.7 414.904.85 782,065.71 32° 8' 17.774 6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414.902.04 782,070.13 32° 8' 17.718 6,800.0 3.00 122.41 6,697.3 -56.0 88.1 414.902.04 782,070.13 32° 8' 17.718 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414.899.24 782,074.55 32° 8' 17.690	N 103° 33' 20.218 W N 103° 33' 20.167 W N 103° 33' 20.167 W
8,600.0 3.00 122.41 6,597.4 -53.2 83.7 414,904.85 782,065.71 32° 8' 17.746 6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.716 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,074.55 32° 8' 17.690	5 N 103° 33' 20.167 W 3 N 103° 33' 20.116 W
6,700.0 3.00 122.41 6,697.3 -56.0 88.1 414,902.04 782,070.13 32° 8' 17.718 6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,074.55 32° 8' 17.690	3 N 103° 33' 20.116 W
6,800.0 3.00 122.41 6,797.2 -58.8 92.6 414,899.24 782,074.55 32° 8' 17.690	
	N 103° 33' 20.065 W
6,900.0 3.00 122.41 6,897.0 -61.6 97.0 414,896.43 782,078.97 32° 8' 17.662	
7,000.0 3.00 122.41 6,996.9 -64.4 101.4 414,893.63 782,083.38 32° 8' 17.634	
7,100.0 3.00 122.41 7,096.8 -67.2 105.8 414,890.82 782,087.80 32° 8' 17.600	
7,200.0 3.00 122.41 7,196.6 -70.0 110.2 414,888.02 782,092.22 32° 8′ 17.578	
7,300.0 3.00 122.41 7,296.5 -72.8 114.6 414,885.21 782,096.64 32° 8' 17.550	
7,400.0 3.00 122.41 7,396.3 -75.6 119.1 414,882.41 782,101.06 32° 8' 17.522	
7,500.0 3.00 122.41 7,496.2 -78.4 123.5 414,879.60 782,105.47 32° 8′ 17.494	
7,600.0 3.00 122.41 7,596.1 -81.2 127.9 414,876.80 782,109.89 32° 8' 17.465	
7,700.0 3.00 122.41 7,695.9 -84.0 132.3 414,873.99 782,114.31 32° 8′ 17.437	
7,800.0 3.00 122.41 7,795.8 -86.8 136.7 414,871.19 782,118.73 32° 8′ 17.405	
7,900.0 3.00 122.41 7,895.7 -89.6 141.2 414,868.38 782,123.15 32° 8′ 17.381	
8,000.0 3.00 122.41 7,995.5 -92.4 145.6 414,865.58 782,127.57 32° 8' 17.353	
8,100.0 3.00 122.41 8,095.4 -95.2 150.0 414,862.77 782,131.98 32° 8' 17.325	
8,200.0 3.00 122.41 8,195.2 -98.0 154.4 414,859.96 782,136.40 32° 8' 17.297 8,300.0 3.00 122.41 8,295.1 -100.8 158.8 414,857.16 782,140.82 32° 8' 17.269	
8,400.0 3.00 122.41 8,395.0 -103.6 163.2 414,657.16 762,140.62 32 6 17.26	
8,500.0 3.00 122.41 8,595.0 -105.6 165.2 414,654.55 762,145.24 52 6 17.24 8,500.0 3.00 122.41 8,494.8 -106.5 167.7 414,851.55 782,149.66 32° 8' 17.213	
8,600.0 3.00 122.41 8,594.7 -109.3 172.1 414,848.74 782,154.07 32° 8′ 17.185	
8,700.0 3.00 122.41 8,694.6 -112.1 176.5 414,845.94 782,158.49 32° 8' 17.157	
8,800.0 3.00 122.41 8,794.4 -114.9 180.9 414,843.13 782,162.91 32° 8′ 17.125	
8,900.0 3.00 122.41 8,894.3 -117.7 185.3 414,840.33 782,167.33 32° 8′ 17.100	
9,000.0 3.00 122.41 8,994.1 -120.5 189.8 414,837.52 782,171.75 32° 8′ 17.072	
9,100.0 3.00 122.41 9,094.0 -123.3 194.2 414,834.72 782,176.17 32° 8' 17.044	
9,200.0 3.00 122.41 9,193.9 -126.1 198.6 414,831.91 782,180.58 32° 8' 17.016	
9,300.0 3.00 122.41 9,293.7 -128.9 203.0 414,829.11 782,185.00 32° 8' 16.988	
9,400.0 3.00 122,41 9,393.6 -131.7 207.4 414,826.30 782,189.42 32° 8' 16.960	
9,500.0 3.00 122.41 9,493.5 -134.5 211.8 414,823.50 782,193.84 32° 8' 16.932	2 N 103° 33' 18.684 W
9,600.0 3.00 122.41 9,593.3 -137.3 216.3 414,820.69 782,198.26 32° 8' 16.904	IN 103° 33' 18.632 W
9,700.0 3.00 122.41 9,693.2 -140.1 220.7 414,817.89 782,202.67 32° 8' 16.876	
9,800.0 3.00 122.41 9,793.1 -142.9 225.1 414,815.08 782,207.09 32° 8′ 16.848	
9,900.0 3.00 122.41 9,892.9 -145.7 229.5 414,812.28 782,211.51 32*8 16.820	
10,000.0 3.00 122.41 9,992.8 -148.5 233.9 414,809.47 782,215.93 32° 8′ 16.792	
10,100.0 3.00 122.41 10,092.6 -151.3 238.4 414,806.67 782,220.35 32° 8′ 16.764	
10,200.0 3.00 122.41 10,192.5 -154.1 242.8 414,803.86 782,224.77 32° 8' 16.736	
10,300.0 3.00 122.41 10,292.4 -156.9 247.2 414,801.06 782,229.18 32° 8' 16.707	
10,400.0 3.00 122.41 10,392.2 -159.8 251.6 414,798.25 782,233.60 32° 8' 16.67	
10,500.0 3.00 122.41 10,492.1 -162.6 256.0 414,795.45 782,238.02 32*8 16.65	
10,600.0 3.00 122.41 10,592.0 -165.4 260.4 414,792.64 782,242.44 32* 8 16.623	
10,700.0 3.00 122.41 10,691.8 -168.2 264.9 414,789.84 782,246.86 32* 8 16.59	

3/8/2018 9:18:24AM

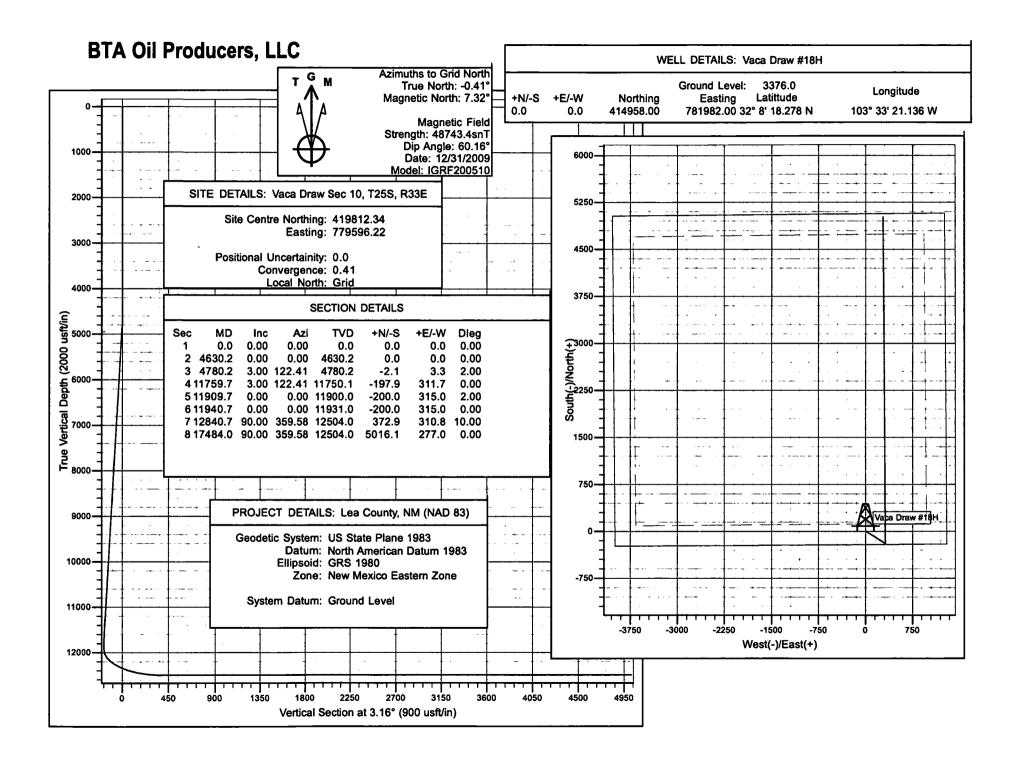
Page 4

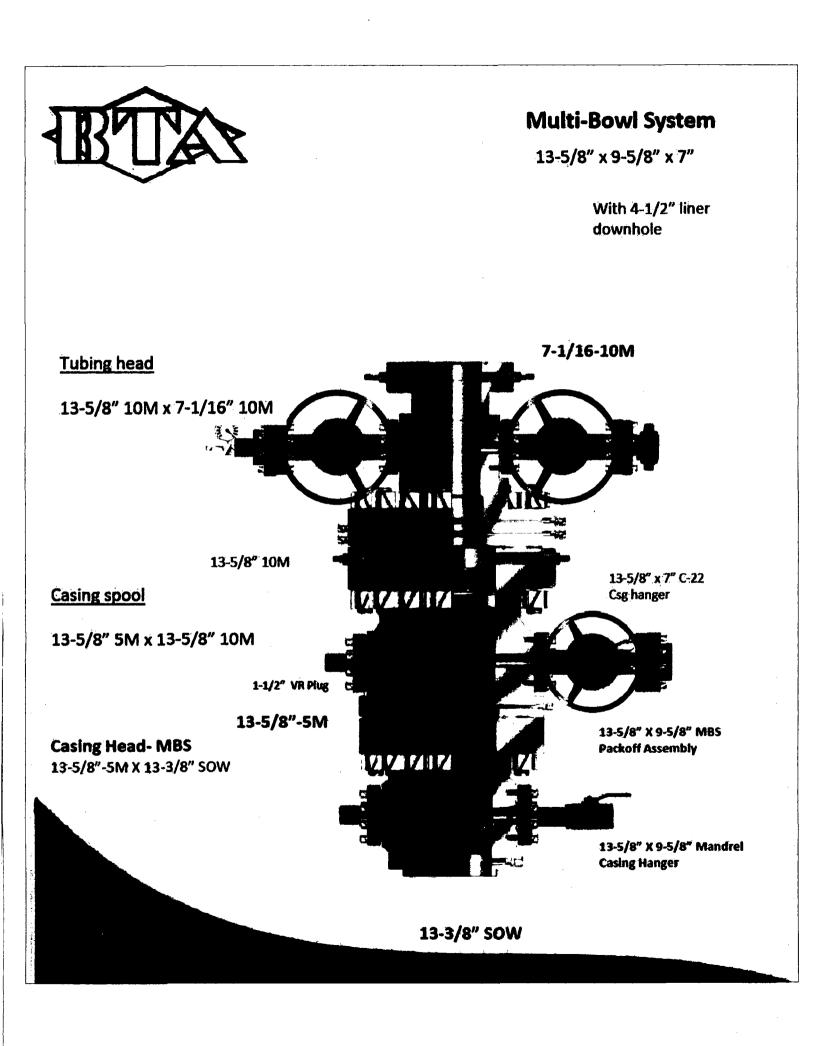
COMPASS 5000.1 Build 72

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Vaca Draw #18H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3376.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3376.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Well:	Vaca Draw #18H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Design #1		

