Form 3160-3 (June 2015)		HOBBS C	D	FORM APPR OMB No. 100 Expires: January	OVED 4-0137 31, 2018			
UNITED STAT DEPARTMENT OF THE BUREAU OF LAND MA	ES INTERIO NAGEMEI	R JAN 022	020	5. Lease Serial No. NMNM138893				
APPLICATION FOR PERMIT TO	DRILL O	REENTEREL	VED	6. If Indian, Allotec or Tri	be Name			
		REOF		7.1012 10.004				
1a. Type of work:	REENTER			7. If Unit or CA Agreeme	ni, Name and No.			
1b. Type of Well: ✓ Oil Well Gas Well 1b. Type of Well: ✓ Ui dentis Fracturing	Other			8. Lease Name and Well I	No.			
rc. Type of Completion: Hydraulic Fracturing	Single Zone	Muniple Zone		GIPPLE FED COM 114H 3267	72			
2. Name of Operator				9. API Well No.	11/4			
3a. Address	3b. Phone	: No. (include area cod	e)	10. Field and Pool. or Exp	oloratory 9829			
602 Park Point Drive Suite 200 Golden CO 80401	(720)460	-3316		WC-025 G-09-6249532	M-/WOLEBONE			
 Location of well (<i>report location clearly and in accordanc</i> At surface SESE / 225 FSL / 645 FEL / LAT 32 1673 	e with any Sta 3456 / LONG	ue requirements.*) i -103.3659929		SEC 33 / T24S / R35E /	NMP			
At proposed prod. zone NENE / 20 FNL / 660 FEL / L4	AT 32.1957 /	LONG -103.3660645	5					
14. Distance in miles and direction from nearest town or post of 10 miles	office*			12. County or Parish LEA	13. State NM			
15. Distance from proposed* 2009 feet 2009 feet	16. No of	acres in lease	17. Spacin 320	ng Unit dedicated to this we				
(Also to nearest drig. unit line, if any)	240							
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propo 10385 fe	et / 20765 feet	20. BLM/ FED: NN	BIA Bond No. in file 18001443				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3283 feet	22. Appro 11/01/20	oximate date work will 19	start*	23. Estimated duration 60 days				
	24. Att	achments		<u> </u>				
The following, completed in accordance with the requirements (as applicable)	s of Onshore (Dil and Gas Order No. 1	. and the H	lydraulic Fracturing rule pe	r 43 CFR 3162.3-3			
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th ltem 20 above).	e operation	s unless covered by an exist	ing bond on file (see			
3. A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Off	stem Lands, th ice).	6. Such other site sp BLM.	ation. ecific infor	mation and/or plans as may l	be requested by the			
25. Signature (Electronic Submission)	Nai Bria	ne (Printed/Typed) in Wood / Ph: (505)4	66-8120	Date 08/2	7/2019			
Title President								
Approved by (Signature)	Nai	ne (Printed/Typed)		Date				
(Electronic Submission)	Chr	istopher Walls / Ph: (575)234-2	2234 12/3	0/2019			
Petroleum Engineer	CA	RLSBAD						
Application approval does not warrant or certify that the applic applicant to conduct operations thereon. Conditions of approval, if any, are attached.	cant holds leg	al or equitable title to th	ose rights	in the subject lease which w	vould entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212 of the United States any false, fictitious or fraudulent statemen	, make it a cri ts or represen	me for any person know tations as to any matter	wingly and within its j	willfully to make to any de jurisdiction.	partment or agency			
GCP Bec 01/02/20		TH CONDIT	IONS	KB 102/2	0			
Scontinued on page 2)	OARN W	111		*(Instruc	tions on page 2)			

1

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Tap Rock Operating LLC
LEASE NO.:	NMNM138893
WELL NAME & NO.:	Gipple Fed Com 114H
SURFACE HOLE FOOTAGE:	225'/S & 645'/E
BOTTOM HOLE FOOTAGE	20'/N & 660'/E
LOCATION:	Section 33, T.24 S., R.35 E., NMPM
COUNTY:	Lea County, New Mexico

COA

H2S	C Yes	© No	
Potash	👁 None	C Secretary	OR-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	C Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	C Conventional	C Multibowl	🖲 Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	U Water Disposal	COM	🗖 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1000 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$

hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 5006 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **3000 (3M)** psi.

Option 2:

1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.

Page 2 of 8

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 4 of 8

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

Page 6 of 8

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

ť

- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood		Signed on: 08/27/2019
Title: President		
Street Address: 37 Vera	ano Looop	
City: Santa Fe	State: NM	Zip: 87508
Phone: (505)466-8120		
Email address: afmss@	permitswest.com	
Field Represe	entative	
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		
		,

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data Report

APD ID: 10400046402

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Type: OIL WELL

Well Number: 114H Well Work Type: Drill

Submission Date: 08/27/2019

Highlighted data reflects the most recent changes Show Final Text

Section 1 - General		
APD ID: 10400046402	Tie to previous NOS? N	Submission Date: 08/27/2019
BLM Office: CARLSBAD	User: Brian Wood	Title: President
Federal/Indian APD: FED	Is the first lease penetrated fo	r production Federal or Indian? FED
Lease number: NMNM138893	Lease Acres: 240	
Surface access agreement in place?	Allotted? Res	servation:
Agreement in place? NO	Federal or Indian agreement:	
Agreement number:		
Agreement name:		
Keep application confidential? N		
Permitting Agent? YES	APD Operator: TAP ROCK OP	ERATING LLC
Operator letter of designation:		

Operator Info

Operator Organization Name: TAP ROCK OPERATING LLC

Operator Address: 602 Park Point Drive Suite 200

Operator PO Box:

Operator City: Golden State: CO

Operator Phone: (720)460-3316

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NOMasterWell in Master SUPO? NOMaster

Well in Master Drilling Plan? NO

Well Name: GIPPLE FED COM

Field/Pool or Exploratory? Field and Pool

Master Development Plan name: Master SUPO name:

Master Drilling Plan name:

Zip: 80401

Well Number: 114H Field Name: WC-025 G-09 Well API Number:

Pool Name: WOLFBONE

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

S243532M

Page 1 of 3

Well Number: 114H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production area? N	Use Existing Well Pad? N	New surface di
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name: Gipple	Number: 134H
Well Class: HORIZONTAL	Fed Com Number of Legs: 1	
Well Work Type: Drill		
Well Type: OIL WELL		
Describe Well Type:		
Well sub-Type: INFILL		

Describe sub-type:

Distance to town: 10 Miles

Distance to nearest well: 25 FT

Distance to lease line: 2009 FT

New surface disturbance?

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: Gipple_114H_C102_GCP_20190823121652.pdf

Well work start Date: 11/01/2019

Duration: 60 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number: 11401

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
SHL Leg #1	225	FSL	645	FEL	24S	35E	33	Aliquot SESE	32.16734 56	- 103.3659 929	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	328 3	0	0	Y
KOP Leg #1	50	FSL	575	FEL	24S	35E	33	Aliquot SESE	32.16686 37	- 103.3657 666	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 665 4	994 1	993 7	Y
PPP Leg #1-1	264 0	FNL	660	FEL	24S	35E	28	Aliquot SENE	32.18851 8	- 103.3660 43	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 713 5	181 49	104 18	Y

Page 2 of 3

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP Leg #1-2	132 0	FNL	660	FEL	245	35E	33	Aliquot NENE	32.17765 3	- 103.3660 3	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 138893	- 718 4	142 12	104 67	Y
PPP Leg #1-3	200	FSL	594	FEL	24S	35E	33	Aliquot SESE	32.16727 44	- 103.3658 28	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 704 1	103 66	103 24	Y
EXIT Leg #1	20	FNL	660	FEL	24S	35E	28	Aliquot NENE	32.1957	- 103.3660 645	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 138889	- 710 2	207 65	103 85	Y
BHL Leg #1	20	FNL	660	FEL	24S	35E	28	Aliquot NENE	32.1957	- 103.3660 645	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 138889	- 710 2	207 65	103 85	Y

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400046402

Submission Date: 08/27/2019

Highlighted data reflects the most recent changes Show Final Text

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H Well Work Type: Drill

1.1

Well Type: OIL WELL

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
522515	QUATERNARY	3283	0	0	OTHER : None	NONE	N
522516	RUSTLER	2814	469	469	ANHYDRITE	OTHER : Salt	N
522517	SALADO	2389	894	894	SALT	OTHER : Salt	N
522518	BASE OF SALT	-1526	4809	4812	SALT	OTHER : Salt	N
522519	LAMAR	-1991	5274	5283	LIMESTONE	NONE	N
522520	BELL CANYON	-2016	5299	5302	SANDSTONE	NATURAL GAS, OIL	N
522521	CHERRY CANYON	-2981	6264	6269	SANDSTONE	NATURAL GAS, OIL	N
522522	BRUSHY CANYON	-4461	7744	7749	SANDSTONE	NATURAL GAS, OIL	N
522523	BONE SPRING	-5761	9044	9048	LIMESTONE	NATURAL GAS	N
522524	BONE SPRING 1ST	-7041	10324	10366	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 15000

Equipment: A 15,000 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head.

