Form 3160-3 (June 2015)		FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018							
UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA	S NTERIOR AGEMENT	-		5. Lease Serial No. NMNM0001206A					
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee or Tribe Name					
Ia. Type of work: ✓ DRILL RR Ib. Type of Well: ✓ Oil Well Gas Well Other Ic. Type of Completion: Hydraulic Fracturing ✓ Sin	7. If Unit or CA Agreement, Name and No. BIG EDDY / NMNM068294X 8. Lease Name and Well No. BIG EDDY UNIT 29W VADER 103H								
2. Name of Operator XTO PERMIAN OPERATING LLC (37 3076)				9. API Well No.	-4.67				
3a. Address 6401 Holiday Hill Road, Bldg 5 Midland TX 79707	3b. Phone N (432)682-88	o. (include area cod 873	e)	10. Field and Pool, WILDCAT; BONE	or Explor SPRING	atory 53560			
 Location of Well (Report location clearly and in accordance w At surface SWSW / 349 FSL / 325 FWL / LAT 32.56693 	vith any State 39 / LONG -	requirements.*) 103.778785	7	11. Sec., T. R. M. of SEC 16 / T20S / R	r Blk. and 32E / NM	Survey or Area MP			
At proposed prod. zone LOT 4 / 660 FSL / 50 FWL / LAT	32.567951	LONG -103.8139	95						
14. Distance in miles and direction from nearest town or post offi-	ce*			12. County or Paris LEA	h	13. State NM			
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No of ac 2075.4	res in lease	17. Spaci 319.53	ing Unit dedicated to this well					
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed 9602 feet /	d Depth 20483 feet	20. BLM FED: CC	/BIA Bond No. in file OB000050					
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3513 feet	22. Approxi 01/30/2020	mate date work will	start*	23. Estimated duration 90 days					
	24. Attac	hments							
The following, completed in accordance with the requirements of (as applicable)	f Onshore Oil	and Gas Order No. 1	, and the I	Iydraulic Fracturing r	ule per 4:	3 CFR 3162.3-3			
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	c operation	is unless covered by a	n existing	bond on file (see			
 A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office) 	m Lands, the).	 Operator certific Such other site sp BLM. 	ation. ecific info	rmation and/or plans as	s may be r	equested by the			
25. Signature (Electronic Submission)	Name Stepha	(Printed/Typed) anie Rabadue / Ph	: (432)62	D-6714	Date 10/30/2	2019			
Title	•				•				
Approved by (Signature) (Electronic Submission)	Name Cody	(Printed/Typed) Layton / Ph: (575)2	234-5959		Date 12/13/2	2019			
Title Assistant Field Manager Lands & Minerals	Office CARL	SBAD							
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds legal o	or equitable title to the	iose rights	in the subject lease w	hich wou	ld entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of	nake it a crime or representati	for any person know ons as to any matter	wingly and within its	willfully to make to a jurisdiction.	any depar	tment or agency			
GCP Rec 01/21/2000		CONNIT	IONS	KZ p1/2	.1/20	1D			

(Continued on page 2)

APP Approval Date: 12/13/2019

EU TIAN

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Additional Operator Remarks

Location of Well

1. SHL: SWSW / 349 FSL / 325 FWL / TWSP: 20S / RANGE: 32E / SECTION: 16 / LAT: 32.566939 / LONG: -103.778785 (TVD: 0 feet, MD: 0 feet) PPP: NENE / 660 FSL / 100 FEL / TWSP: 20S / RANGE: 32E / SECTION: 16 / LAT: 32.567794 / LONG: -103.780165 (TVD: 9712 feet, MD: 10059 feet) BHL: LOT 4 / 660 FSL / 50 FWL / TWSP: 20S / RANGE: 32E / SECTION: 18 / LAT: 32.567951 / LONG: -103.813995 (TVD: 9602 feet, MD: 20483 feet)

BLM Point of Contact

Name: Title: Phone:

Email:

Approval Date: 12/13/2019

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 12/13/2019

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	XTO Permian Operating, LLC
LEASE NO.:	NMNM-0001206A
WELL NAME & NO.:	Big Eddy Unit 29W Vader 103H
SURFACE HOLE FOOTAGE:	0349' FSL & 0325' FWL
BOTTOM HOLE FOOTAGE	0660' FSL & 0050' FWL Sec. 18, T. 20 S., R 32 E.
LOCATION:	Section 16, T. 20 S., R 32 E., NMPM
COUNTY:	Lea County, New Mexico

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

<u>Unit Wells</u>

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.