Planned Survey

Measu Dep		Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usi		(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
10.	800.0	3.00	122.41	10,791.7	-171.0	269.3	414,787.03	782,251.27	32° 8' 16.567 N	103° 33' 18.019 W
	900.0	3.00	122.41	10,891.5	-173.8	273.7	414,784.22	782,255.69	32° 8' 16.539 N	103° 33' 17.968 W
	,000.0	3.00	122.41	10,991.4	-176.6	278.1	414,781.42	782,260.11	32° 8' 16.511 N	103° 33' 17.916 W
	100.0	3.00	122.41	11,091.3	-179.4	282.5	414,778.61	782,264.53	32° 8' 16.483 N	103° 33' 17.865 W
	200.0	3.00	122.41	11,191.1	-182.2	287.0	414,775.81	782,268.95	32° 8' 16.455 N	103° 33' 17.814 W
	,300.0	3.00	122.41	11,291.0	-185.0	291.4	414,773.00	782,273.36	32° 8' 16.427 N	103° 33' 17.763 W
	,400.0	3.00	122.41	11,390.9	-187.8	295.8	414,770,20	782,277.78	32° 8' 16.399 N	103° 33' 17.712 W
	500.0	3.00	122.41	11,490.7	-190.6	300.2	414,767.39	782,282.20	32° 8' 16.371 N	103° 33' 17.661 W
	,600.0	3.00	122.41	11,590.6	-193.4	304.6	414,764.59	782,286.62	32° 8' 16.342 N	103° 33' 17.610 W
	700.0	3.00	122.41	11,690.4	-196.2	309.0	414,761.78	782,291.04	32° 8' 16.314 N	103° 33' 17.558 W
	,759.7	3.00	122.41	11,750.1	-197.9	311.7	414,760.11	782,293.68	32° 8' 16.298 N	103° 33' 17.528 W
	.800.0	2.19	122.41	11,790.3	-198.9	313.2	414,759.13	782,295.22	32° 8' 16.288 N	103° 33' 17.510 W
11	,900.0	0.19	122.41	11,890.3	-200.0	315.0	414,758.01	782,296.98	32° 8' 16.277 N	103° 33' 17.490 W
	,909.7	0.00	0.00	11,900.0	-200.0	315.0	414,758.00	782,296.99	32° 8' 16.277 N	103° 33' 17.489 W
	,940.7	0.00	0.00	11,931.0	-200.0	315.0	414,758.00	782,296.99	32° 8' 16.277 N	103° 33' 17.489 W
	,000.0	5.93	359.58	11,990.2	-196.9	315.0	414,761.07	782,296.97	32° 8' 16.307 N	103° 33' 17.489 W
	100.0	15.93	359.58	12,088.3	-178.0	314.8	414,779.99	782,296.83	32° 8' 16.494 N	103° 33' 17.489 W
	200.0	25.93	359.58	12,181.5	-142.3	314.6	414,815.66	782,296.57	32° 8' 16.847 N	103° 33' 17.489 W
	300.0	35.93	359.58	12,267.2	-91.0	314.2	414,866.99	782,296.20	32° 8' 17.355 N	103° 33' 17.490 W
	400.0	45.93	359.58	12,342.7	-25.6	313.7	414,932.41	782,295.72	32° 8' 18.002 N	103° 33' 17.490 W
	500.0	55.93	359.58	12,405.6	51.9	313.2	415,009.94	782,295.15	32° 8' 18.770 N	103° 33' 17.490 W
12	,600.0	65.93	359.58	12,454.2	139.2	312.5	415,097.22	782,294.52	32° 8' 19.633 N	103° 33' 17.490 W
12	700.0	75.93	359.58	12,486.8	233.6	311.8	415,191.61	782,293.83	32° 8' 20.567 N	103° 33' 17.490 W
12	,800.0	85.93	359.58	12,502.6	332.2	311.1	415,290.22	782,293.11	32° 8' 21.543 N	103° 33' 17.490 W
12	,840.7	90.00	359.58	12,504.0	372.9	310.8	415,330.93	782,292.82	32° 8' 21.946 N	103° 33' 17.490 W
12	,900.0	90.00	359.58	12,504.0	432.2	310.4	415,390.19	782,292.39	32° 8' 22.533 N	103° 33' 17.490 W
13,	,000.0	90.00	359.58	12,504.0	532.2	309.7	415,490.18	782,291.66	32° 8' 23.522 N	103° 33' 17.490 W
13,	,100.0	90.00	359.58	12,504.0	632.2	308.9	415,590.18	782,290.93	32° 8' 24.512 N	103° 33' 17.490 W
13,	,200.0	90.00	359.58	12,504.0	732.2	308.2	415,690.17	782,290.20	32° 8' 25.501 N	103° 33' 17.490 W
13,	,300.0	90.00	359.58	12,504.0	832.2	307.5	415,790.16	782,289.47	32° 8' 26.491 N	103° 33' 17.490 W
13,	,400.0	90.00	359.58	12,504.0	932.2	306.8	415,890.16	782,288.74	32° 8' 27.480 N	103° 33' 17.490 W
13,	,500.0	90.00	359.58	12,504.0	1,032.2	306.0	415,990.15	782,288.02	32° 8' 28.470 N	103° 33' 17.490 W
13,	,600.0	90.00	359.58	12,504.0	1,132.2	305.3	416,090.15	782,287.29	32° 8' 29.459 N	103° 33' 17.490 W
13,	,700.0	90.00	359.58	12,504.0	1,232.2	304.6	416,190.14	782,286.56	32° 8' 30.449 N	103° 33' 17.490 W
13,	,800.0	90.00	359.58	12,504.0	1,332.2	303.8	416,290.14	782,285.83	32° 8' 31.438 N	103° 33' 17.490 W
	,900.0	90.00	359.58	12,504.0	1,432.2	303.1	416,390.13	782,285.10	32° 8' 32.428 N	103° 33' 17.491 W
	,000.0	90.00	359.58	12,504.0	1,532.2	302.4	416,490.13	782,284.37	32° 8' 33.417 N	103° 33' 17.491 W
	,100.0	90.00	359.58	12,504.0	1,632.2	301.7	416,590.12	782,283.64	32° 8' 34.407 N	103° 33' 17.491 W
	,200.0	90.00	359.58	12,504.0	1,732.2	300.9	416,690.12	782,282.92	32° 8' 35.396 N	103° 33' 17.491 W
	,300.0	90.00	359.58	12,504.0	1,832.2	300.2	416,790.11	782,282.19	32° 8' 36.386 N	103° 33' 17.491 W
	,400.0	90.00	359.58	12,504.0	1,932.2	299.5	416,890.11	782,281.46	32° 8' 37.375 N	103° 33' 17.491 W
	,500.0	90.00	359.58	12,504.0	2,032.2	298.7	416,990.10	782,280.73	32° 8' 38.365 N	103° 33' 17.491 W
	,600.0	90.00	359.58	12,504.0	2,132.2	298.0	417,090.10	782,280.00	32° 8' 39.355 N	103° 33' 17.491 W
	,700.0	90.00	359.58	12,504.0	2,232.1	297.3	417,190.09	782,279.27	32° 8' 40.344 N	103° 33' 17.491 W
	,800.0	90.00	359.58	12,504.0	2,332.1	296.6	417,290.09	782,278.55	32° 8' 41.334 N	103° 33' 17.491 W
	,900.0	90.00	359.58	12,504.0	2,432.1	295.8	417,390.08	782,277.82	32° 8' 42.323 N	103° 33' 17.491 W
	,000.0	90.00	359.58	12,504.0	2,532.1	295.1	417,490.08	782,277.09	32° 8' 43.313 N	103° 33' 17.491 W
	,100.0	90.00	359.58	12,504.0	2,632.1	294.4	417,590.07	782,276.36	32° 8' 44.302 N	103° 33' 17.491 W
· ·	,200.0	90.00	359.58	12,504.0	2,732.1	293.6	417,690.07	782,275.63	32° 8' 45.292 N	103° 33' 17.491 W
	,300.0	90.00	359.58	12,504.0	2,832.1	292.9	417,790.06	782,274.90	32° 8' 46.281 N	103° 33' 17.491 W
	,400.0	90.00	359.58	12,504.0	2,932.1	292.2	417,890.06	782,274.18	32° 8' 47.271 N	103° 33' 17.491 W
1 .	,500.0	90.00	359.58	12,504.0	3,032.1	291.5	417,990.05	782,273.45	32° 8' 48.260 N	103° 33' 17.492 W
	,600.0	90.00	359.58	12,504.0	3,132.1	290.7	418,090.05	782,272.72	32° 8' 49.250 N	103° 33' 17.492 W
	,700.0	90.00	359.58	12,504.0	3,232.1	290.0	418,190.04	782,271.99	32° 8' 50.239 N	103° 33' 17.492 W
<u> </u>	,800.0	90.00	359.58	12,504.0	3,332.1	289.3	418,290.04	782,271.26	32° 8' 51.229 N	103° 33' 17.492 W

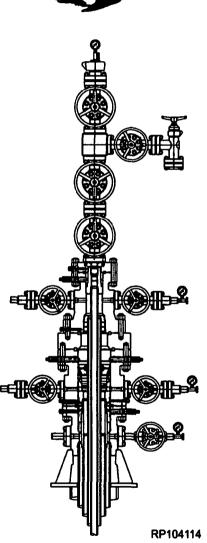

3/8/2018 9:18:24AM


COMPASS 5000.1 Build 72

Database: Company: Project: Site; Well: Wellbore: Design:	Inty: BTA Oil Producers, LLC TVD Reference: Lea County, NM (NAD 83) MD Reference: Vaca Draw Sec 10, T25S, R33E North Reference Vaca Draw #18H Survey Calculat re: Wellbore #1		erence:	GL @ 3376.0usft GL @ 3376.0usft Grid					
Planned Survey Measured Depth (usft)	inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15,900.0	90.00	359.58	12.504.0	3.432.1	288.5	418,390.03	782.270.53	32° 8' 52.218 N	103° 33' 17,492 V
16,000.0	90.00	359.58	12,504.0	3,532.1	287.8	418,490.03	782,269.81	32° 8' 53.208 N	103° 33' 17.492 V
16,100.0	90.00	359.58	12,504.0	3,632.1	287.1	418,590.02	782,269.08	32° 8' 54.197 N	103° 33' 17.492 \
16,200.0	90.00	359.58	12,504.0	3,732.1	286.4	418,690.02	782,268.35	32° 8' 55.187 N	103° 33' 17.492 \
16,300.0	90.00	359.58	12,504.0	3,832.1	285.6	418,790.01	782,267.62	32° 8' 56,177 N	103° 33' 17.492 '
16,400.0	90.00	359.58	12,504.0	3,932.1	284.9	418,890.01	782,266.89	32° 8' 57.166 N	103° 33' 17.492
16.500.0	90.00	359.58	12,504.0	4,032.1	284.2	418,990.00	782,266.16	32° 8' 58.156 N	103° 33' 17.492
16,600.0	90.00	359.58	12,504.0	4,132.1	283.4	419.090.00	782.265.44	32° 8' 59.145 N	103° 33' 17.492 '
16,700.0	90.00	359.58	12,504.0	4,232.1	282.7	419,189,99	782,264.71	32° 9' 0.135 N	103° 33' 17.492 '
16,800.0	90.00	359.58	12,504.0	4,332.1	282.0	419,289.99	782,263.98	32° 9' 1.124 N	103° 33' 17.492
16,900.0	90.00	359.58	12,504.0	4,432.1	281.3	419.389.98	782,263.25	32° 9' 2.114 N	103° 33' 17.492 '
17,000.0	90.00	359.58	12,504.0	4,532.1	280.5	419,489.98	782,262.52	32° 9' 3.103 N	103° 33' 17.492
17,100.0	90.00	359.58	12,504.0	4,632,1	279.8	419,589.97	782,261.79	32° 9' 4.093 N	103° 33' 17.493
17,200.0	90.00	359.58	12,504.0	4,732.1	279.1	419.689.97	782.261.07	32° 9' 5.082 N	103° 33' 17.493
17,300.0	90.00	359.58	12.504.0	4.832.1	278.3	419,789,96	782.260.34	32° 9' 6.072 N	103° 33' 17.493
17,400.0	90.00	359.58	12,504.0	4,932.1	277.6	419.889.96	782,259.61	32° 9' 7.061 N	103° 33' 17.493 '
17,484.0	90.00	359.58	12,504.0	5,016.1	277.0	419,974,00	782,259,00	32° 9' 7.893 N	103° 33' 17.493

Design Targets					-				
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Vaca Draw #18H BHL - plan hits target cen - Point	0.00 ter	0.00	12,504.0	5,016.1	277.0	419,974.00	782,259.00	32° 9' 7.893 N	103° 33' 17.493 W