Requesting Variance? YES

Variance request: Tap Rock requests a variance to run a multi-bowl speed head for setting the Intermediate 1, and Production Strings. Tap Rock requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Tap Rock requests approval to possibly utilize a spudder rig to drill and set casing for the surface interval on this well. The spudder rig will be possibly utilized in order to

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

reduce cost and save time. The wellhead will be installed and tested as soon as the surface casing is cut off per the existing COAs. A blind flange with the same pressure rating as the wellhead will be installed on the well. Once the spudder rig is removed, Tap Rock will secure the wellhead area by placing a guard rail around the cellar. Pressure will be monitored and a means for intervention will be maintained while the drilling rig is not over the well. Spudder rig operations are expected to take 2-3 days per well. Three wells on the pad will have surface casing set by the spudder rig as a part of this operation. The BLM will be notified 24 hours prior to commencing spudder rig operations. Within 90 days of the departure of the spudder rig, drilling operations will recommence on these wells. This rig will have a BOP stack equal or greater to the pressure rating required in the COAs. The BLM will be notified 24 hours before the larger rig moves on the pre-set wells. Tap Rock will have supervision on the spudder rig to ensure compliance with all BLM and NMOCD regulations.

Testing Procedure: After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs.

Choke Diagram Attachment:

Gipple_114H_10M_Choke_100418_20190823124031.pdf

BOP Diagram Attachment:

BOP_Diagram_101619_20191221064909.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
- 1	SURFACE	17.5	13.375	NEW	API	N	0	550	0	550	3283	2733	550	J-55	54.5	BUTT	1.13	1.15	DRY	1.6	DRY	1.6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5293	0	5284	3283	-2001	5293	J-55	40	BUTT	1.13	1.15	DRY	1.6	DRY	1.6
3	PRODUCTI ON	8.75	5.5	NEW	API	N	0	20765	0	10385	3283	-7102	20765	P- 110	20	OTHER - TXP	1.13	1.13	DRY	1.6	DRY	1.6

Casing Attachments

Operator	Name: TAP ROCK OPERATING L	LC

Well Name: GIPPLE FED COM

Well Number: 114H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Gipple_114H_Casing_Design_Assumptions_20190823124301.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Gipple_114H_Casing_Design_Assumptions_20190823124405.pdf

Casing ID: 3

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Gipple_114H_Casing_Design_Assumptions_20190823124507.pdf

Gipple_114H_5.5in_Casing_Spec_20190823124520.PDF

Section 4 - Cement

Page 3 of 6

Well Number: 114H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	0	0	0	0	0	0	None	None
SURFACE	Tail		0	550	566	1.35	14.8	764	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	0	0	0	0	0	0	None	None
PRODUCTION	Tail		4793	2076 5	2952	1.71	14.2	5048	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	4293	1004	2.18	12.7	2188	65	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		4293	5293	411	1.33	14.8	547	65	Class C	5% NaCl + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (e. g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: Electronic Pason mud monitor system complying with Onshore Order 1 will be used.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	550	OTHER : Fresh water spud mud	8.3	8.3							
550	5330	OTHER : Brine water	10	10							
5330	2076 5	OIL-BASED MUD	9	9							

Page 4 of 6

Well Number: 114H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: Electric Logging Program: No open-hole logs are planned at this time for the pilot hole.

GR will be collected while drilling through the MWD tools from 9.625 casing shoe to TD.

A 2-person mud logging program will be used from 9.625 casing shoe to TD.

CBL w/ CCL from as far as gravity will let it fall to TOC. List of open and cased hole logs run in the well: GAMMA RAY LOG,CEMENT BOND LOG,

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4860

Anticipated Surface Pressure: 2557

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Gipple H2S Plan 20190823125254.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Gipple_114H_Horizontal_Plan_20190823125309.pdf

Other proposed operations facets description:

Surface casing will be set in the Rustler. Intermediate 1 will be set in the Lamar. Production will be set in the 1st Bone Spring Sand

Other proposed operations facets attachment:

Co flex Certs 20190823125359.pdf

Gipple_114H_Anticollision_Report_20190823125432.pdf

Wellhead_3T_101619_20191020124635.pdf

Gipple 114H Drill Plan Revised 121619 20191219095249.pdf

Well Number: 114H

Other Variance attachment:

Hydrogen Sulfide Drilling

Operations Plan

Tap Rock Resources

1 H2S safety instructions to the following:

- Characteristics of H2S
- Physical effects and hazards
- Principal and operation of H2S detectors, warning system and briefing areas
- Evacuation procedures, routes and first aid
- Proper use of safety equipment & life support systems
- Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs

2 H2S Detection and Alarm Systems:

- H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary
- An audio alarm system will be installed on the derrick floor and in the doghouse

3 Windsocks and / Wind Streamers:

- Windsocks at mud pit area should be high enough to be visible
- Windsock on the rig floor and / top of doghouse should be high enough to be visible

4 Condition Flags and Signs:

- Warning sign on access road to location
- Flags to be displayed on sign at entrance to location
 - o Green Flag Normal Safe Operation Condition
 - o Yellow Flag Potential Pressure and Danger
 - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location

5 Well Control Equipment:

• See Drilling Operations Plan Schematics

6 Communication:

- While working under masks chalkboards will be used for communications
- Hand signals will be used where chalk board is inappropriate
- Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drilling Stem Testing:

• No DST cores are planned at this time

8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment

9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary

11 Emergency Contacts

Emergency Contact	Emergency Contacts									
Carlsbad Police Department	575.887.7551	911								
Carlsbad Medical Center	575.887.4100	911								
Eddy County Fire Service	575.628.5450	911								
Eddy County Sherriff	575.887.7551	911								
Lea County Fire Service	575.391.2983	911								
Lea County Sherriff	575.396.3611	911								
Jal Police Department	575.395.2121	911								
Jal Fire Department	575.395.2221	911								
Tap Rock - Doug Sproul - Drilling	303-653-3518									

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY TAP ROCK OPERATING, LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