Page 1 of 6

- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Potash Areas:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

R-111-P Potash Capitan Reef Possibility of water flows in the Artesia Group and Salado. Possibility of lost circulation in the Rustler, Artesia Group, and Capitan Reef.

Page 2 of 6

- 1. The 18-5/8 inch surface casing shall be set at approximately 1080 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

13-3/8 1st Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

2. The minimum required fill of cement behind the 13-3/8 inch 1st intermediate casing is:

Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to potash.

9-5/8 2nd Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

3. The minimum required fill of cement behind the 9-5/8 inch 2nd intermediate casing, which shall be set at approximaltey 4700 feet (in the Bell Canyon Formation), is:

Operator has proposed DV tool at depth of 2780', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Page 3 of 6

- a. First stage to DV tool:
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to potash and Capitan Reef. Excess calculates to 0% Additional cement will be required.

Centralizers required through the curve and a minimum of one every other joint.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet above the Capitan Reef (Top of Capitan Reef estimated at 2702'). Operator shall provide method of verification. Excess calculates to 24% - Additional cement may be required.
- 5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 6. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

C. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.

- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 2000 (2M) psi.
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 13-3/8 1st intermediate casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13-3/8 1st intermediate casing shoe shall be 3000 (3M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the 9-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.

Page 5 of 6

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 120319

Page 6 of 6

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Stephanie Rabadue		Signed on: 06/15/2018									
Title: Regulatory Coordinator											
Street Address:											
City:	State:	Zip:									
Phone: (432)620-6714											
Email address: stephanie_rabad	ue@xtoenergy.com										
Field Representative	e										
Representative Name:											
Street Address:											
City:	State:	Zip:									
Phone: (432)620-6714											
Email address: stephanie_rabad	ue@xtoenergy.com										

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** Application Data Report 12/18/2019

APD ID: 10400049102

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: BIG EDDY UNIT 29W VADER

Well Type: OIL WELL

Submission Date: 10/30/2019

Well Number: 103H Well Work Type: Drill

Submission Date: 10/30/2019

Title: Regulatory Coordinator

Section 1 - General

APD ID: 10400049102

BLM Office: CARLSBAD

Agreement in place? YES

Federal/Indian APD: FED

Lease number: NMNM0001206A Surface access agreement in place? Lease Acres: 2075.4

Allotted?

User: Stephanie Rabadue

Tie to previous NOS?

Reservation:

APD Operator: XTO PERMIAN OPERATING LLC

Is the first lease penetrated for production Federal or Indian? FED

Federal or Indian agreement: FEDERAL

Agreement number: NMNM068294X

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

Operator letter of designation:

Operator Info

Operator Organization Name: XTO PERMIAN OPERATING LLC

Operator Address: 6401 Holiday Hill Road, Bldg 5

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)682-8873

Operator Internet Address:

Section 2 - Well Information

Well in Master Develop	ment Plan? NO
------------------------	---------------

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: BIG EDDY UNIT 29W VADER

Field/Pool or Exploratory? Field and Pool

Master Development Plan name: Master SUPO name: Master Drilling Plan name: Well Number: 103H Field Name: WILDCAT; BONE Pool Name:

Zip: 79707

Well API Number:

Is the proposed well in an area containing other mineral resources? USEABLE WATER, POTASH

SPRING

Page 1 of 3

Operator Name:	XTO PERMIAN	OPERATING LLC
Well Name: BIG	EDDY UNIT 29V	V VADER

.

Well Number: 103H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, POTASH

.