3/8/2018 9:18:24AM



Weatherford®

Wellhead Field Service Manual

WFT-SB Wellhead System Running Procedure

Publication: SM-11-1 Release Date: December 2014

©2014 Weatherford International Ltd. All Rights Reserved

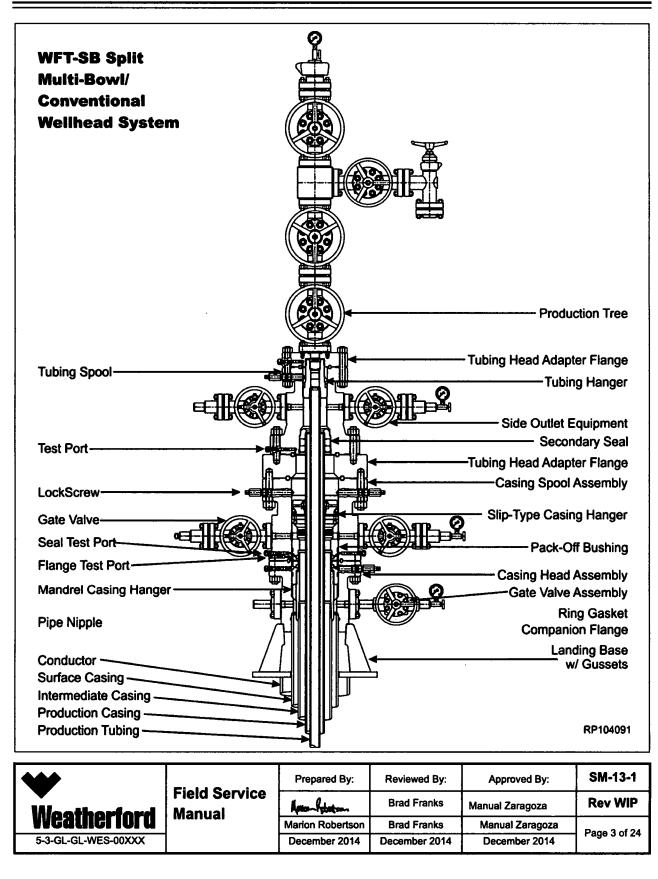

₩		Prepared By:	Reviewed By:	Approved By:	SM-11-1	
Weatherford	Field Service Manual	Konon-Potention	Bruce Ross	Manuel Zaragoza	Rev WIP	
		Marion Robertson	Bruce Ross	Manuel Zaragoza		
5-3-GL-GL-WES-00XXX	GL-GL-WES-00XXX		Dec 2014	Dec 2014	Page 1 of 24	

Table of Content

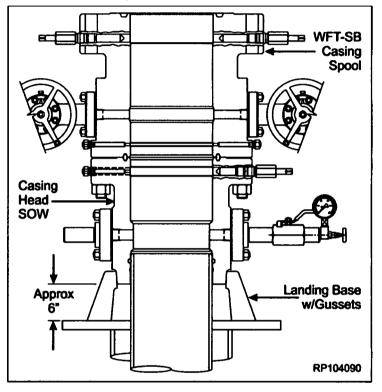
WFT-Split Bowl (SB) Wellhead System **Running Procedure** Retrieving the Bowl Protector After Drilling7 Installation of the Slip-Type Casing Hanger Under the BOP Stack Installation of the Slip-Type Casing Hanger Through the BOP Stack......

₩	Field Semvices	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford		Apro-Potation	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Page 2 of 24
5-3-GL-GL-WES-00XXX		Dec 2014	Dec 2014	Dec 2014	

WFT Split Bowl (SB) Wellhead System

WFT Split Bowl (SB) Multi-Bowl/Conventional Wellhead System (Continued)

WFT-SB Casing Head/Spool Assembly Rig Up and Installation

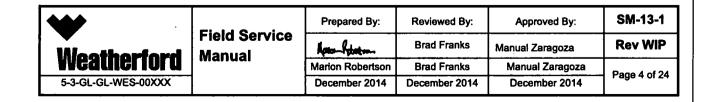

1. Determine the correct elevation for the wellhead system, and cut the conductor pipe at a comfortable elevation, below the surface casing final cut.

NOTE

Ensure that the cut on the conductor is level, as this will determine the orientation of all remaining wellhead equipment.

- 2. Remove any excess conductor pipe and set aside.
- 3. Grind the conductor pipe and remove any sharp edges, ensuring that the conductor pipe cut is level.
- 4. Run the surface casing to the required depth and cement casing in place. Allow the cement to set.
- Lift the blow-out preventer (BOP) or diverter and prepare to cut off the surface casing at a sufficient height above the cellar deck to facilitate the installation of the WFT-SB Casing Head/Spool Assembly with Base Plate.
- 6. Once the surface casing is released from the rig floor, cut it approximately 12 inches (or more) above the final cut location.
- 7. Remove the excess surface casing, and the BOP or diverter, and set aside.
- Bevel the surface casing outer diameter (3/16" x 3/8") and inner diameter (1/8" x 45 degrees). Remove any sharp edges.

- 9. Examine the Casing Head with Slip-On Weld (SOW) bottom prep. Verify the following:
- O-ring seal, bore, ports and exposed ring grooves are clean and in good condition.
- Test fittings, studs and nuts, valves, flanges and bull plugs are intact and in good condition.



- Determine the correct elevation for the wellhead assembly. Measure depth of the surface casing socket in SOW with Oring bottom prep.
- 11. Lightly lubricate the casing stub with an oil or light grease.

Excessive oil or grease will prevent a positive seal from forming.

12. Align and level the WFT-SB Casing Head/Spool Assembly over the casing stub, orienting the outlets to drilling equipment, per the drilling supervisor's direction.

- 14. Slowly and carefully lower the assembly over the casing stub until the stub bottoms in the casing socket.
- 15. Remove the test fitting from the casing head test port, and set aside.
- **16.** Ensure that the WFT-SB Casing Head/Spool Assembly is plumb and level.
- 17. Weld and test the surface casing using the recommended welding procedure located in the Appendices Section of this manual.

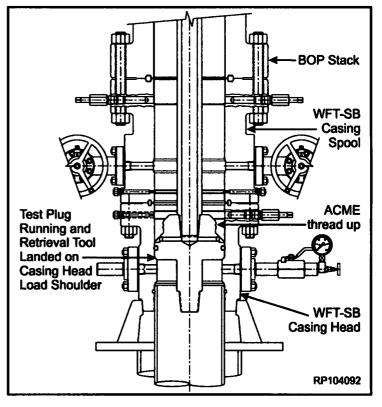
Testing the BOP Stack

- 1. Examine the Test Plug/Running & Retrieval Tool. Verify the following:
- Elastomer seals, threads and plugs are intact and in good condition.
- Drill pipe threads are correct size, clean and in good condition.
- Install a new, appropriately sized ring gasket in the ring groove of the WFT-SB Spool and make up the BOP stack.

NOTE

Immediately after make-up of the BOP stack and periodically during drilling of hole for the casing string, the BOP stack (flanged connections and rams) must be tested.

 Orient the test plug with elastomer down/ACME threads up, and make up a joint of drill pipe to the test plug.



If pressure is to be supplied through the drill pipe, remove the pipe plug from the weep port.

Ensure that the test plug elastomer is down and Acme threads are up when testing.

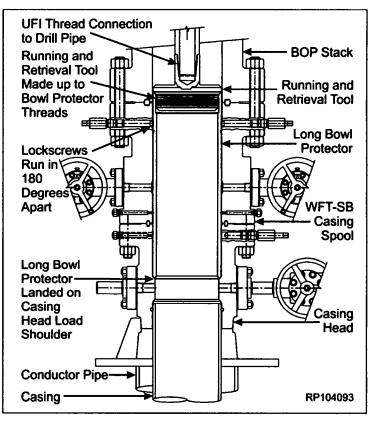
- 4. Fully retract all lockscrews in the entire WFT-SB casing head/spool assembly.
- 5. Lubricate the test plug elastomer seal with a light oil or grease.
- 6. Lower the test plug through the BOP stack into the WFT-SB assembly, until it lands on the casing head load shoulder.

₩	Field Convios	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Apro-Atotan	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Page 5 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page 5 of 24

- 7. Open lower casing head side outlet valve. Monitor any leakage past the test plug seal.
- 8. Close the BOP rams on the drill pipe, and test to 5,000 psi or as required by the drilling supervisor.
- 9. After a satisfactory test is achieved, release pressure and open the rams.
- 10. Remove as much fluid from the BOP stack as possible.
- 11. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 12. Close all outlet valves on WFT-SB Casing Head/Spool Assembly.
- 13. Repeat Steps 1 thru 12, as required during drilling of the hole.

Running and Retrieval of the Long Bowl Protector

Always use a bowl protector while drilling to protect wellhead load shoulders from damage by drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string.


Running in the Bowl Protector prior to Drilling

- 1. Examine the Long Bowl Protector. Verify the following:
 - Bore drift is correct size, clean, in good condition, and free of debris
 - Threads are clean and undamaged
 - O-ring seals are properly installed, clean, and undamaged.

- 2. Examine the Bowl Protector Running/Retrieval Tool. Verify the following:
 - Threads are clean, undamaged and free of debris
 - Ports are clean and unobstructed.
 - Drill Pipe threads are correct size, clean and in good condition.
- 3. Orient the Bowl Protector Running Tool with Acme threads down.

Ensure that the left hand (LH) Acme threads are down prior to engaging Bowl Protector Running Tool into Long Bowl Protector.

•	Field Comdon	Prepared By:	Reviewed By:	Approved By:	SM-13-1	
	Field Service Manual	Apro-Aptertram	Brad Franks	Manual Zaragoza	Rev WIP	
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Baco 6 of 24	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page 6 of 24	

- 4. Make-up a drill pipe joint to the Running Tool.
- 5. Thread Running Tool into the Long Bowl Protector, rotating two turns counterclockwise.
- Verify that all lockscrews in the WFT-SB Casing Head/Spool Assembly are fully retracted.
- 7. Slowly lower the Running Tool/Bowl Protector Assembly through the BOP stack and into the WFT-SB Casing Head/Spool Assembly, until it lands securely on the casing head load shoulder.
- 8. On WFT-SB Casing Spool, run in two Lockscrews ("snug" tight **ONLY**), 180 degrees apart, to hold Bowl Protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to the Bowl Protector and the lockscrews.

- 9. Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 10. Drill out and prepare to run the casing string per the drilling supervisor's instruction.

Retrieving the Bowl Protector after Drilling

- 1. Make-up the retrieval tool to the drill pipe, with Acme threads down.
- 2. Slowly lower the retrieval tool through the BOP Stack into the Bowl Protector.
- 3. Rotate the retrieval Tool counterclockwise, two turns, to engage with bowl protector Acme threads.

4. Fully retract both lockscrews on the WFT-SB casing spool, and retrieve the bowl protector.

Ensure that all lockscrews in both the upper flange (casing spool) and lower flange (casing head) of the wellhead Assembly are fully retracted from well bore.

5. Remove the bowl protector and the running and retrieval tool from the drill floor.

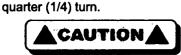
Hanging off the Intermediate Casing

1. Run the intermediate casing as required and space out appropriately for the mandrel casing hanger.

If the intermediate casing becomes stuck and the mandrel casing hanger cannot be landed, refer to STAGE 4B.

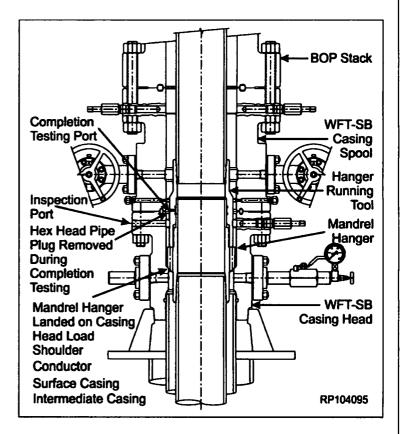
- 2. Examine the WFT-SBD-SN Mandrel Casing Hanger. Verify the following:
 - Bore drift is correct size, clean and free of debris
 - All threads are clean and undamaged.
 - Flow-By flutes are clear and unobstructed.
 - Slick Neck seal area is clean and undamaged.
- 3. Examine the Mandrel Casing Hanger Running Tool. Verify the following:
 - Threads are clean and in good condition.
 - O-ring seals are clean and undamaged.
- 4. Thread the mandrel hanger onto the last joint of casing to be run. Torque the connection thread to manufacturer's optimum "make-up" torque value.
- 5. Make up a landing joint to the top of the running tool. Torque the connection to thread manufacturer's maximum "make-up" torque valve.