SISURVEY/TAPROCK/GIPPLE_UNIT/FINAL_PRODUCTS/LO_GIPPLE_FED_COM_134H_REV1.DWG 12/5/2018 3:35:43 PM kmatheny

Tap Rock Resources, LLC

Lea County, NM (NAD 83 NME) (Gipple) Sec-33_T-24-S_R-35-E Gipple Fed Com #114H

OWB

Plan: Plan #1

Standard Planning Report

22 August, 2019

TA)				Intrep Planning F	oid Report				REPID
Database: Company: Project: Site: Well: Well: Wellbore: Design:	ED Tap Lea (Gij Gip OW Pla	M 5000.15 Sir Rock Resour County, NM pple) Sec-33_ ple Fed Com /B n #1	ngle User Dt rces, LLC (NAD 83 NM T-24-S_R-3 #114H) IE) 5-E	Local C TVD Re MD Refi North R Survey	o-ordinate F ference: erence: teference: Calculation	Reference: Method:	Site (Gipple) S KB @ 3309.0u KB @ 3309.0u Grid Minimum Curv	ec-33_T-24-5 sft sft ature	S_R-35-E
Project	Lea	County, NM (I	NAD 83 NM	E)				<u>-</u>		
Map System Geo Datum: Map Zone:	: US S North New I	tate Plane 198 American Da Mexico Easter	33 rum 1983 n Zone		System [Datum:	Μ	ean Sea Level		
Site	(Gip	ple) Sec-33_1	-24-S_R-35	-E						
Site Positior From: Position Une	n: N certainty:	lap 0	No Ea .0 usft Sic	rthing: sting: ot Radius:	425 840	,961.00 usft ,662.00 usft 13-3/16 "	Latitude: Longitude: Grid Conve	rgence:		32° 10' 2.448 N 103° 21' 57.572 W 0.52 '
Well	Gipp	le Fed Com #	114H							
Well Positio	n +N/- +E/-V	S N	D.0 usft D.0 usft	Northing: Easting:		425,961.00 840,662.00	Dusft La Dusft Lo	titude: ngitude:		32° 10' 2.448 N 103° 21' 57.572 W
Position Un	certainty		0.0 usft	Wellhead El	evation:		Gr	ound Level:		3,283.0 usf
Wellbore	OW	В								
Magnetics	M	lodel Name	Sam	ple Date	Declin (°	ation)	Dip /	Angle °)	Field S (n	trength T)
		IGRF201	5	08/21/19		6.62		60.01	47,70	2.82441147
Design	Plan	#1								
Audit Notes	:		-							
Version:			Pł	ase:	PLAN	т	ie On Depth:	.	0.0	
Vertical Sec	tion:	C	epth From) (usft)	(TVD)	+N/-S (usft)	+ (1	E/-W usft)	Dire	ction (°)	
			0.0		0.0		0.0	35	9.45	
Plan Survey		am Dat	08/22/19							
Depth F	From Del	oth To	Wollbor	~)			Bomorko			
1	0.0 20	.765.6 Plana	#1 (OWB)	u)			Kemarks			
•		,	(0112)		OWSG MW	D - Standard				
Bian Saction						····	· · · · ·			
Massurad	19		Vertical			Doglag	Build	Turo		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	·
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,140.1	2.80	158.25	2,140.	1 -3.2	2 1.3	2.00	2.00	0.00	158.25	
5,864.5	5 2.80	158.25	5,859.9	-172.3	68.7	0.00	0.00	0.00	0.00	
6,004.6	5 0.00	0.00	6,000.0	J175.	5 70.0	2.00	-2.00	0.00	180.00	
9,941.7	0.00	0.00	9,937.	ı -175.	o 70.0	0.00	0.00	0.00	0.00	
10,040.5	5 50.72	. 352.90	10,010.0	J 400.2	⊾ -⊺./ ລ າາະ	10.00		0.00	352.90	
11,176.5	5 90.72	359.45	10,505.9	9 726.9	-23.5	2.00	0.00	2.00	89.94	

20,765.8

90.72

-115.0

0.00

10,315.0

10,385.0

.

359.45

COMPASS 5000.15 Build 88

0.00 PBHL (Gipple Fed (

0.00

0.00

.

TAP

Intrepid Planning Report

.

Database: Company:	EDM 5000.15 Single User Db Tap Rock Resources, LLC	Local Co-ordinate Reference: TVD Reference:	Site (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft
Project: Site:	Lea County, NM (NAD 83 NME) (Gipple) Sec-33_T-24-S_R-35-E	MD Reference: North Reference:	KB @ 3309.0usft Grid
Well:	Gipple Fed Com #114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	Plan #1		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	. 0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
469.0	0.00	0.00	469.0	0.0	0.0	0.0	0.00	0.00	0.00
Kustler An	inyarite								
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
894.0	0.00	0.00	894.0	0.0	0.0	0.0	0.00	. 0.00	0.00
Top Salt				-					
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1.000.0	0.00	0.00	1.000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1.300.0	0.00	0.00	1.300.0	0.0	0.0	0.0	0.00	0.00	0.00
1 400 0	0.00	0.00	1 400 0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1 500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
NUDGE - E	Build 2.00								
2,100.0	2.00	158.25	2,100.0	-1.6	0.6	-1.6	2.00	2.00	0.00
2,140.1	2.80	158.25	2,140.1	-3.2	1.3	-3.2	2.00	2.00	0.00
HOLD - 37	24.3 at 2140.1	MD							
2,200.0	2.80	158.25	2,199.9	-5.9	2.4	-5.9	0.00	0.00	0.00
2,300.0	2.80	158.25	2,299.8	-10.4	4.2	-10.5	0.00	0.00	0.00
2,400.0	2.80	158.25	2,399.6	-15.0	6.0	-15.0	0.00	0.00	0.00
2,500.0	2.80	158.25	2,499.5	-19.5	7.8	-19.6	0.00	0.00	0.00
2,600.0	2.80	158.25	2,599.4	-24.1	9.6	-24.2	0.00	0.00	0.00
2,700.0	2.80	158.25	2,699.3	-28.6	11.4	-28.7	0.00	0.00	0.00
2,800.0	2.80	158.25	2,799.2	-33.1	13.2	-33.3	0.00	0.00	0.00
2,900.0	2.80	158.25	2,899.0	-37.7	15.0	-37.8	0.00	0.00	0.00
3,000.0	2.80	158.25	2,998.9	-42.2	16.8	-42.4	0.00	0.00	0.00
3,100.0	2.80	158.25	3,098.8	-46.8	18.7	-46.9	0.00	0.00	0.00
3,200.0	2.80	158.25	3,198,7	-51.3	20.5	-51.5	0.00	0.00	0.00
3.300.0	2.80	158.25	3.298.6	-55.8	22.3	-56.1	0.00	0.00	0.00
3,400.0	2.80	158.25	3,398.4	-60.4	24.1	-60.6	0.00	0.00	0.00
3 500.0	2.80	158 25	3 498 3	-64.9	25.9	-65.2	0.00	0.00	0.00
3,600.0	2.80	158.25	3,598.2	-69.5	27.7	-69.7	0.00	0.00	0.00
3 700 0	2.80	158 25	3 608 1	-74 0	20.5	74 3	0.00	0.00	0.00
3,800,0	2.00	158.25	3 798 0	-78.6	20.0	-79.0	0.00	0.00	0.00
3,000.0	2.00	159.25	3 207 2	-70.0	22.1	-70.9	0.00	0.00	0.00
3,900.0	2.00	150.25	3,097.0	-03.1	25.0	-03.4	0.00	0.00	0.00
4,000.0	2.00	100.20	3,997.7	-67.0	35.0	-66.0	0.00	0.00	0.00
4,100.0	2.80	158.25	4,097.6	-92.2	30.8	-92.5	0.00	0.00	0.00
4,200.0	2.80	158.25	4,197.5	-96.7	38.6	-97.1	0.00	0.00	0.00
4,300.0	2.80	158.25	4,297.4	-101.3	40.4	-101.6	0.00	0.00	0.00
4,400.0	2.80	158.25	4,397.2	-105.8	42.2	-106.2	0.00	0.00	0.00
4,500.0	2.80	158.25	4,497.1	-110.3	44.0	-110.8	0.00	0.00	0.00
4,600.0	2.80	158.25	4,597.0	-114.9	45.8	-115.3	0.00	0.00	0.00

Intrepid

Planning Report

EDM 5000.15 Single User Db Tap Rock Resources, LLC Database: Local Co-ordinate Reference: Site (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft Company: TVD Reference: Lea County, NM (NAD 83 NME) (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft Project: MD Reference: Site: North Reference: Grid Gipple Fed Com #114H OWB Well: Survey Calculation Method: Minimum Curvature Wellbore: Plan #1 Design:

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Bulld Rate (°/100usft)	Turn Rate (°/100usft)	
	4,700.0	2.80	158.25	4.696.9	-119.4	47.6	-119.9	0.00	0.00	0.00	
	4 800 0	2.80	158 25	4 796 8	-124.0	49.4	-124.4	0.00	0.00	0.00	
	4,000.0	2.80	158 25	4,100.0	-124.5	40.4	-125.0	0.00	0.00	0.00	
		2.00	100.20	4,000.0	-124.5	40.7	-120.0	0.00	. 0.00	0.00	
	Base Salt		459.95		400 5						
	4,900.0	2.80	158.25	4,896.6	-128.5	51.3	-129.0	0.00	0.00	0.00	
	5,000.0	2.80	158.25	4,996.5	-133.0	53.1	-133.5	0.00	0.00	0.00	
	5 100 0	2 80	158 25	5 096 4	-137.6	54 9	-138 1	0.00	0.00	0.00	
	5 200 0	2.80	158 25	5 196 3	-142 1	56.7	-142 7	0.00	0.00	0.00	
	5 272 8	2 80	158 25	5 269 0	-145.4	58.0	-146.0	0.00	0.00	0.00	
	Delowara	Hountain Co	100.20	0,200.0	140.4	00.0	140.0	0.00	0.00	0.00	
	E O77 0	nountain Op	450.05	50740	445 7		440.0		0.00		
	5,277.8	2.80	158.25	5,274.0	-145.7	58.1	-146.2	0.00	0.00	0.00	
	Lamar										
	5,300.0	2.80	158.25	5,296.2	-146.7	58.5	-147.2	0.00	0.00	0.00	
	5 302 8	2.80	158.25	5 200 0	-146.8	59.6	147 3	0.00	0.00	. 0.00	
	0,302.0	2.00	130.25	5,233.0	- 140.0		- 147.3		. 0.00	0.00	
	Bell Canyo	n			·						
	5,327.9	2.80	158.25	5,324.0	-147.9	59.0	-148.5	0.00	0.00	0.00	
	Ramsey S	and									
	5,400.0	2.80	158.25	5,396.0	-151.2	60.3	-151.8	0.00	0.00	0.00	
	5,500.0	2.80	158.25	5,495.9	-155.7	62.1	-156.3	0.00	0.00	0.00	
	5,600.0	2.80	158.25	5,595.8	-160.3	63.9	-160.9	0.00	0.00	0.00	
	5 700 0	0.00	450.05	5 005 7			105 5				
	5,700.0	2.80	158.25	5,695.7	-164.8	65.8	-165.5	0.00	0.00	0.00	
	5,800.0	2.80	158.25	5,795.6	-169.4	67.6	-170.0	0.00	0.00	0.00	
	5,864.5	2.80	158.25	5,859.9	-172.3	68.7	-172.9	0.00	0.00	0.00	
	DROP2.	.00									
	5,900.0	2.09	158.25	5,895.5	-173.7	69.3	-174.4	2.00	-2.00	0.00	
	6,004.6	0.00	0.00	6,000.0	-175.5	70.0	-176.1	2.00	-2.00	0.00	
	HOLD - 39	37.1 at 6004.6	MD					••••••			
	6,100.0	0.00	0.00	6,095.4	-1/5.5	70.0	-1/6.1	0.00	0.00	0.00	
	6,200.0	0.00	0.00	6,195.4	-1/5.5	70.0	-176.1	0.00	0.00	0.00	
	6,268.6	0.00	0.00	6,264.0	-175.5	70.0	-176.1	0.00	0.00	0.00	
	Cherry Ca	nyon								· .	
	6,300.0	0.00	0.00	6,295.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	6,400.0	0.00	0.00	6,395.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	6 500 0	0.00	0.00	6 405 4	175 5	70.0	176 1	0.00	0.00	0.00	
	6,500.0	0.00	0.00	0,490.4 6 505 A	-175.5	70.0	-170.1	0.00	0.00	0.00	
	6,000.0	0.00	0.00	6,090.4	-175.5	70.0	-1/0.1	0.00	0.00	0.00	
	6,700.0	0.00	0.00	6 705 4	-175.5	70.0	-1/0.1	0.00	0.00	0.00	
	6,000.0	0.00	0.00	0,795.4	-175.5	70.0	-1/0.1	0.00	0.00	0.00	
	0,900:0	0.00	0.00	0,095.4	-175.5	70.0	-170.1	0.00	0.00	0.00	
	7,000.0	0.00	0.00	6,995.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7,100.0	0.00	0.00	7,095.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7,200.0	0.00	0.00	7,195.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7,300.0	0.00	0.00	7,295.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7,400.0	0.00	0.00	7,395.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7 500 0	0.00	0.00	7 405 4		70.0	470.4				
	7,500.0	0.00	0.00	7,495.4	-1/5.5	70.0	-1/6.1	0.00	0.00	0.00	
	7,600.0	0.00	0.00	7,595.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7,700.0	0.00	0.00	7,695.4	-1/5.5	/0.0	-1/6.1	0.00	0.00	0.00	
•	7,748.6	0.00	0.00	7,744.0	-175.5	70.0	-176.1	0.00	0.00	0.00	
	Brushy Ca	nyon								. ,	
	7,800.0	0.00	0.00	7,795.4	-175.5	70.0	-176.1	0.00	0.00	0.00	
	7 000 0	0.00	0.00	7 905 4	17E E	70.0	470 4	0.00	0.00	0.00	
	7,900.0	0.00	0.00	7,090.4	-1/5.5	70.0	-1/0.1	0.00	0.00	0.00	
	8,000.0	0.00	0.00	7,995.4	-1/5.5	70.0	-1/0.1	0.00	0.00	0.00	
	8,100.0	0.00	0.00	8,095.4	-1/5.5	70.0	-1/6.1	0.00	0.00	0.00	
	8,200.0	0.00	0.00	8,195.4	-1/5.5	70.0	-1/6.1	0.00	0.00	0.00	

Intrepid

Planning Report

EDM 5000.15 Single User Db Tap Rock Resources, LLC Database: Company: Lea County, NM (NAD 83 NME) (Gipple) Sec-33_T-24-S_R-35-E Gipple Fed Com #114H OWB Wellbore: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:**

Site (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft KB @ 3309.0usft Grid Minimum Curvature

Planned Survey

Project:

Design:

Site:

Well:

Meas Dej (us	sured pth sft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8	,300.0	0.00	0.00	8,295.4	-175.5	70.0	-176.1	0.00	0.00	0.00
8	.400.0	0.00	0.00	8.395.4	-175.5	70.0	-176.1	0.00	0.00	0.00
8	500.0	0.00	0.00	8,495,4	-175.5	70.0	-176.1	0.00	0.00	0.00
Â	600.0	0.00	0.00	8 595 4	-175.5	70.0	-176 1	0.00	0.00	0.00
8	700.0	0.00	0.00	8 695 4	-175.5	70.0	-176 1	0.00	0.00	0.00
8	800.0	0.00	0.00	8 705 /	-175.5	70.0	-176.1	0.00	0.00	0.00
0	,000.0	0.00	0.00	0,730.4	-113.5	70.0	-170.1	0.00	0.00	0.00
8	,900.0	0.00	0.00	8,895.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,000.0	0.00	0.00	8,995.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,048.6	0.00	0.00	9,044.0	-175.5	70.0	-176.1	0.00	0.00	0.00
Bor	ne Sprii	ng Lime								•
9	,068.6	0.00	0.00	9,064.0	-175.5	70.0	-176.1	0.00	0.00	0.00
Upr	Der Ava	lon								
9	,100.0	0.00	0.00	9,095.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,200.0	0.00	0.00	9,195.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,300.0	0.00	0.00	9,295.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	393.6	0.00	0.00	9,389.0	-175.5	70.0	-176.1	0.00	0.00	0.00
Mid	die Ava	lon								
9	400.0	0.00	0.00	9.395.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	500.0	0.00	0.00	9,495,4	-175.5	70.0	-176.1	0.00	0.00	0.00
				0.505.4			170.4			0.00
9	,600.0	0.00	0.00	9,595.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,700.0	0.00	0.00	9,695.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,800.0	0.00	0.00	9,795.4	-1/5.5	70.0	-1/6.1	0.00	0.00	0.00
9	,864.6	0.00	0.00	9,860.0	-1/5.5	/0.0	-176.1	0.00	0.00	0.00
Low	ver Ava	lon	2125							
9,	,900.0	0.00	0.00	9,895.4	-175.5	70.0	-176.1	0.00	0.00	0.00
9	,941.7	0.00	0.00	9,937.1	-175.5	/0.0	-176.1	0.00	0.00	0.00
KO	P - Bull	d 10.00				· •	· ·			
9	,950.0	0.83	352.90	9,945.4	-175.4	70.0 · ·	-176.1	10.00	10.00	0.00
10,	,000.0	5.83	352.90	9,995.3	-172.5	69.6	-173.2	10.00	10.00	0.00
10	,050.0	10.83	352.90	10,044.8	-165.3	68.7	-166.0	10.00	10.00	0.00
10,	,100.0	15.83	352.90	10,093.4	-153.9	67.3	-154.5	10.00	10.00	0.00
10	.150.0	20.83	352.90	10.140.9	-138.3	65.4	-138.9	10.00	10.00	0.00
10	200.0	25.83	352.90	10.186.8	-118.7	62.9	-119.3	10.00	10.00	0.00
10	250.0	30.83	352.90	10.230.8	-95.1	60.0	-95.7	10.00	10.00	0.00
10	.300.0	35.83	352.90	10.272.5	-67.9	56.6	-68.4	10.00	10.00	0.00
10	350.0	40.83	352.90	10,311.7	-37.1	52.8	-37.6	10.00	10.00	0.00
10	,366.4	42.47	352.90	10,324.0	-26.3	51.4	-26.8	10.00	10.00	0.00
1st	Bone S	pring Sand			· •	-			••	
10	,400.0	45.83	352.90	10,348.1	-3.1	48.5	-3.5	10.00	10.00	0.00
10	450.0	50.83	352.90	10,381.3	34.0	43. 9	33.6	10.00	10.00	0.00
10	500.0	55.83	352.90	10,411.2	73.8	39.0	73.4	10.00	10.00	0.00
10	550.0	60.83	352.90	10,437.4	116.0	33.7	115.7	10.00	10.00	0.00
10	,600.0	65.83	352.90	10,459.8	160.3	28.2	160.0	10.00	10.00	0.00
10	,650.0	70.83	352.90	10,478.3	206.4	22.4	206.2	10.00	10.00	0.00
10	,700.0	75.83	352.90	10,492.6	253.9	16.5	253.8	10.00	10.00	0.00
10	,750.0	80.83	352.90	10,502.7	302.5	10.5	302.4	10.00	10.00	0.00
10	,800.0	85.83	352.90	10,508.5	351.8	4.3	351.7	10.00	10.00	0.00
10	,848.9	90.72	352.90	10,510.0	400.2	-1.7	400.2	10.00	10.00	0.00
EO	C/TRN	DLS 2.00 TFC	9 89.94			· _ =		·		
10	,900.0	90.72	353.92	10,509.4	451.0	-7.6	451.1	2.00	0.00	2.00
11,	,000.0	90.72	355.92	10,508.1	550.6	-16.4	550.8	2.00	0.00	2.00
11	,100.0	90.72	357.92	10,506.8	650.5	-21.8	650.6	2.00	0.00	2.00
11	,1/6.5	90.72	359.45	10,505.9	/26.9	-23.5	/27.1	2.00	0.00	2.00

Intrepid Planning Report

EDM 5000.15 Single User Db Tap Rock Resources, LLC Database: Site (Gipple) Sec-33_T-24-S_R-35-E Local Co-ordinate Reference: KB @ 3309.0usft KB @ 3309.0usft Company: TVD Reference: Lea County, NM (NAD 83 NME) (Gipple) Sec-33_T-24-S_R-35-E Project: MD Reference: Site: North Reference: Grid Gipple Fed Com #114H Well: **Survey Calculation Method:** Minimum Curvature OWB Wellbore: Plan #1 Design:

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
Start 9589	.3 hold at 1117	6.5 MD							· · · · ·
11 200 0	90.72	359 45	10 505 6	750.4	-23.8	750.6	0.00	0.00	0.00
11 300 0	90.72	359.45	10,000.0	850.4	-20.0	850.6	0.00	0.00	0.00
11,000.0	00.72	350 45	10,504.5	950.4	-24.7	050.0	0.00	0.00	0.00
11,400.0	50.72	250 45	10,503.1	1 050 4	-23.7	950.0	0.00	0.00	0.00
11,500.0	90.72	359.45	10,501.6	1,050.4	-20.0	1,050.6	0.00	0.00	0.00
11,600.0	90.72	359.45	10,500.5	1,150.4	-27.6	1,150.6	0.00	0.00	0.00
11,700.0	90.72	359.45	10.499.3	1.250.4	-28.5	1.250.6	0.00	0.00	0.00
11.800.0	90.72	359.45	10.498.0	1.350.4	-29.5	1,350.6	0.00	0.00	0.00
11,900,0	90.72	359 45	10 496 8	1 450 3	-30.4	1 450 6	0.00	0.00	0.00
12 000 0	90.72	359 45	10 495 5	1 550 3	-31.4	1,550,6	0.00	0.00	0.00
12,100.0	90.72	359.45	10,494.2	1,650.3	-32.3	1,650.6	0.00	0.00	0.00
12.200.0	90.72	359.45	10.493.0	1.750.3	-33.3	1.750.5	0.00	0.00	0.00
12,300.0	90.72	359.45	10 491 7	1 850 3	-34.3	1 850 5	0.00	0.00	0.00
12 400 0	90.72	359 45	10 490 5	1 950 3	-35.2	1 950 5	0.00	0.00	0.00
12 500 0	90.72	359.45	10 489 2	2 050 3	-36.2	2 050 5	0.00	0.00	0.00
12,600.0	90.72	359.45	10,487.9	2,150.3	-37.1	2,000.5	0.00	0.00	0.00
12 700 0	90.72	350 45	10 486 7	2 250 2	-29.1	2 250 5	0.00	0.00	0.00
12,700.0	00.72	350.45	10,485.4	2,250.2	-30.1	2,250.5	0.00	0.00	0.00
12,000.0	00.72	359.45	10,403.4	2,350.2	-39.0	2,350.5	0.00	0.00	0.00
12,500.0	90.72	250 45	10,404.2	2,450.2	-40.0	2,450.5	0.00	0.00	0.00
13,000.0	90.72	359.45	10,402.9	2,000.2	-40.9	2,550.5	0.00	0.00	0.00
13,100.0	90.72	559.45	10,401.0	2,050.2	-41.9	2,050.5	0.00	0.00	0.00
13,200.0	90.72	359.45	10,480.4	2,750.2	-42.8	2,750.5	0.00	0.00	0.00
13,300.0	90.72	359.45	10,479.1	2,850.2	-43.8	2,850.5	0.00	0.00	0.00
13,400.0	90.72	359.45	10,477.9	2,950.2	-44.7	2,950.4	0.00	0.00	· 0.00
13,500.0	90.72	359.45	10,476.6	3,050.1	-45.7	3,050.4	0.00	0.00	0.00
13,600.0	90.72	359.45	10,475.3	3,150.1	-46.7	3,150.4	0.00	0.00	0.00
13,700.0	90.72	359.45	10,474.1	3,250.1	-47.6	3,250.4	0.00	0.00	0.00
13,800.0	90.72	359.45	10,472.8	3,350.1	-48.6	3,350.4	0.00	0.00	0.00
13,900.0	90.72	359.45	10.471.6	3,450,1	-49.5	3.450.4	0.00	0.00	0.00
14,000.0	90.72	359.45	10.470.3	3.550.1	-50.5	3.550.4	0.00	0.00	0.00
14,100.0	90.72	359.45	10,469.0	3,650.1	-51.4	3,650.4	0.00	0.00	0.00
14 200 0	90.72	359 45	10 467 8	3 750 1	-52.4	3 750 4	0.00	0.00	0.00
14 300.0	90.72	359.45	10 466 5	3,850,0	-53.3	3 850 4	0.00	0.00	0.00
14 400 0	90.72	359.45	10,465.2	3 950 0	-54 3	3 950 4	0.00	0.00	0.00
14 500 0	90.72	359.45	10,100.2	4 050 0	-55.2	4 050 4	0.00	0.00	0.00
14,600.0	90.72	359.45	10 462 7	4 150 0	-56.2	4 150 4	0.00	0.00	0.00
14 700 0	90.72	350 45	10,102.1	4,100.0	57.1	4 250 2	0.00	0.00	0.00
14,700.0	90.72	359.45	10,401.5	4,250.0	-57.1	4,250.3	0.00	0.00	0.00
14,000.0	90.72	359.45	10,400.2	4,350.0	-36.1	4,350.3	0.00	0.00	0.00
14,900.0	90.72	359.45	10,458.9	4,450.0	-59.1	4,450.3	0.00	0.00	0.00
15,000.0	90.72	359.45	10,457.7	4,550.0	-60.0	4,550.3	0.00	0.00	0.00
15,100.0	90.72	359.45	10,450.4	4,049.9	-01.0	4,650.3	0.00	0.00	0.00
15,200.0	90.72	359.45	10,455.2	4,749.9	-61.9	4,750.3	0.00	0.00	0.00
15,300.0	90.72	359.45	10,453.9	4,849.9	-62.9	4,850.3	0.00	0.00	0.00
15,400.0	90.72	359.45	10,452.6	4,949.9	-63.8	4,950.3	0.00	0.00	0.00
15,500.0	90.72	359.45	10,451.4	5,049. 9	-64.8	5,050.3	0.00	0.00	0.00
15,600.0	90.72	359.45	10,450.1	5,149.9	-65.7	5,150.3	0.00	0.00	0.00
15,700.0	90.72	359.45	10,448.9	5,249.9	-66.7	5,250.3	0.00	0.00	0.00
15,800.0	90.72	359.45	10,447.6	5,349.9	-67.6	5,350.3	0.00	0.00	0.00
15,900.0	90.72	359.45	10,446.3	5,449.8	-68.6	5,450.3	0.00	0.00	0.00
16,000.0	90.72	359.45	10,445.1	5,549.8	-69.5	5,550.2	0.00	0.00	0.00
16,100.0	90.72	359.45	10,443.8	5,649.8	-70.5	5,650.2	0.00	0.00	0.00
16 200 0	00 70	350 /6	10 442 6	5 740 9	71 F	5 750 9	0.00	0.00	0.00
16 200.0	50.7Z	359.45 350 AF	10,442.0	5 840 9	-/ 1,0 A C7	5,750.2	0.00	0.00	0.00
10,300.0	90.72	\$ 59.45	10,441.3	0,049.0	-12.4	5,650.2	0.00	0.00	0.00