Is the proposed well in a Helium product	n area? N Use Existing Well Pad	Y New surface disturbance? N									
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Nam	e: BEU Number: 29									
Well Class: HORIZONTAL	DI Number of Legs: 1										
Well Work Type: Drill											
Well Type: OIL WELL											
Describe Well Type:											
Well sub-Type: DELINEATION											
Describe sub-type:											
Distance to town: D	tance to nearest well: 0 FT	Distance to lease line: 349 FT									
Reservoir well spacing assigned acres M	asurement: 319.53 Acres										
Well plat: BEU_DI29_Vader_103H_C10	_20191030094402.pdf										
Well work start Date: 01/30/2020	Duration: 90 DAYS										
Section 3 - Well Location T	ble										
Survey Type: RECTANGULAR											
Describe Survey Type:											
Datum: NAD83	Vertical Datum: NAVD8	8									
Survey number: 2019072121	Reference Datum: GRC	Reference Datum: GROUND LEVEL									

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	349	FSL	325	FW	205	32E	16	Aliquot	32.56693	-	LEA	NEW	NEW	s	STATE	351	0	0	N
Leg				L				sws	9	103.7787		MEXI	MEXI			3			
#1								W		85		CO	CO						
КОР	349	FSL	325	FW	20S	32E	16	Aliquot	32.56693	-	LEA	NEW	NEW	s	STATE	-	552	552	N
Leg				L				sws	9	103.7787		MEXI	MEXI			200	0	0	
#1								w		85		co	co			7			
PPP	660	FSL	100	FEL	20S	32E	16	Aliquot	32.56779	-	LEA	NEW	NEW	F	NMNM	-	100	971	Y
Leg								NENE	4	103.7801		MEXI	MEXI		000120	619	59	2	
#1-1										65		co	co		6A	9			

Page 2 of 3

Operator Name: XTO PERMIAN OPERATING LLC Well Name: BIG EDDY UNIT 29W VADER

Well Number: 103H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD .	Will this well produce from this lease?
EXIT	660	FSL	100	FW	20S	32E	18	Lot	32.56795	-	LEA	NEW	NEW	F	NMNM	-	204	960	Y
Leg				L				4		103.8138		MEXI	MEXI		000120	608	33	2	
#1						1				33		co	co		6A	9			
BHL	660	FSL	50	FW	20S	32E	18	Lot	32.56795	- ·	LEA	NEW	NEW	F	NMNM	-	204	960	Y
Leg			1	L				4	1	103.8139		MEXI	MEXI		000120	608	83	2	
#1										95		co	co		6A	9			