If Steps 4 and 5 were performed prior to being shipped to location, the hanger running tool should be backed off and made back up to ensure it will back off freely.


*		Prepared By:	Reviewed By:	Approved By:	SM-13-1	
	Field Service Manual	Apren Aptertram	Brad Franks	Manual Zaragoza	Rev WIP	
vveauteriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Page 7 of 24	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	- Page / of 24	

 Liberally lubricate the outer diameter of the hanger neck and inner diameter of the running tool O-ring seals with a light oil or grease.

Do NOT use pipe dope or other metal based compounds. This will cause galling.


 Maintaining a neutral weight, rotate the hanger running tool with chain tongs, first clockwise until a thread "jump" can be felt, then counterclockwise, approximately eight turns, to a positive stop, and then back off (clockwise) one

Do NOT torque the running tool to the casing hanger connection. Do NOT back off more than one quarter (1/4) turn.

- 8. Remove the flush fitting hex head pipe plug from the outer diameter of the running tool and attach a test pump.
- 9. Apply hydraulic test pressure to 5,000 psi and hold for 15 minutes or as required by the drilling supervisor.
- 10. Upon completion of a successful test, bleed off test pressure through the test pump and remove the pump. Replace the pipe plug.
- 11. Locate indicator groove machined in outer diameter of Running Tool, coat with white paint.

- 12. Verify that all lockscrews in the WFT-SB casing head/casing spool assembly are fully retracted.
- 13. Slowly and carefully lower the mandrel hanger through the BOP stack, and land the hanger onto the casing head load shoulder.
- 14. Slack off weight on the casing.
- 15. Check that the well is stable and no pressure buildup or mud flow is occurring.

•	Field Convine	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weathorford	I Waliuai 🛛 🖻	Apren Potestim	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Page 8 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

- 16. Drain the BOP stack through the casing head side outlet valves.
- 17. Remove the pipe plug from the casing head flange port marked "Inspection Port."
- Visually verify that the running tool groove is in the center of the inspection port, and that the mandrel hanger has landed properly.
- 19. Reinstall the pipe plug and tighten securely.
- 20. Place a paint mark on the landing joint level with the rig floor, and cement casing as required.

NOTE

If the casing is to be reciprocated during cementing, it is advisable to pick up the mandrel hanger a minimum of eight feet above the landing point. Place a mark on the landing joint, level with the rig floor, and then reciprocate above that point. If at any time resistance is felt, land the mandrel casing hanger immediately.

21. Retrieve the hanger running tool and landing joint by rotating landing joint clockwise (to the right), fourteen full turns.

Hanging off Intermediate Casing – Contingency Completion

The following procedure should ONLY be followed if the intermediate casing should become stuck in the hole. If the casing did NOT get stuck and is successfully hung off with the mandrel casing hanger, skip this stage.

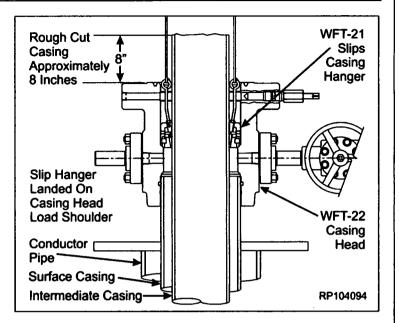
- 1. Cement the intermediate casing in accordance with the program, taking returns through the flow-by flutes of the mandrel casing hanger as required.
- 2. Drain the casing head bowl through the side outlet.
- 3. Separate the WFT-SB casing spool from the casing head.
- 4. Pull up on WFT-SB casing spool and suspend it above casing head, high enough to install a WFT-21 Slip Type Casing Hanger.
- 5. Wash out as required.
- 6. Examine the WFT-21 slip type casing hanger. Verify the following:
 - Hanger is correct size, clean and undamaged.
 - Slip segments are sharp and in proper position.
 - All screws are in place.
- 7. Remove the latch screw to open the slip type hanger.
- 8. Place two boards on the casing head flange, against the casing, to support the hanger.
- 9. Wrap the hanger around the casing and replace the latch screw.
- 10. Prepare to lower the hanger into the casing head bowl.
- 11. Grease the WFT-21 slip type casing hanger body and remove the slip retaining cap screws.
- 12. Remove the boards and allow the hanger to slide down into the casing head.

₩	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1	
Meethorford	Manual	Apro-Poteton	Brad Franks	Manual Zaragoza	Rev WIP	
Weatherford 5-3-GL-GL-WES-00XXX	Manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 9 of 24	
		December 2014	December 2014	December 2014	Page 9 of 24	

13. Once the hanger has landed securely on the casing head bowl load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack once more.

- 14. Rough cut the casing approximately eight inches, or more, above the top of the casing head flange. Remove the excess casing.
- 15. Final cut the casing at 2 1/2" +/- 1/8" above casing head flange.
- 16. Bevel the casing outer diameter (1/4" x 30 degrees) and inner diameter (1/8" x 30 degrees).
- 17. Remove and discard the used gasket ring from the casing head.
- Clean the mating ring grooves on the WFT-SB casing spool and casing head. Lightly wipe with oil or grease.



Excessive oil or grease will prevent a positive seal from forming.

- 19. Install a new appropriately sized ring gasket into the casing head groove.
- 20. Loosely reconnect or make up the WFT-SB casing spool to the casing head.

NOTE

The casing spool to casing head connection will be fully tightened after the pack-off bushing is run and proper setting is verified.

Installation of the Pack-Off Bushing and Energizing the P-Seals

WFT-SB Pack-Off Bushing Installation

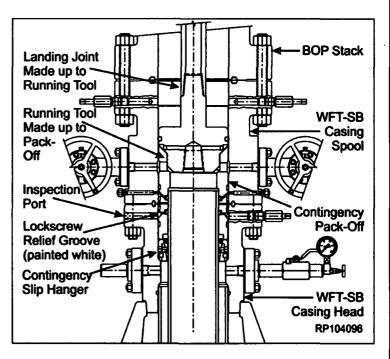
Installation procedure is identical for both Standard and Emergency WFT-SB Pack-Off Bushings.

- 1. Determine which pack-off bushing to use:
 - If casing has been run normally and is hung off with a mandrel casing hanger, use a standard packoff bushing.
- 2. Examine the appropriate pack-off bushing. Verify the following:
 - All elastomer seals are in place and undamaged.
 - Bore, ports and alignment lugs are clean and in good condition.
 - Coat the lockscrew relief groove with white paint.
- 3. Liberally lubricate the inner diameter of the double P-seal grooves and outer diameter of dovetail seals with a light oil or grease.

**	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Manual	Naco-Idoetan		Manual Zaragoza	Rev WIP Page 10 of
	Mariaa			Manual Zaragoza	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- 4. Examine the pack-off bushing running tool. Verify the following:
 - All elastomer seals are properly installed, clean and undamaged
 - Threads are clean, undamaged
 and free of debris
 - Bore and ports are clean and unobstructed.
- 5. Make-up a landing joint to the running tool and rack back assembly.
- 6. Run two or three stands of heavy weight drill pipe or collars in the hole and set floor slips.

NOTE


Use heavy weight drill pipe or drill collars. Weight required to push Pack-Off Bushing Into Casing Head, over Mandrel Hanger slick neck, is approximately 14,000 lbs.

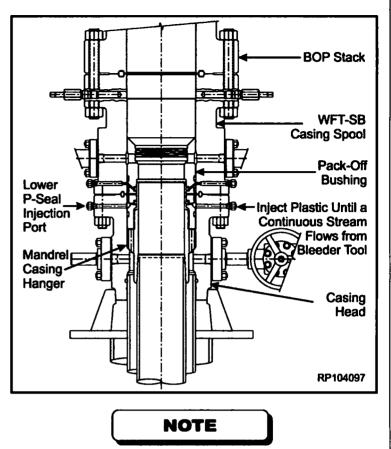
When lowering the drill pipe into the well, extreme caution must be taken to not damage the top of the mandrel hanger with the end of the drill pipe. It is recommended that the drill pipe be centralized to the hanger inner diameter, as closely as possible, when entering the hanger.

- 7. Carefully lower the bushing over the drill pipe and set it on top of floor slips.
- 8. Make up the landing joint/running tool assembly to the drill pipe suspended in floor slips.
- Carefully pick up the pack-off bushing, thread the bushing into the running tool, then rotate the bushing approximately two turns counterclockwise (to the left), coming to a positive stop.

10. Lower the assembly through the BOP Stack and the WFT-SB spool assembly until the pack-off bushing lands on the casing hanger.

- 11. Verify, through inspection port that the pack-off bushing has landed properly after:
 - ensuring well is stable and no pressure buildup or mud flow is occurring.
 - drain BOP Stack through Casing Head side outlet valves.
 - remove Pipe Plug (1"-NPT) from Casing Head flange port marked "Inspection Port".
 - Check, to ensure, bottom of Lockscrew relief groove (painted white) on Support Bushing is at bottom of inspection port.
 - Reinstall Pipe Plug and tighten securely.
- 12. Fully run in all Casing Head Lockscrews (lower flange), in an alternating cross pattern.
- 13. Using two chain tongs, 180 apart, rotate Landing Joint/Running Tool approximately 2 turns clockwise (to the

	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Manual	Apre-Adres	Brad Franks	Manual Zaragoza	Rev WIP
_ vvcaulet int n	manaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 11 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24


right), coming to a stop and carefully lift tool to Drill Floor, set aside.

NOTE

If the Contingency Pack-Off Bushing is being installed, it is now necessary to make up the Speed Head Casing Head/Casing Spool connection. Tighten all studs in an alternating cross pattern until the flange bolting is fully made up.

Energizing the P-Seals

- Locate the two lower injection fittings ("INJ"), located 180 degrees apart on the casing head. Remove the dust cap from one fitting and remove the second fitting entirely.
- 2. Attach a bleeder tool to the injection fitting without the dust cap, in the casing head. Open the bleeder tool.
- 3. Attach a plastic injection tool to the open port and inject plastic packing into the port until a continuous stream flows from the bleeder tool. Close the bleeder tool.
- 4. Remove the injection tool. Reinstall the injection fitting into the open port and remove the dust cap. Reattach the injection tool.
- 5. Continue injecting plastic packing to 5,000 psi. or to 80% of casing collapse pressure, whichever is less.

The strength of a mandrel casing hanger slick neck is equivalent to P110 Grade casing with the same weight as run in the casing string.

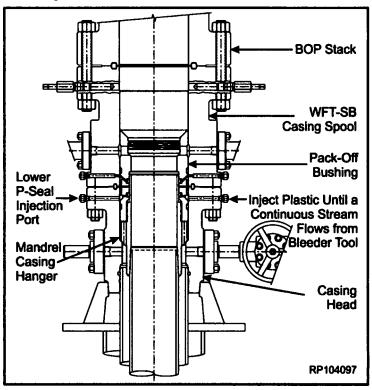
- 6. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- 7. If pressure drops, the plastic packing has not filled the seal area completely. Open the bleeder tool, bleed off the pressure and repeat Steps 5 and 6, until pressure is stabilized.
- 8. Remove the plastic injection tool and bleeder tool. Reinstall the dust caps on both injection fittings.
- 9. Repeat Steps 1 thru 8 to pack off and energize the upper P-Seal.

*		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service Manual	Marion Robertson	Brad Franks	Manual Zaragoza Manual Zaragoza	Rev WIP
	Mariuai		Brad Franks		Page 12 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- 10. Locate the "SEAL TEST" fitting, slightly below and 90 degrees from the injection fittings. Remove the dust cap from this fitting.
- 11. Attach a test pump to the fitting.
- 12. Pump clean test fluid between the P-Seals until a test pressure of 5,000 psi or 80% of casing collapse pressure is attained, whichever is lower.

Do NOT exceed 80% of casing collapse pressure when a slip type casing hanger and contingency pack-off bushing are utilized.