Intrepid

Planning Report

EDM 5000.15 Single User Db Tap Rock Resources, LLC Database: Local Co-ordinate Reference: Site (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft Company: TVD Reference: KB @ 3309.0usft Project: Lea County, NM (NAD 83 NME) MD Reference: (Gipple) Sec-33_T-24-S_R-35-E Site: North Reference: Grid Gipple Fed Com #114H Minimum Curvature Well: **Survey Calculation Method:** OWB Wellbore: Plan #1 Design:

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	16,400.0	90.72	359.45	10,440.0	5,949.8	-73.4	5,950.2	0.00	0.00	0.00
	16,500.0	90.72	359.45	10,438.8	6,049.8	-74.3	6,050.2	0.00	0.00	0.00
-	16,600.0	90.72	359.45	10,437.5	6,149.8	-75.3	6,150.2	0.00	0.00	0.00
	16,700.0	90.72	359.45	10,436,3	6.249.7	-76.2	6.250.2	0.00	0.00	0.00
	16,800.0	90.72	359.45	10.435.0	6.349.7	-77.2	6,350.2	0.00	0.00	0.00
	16,900.0	90.72	359.45	10.433.7	6.449.7	-78.1	6,450,2	0.00	0.00	0.00
	17.000.0	90.72	359.45	10.432.5	6.549.7	-79.1	6.550.2	0.00	0.00	0.00
	17,100.0	90.72	359.45	10,431.2	6,649.7	-80.0	6,650.2	0.00	0.00	0.00
	17.200.0	90.72	359.45	10.430.0	6,749,7	-81.0	6.750.1	0.00	0.00	0.00
	17,300.0	90.72	359.45	10,428,7	6.849.7	-81.9	6,850.1	0.00	0.00	0.00
	17,400.0	90.72	359.45	10.427.4	6.949.7	-82.9	6,950,1	0.00	0.00	0.00
	17.500.0	90.72	359.45	10.426.2	7.049.6	-83.9	7.050.1	0.00	0.00	0.00
	17,600.0	90.72	359.45	10,424.9	7,149.6	-84.8	7,150.1	0.00	0.00	0.00
	17,700.0	90.72	359.45	10,423.6	7,249.6	-85.8	7,250.1	0.00	0.00	0.00
	17,800.0	90.72	359.45	10,422.4	7,349.6	-86.7	7,350.1	0.00	0.00	0.00
	17,900.0	90.72	359.45	10,421.1	7,449.6	-87.7	7,450.1	0.00	0.00	0.00
	18,000.0	90.72	359.45	10,419.9	7,549.6	-88.6	7,550.1	0.00	0.00	0.00
	18,100.0	90.72	359.45	10,418.6	7,649.6	-89.6	7,650.1	0.00	0.00	0.00
	18,200.0	90.72	359.45	10,417.3	7,749.6	-90.5	7,750.1	0.00	0.00	0.00
	18,300.0	90.72	359.45	10,416.1	7,849.5	-91.5	7,850.1	0.00	0.00	0.00
	18,400.0	90.72	359.45	10,414.8	7,949.5	-92.4	7,950.1	0.00	0.00	0.00
	18,500.0	90.72	359.45	10,413.6	8,049.5	-93.4	8,050.0	0.00	0.00	0.00
	18,600.0	90.72	359.45	10,412.3	8,149.5	-94.3	8,150.0	0.00	0.00	0.00
	18,700.0	90.72	359.45	10,411.0	8,249.5	-95.3	8,250.0	0.00	0.00	0.00
	18,800.0	90.72	359.45	10,409.8	8,349.5	-96.3	8,350.0	0.00	0.00	0.00
	18,900.0	90.72	359.45	10,408.5	8,449.5	-97.2	8,450.0	0.00	0.00	0.00
	19,000.0	90.72	359.45	10,407.3	8,549.5	-98.2	8,550.0	0.00	0.00	0.00
	19,100.0	90.72	359.45	10,406.0	8,649.4	-99.1	8,650.0	0.00	0.00	0.00
	19,200.0	90.72	359.45	10,404.7	8,749.4	-100.1	8,750.0	0.00	0.00	0.00
	19,300.0	90.72	359.45	10,403.5	8,849.4	-101.0	8,850.0	0.00	0.00	0.00
	19,400.0	• 90.72	359.45	10,402.2	8,949.4	-102.0	8,950.0	0.00	0.00	0.00
	19,500.0	90.72	359.45	10,401.0	9,049.4	-102.9	9,050.0	0.00	0.00	0.00
	19,600.0	90.72	359.45	10,399.7	9,149.4	-103.9	9,150.0	0.00	0.00	0.00
	19,700.0	90.72	359.45	10,398.4	9,249.4	-104.8	9,249.9	0.00	0.00	0.00
	19,800.0	90.72	359.45	10,397.2	9,349.4	-105.8	9,349.9	0.00	0.00	0.00
	19,900.0	90.72	359.45	10,395.9	9,449.3	-106.7	9,449.9	0.00	0.00	0.00
	20,000.0	90.72	359.45	10,394.7	9,549.3	-107.7	9,549.9	0.00	0.00	0.00
	20,100.0	90.72	359.45	10,393.4	9,649.3	-108.7	9,649.9	0.00	0.00	0.00
	20,200.0	90.72	359.45	10,392.1	9,749.3	-109.6	9,749.9	0.00	0.00	0.00
	20,300.0	90.72	359.45	10,390.9	9,849.3	-110.6	9,849.9	0.00	0.00	0.00
	20,400.0	90.72	359.45	10,389.6	9,949.3	-111.5	9,949.9	0.00	0.00	0.00
	20,500.0	90.72	359.45	10,388.4	10,049.3	-112.5	10,049.9	0.00	0.00	0.00
	20,600.0	90.72	359.45	10,387.1	10,149.3	-113.4	10,149.9	0.00	0.00	0.00
	20,700.0	90.72	359.45	10,385.8	10,249.2	-114.4	10,249.9	0.00	0.00	0.00
	20,765.8	90.72	359.45	10,385.0	10,315.0	-115.0	10,315.6	0.00	0.00	0.00
	TD at 20765	i.8								