Page 3 of 3

Casing	Design	+		÷ .	↓ ↓·····	· · · · · ·	·	 			‡
	Hole Size	Depth	OD Cag	Weight	Collar	Grade	New/Uned	SF Barat	SF Collapse	SF Tennion	
	24*	0' - 1080'	18-5/8"	87 <u>.</u> 5#	STC	H-40	New	2.19	1.27	5.92	
+	17-1/ 2 "	0' - 2470'	13-3/8**	54.5#	STC	J-55	New	2.36	1.45	3.82	
	12-1/4 ⁿ	0' 4980'	9-5/8"	36#	LTC	1-55	New	1.40	1.71	2.53	
	8-3/4*	0' - 21477	5-1/2"	17#	BIC	P-110	New	1.12	1.62	2.18	
· · · · · · · · · · · · · · · · · · ·	XTO reque 13-3/8° & 5-1/2" tensi	sts to utilize cer 9-5/8" Collapse on calculated u	trafizers on analyzed t sing vertica	ity in the ising 50% d hanging	curve after the K evacuation base weight plus the l	OP and only a min d on regional expe lateral weight mult	innum of e rience. ipfied by a	ne eve	n factor o	print_ pf 0_35	+
• • WELLHI	XTO reque: 13-3/8° & 5-1/2" tensi EAD:	sts to utilize cer 9-5/8° Collapse on calculated u	trafizers on analyzed t sing vertica	aly in the output of the outpu	curve after the K evacuation base weight plus the l	OP and only a min d on regional expe lateral weight mult	imum of e nience. iplied by a	ine eve	n factor o	oint.	
• • WELLHI	XTO reques 13-3/8° & 5-1/2" tensi EAD: Temporary W	sts to utilize cer 9-5/8° Collapse on calculated u eil/head	thatizers on analyzed t sing vertica	ily in the output of the sing 50% of the sing 50% of the sing 50% of the sing sing sing sing sing sing sing sing	curve after the K evacuation base weight plus the l	OP and only a min d on regional expe ateral weight mult	innum of e nience. ipfied by a	ine eve	n factor o	omt. of 0.35	
• • •	XTO request 13-3/8° & 5-1/2" tensi EAD: Temporary W	sts to utilize cer 9-5/8° Collapse ion calculated u ellihead 8-5/8° SOW bo	thrafizers of analyzed t sing vertica strom x 21-	ly in the sing 50% d hanging -1/4" 2M (curve after the K evacuation base weight plus the l	OP and only a min d on regional expe ateral weight mult	imum of e nience. ipfied by a	frictio	n factor o	<u>joint.</u>	
• • WELLHI	XTO reque: 13-3/8° & 5-1/2" tensi EAD: Temporary WA • 1 <u>Pe</u>	sts to utilize cer 9-5/8° Collapse on calculated u ellhead 8-5/8° SOW bo rmanent Wellhe	thrafizers on analyzed to sing vertice sittom x 21- ad – GE R	ly in the output of the sing 50% of the sing 50% of the sing set of the sing set of the sing set of the sing set of the single set of the	curve after the K evacuation base weight plus the l top flange. bowl System	OP and only a min d on regional expe ateral weight mult	imum of e rience. iphed by a	frictio	ary other j n factor o	of 0.35	
• • WELLHI	XTO request 13-3/8° & 5-1/2" tensi EAD: Temporary W • 1 <u>Pa</u> A. Starting	sts to utilize cer 9-5/8° Collapse ion calculated u ellhead 8-5/8° SOW bo rmanent Wellhe Head: 13-5/8°	ttrafizers on analyzed u sing vertica storn x 21- ad – GE R SM top flar	ly in the ising 50% d hanging -1/4° 2M (SH Multi nge x 13-3	curve after the K evacuation base weight plus the 1 top flange. bowl System 3/8" SOW bottom	OP and only a min d on regional expe ateral weight mult	innum of e rience. ipfied by a	inictio	n factor (of 0.35	
• • • •	XTO request 13-3/8° & 5-1/2" tensi EAD: Temporary W • 1 <u>Pa</u> A. Starting B. Tubing I	sts to utilize cer 9-5/8° Collapse ion calculated u ellhead 8-5/8° SOW bo rmanent Wellhe Head: 13-5/8° 5	ttrafizers on analyzed u sing vertica sitom x 21- ad – GE R SM top flar M bottom	ly in the of issing 50% d hanging -1/4" 2M (SH Multi nge x 13-3 flange x 7	curve after the K evacuation base weight plus the 1 top flange. bowl System 3/8" SOW bottom -1/16" 10M top f	OP and only a min d on regional expe ateral weight mult ateral weight mult ateral weight mult bange	imum of e rience. ipfied by a	inctio	a factor o	oint. of 0.35	
• • • •	XTO request 13-3/8° & 5-1/2" tensi EAD: Temporary W • 1 Pe A. Starting B. Tubing I • V	sts to utilize cer 9-5/8" Collapse on calculated u ellhead 8-5/8" SOW bo rearent Wellhe Head: 13-5/8" 5 Vellhead will be	trafizers on analyzed to sing vertice of a sing vertice sing vertice of a sing vertice sing vertice of a sing vertice of	ly in the original string 50% of hanging 1/4° 2M 1 SH Multilinge x 13-3 Range x 7 y manufa	curve after the K evacuation base weight plus the 1 top flange. bowl System 3/8" SOW botton -1/16" 10M top f curer's represen	OP and only a min d on regional expe ateral weight mult ateral weight mult hange tatives.	imum of e rience. ipfied by a		n factor o	oint. of 0.35	
WELLHI	XTO request 13-3/8° & 5-1/2" tensi EAD: Temporary WA • 1 <u>Pec</u> A. Starting B. Tubing I • V • M	sts to utilize cer 9-5/8" Collapse on calculated u ellhead 8-5/8" SOW bo rmanent Wellhe Head: 13-5/8" Head: 13-5/8" S Vellhead will be famufacturer w	trafizers on analyzed to sing vertice of a sing vertice sing vertice of a sing verti	ly in the (ising 50% d hanging -1/4" 2M (SH Multinge x 13-3 flange x 7 y manufas welding p	curve after the K evacuation base weight plus the 1 top flange. bowl System 3/8" SOW bottom -1/16" 10M top f cturer's represen rocess to ensure	OP and only a min d on regional expe ateral weight mult ateral weight mult hange tatives. appropriate tempe	intum of e rience. iplied by a		n factor o	joint.	
WELLHI	XTO reque: 13-3/8° & 5-1/2" tensi EAD: Temporary W • 1 <u>Pe</u> A. Starting B. Tubing I • V • M • O	sts to utilize cer 9-5/8" Collapse on calculated u ellhead 8-5/8" SOW bo rmanent Wellhe Head: 13-5/8" Head: 13-5/8" 5 Vellhead will be fanufacturer w perator will test	trafizers on analyzed of sing vertice of a sing	ly in the (ising 50% d hanging -1/4" 2M (SH Multinge x 13-3 Bange x 7 y manufas welding p casing pe	curve after the K evacuation base weight plus the 1 top flange. bowl System 3/8" SOW bottom -1/16" 10M top f currer's represen rocess to ensure a BLM Onshore	OP and only a min d on regional expe ateral weight mult ateral weight mult hange tatives. appropriate tempe Order 2	rature of s	ne eve	n factor c	joint. 51 0.35	