- 13. Hold test pressure for 15 minutes or as required by the drilling supervisor.
- 14. If pressure drops, a leak has developed. Take the appropriate action per the following table:


Leak Location	Cause	Action
Into the bore of the casing head	Upper P- seal leaking	Bleed off pressure and re-inject plastic packing into leaking upper P- seal port.
Around the casing	Lower P- Seal leaking	Bleed off pressure and re-inject plastic packing into lower P-seal port.

- 15. Repeat Steps 12 thru 14 until a satisfactory test is achieved.
- 16. Once a satisfactory test is achieved, carefully bleed off pressure and remove Test Pump.
- 17. Attach the bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool port away from people and property.

18. Remove the bleeder tool and reinstall dust cap in Test Port Fitting.

₩	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Manual	Apro-Potestim	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	manaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 13 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Retesting the BOP Stack

- 1. Examine the Test Plug/Running Tool. Verify the following:
 - Elastomer seals are intact and in good condition.
 - Drill pipe threads are clean and in good condition.

Immediately after testing the support bushing seals and periodically during conditioning of the hole prior to running tubing, the BOP stack (flanged connections and rams) must be tested.

2. Orient the test plug with elastomer down/ACME threads up. Make up a joint of drill pipe to the test plug.

Remove the pipe plug from the weep port if pressure is to be supplied through the drill pipe.

Make sure the elastomer is down and ACME threads are up when testing.

3. Fully retract all lockscrews in the upper WFT-SB Spool Assembly.

Do NOT retract the lockscrews located in the casing head (lower flange). Doing so could allow the pack-off support bushing to rise out of position.

- **BOP Stack** WFT-SB **Casing Spool** Pack-Off **Bushina** Lower P-Seal Inject Plastic Until a Injection Continuous Stream Port Flows from 6 Bleeder Tool Mandrel Casing-Hanger Casing Head RP104097
- 5. Lower the test plug through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.
- 6. Open the upper WFT-SB casing spool side outlet valves. Monitor for any leakage past the test plug seal.
- 7. Close the BOP rams on the drill pipe and test to **10,000 psi** or as required by the drilling supervisor.
- 8. After a satisfactory test is achieved, release all pressure and open the rams.
- 9. Remove as much fluid from the BOP stack as possible.
- 10. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 11. Close all outlet valves on the WFT-SB casing head/spool assembly.

•	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Field Service Manual		Apren Poteton	Brad Franks	Manual Zaragoza	Rev WIP
	Marion Robertson	Brad Franks	Manual Zaragoza	Page 14 of	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

4. Lubricate the test plug elastomer seal with light oil or grease.

Running and Retrieving the Short Bowl Protector

Always use a bowl protector while drilling to protect the wellhead load shoulders from damage by the drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string!

Running the Bowl Protector Prior to Drilling

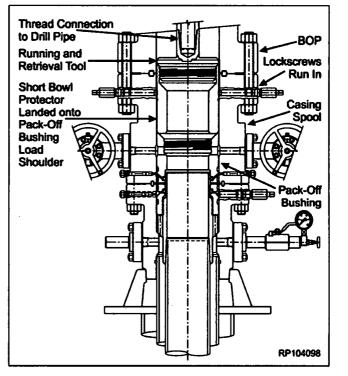
- 1. Examine the short bowl protector. Verify the following:
 - Bore drift is correct size, is clean, in good condition, and free of debris.
 - Threads are correct size and type.
 - Threads are clean and in good condition.
- 2. Orient the bowl protector running tool with ACME threads down.

The running tool is the same tool used for handling the long bowl protector.

Make sure that the left hand (LH) ACME threads are down prior to engaging the bowl protector running tool into the short bowl protector.

- 3. Make-up a drill pipe joint to the running tool.
- 4. Thread the running tool into the short bowl protector, rotating two turns counterclockwise (to the left).
- 5. Verify that all upper lockscrews in the WFT-SB spool assembly are fully retracted. Slowly lower the running

tool/bowl protector assembly through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.


Do NOT retract the lower lockscrews located in the WFT-SB casing head, as this could allow the pack-off bushing to rise out of position.

6. On the upper WFT-SB spool assembly, run in two lockscrews ("snug" tight ONLY), 180 degrees apart, to hold the bowl protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to both the bowl protector and lockscrews.

- 7. Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 8. Drill out and prepare to the production casing string per the drilling supervisor's instructions.

₩	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Manual	Apro-Robertson	Brad Franks	Manual Zaragoza	Rev WIP
vveauleriuru	manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 15 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Retrieval of the Short Bowl Protector After Drilling

- 1. Make up the retrieval tool to the drill pipe with ACME threads down.
- 2. Slowly lower the retrieval tool into the bowl protector.
- Rotate the retrieval tool counterclockwise, two turns, to engage with the bowl protector ACME threads.
- 4. Fully retract both lockscrews on the casing spool (upper flange), and retrieve the bowl protector.
- 5. Remove the bowl protector and retrieval tool from the drill string.

Running the Production Casing

1. Run the production casing to necessary depth and cement as required.

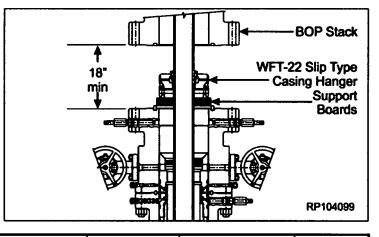
There are two methods for installing WFT-22 Slip Type Casing Hangers:

- Under the BOP stack.
- Through the BOP stack.

Installation of the Slip-Type Casing Hanger Under the BOP Stack

- 1. Drain the casing head through the uppermost side outlet valve.
- 2. Lift and suspend the BOP stack above the WFT-SB spool assembly to a minimum of 18 inches.
- 3. Wash out the WFT-SB casing head/spool assembly as required.
- Confirm that ONLY the lockscrews in the casing spool (upper flange) are fully retracted.

- 5. Examine the WFT-22 slip-type casing hanger. Verify the following:
 - Slip segments are clean and undamaged.
 - All screws are in place.
 - Packing element is clean and undamaged.



The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.

- 6. Place two boards across the casing spool face, against the casing, to support the hanger.
- 7. Disengage the spring loaded latch, open the hanger and wrap the hanger around the casing, allowing the support boards to carry weight.
- 8. Re-engage the casing hanger spring loaded latch.
- Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- 10. Supporting the weight of the casing hanger, remove the support boards and lower the hanger into the WFT-SB casing head/spool assembly until it lands on the pack-off bushing load shoulder.

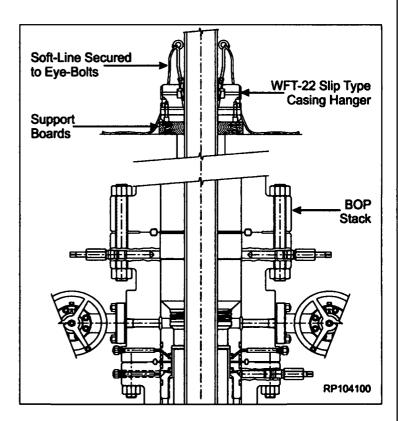
Do NOT drop the hanger; lower it carefully.

	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Manual	Apro-Apter	Brad Franks	Manual Zaragoza	Rev WIP
vveamerioru	manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 16 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation of the Slip-Type Casing Hanger through the BOP Stack

- 1. Drain the WFT-SB casing head/spool assembly and BOP stack through the side outlet valves on the spool assembly.
- 2. Wash out the wellhead assembly until clean returns are seen.
- 3. Examine the slip type casing hanger. Verify the following:
 - slip segments are clean and undamaged
 - all screws are in place
 - Packing Element is clean and undamaged.

The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.


- 4. Place two boards across the rotary table, against the casing, to support the hanger.
- Disengage the spring loaded latch, open the hanger and wrap it around the casing, allowing the support boards to carry the weight.
- 6. Re-engage the casing hanger's spring loaded latch.
- 7. Measure the distance from the top flange of the WFT-SB casing spool to the drilling rig floor (RKB).
- 8. Measure out two lengths of soft-line cord (rope) to the same length as the

RKB measurement, and adding an additional 10 feet to each line.

- 9. Mark the soft line cord at the required length.
- 10. Install two eyebolts into the tapped holes in the top of the casing hanger slip segments, 180 degrees apart.
- 11. Securely tie the soft-line cord to the eyebolts.

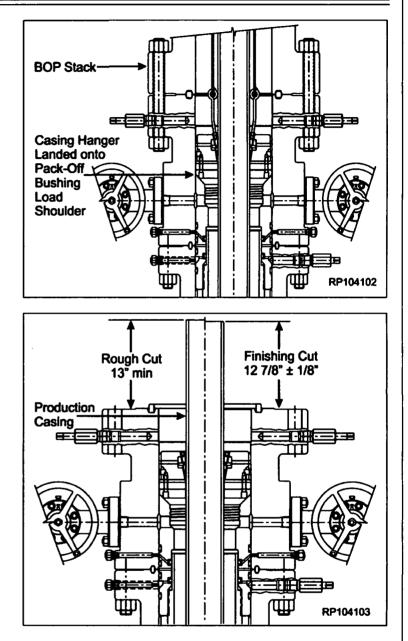
NOTE

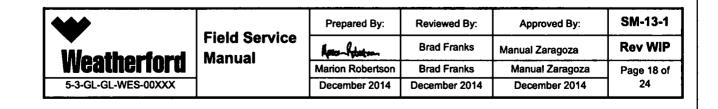
Measuring the soft-line cord and installing the eyebolts into the hanger segments should be done offline.

*	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service Manual	Apro-Adation	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	manaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 17 of
5-3-GL-GL-WES-00XXX	1	December 2014	December 2014	December 2014	24

- 12. Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- 13. Supporting the weight of the casing hanger, remove the support boards and carefully lower the hanger through the BOP stack into the WFT-SB casing head/spool assembly, until it securely lands on the pack-off bushing load shoulder.

Do NOT drop hanger; lower it carefully.


Hanging off the Production Casing


 With the casing hanger now landed onto the pack-off bushing load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on the weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack off once more.

- 2. Rough cut casing approximately 16" above top of WFT-SB Spool top flange. Remove excess casing.
- 3. Carefully remove BOP stack, set aside.
- Final cut the casing at about 12 7/8" +/-1/8" above the face of the WFT-SB spool, which will allow room for the double studded adapter flange.
- 5. Grind the casing stub level and bevel the casing outer diameter (1/4" x 1/8") and inner diameter (1/8" x 45 degrees).

Installation of the Double-Studded Adapter (DSA) Flange

- 1. Examine the double studded adapter (DSA) Flange. Verify the following:
 - Ring grooves are clean and undamaged.
 - Stud threads are clean and undamaged.
- 2. Orient the DSA flange with the 10M side down.
- Thoroughly clean the mating grooves of the DSA flange and the WFT-SB spool assembly. Wipe lightly with oil or grease.



Excessive oil or grease will prevent a positive seal from forming.

- 4. Install a new appropriately sized ring gasket into the WFT-SB spool assembly groove.
- 5. Lift, while holding level, and carefully lower the DSA over the production casing stub until it lands on the ring gasket.
- 6. Make-up the flange connection with appropriate nuts, tightening in alternate cross pattern, as required by API 6A.
- 7. Fill the void area in the DSA around the production casing with a light weight oil.
- 8. Continue filling with a light weight oil to the top of the DSA.

Do NOT allow oil to run into the ring groove. This may prevent a positive seal from forming.

•	Field Corrigo	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford	Field Service Manual	Apren Apres	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	Manaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 19 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation and Testing of the Tubing Spool Assembly

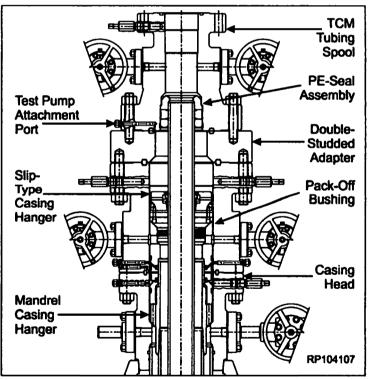
Installation of the TCM Tubing Spool Assembly

- 1. Examine the tubing spool assembly. Verify the following:
 - bore is clean and free of debris
 - ring grooves and seals are clean and undamaged
 - PE-seal assembly is properly installed, clean and undamaged.
- 2. Thoroughly clean the mating ring grooves of the WFT-TCM Tubing Spool and WFT-SB Casing Spool.
- 3. Lightly lubricate the inner diameter of the PE-seal and outer diameter of the casing stub with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- Install a new appropriately sized ring gasket into the WFT-SB casing spool assembly groove.
- Orient the tubing spool assembly as required and carefully lower it over the casing stub, until it lands on the ring gasket.
- 6. Make up the flange connection with the appropriate studs and nuts, tightening in an alternating cross pattern, as required by API 6A.