08/22/19 10:44:07AM

Intrepid

Planning Report

Database: Company: Project:	EDM 5000.15 Single User Db Tap Rock Resources, LLC Lea County, NM (NAD 83 NME)	Local Co-ordinate Reference: TVD Reference: MD Reference:	Site (Gipple) Sec-33_T-24-S_R-35-E KB @ 3309.0usft KB @ 3309.0usft
Site:	(Gipple) Sec-33_T-24-S_R-35-E	North Reference:	Grid
Well:	Gipple Fed Com #114H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	Plan #1		

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP (Gipple Fed Com - plan misses targ - Point	n 0.00 jet center by	0.00 1.0usft at 2	10,385.0 0685.8usft	10,235.0 MD (10386.0	-114.0 2 TVD, 1023	436,196.00 5.0 N, -114.2 E)	840,548.00	32° 11' 43.730 N	103° 21' 57.827 W
PBHL (Gipple Fed Co - plan hits target c - Rectangle (sides	-0.72 center s W100.0 H1	359.45 0,441.0 D3	10,385.0 0.0)	10,315.0	-115.0	436,276.00	840,547.00	32° 11' 44.522 N	103° 21' 57.831 W
FTP (Gipple Fed Com - plan misses targ	n 0.00 et center by	0.00 210.4usft a	10,510.0 it 10423.0u	-125.0 sft MD (1036	-14.0 3.8 TVD, 13	425,836.00 .6 N, 46.4 E)	840,648.00	32° 10' 1.212 N	103° 21' 57.748 W

- Point

Formations

Mea De (u	sured Ve opth D sft) (1	ertical epth usft)	Name	 Lithology	Dip (°)	Dip Direction (°)
	469.0	469.0	Rustler Anhydrite			
	894.0	894.0	Top Salt			
4	, 812.3	4,809.0	Base Salt			
5	5,272.8	5,269.0	Delaware Mountain Gp			
5	5,277.8	5,274.0	Lamar			
. 5	5,302.8	5,299.0	Bell Canyon			
5	5,327.9	5,324.0	Ramsey Sand			
6	5,268.6	6,264.0	Cherry Canyon			
7	,748.6	7,744.0	Brushy Canyon			
9	0,048.6	9,044.0	Bone Spring Lime			
9	9,068.6	9,064.0	Upper Avalon			
9	9,393.6	9,389.0	Middle Avalon			
9	9,864.6	9,860.0	Lower Avalon			
10),366.4 1	0,324.0	1st Bone Spring Sand			

Plan Annotations

	Measured	Vertical	Local Coordinates		Local Coordinates			
	Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment			
L,	2,000.0	2,000.0	0.0	0.0	NUDGE - Build 2.00			
	2,140.1	2,140.1	-3.2	1.3	HOLD - 3724.3 at 2140.1 MD			
	5,864.5	5,859.9	-172.3	68.7	DROP2.00			
	6,004.6	6,000.0	-175.5 ~	70.0	HOLD - 3937.1 at 6004.6 MD			
	9,941.7	9,937.1	-175.5	70.0	KOP - Build 10.00			
	10,848.9	10,510.0	400.2	-1.7	EOC/TRN - DLS 2.00 TFO 89.94			
	11,176.5	10,505.9	726.9	-23.5	Start 9589.3 hold at 11176.5 MD			
	20,765.8	10,385.0	10,315.0	-115.0	TD at 20765.8			

Elevation above Sea Level:

3283'

DRILLING PROGRAM

1. Estimated Tops

Formation	TVD	MD	Lithologies	Bearing
Quaternary Deposits	0	0	Surface	None
Rustler Anhydrite	469	469	2	Salt
Salado	894	894	Salt	Salt
Base Salt	4809	4812		Salt
Lamar	5274	5283	Limestone	None
Bell Canyon	5299	5302	Sandstone	Hydrocarbons
Cherry Canyon	6264	6269	Sandstone	Hydrocarbons
Brushy Canyon	7744	7749	Sandstone	Hydrocarbons
Bone Spring	9044	9048	Limestone	Hydrocarbons
КОР	9937	9941	Sandstone	Hydrocarbons
1st Bone Spring	10324	10366	Sandstone	Hydrocarbons
TD	10385	20765	Shale	Hydrocarbons

2. Notable Zones

1st Bone Spring Sand is the target formation.

3. Pressure Control

Pressure Control Equipment (See Schematics):

A 15,000' 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head.

BOP Test procedure will be as follows:

After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs.

Variance Requests:

Tap Rock requests a variance to run a multi-bowl speed head for setting the Intermediate 1, and Production Strings. Tap Rock requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

Tap Rock requests approval to possibly utilize a spudder rig to drill and set casing for the surface interval on this well. The spudder rig will be possibly utilized in order to reduce cost and save time. The wellhead will be installed and tested as soon as the surface casing is cut off per the existing COAs. A blind flange with the same pressure rating as the wellhead will be installed on the well. Once the spudder rig is removed, Tap Rock will secure the wellhead area by placing a guard rail around the cellar. Pressure will be monitored and a means for intervention will be maintained while the drilling rig is not over the well. Spudder rig operations are expected to take 2-3 days per well. Three wells on the pad will have surface casing set by the spudder rig as a part of this operation. The BLM will be notified 24 hours prior to commencing spudder rig operations. Within 90 days of the departure of the spudder rig, drilling operations will recommence on these wells. This rig will have a BOP stack equal or greater to the pressure rating required in the COAs. The BLM will be notified 24 hours before the larger rig moves on the pre-set wells. Tap Rock will have supervision on the spudder rig to ensure compliance with all BLM and NMOCD regulations.

4. Casing & Cement

All Casing will be new.