Casing Design

Design			;			? - · -			
Hole Size	Depth	OD Ceg	Weight	Collar	Grade	New/Uned	SF Bant	SF Collapse	SF Tension
24-	0° - 1080'	18-5/8*	87 <i>_</i> 5#	STC	H-40	New	2.13	1.27	5.92
17-1/2"	0' - 2470'	13-3/8"	54.5#	STC	1-55	New	2.36	1.45	3.82
12-1/4**	0' - 4980'	9-5/8"	36#	LTC	J-55	New	1.40	1.71	2.53
8-3/4" x 8-1/2"	0' 20483'	5-1/2"	17#	BIC	P-110	New	1.12	1.62	2.34

. . . .

XTO requests to utilize centralizers only in the curve after the KOP and only a minimum of one every other joint.

13-3/8" & 9-5/8" Collapse analyzed using 50% evacuation based on regional experience.

. .

• 5-1/2" tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35

. .

÷ -

Į.

in the second second

WELLHEAD:

A.

Temporary Wellhead

. . .

• 18-5/8" SOW bottom x 21-1/4" 2M top flang	je.
Permanent Wellhead – GE RSH Multibowl Sys	tem
Starting Head: 13-5/8" 5M top flange x 13-3/8" SO	W bottom

B. Tubing Head: 13-5/8" 5M bottom flange x 7-1/16" 10M top flange

. . . .

• Wellhead will be installed by manufacturer's representatives.

Manufacturer will monitor welding process to ensure appropriate temperature of seal.

• Operator will test the 9-5/8" casing per BLM Onshore Order 2

Wellhead manufacturer representative will not be present for BOP test plug installation

Cacino	Dorigo		t				1		t		t
Casma	Desta									 -	┢
	Hole Size	Depth	OD Cag	Weight	Collar	Grade	New/Used	SF Bent	SF Collapse	SF Tension	-
	24"	0' - 1080'	18-5/8	87_5#	STC	H-40	New	2.13	1.27	5.92	-
	17-1/2**	0' - 2470'	13-3/8"	54.5#	STC	I-55	New	2.36	1.45	3.82	
· · · ·	12-1/4 ^m	0' - 4980'	9-5/8*	36#	LTC	J-55	New	1.40	1.71	2.53	_
	8-3/4" x 8-1/2"	0' - 20483'	5-1/2"	17#	BTC	P-110	New	1.12	1.62	2.94	-
•	XTO request	s to utilize cer	itrafizers or	nly in the c	curve after the K	OP and only a mi	inturn of c	ne evi	ary other j	omt.	╞
•	5-1/2" tensio	n calculated u	sing vertica	ai hanging	weight plus the	ateral weight mul	tiplied by a	frictio	n factor o	of 0.35	┢
WELLH	EAD:										F
	Temporary We	(Inead									Γ
	• 18	-5/8" SOW bo	ttom x 21	-1/4" 2M t	op flange.						Γ
	Pen	manent Wellhe	ad – GE R	SH Multil	bowl System						
	A. Starting H	lead: 13-5/8"	SM top fla	nge x 13-3	/8" SOW botton	j					
	B. Tubing H	ead: 13-5/8" 5	M bottom	flange x 7-	-1/16" 10M top 1	lange					
	• W	ellhead will be	installed b	y manufac	cturer's represen	latives.	1				
	• M	anufacturer w	a monitor	welding pr	rocess to ensure	appropriate temp	erature of s	eal.			
	• Op	erator will test	the 9-5/8"	casing pe	r BLM Onshore	Order 2					
	• We	Thead manufa	cturer repr	esentative	will not be prese	nt for BOP test p	lug installat	Ton			
				1			1	1	1		T