Testing the Secondary Seal and Flange Connection Test


- 1. Locate the test port fitting on the OD of the tubing spool lower flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to the test port fitting.

- 3. Pump clean test fluid into the void area between the flanges until a test pressure of **10,000 psi or 80% of casing collapse pressure is attained**, whichever is lower.
- 4. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off pressure and remove the test pump
- 6. Attach a bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

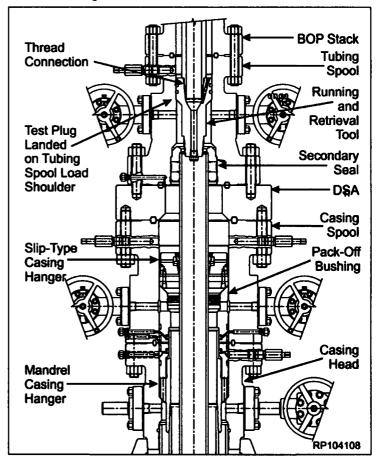
Always direct the bleeder tool port away from people and property.

- 7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.
- 8. Install a new appropriately sized ring gasket into the tubing spool groove.

₩		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service Manual	Apre-Adation	Brad Franks	Manual Zaragoza	Rev WIP
weamerinin	marraa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 20 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Testing the BOP

Immediately after the make-up of the BOP Stack and periodically during drilling of hole for the next string, the BOP stack (flanged connections and rams) must be tested.

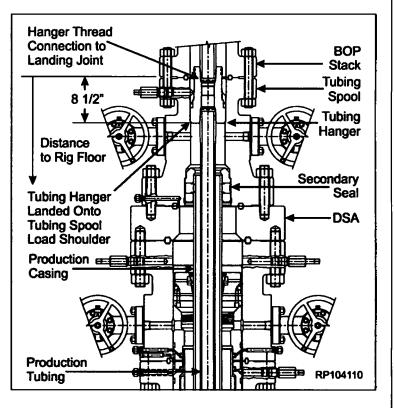

- 1. Examine the test plug. Verify that:
 - O-ring seals and plugs are properly installed, clean and undamaged.
 - All threads are clean and undamaged.
- 2. Orient the test plug with O-ring seals up and drill pipe pin connection down.
- 3. Make up a joint of drill pipe to the top of the test plug.

If pressure is to be supplied through the drill pipe, the pipe plug should be removed from the weep port.

- 4. Fully retract all lockscrews on the WFT-TCM tubing spool assembly.
- 5. Open the side outlet valves on the tubing spool.
- 6. Wipe the test plug O-ring seals with a light oil or grease.
- 7. Lower the test plug through the BOP until it lands on the tubing spool load shoulder.
- 8. Close the BOP rams on the drill pipe and test to **10,000 psi maximum**.
- 9. Monitor the open outlets for signs of leakage past the test plug.

- 10. Once a satisfactory test is achieved, release pressure and open the rams.
- 11. Close the side outlet valves.
- 12. Remove as much fluid from the BOP stack as possible.
- 13. Slowly retrieve the test plug, avoiding damage to the seals.
- 14. Repeat this procedure, as required, during drilling or conditioning of the hole.

*	Field Comico	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service	Apro-Potestan	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	manuai	Marion Robertson	Brad Franks	Manual Zaragoza	Page 21 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24


Hanging off the Production Tubing String

- 1. Run the production tubing and space out appropriately for the tubing hanger.
- 2. Examine the TC1AEN Tubing Hanger. Verify the following;
 - Packing element is clean and undamaged.
 - S-seals are properly installed.
 - S-seals are clean and undamaged.
 - All threads are clean and undamaged.
- 3. Make-up a short handling joint to the top of the tubing hanger.
- Pick up the tubing hanger and make it up to the tubing string, tightening the connection to the thread manufacturer's recommended optimum torque value.
- 5. Remove the short handling joint from the top of the hanger. Make up the landing joint to the top of the tubing hanger, tightening the connection to the thread manufacturer's recommended minimum torque values.
- 6. Ensure that all tubing spool lockscrews are fully retracted from the bore and open side outlet valves. Drain the BOP stack.

The side outlet valves should remain open while landing the tubing hanger.

- 7. Calculate the distance from the tubing spool load shoulder to the rig floor. Measure from the face of the tubing spool.
- 8. Carefully lower the tubing hanger into the well, tallying the tubing every five feet, until the tubing hanger lands securely on the tubing spool load shoulder.
- 9. Run in all tubing spool lockscrews, in an alternating cross pattern, to 300 ft-lbs, in 75 ft-lb increments.
- 10. Remove the landing joint from the tubing hanger, and set it aside.

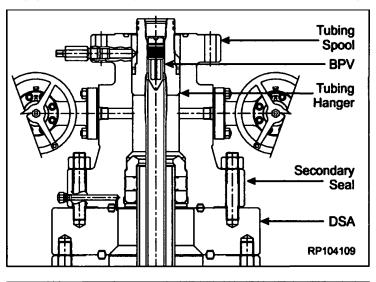
₩	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Manual	Apro-Potestion	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Page 22 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

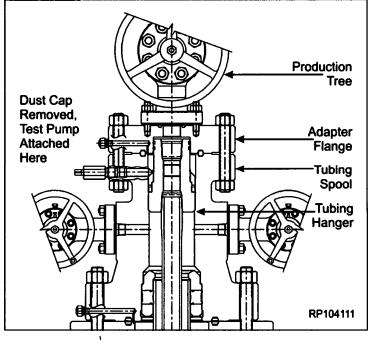
- Install the Type H Back Pressure Valve, carefully lowering the BPV through the BOP stack into the tubing hanger. Rotate the BPV counterclockwise (to the left) until it bottoms out in the tubing hanger BPV prep. Continue rotating counterclockwise, approximately 7 turns, to retrieve the running tool.
- 12. With the well safe and under control, the BOP stack may be removed.

Installation and Testing of the Production Tree

Installation

- 1. Examine the production tree assembly. Verify the following;
 - Bore is clean and free of debris.
 - All valves are in the fully open position.
 - All threads and seal areas are clean and undamaged.
 - All fittings, nuts and handwheels are intact and undamaged.
- 2. Thoroughly clean all exposed portions of the tubing hanger, tubing head adapter flange and bottom prep of the tubing head adapter.
- 3. Thoroughly clean mating ring grooves of the tubing head adapter flange and WFT-TCM tubing spool.
- 4. Lightly lubricate the tubing hanger neck outer diameter and tubing head adapter flange bottom prep with oil or grease.




Excessive oil or grease will prevent a positive seal from forming.

 Install a new appropriately sized ring gasket into the WFT-TCM tubing spool groove. 6. Fill the void area around the hanger with hydraulic fluid, to the top of the tubing spool assembly.

Do NOT overfill the void area, allowing oil to run into the ring groove. This may prevent a positive seal from forming.

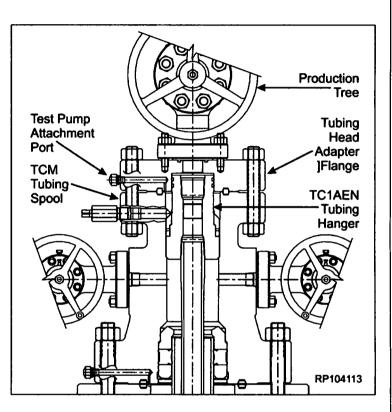
		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service Manual	Apres-Apterton	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	manaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 23 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

7. Align and level the production tree above the tubing hanger and carefully lower it over the tubing hanger neck, landing it on the ring gasket.

Do NOT damage the hanger neck seals, as this will impair their sealing ability.

8. Make up the connection using the appropriate studs and nuts, and tightening in an alternating cross pattern, as required by API 6A.

Testing the Production Tree Connection


- 1. Locate the test port fitting on the outer diameter of the tubing head adapter flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to test port fitting, and open the pump.
- 3. Pump clean test fluid into void area between flanges, test to 10,000 psi maximum.
- 4. Hold and monitor pressure for 15 minutes or as required by the production supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off test pressure and remove the test pump.
- 6. Attach a bleeder tool to the test port fitting, and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool away from people and property.

7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.

- 8. Remove the type 'H' back pressure valve (BPV) through the production tree.
- 9. Ensure that the well is safe and secure by closing all gate valves.

•••	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Apre-Potetion	Brad Franks	Manual Zaragoza	Rev WIP
Weatherford	manuai	Marion Robertson	Brad Franks	Manual Zaragoza	Page 24 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400029775

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FED

Submission Date: 05/16/2018

Well Number: 18H Well Work Type: Drill

Show Final Text

07/15/2019

SUPO Data Report

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Vaca_Draw_9418_10_Fed_18H_Vicinity_Map_20180424122923.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Vaca_Draw_9418_10_Fed_18H_Topographical___Access_Rd_20180424122938.pdf

New road type: RESOURCE

Length: 340 Feet Width (ft.): 25

Max slope (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 15

New road access erosion control: Road construction requirements and regular maintenance would alleviate potential impacts to the access road from water erosion damage. **New road access plan or profile prepared?** NO

Max grade (%): 2

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Access surfacing type: OTHER

Access topsoil source: BOTH

Access surfacing type description: Native Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description: Material will be obtained from the closest existing caliche pit as designated by the BLM.

Onsite topsoil removal process: The top 6 inches of topsoil is pushed off and stockpiled along the side of the location. An approximate 160' X 160' area is used within the proposed well site to remove caliche. Subsoil is removed and stockpiled within the pad site to build the location and road. Then subsoil is pushed back in the hole and caliche is spread accordingly across proposed access road.

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Proposed access road will be crowned and ditched and constructed of 6 inch rolled and compacted caliche. Water will be diverted where necessary to avoid ponding, maintain good drainage, and to be consistent with local drainage patterns.

Road Drainage Control Structures (DCS) description: Any ditches will be at 3:1 slope and 3 feet wide.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Vaca_Draw_9418_10_Fed__18H___1mi_Radius_Map_20180516145319.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: If well is productive, we will use the existing well pad for the tank battery and all necessary production facilities. If any plans change in regarding the production facility or other infrastructure, we will submit a sundry notice or right of way (if applicable) prior to installation or construction. **Production Facilities map:**

Production_Facility_20180420101402.pdf

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

.

Section 5 - Location and Types of Water Supp	bly
Water Source Table	
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE	Water source type: OTHER
CASING Describe type: Sec. 11, T26S, R33E	Source longitude:
Source latitude:	
Source datum: NAD83	
Water source permit type: OTHER	
Source land ownership: FEDERAL	
Water source transport method: PIPELINE,TRUCKING	
Source transportation land ownership: FEDERAL	
Water source volume (barrels): 100000	Source volume (acre-feet): 12.8893
Source volume (gal): 4200000	
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING	Water source type: OTHER
Describe type: Sec. 1, T26S, R33E	Source longitude:
Source latitude:	
Source datum: NAD83	
Water source permit type: OTHER	
Source land ownership: FEDERAL	
Water source transport method: PIPELINE, TRUCKING	
Source transportation land ownership: FEDERAL	
Water source volume (barrels): 100000	Source volume (acre-feet): 12.88931
Source volume (gal): 4200000	
ater source and transportation map:	
	20180424071743.pdf
ater source comments:	
w water well? NO	
New Water Well Info	
Well latitude: Well Longitude:	Well datum:
Well target aquifer:	

Page 3 of 10

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Est. depth to top of aquifer(ft):	Est thickness of aquifer:
Aquifer comments:	
Aquifer documentation:	
Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	
Additional information attachment:	

Section 6 - Construction Materials

Construction Materials description: Caliche used for construction of the drilling pad and access road will be obtained from the closest existing caliche pit as approved by the BLM or from prevailing deposits found under the location. If there is not sufficient material available, caliche will be purchased from the nearest caliche pit located in Section 1, T25S, R33E Lea County, NM. Alternative location if original location closes will be located in Section 34, T24S, R33E. **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and cuttings.