Name	Hole Size	Casing Size	Standard	Tapered	Top MD	Bottom MD	Top TVD	BTM TVD	Grade	Weight	Thread	Collapse	Burst	Tension
Surface	17 1/2	13 3/8	API	No	0	550	0	550	J-55	54.5	BUT	1.13	1.15	1.6
1st Intermediate	12 1/4	9 5/8	API	No	0	5293	0	5284	J-55	40	BUTT	1.13	1.15	1.6
Production	8 3/4	5 1/2	NON API	No	0	20765	0	10385	P-110	20	ŤΧΡ	1.13	1.15	1.6

Name	Туре	Top MD	Sacks	Yield	Cu. Ft	Weight	Excess	Cement	Additives
Surface	Tail	0	566	1.35	764	14.8	100%	с	5% NCI + LCM
1 - + - +	Lead	0	1004	2.18	2188	12.7	65%	С	Bentonite + 1% CaCL2 + 8% NaCl + LCM
	Tail	4293	411	1.33	547	14.8	65%	С	5% NaCl + LCM
Production	Tail	4793	2952	1.71	5048	14.2	25%	н	Fluid Loss + Dispersant + Retarder + LCM

5. Mud Program

Electronic Pason mud monitor system complying with Onshore Order 1 will be used. All necessary mud products (e. g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Name	Тор	Bottom	Туре	Mud Weight	Visc	Fluid Loss
Surface	0	550	FW Spud Mud	8.30	28	NC
Intermediate	550	5330	Brine Water	10.00	30-32	NC
Production	5330	20765	Cut Brine	9.00	15-20	<10

6. Cores, Tests, & Logs

- Electric Logging Program: No open-hole logs are planned at this time for the pilot hole.
- GR will be collected while drilling through the MWD tools from 9.625" casing shoe to TD.
- A 2-person mud logging program will be used from 9.625" casing shoe to TD.
- No DSTs or cores are planned at this time.
- CBL w/ CCL from as far as gravity will let it fall to TOC.
- Surface casing will be set in the Rustler.
- Intermediate 1 will be set in the Lamar.
- •. Production will be set in the 1st Bone Spring Sand

7. Down Hole Conditions

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 4,860 psi. Expected bottom hole temperature is \approx 170° F.

Tap Rock does not anticipate that there will be enough H2S from the surface to the Wolfcamp formations to meet the BLM's Onshore Order 6 requirements for the submission of an "H2S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Tap Rock has an H2S safety package on all wells and an "H2S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be safely flared. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. Other Conditions

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 30 days. If production casing is run an additional 60 days will be required to complete and construct surface facilities.

5,000 psi BOP Stack

Multi-bowl Wellhead

к

10M Choke Layout

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400046402

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Type: OIL WELL

Well Number: 114H Well Work Type: Drill

Submission Date: 08/27/2019

Row(s) Exist? NO

Highlighted data reflects the most recent changes Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Gipple_Existing_Roads_Map_v1_081319_20191219094611.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Gipple_New_Access_Roads_Map_Plats_20191219094643.pdf

New road type: RESOL	JRCE		
Length: 2032.21	Feet	Width (ft.): 30	
Max slope (%): 0		Max grade (%): 1	
Army Corp of Engineer	rs (ACOE) permit red	quired? Nັ	
ACOE Permit Number(s):		
New road travel width:	24		
New road access eros	on control: Crowned	l and ditched	Ĺ
New road access plan	or profile prepared?	'N	
New road access plan	attachment:		
Access road engineeri	ng design? N		
·			

Access road engineering design attachment:

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Turnout? N

Access surfacing type: OTHER Access topsoil source: ONSITE Access surfacing type description: Caliche Access onsite topsoil source depth: 6 Offsite topsoil source description: Onsite topsoil removal process: Grader Access other construction information: Access miscellaneous information: Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER Drainage Control comments: Crowned and ditched Road Drainage Control Structures (DCS) description: None Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Gipple_114H_1mi_well_Map_v1_020619_20191219094824.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Production Facilities map:

Gipple_Facilities_Map_Plats_20191219094844.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Well Number: 114H

Water source type: OTHERDescribe type: Fee Fee Fed - SUPO not requiredWater source use type:OTHERSource latitude:Source datum:Water source permit type:OTHERWater source transport method:TRUCKING

Source land ownership: OTHER

Source transportation land ownership: OTHER

Water source volume (barrels): 1

Source volume (gal): 42

Describe use type: Fee Fee Fed - SUPO not required

Source longitude:

Describe land ownership: Fee Fee Fed - SUPO not ru

Describe transportation land ownership: Fee Fee Fe **Source volume (acre-feet):** 0.00012889

Water source and transportation map:

Gipple_Water_Caliche_Map_v1_091619_20191219094922.pdf

Water source comments:

New water well? N

New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of	i aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside	diameter (in.):
New water well casing?	Used casing source	ce:
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth	(ft.):
Well Production type:	Completion Metho	od:
Water well additional information:		
State appropriation permit:		

Well Number: 114H

Additional information attachment:

Section 6 - Construction Materials Using any construction materials: YES Construction Materials description: Caliche pit Construction Materials source location attachment: Gipple_Water_Caliche_Map_v1_091619_20191219095210.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Fee Fee Fed - SUPO not required

Amount of waste: 1000 barrels

Waste disposal frequency : Daily

Safe containment description: Fee Fee Fed - SUPO not required

Safe containmant attachment:

Waste disposal type: OTHER Disposal location ownership: OTHER

Disposal type description: Fee Fee Fed - SUPO not rquired

Disposal location description: Fee Fee Fed - SUPO not required

Reserve Pit

Reserve Pit being used? N

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Well Number: 114H

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.) Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Gipple_114H_Well_Site_Layout_v2_100919_20191020124706.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance	Multiple Well Pad Name: Gipple Fed Com			
· · · · · · · · · · · · · · · · · · ·	Multiple Well Pad Number: 134H			
Recontouring attachment:				
Gipple_Well_Pad_Recontour_Plats_201912190953	52.pdf			
Gipple Interim Rec 091619 20191219095403 pdf				

Drainage/Erosion control construction: Crowned and ditched
Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 4.44	Well pad interim reclamation (acres): 1.89	Well pad long term disturbance (acres): 2.55
Road proposed disturbance (acres): 1.4	Road interim reclamation (acres): 0 Powerline interim reclamation (acres):	Road long term disturbance (acres): 1.4
(acres): 0 Pipeline proposed disturbance (acres): 0.06 Other proposed disturbance (acres):	0 Pipeline interim reclamation (acres): 0.06 Other interim reclamation (acres): 0	Powerline long term disturbance (acres): 0 Pipeline long term disturbance (acres): 0 Other long term disturbance (acres):
3.67 Total proposed disturbance: 9.57	Total interim reclamation: 1.95	3.67 Total long term disturbance: 7.6199999999999999

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Disturbance Comments:

Reconstruction method: See submitted Environmental Assessment

Topsoil redistribution: See submitted Environmental Assessment

Soil treatment: None

Existing Vegetation at the well pad: Mesquite and/or Creosote bush

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Mesquite and/or Creosote bush

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Mesquite and/or Creosote bush

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Mesquite and/or Creosote bush

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Su	ummary
Seed Type	Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Operator Contact/Resp	ponsible Official Contact Info	
First Name:	Last Name:	
Phone:	Email:	
Seedbed prep:		
Seed BMP:		
Seed method:		
Existing invasive species? N		
Existing invasive species treatme	ent description:	
Existing invasive species treatme	ent attachment:	
Weed treatment plan description:	To BLM standards	
Weed treatment plan attachment:		· · · · · · · · · · · · · · · · · · ·
Monitoring pian description: To B	LM standards	
Monitoring plan attachment:		
Success standards: To BLM satisf	action	
Pit closure description: No pit		
Pit closure attachment:		

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Number: 114H

Fee Owner Address: New Mexico Ten LLLP

Fee Owner: Dean Moor Phone: (214)316-0771

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: AGREEMENT

Surface Access Agreement Need description: Fee Fee Fed - SUPO not required

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

Right of Way needed? N ROW Type(s): Use APD as ROW?

ROW Applications

SUPO Additional Information: Use a previously conducted onsite? N Previous Onsite information:

Other SUPO Attachment

Gipple_surf_own_agreement_20191219095852.pdf

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400046402

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Type: OIL WELL

Submission Date: 08/27/2019

Well Number: 114H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

PWD disturbance (acres):

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Number: 114H

Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: **Section 4 - Injection** Would you like to utilize Injection PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): **Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:**

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Injection well name:

Injection well API number:

.

PWD disturbance (acres):

·

· .

PWD disturbance (acres):

Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Number: 114H

Other PWD type description: Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Bond Info Data Report 12/31/2019

APD ID: 10400046402 Operator Name: TAP ROCK OPERATING LLC

Well Name: GIPPLE FED COM

Well Type: OIL WELL

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001443

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Submission Date: 08/27/2019

Well Number: 114H Well Work Type: Drill Highlighted data reflects the most recent changes Show Final Text

ţ