Casing	Design		+ ····			1				[]
						· · · · · · · · · · · · · · · · · · ·			1	
	Hole Size	Depth	OD Ceg	Weight	Collar	Grade	New/Used	SF Barnt	SF Collague	SF Tennion
	24"	0' 1080'	18-5/8"	87.5#	STC	H-40	New	2.13	1.27	5.92
	17-1/2"	0' - 2470'	13-3/8"	54_5#	STC	J-55	New	2.36	1.45	3.82
	12-1/4 ^m	0' - 4980'	9-5/8"	36#	LTC	J-55	New	1.40	1.71	2.53
	8-3/4" x 8-1/2"	0' - 20483'	5-1/2"	17#	BTC	P-110	New	1.12	1.62	2.34
			1					L	L	L
•	XTO request	is to utilize cer	uralizers of	ily in the c	urve after the K	OP and only a m	nimum of c	me evi	ary other j	omt.
•	13-3/8" & 9	-5/8" Collapse	e analyzed u	sing 50%	evacuation base	d on remonal ero	onioneo		1	1 1
	5 4 6 7 7 7 7					o on reganni one				
•	5-1/2" tensio	n calculated u	sing vertica	l hanging	weight plus the	lateral weight mu	tiplied by a	frictio	n factor o	of 0.35
• WELLH	5-1/2" tensio EAD:	n calculated u	sing vertica	1 hanging	weight plus the	lateral weight mu	tiplied by a	frictio	n factor (of 0.35
• WELLH	5-1/2" tensio EAD: Temporary We	n calculated u	sing vertica	1 hanging	weight plus the	lateral weight mu	tipfied by a	frictio	n factor o	of 0.35
• WELLH	5-1/2" tensio EAD: Temporary Wel • 18	n calculated u Ilhead -5/8° SOW by	sing vertica	1 hanging 1/4" 2M t	weight plus the op flange.	lateral weight mu	tiplied by a	frictio	n factor (of 0.35
• WELLH	5-1/2" tensio EAD: Temporary Wel • 18 Pern	n calculated u lihead -5/8° SOW bo manent Wellhe	sing vertica ottom x 21- cad – GE R	l hanging 1/4" 2M t SH Multil	weight plus the op flange. owl System	lateral weight mu	hiphed by a	frictio	n factor (of 0.35
• WELLH	5-1/2" tensio EAD: Temporary West • 18 <u>Pern</u> A. Starting H	n calculated u lihead -5/8" SOW by manent Wellhe lead: 13-5/8"	sing vertica sttom x 21- pad – GE R 5M top flar	l hanging 1/4° 2M to SH <u>Multil</u> Ige x 13-3	weight plus the op flange. <i>owl System</i> /8" SOW bottor	lateral weight mu	tiplied by a	frictio	n factor (of 0.35
• WELLH	5-1/2" tension EAD: Temporary West • 18 Pern A. Starting H B. Tubing H	n calculated u linead -5/8" SOW by manent Wellhe lead: 13-5/8" 5 ead: 13-5/8" 5	sing vertica ottom x 21- and – GE R 5M top flar M bottom	l hanging 1/4" 2M to SH Multil Ige x 13-3 Bange x 7-	weight plus the op flange. owl System /8" SOW bottor 1/16" 10M top	ateral weight mu	tipled by a	frictio	a factor (of 0.35
• WELLH	S-1/2" tension EAD: Temporary Wee • 18 Pern A. Starting H B. Tubing H • W	n calculated u lihead -5/8" SOW by manent Wellhe lead: 13-5/8" 5 eilhead will be	sing vertica ottom x 21- mad – GE R 5M top flan M bottom i installed b	l hanging 1/4" 2M to SH Multil nge x 13-3 lange x 7- y manufac	weight plus the op flange. owl System /8" SOW bottor 1/16" 10M top turer's represen	ateral weight mu	hipfied by a	frictio	n factor (of 0.35
• WELLH	5-1/2" tension EAD: Temporary Wea • 18 <u>Pern</u> A. Starting H B. Tubing H • W • W • M	n calculated u lihead -5/8" SOW by manent Wellhe lead: 13-5/8" 5 eilhead will be anufacturer w	sing vertica ottom x 21- ord – GE R SM top flar M bottom i i installed b ill monitor	l hanging 1/4" 2M to SH Multil Ige x 13-3 lange x 7- y manufac welding p	weight plus the op flange. <i>wwl System</i> /8" SOW bottor 1/16" 10M top furer's represen rocess to ensure	lateral weight mi	tipled by a	frictio	n factor (of 0.35