Amount of waste: 3990 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling fluids will be stored safely and disposed of properly.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Waste type: SEWAGE

Waste content description: Human waste and grey water

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Safe containment description: Waste material will be stored safely and disposed of properly.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Waste type: GARBAGE

Waste content description: Trash

Amount of waste: 500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments: It is possible that a mobile home will be used at the well site during drilling operations.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Vaca_Draw_9418_10_Fed_18H_Well_Site_Plan_20180424123718.pdf

Comments: Should the well be successfully completed for production, the original topsoil from the site will be returned to the location. The drill site will be contoured as close as possible to the original state.

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: VACA DRAW 9418 10 FED

Multiple Well Pad Number: 16H-19H

Recontouring attachment:

Drainage/Erosion control construction: During construction proper erosion control methods will be used to control erosion, runoff and siltation of the surrounding area.

Drainage/Erosion control reclamation: Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.

Well pad proposed disturbance	Well pad interim reclamation (acres):	Well pad long term disturbance
(acres): 0	3.07	(acres): 2.34
Road proposed disturbance (acres): 0	0.234	Road long term disturbance (acres): 0.234
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0
Pipeline proposed disturbance (acres): 0	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance (acres): 0
Other proposed disturbance (acres): 0	Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 0	Total interim reclamation: 3.304	Total long term disturbance: 2.574

Disturbance Comments:

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

address:

interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations.

Soil treatment: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. Existing Vegetation at the well pad: The historic climax plant community is a grassland dominated by black grama,

dropseeds, and blue stems with sand sage and shinnery oak distributed evenly throughout. Current landscape displays mesquite, shinnery oak, yucca, desert sage, fourwing saltbush, snakeweed, and bunch grasses. Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source addre
Source phone:	
Seed cultivar:	

Page 7 of 10

Operator Name: BTA OIL PRODUCERS LL	.C
--	----

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

Total pounds/Acre:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary					
Seed Type	Pounds/Acre				

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Email:

Phone:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: No invasive species present. Standard regular maintenance to maintain a clear location and road.

Weed treatment plan attachment:

Monitoring plan description: Identify areas supporting weeds prior to construction; prevent the introduction and spread of weeds from construction equipment during construction; and contain weed seeds and propagules by preventing segregated topsoil from being spread to adjacent areas. No invasive species present. Standard regular maintenance to maintain a clear location and road.

Monitoring plan attachment:

Success standards: To maintain all disturbed areas as per Gold Book standards.

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

Page 8 of 10

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: Other Local Office: USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: VACA DRAW 9418 10 FED

Well Number: 18H

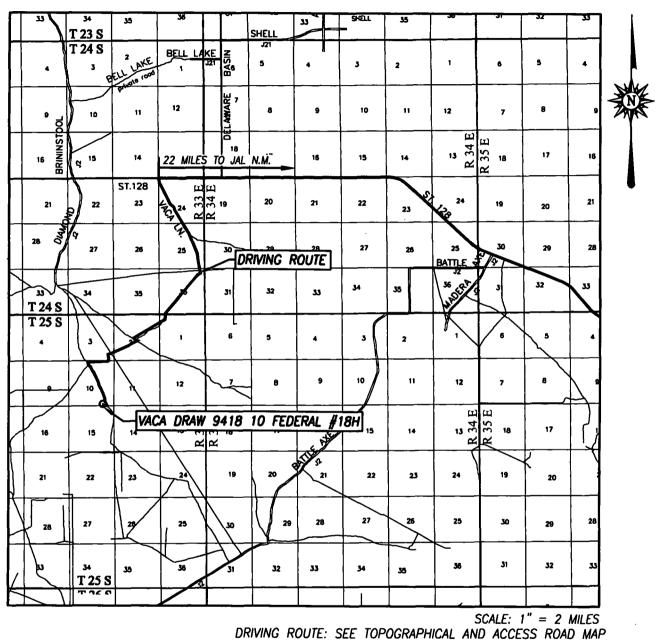
Use APD as ROW?

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

ROW Applications


SUPO Additional Information:

Use a previously conducted onsite? YES

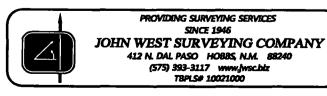
Previous Onsite information: Onsite was conducted Thursday, February 15, 2017 by Fernando Banos & Vance Wolf.

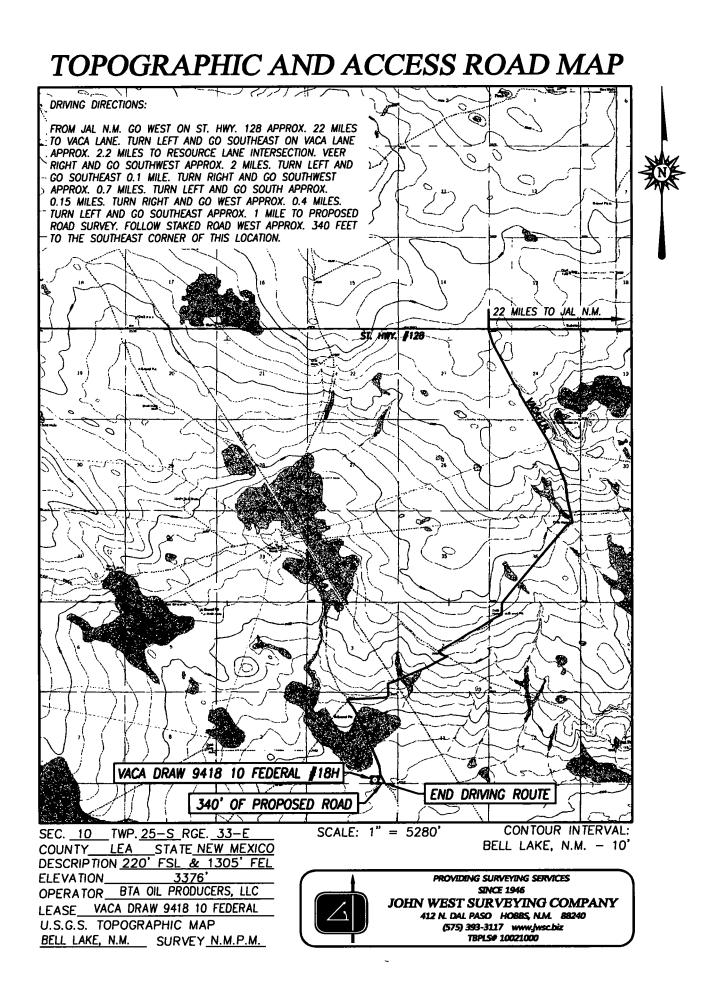
Other SUPO Attachment

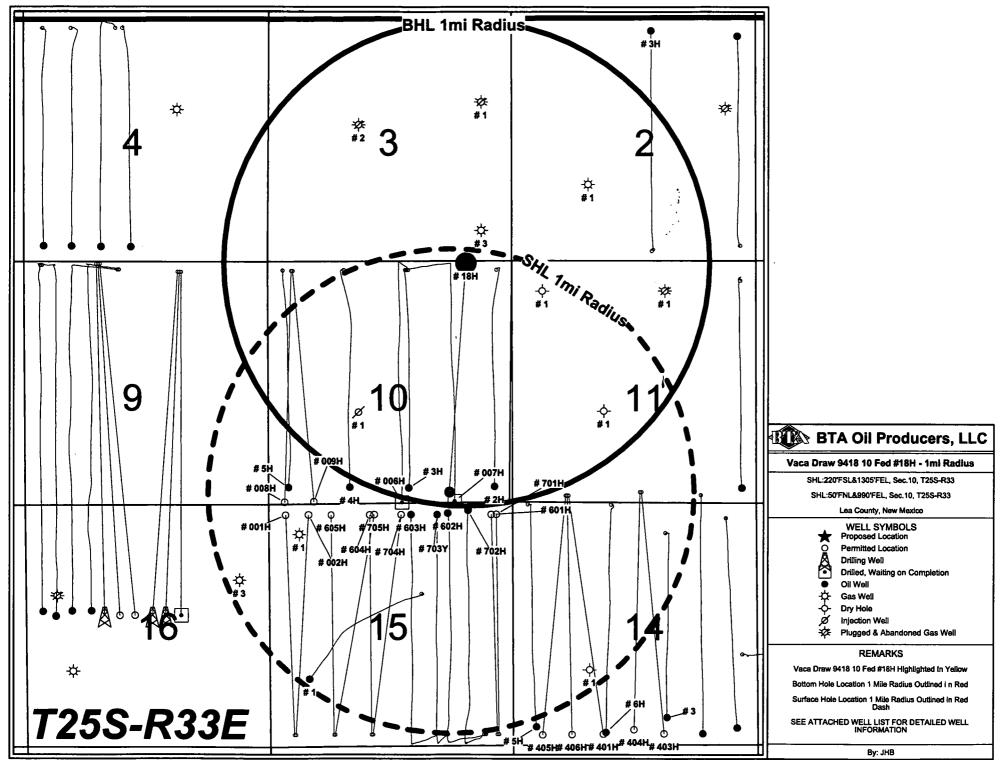
VICINITY MAP

 SEC.
 10
 TWP.
 25-S
 RGE.
 33-E

 SURVEY
 N.M.P.M.