. ,

	ŕi		1				-i	er	er		-
	Hole Size	Depth	OD Ceg	Weight	Collar	Grade	New/Used	ar Borrt	Collapse	Tension	-
	24"	0' - 1080'	18-5/8"	87.5#	STC	H-40	New	2.19	1.27	5.92	-
	17-1/2"	0' - 2470'	13-3/8"	54.5#	STC	J-55	New	2.36	1.45	3.82 -	-
	12-1/4"	0' 4980'	9-5/8"	36#	LTC	J-55	New	1.40	1.71	2.53	
	8-3/4" x 8-1/2"	0' - 20483'	5-1/2"	17#	BTC	P-110	New	1.12	1.62	2.94	
•	XTO request 13-3/8" & 9 5-1/2" tensio	s to utilize ce -5/8° Collapse n calculated u	ntrafizers on analyzed t sing vertica	nly in the using 50% al hanging	curve after the K evacuation base weight plus the l	OP and only a m d on regional exp lateral weight m	inimum of o perience. Itiplied by a	frictio	n factor o	oint_ of 0.35	
• • • WELLH	XTO request 13-3/8° & 9 5-1/2" tensio EAD:	s to utilize cea -5/8° Collapse n calculated u	ntrafizers on analyzed t sing vertica	aly in the output of the sing 50% at hanging	curve after the K evacuation base weight plus the	OP and only a m d on regional ex ateral weight m	inimum of e enience. Itiplied by a	ine eva	n factor o	oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tensio EAD: Temporary Wel	s to utilize cea -5/8" Collapse n calculated u Thead	thrafizers of analyzed t sing vertica	aly in the ssing 50% al hanging	curve after the K evacuation base weight plus the	OP and only a m d on regional exp ateral weight m	inimum of (perience. Miplied by a		n factor	oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tension EAD: Temporary West 18	s to utilize cent -5/8° Collapse n calculated u Thead -5/8° SOW bu	ntrafizers on analyzed t sing vertica strom x 21	nly in the ising 50% al hanging -1/4° 2M t	curve after the K evacuation base weight plus the top flange.	OP and only a m d on regional exp ateral weight m	inimum of (perience. Miplied by a		n factor (oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tension EAD: Temporary West • 18 Pern	s to utilize cent -5/8° Collapse in calculated u Whead -5/8° SOW be manual Welling	trafizers on analyzed t sing vertica strom x 21 strom x 21	aly in the original sing 50% of the single singl	curve after the K evacuation base weight plus the top flange. bowl System	OP and only a m d on regional exp ateral weight m	minum of o		n factor o	oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tensio EAD: Temporary West • 18 <u>Pern</u> A. Starting H	s to utilize can -5/8° Collapse in calculated u Thead -5/8° SOW be manent Wellhe lead: 13-5/8°	analyzed t analyzed t sing vertica ottom x 21- nad – GE R SM top fla	nly in the original sing 50% of the sing 50% of the sing 50% of the sing 50% of the single set of the	curve after the K evacuation base weight plus the top flange	OP and only a m d on regional exp ateral weight m	inimum of e erience. Itipised by a	frictio	n factor o	oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tension EAD: Temporary West • 18 <u>Perri</u> A. Starting H B. Tubing H	s to utilize can -5/8° Collapse n calculated u Thead -5/8° SOW bu manent Wellha ead: 13-5/8° Ead: 13-5/8° 5	analyzed to analyzed to sing vertica ottom x 21- and – GE R SM top flan M bottom	hly in the o ssing 50% al hanging -1/4° 2M t SH Multin nge x 13-3 flange x 7	curve after the K evacuation base weight plus the top flange. bow! System 0/8" SOW bottom -1/16" 10M top f	OP and only a m d on regional exp lateral weight m lateral weight m lange	inimum of e erience. Itipised by a	frictio	n factor (oint.	
• • • •	XTO request 13-3/8° & 9 5-1/2" tension EAD: Temporary West 18 <u>Perri</u> A. Starting H B. Tubing Hu • W	s to utilize can -5/8° Collapse n calculated u Thead -5/8° SOW bu manent Wellha ead: 13-5/8° 5 eilhead will be	analyzed to analyzed to sing vertica ottom x 21. and – GE R SM top flan M bottom to installed b	hly in the o ssing 50% al hanging -1/4° 2M t SH Multi nge x 13-3 flange x 7 y manufa	curve after the K evacuation base weight plus the l top flange. bowl System 3/8" SOW botton -1/16" 10M top f clurer's represen	OP and only a m d on regional exp lateral weight m lateral weight m lange tatives.	inimum of e erience. Itipised by a		n factor (oint. of 0.35	
• • • •	XTO request 13-3/8° & 9 5-1/2" tension EAD: Temporary West • 18 <u>Pern</u> A. Starting H B. Tubing H • W. • Ma	s to utilize can -5/8° Collapse in calculated u Thead -5/8° SOW bu moment Wellha ead: 13-5/8° 5 eilhead will be anufacturer w	ntrafizers on analyzed t sing vertica ottom x 21- and – GE R SM top flan M bottom i mstalled b Tl monitor	hly in the o ssing 50% al hanging 1/4° 2M (1/4° 2M (1/4)))))))))	curve after the K evacuation base weight plus the l op flange. bowl System 3/8" SOW botton -1/16" 10M top 1 cturer's represen rocess to ensure	OP and only a m d on regional exp ateral weight m ateral weight m hange tatives. appropriate tem	minum of energy a	friction	n factor (oint. of 0.35	