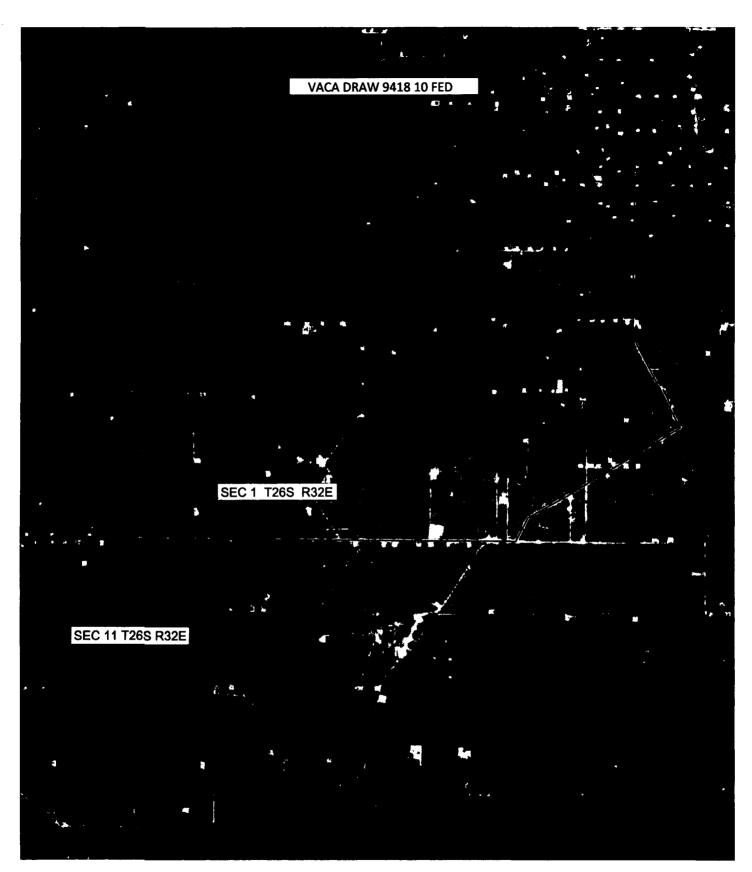

 COUNTY
 LEA
 STATE
 NEW MEXICO


 DESCRIPTION
 220'
 FSL
 & 1305'
 FEL

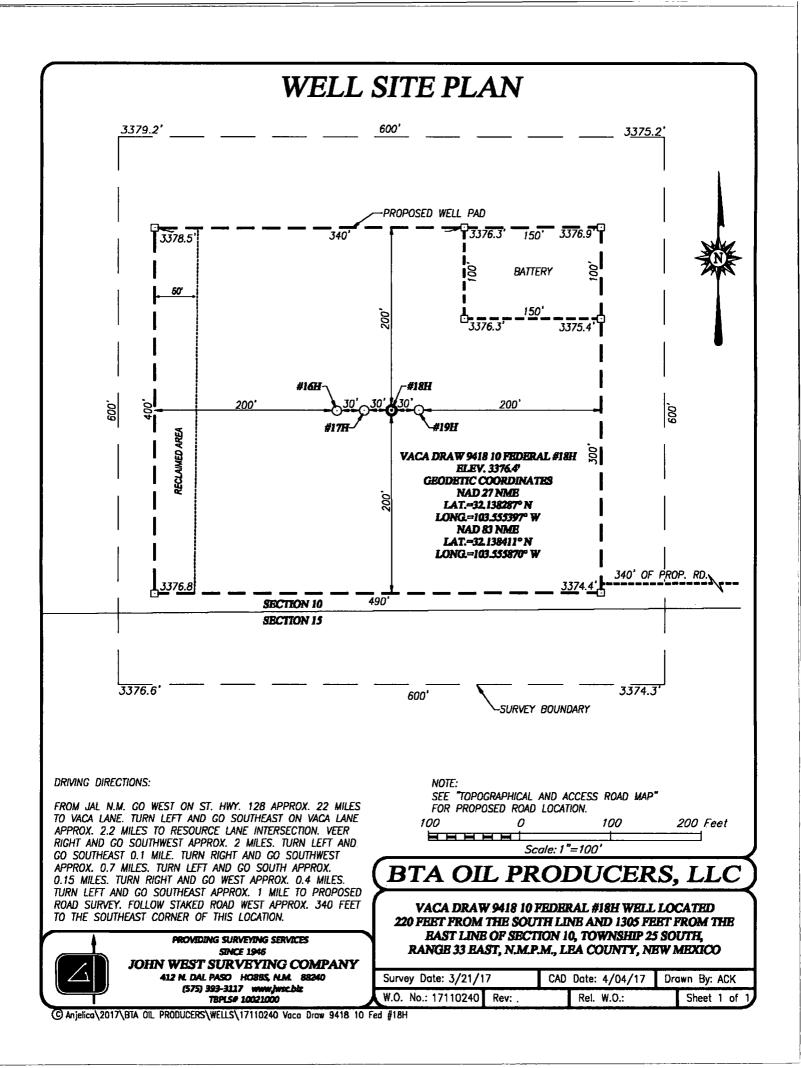

 ELEVATION
 3376'

 OPERATOR
 BTA
 OIL
 PRODUCERS,
 LLC

 LEASE
 VACA
 DRAW
 9418
 10
 FEDERAL



NETTA INCOMIO 7.39.49 ALI


Vaca Draw 9418 10 Fed #18H - 1mi Radius Well Data													
API #	Operator	Well Name	Well #	Sec	Twp	Rng	Surf Lat	Surf Lon	Bot Lat	Bot Lon	SHL Ftg Calls	TD	Status
3002534604	EOG RESOURCES INC	TRISTE DRAW '2' STATE	1	2	255	33E	32.1566726	-103.5458578	0	0		13,870'	GAS
3002541907	EOG RESOURCES INC	RED HILLS 2 25 33	ЗH	2	255	33E	32.1527082	-103.5414191	32.165849	-103.5413893	215'FSL & 2260'FEL	14,105'	OIL
3002534518	EOG RESOURCES INC	TRISTE DRAW '3' FEDERAL	1	3	255	33E	32.1616392	-103.5533008	0	0	1826'FNL & 660'FEL	13,886'	PAGW
3002534585	EOG RESOURCES INC	TRISTE DRAW '3' FEDERAL	2	3	25S	33E	32.1603171	-103.5618741	0	0	2310'FNL & 1980'FWL	13,915'	PAGW
3002535072	COG OPERATING LLC	TRISTE DRAW '3' FEDERAL	3	3	255	33E	32.1539753	-103.5533329	0	0	660'FSL & 660'FEL	13,920'	GAS
3002533639	BTA OIL PRODUCERS, LLC	9418 JV-P VACA DRAW	1	10	25S	33E	32.1431333	-103.5619686	0	0	1980'FSL & 1980'FWL	12,581'	INJ
3002541621	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 JV-P	2H	10	25S	33E	32.151639	-103.5522829	32.1386688	-103.5523774	190'FNL & 330'FEL	14,018'	OIL
3002541622	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 JV-P	ЗH	10	25S	33E	32.1516391	-103.558672	32.1385988	-103.5583841	190'FNL & 2310'FEL	15,626'	OIL
3002541623	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 JV-P	4H	10	255	33E	32.1516604	-103.5629645	32.1386573	-103.5625122	190'FNL & 1650'FWL	13,918'	OIL
3002541624	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 JV-P	5H	10	255	33E	32.1516389	-103.5673083	32.1386544	-103.5668624	190'FNL & 330'FWL	13,910'	OIL
3002543611	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 10 FEDERAL	006H	10	255	33E	32.1516391	-103.5585783	32.1377351	-103.5589616	190'FNL & 2281'FEL	14,478'	woc
3002543612	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 10 FEDERAL	007H	10	255	33E	32.151639	-103.5584813	32.1377982	-103.5552764	190'FNL & 2251'FEL	14,512'	woc
3002544250	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 10 FEDERAL	008H	10	255	33E	32.1516115	-103.5666944	32.1377948	-103.5672286	200'FNL & 520'FWL		LOC
3002544251	BTA OIL PRODUCERS, LLC	VACA DRAW 9418 10 FEDERAL	009Н	10	255	33E	32.1516115	-103.5665975	32.137808	-103.5651612	200'FNL & 550'FWL		LOC
								i.					
3002508382	HANKAMER CURTIS CORP	MUSE-FEDERAL	1	11	25S	33E	32.1503375	-103.5490778	0	0	660'FNL & 660'FWL	5,297'	DRY
3002526729		BELL LAKE '11' FEDERAL	1	11	255	33E	32.1502991	-103.5405217	0	0	660'FNL & 1980'FEL	15,930'	PAGW
3002534635	ENRON O&G CO	TRISTE DRAW '11' FEDERAL	1	11	255	33E	32.1431419	-103.5448215	0	0	1980'FSL & 1980'FWL	13,900'	DRY
3002542887	EOG RESOURCES INC	VACA 11 FEDERAL	403H	11	255	33E	32.1383067	-103.5422214	32.1237821	-103.5407001	240'FSL & 2500'FEL		LOC
3002542888	EOG RESOURCES INC	VACA 11 FEDERAL	404H	11	255	33E	32.1383067	-103.5423183	32.124046	-103.5428061	240'FSL & 2530'FEL	1	LOC
3002542889	EOG RESOURCES INC	VACA 11 FEDERAL COM	405H	11	25S	33E	32.1381152	-103.5475129	32.1237582	-103.5491763	170'FSL & 1140'FWL	1	LOC
3002542890	EOG RESOURCES INC	VACA 11 FEDERAL COM	406H	11	255	33E	32.1381152	-103.547416	32.123772	-103.5471415	170'FSL & 1170'FWL	1	LOC
3002542900	EOG RESOURCES INC	VACA 11 FEDERAL	401H	11	255	33E	32.1381151	-103.5473191	32.1237829	-103.5449451	170'FSL & 1200'FWL	1	LOC
3002534118	ENRON O&G CO	VACA `14` FEDERAL	1	14	255	33E	32.1276596	-103.5458945	0	0	1650'FSL & 1650'FWL	12,602'	DRY
3002539327	EOG RESOURCES INC	VACA 14 FEDERAL	3	14	25S	33E	32.1358471	-103.5405528	32.1247461	-103.5404125	660'FNL & 1980'FEL	13,200'	OIL
3002539943	EOG RESOURCES INC	VACA `14` FEDERAL	6H	14	255	33E	32.1375576	-103.5443433	32.1238734	-103.5446782	50'FNL & 2130'FWL	14,150'	OIL
3002539944	EOG RESOURCES INC	VACA `14` FEDERAL COM	5H	14	255	33E	32.1376092	-103.5501581	32.1242319	-103.5495132	50'FNL & 330'FWL	14,092'	OIL
3002527623	EOG RESOURCES INC	OCHOA FEDERAL	1	15	255	33E	32.1322743	-103.5576199	32.1271688	-103.5655106	1980'FNL & 1980'FEL	15,185'	OIL
3002535445	EOG RESOURCES INC	VACA DRAW `15` FEDERAL	1	15	25S	33E	32.1358493	-103.5662158	0	0	660'FNL & 660'FWL	13,779'	GAS
3002542860	EOG RESOURCES INC	STREETCAR 15 FEDERAL	001H	15	255	33E	32.1238277	-103.5665771	32.1370191	-103.567165	250'FSL & 530'FWL		LOC
3002542861	EOG RESOURCES INC	STREETCAR 15 FEDERAL	605H	15	255	33E	32.1238268	-103.5637662	32.1370182	-103.5639374	250'FSL & 1400'FWL	1	LOC
3002542862	EOG RESOURCES INC	STREETCAR 15 FEDERAL	705H	15	25S	33E	32.1238267	-103.5636693	32.1370291	-103.5609008	250'FSL & 1430'FWL		LOC
3002542863	EOG RESOURCES INC	STREETCAR 15 FEDERAL	704H	15	255	33E	32.1238257	-103.5610364	32.1370226	-103.5590174	250'FSL & 2245'FWL	I	LOC
3002542864	EOG RESOURCES INC	STREETCAR 15 FEDERAL	603H	15	25S	33E	32.1238237	-103.5559638	32.1369975	-103.5584247	250'FSL & 1480'FEL	17,081'	OIL
3002542865	EOG RESOURCES INC	STREETCAR 15 FEDERAL	602H	15	25S	33E	32.1238225	-103.5532598	32.1370771	-103.5558544	250'FSL & 643'FEL	17,112'	OIL
3002542866	EOG RESOURCES INC	STREETCAR 15 FEDERAL	702H	15	255	33E	32.1238224	-103.5531435	32.1372469	-103.5544373	250'FSL & 607'FEL	17,355'	OIL
3002542877	EOG RESOURCES INC	STREETCAR 15 FEDERAL	002H	15	255	33E	32.1238276	-103.5664802	32.1370273	-103.5655369	250'FSL & 560'FWL		LOC
3002542878	EOG RESOURCES INC	STREETCAR 15 FEDERAL	604H	15	255	33E	32.1238258	-103.5611333	32.1370145	-103.5612173	250'FSL & 2215'FWL	1	LOC
3002543999	EOG RESOURCES INC	STREETCAR 15 FEDERAL	703Y	15	25S	33E	32.1238236	-103.5558022	32.1369971	-103.5565988	250'FSL & 1430'FEL	17,221'	OIL
3002544536	EOG RESOURCES INC	STREETCAR 15 FED	601H	15	25S	33E	32.1238193	-103.5523391	32.1370135	-103.5527106	249'FSL & 358'FEL	1	LOC
3002544537	EOG RESOURCES INC	STREETCAR 15 FEDERAL	701H	15	255	33E	32.1238192	-103.552226	32.1370162	-103.5523552	249'FSL & 323'FEL	1	LOC
	EOG RESOURCES INC	VACA DRAW '16' STATE	3	16		33E	32.1331205	-103.5704628	0	0	1650'FNL & 660'FEL	14,250'	GAS

WATER SOURCE AND TRANSPORTATION MAP

BTA OIL PRODUCERS, LLC VACA DRAW 9418 10 FEDERAL SEC 10 T25S R33E LEA COUNTY, NM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: **Precipitated solids disposal:** Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number: Assigned Injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:PWD surface owner:PWD disturbance (acres):Surface discharge PWD discharge volume (bbl/day):Surface Discharge NPDES Permit?Surface Discharge NPDES Permit attachment:Surface Discharge site facilities information:Surface discharge site facilities map:Surface Discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name:

Injection well API number:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM1195

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report

07/15/2019

HOBBS OCD JUL 1 6 2019 RECEIVED

. .

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400029775

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FED

Well Type: OIL WELL

Well Number: 18H

Submission Date: 05/16/2018

Well Work Type: Drill

Show Final Text

07/15/2019

100

Drilling Plan Data Report

Section 1 - Geologic Formations

: ::::::::::::::::::::::::::::::::::::	 ч 	an da firm	$\sum_{i=1}^{n-1} \frac{1}{i} \sum_{j=1}^{n-1} \frac{1}{i$		ing of the	
- 27 - 19						na se fater.
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						

Section 2 - Blowout Prevention