i

r.

-

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- . Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
 - Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Chemical **Specific Gravity** Threshold Limit | Hazardous Limit Lethal Concentration **Common Name** Formula Hydrogen Sulfide 1.189 Air = I 100 ppm/hr H₂S 10 ppm 600 ppm Sulfur Dioxide SO₂ 2.21 Air = I N/A 1000 ppm 2 ppm

Characteristics of H₂S and SO₂

Contacting Authorities

All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220	
Carlsbad, NM	575-887-7329
XTO PERSONNEL:	
Kendall Decker, Drilling Manager	903-521-6477
Milton Turman, Drilling Superintendent	817-524-5107
Jeff Raines, Construction Foreman	432-557-3159
Toady Sanders, EH & S Manager	903-520-1601
Wes McSpadden, Production Foreman	575-441-1147
SHERIFF DEPARTMENTS:	
Eddy County	575-887-7551
Lea County	575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS:	911
Carlsbad	575-885-2111
Eunice	575-394-2111
Hobbs	575-397-9308
Jal	575-395-2221
Lovington	575-396-2359
HOSPITALS:	911
Carlsbad Medical Emergency	575-885-2111
Eunice Medical Emergency	575-394-2112
Hobbs Medical Emergency	575-397-9308
Jal Medical Emergency	575-395-2221
Lovington Medical Emergency	575-396-2359
AGENT NOTIFICATIONS:	
For Lea County:	
Bureau of Land Management – Hobbs	575-393-3612
New Mexico Oil Conservation Division – Hobbs	575-393-6161
For Eddy County:	
Bureau of Land Management - Carlsbad	575-234-5972
New Mexico Oil Conservation Division - Artesia	575-748-1283

XTO Energy

Lea County, NM (NAD-27) Big Eddy Unit 29W Vader #103H

OH

Plan: PERMIT

Standard Planning Report

09 October, 2019

Planning Report

		5 J		2 1981157	· · ·		· · · · -			•
Database:	EDM	5000.1 Single	User Db		Local Co-	ordinate Refe	rence:	Well #103H		
Company:	хто	Energy			TVD Refe	rence:	I	RKB=30' @ 354	43.00usft	
Project:	Lea (County, NM (NA	D-27)		MD Refer	ence:	1	RKB=30' @ 354	43.00usft	i
Site:	Big E	ddy Unit 29W \	/ader		North Ref	erence:		Grid		
Well:	#103	н			Survey Ca	alculation Met	thod:	Minimum Curva	ature	1
Wellbore:	ОН				-					
Design:	PER	MIT						-		1
Project	Lea C	ounty, NM (NAI	D-27)							
Map System:	US Stat	te Plane 1927 (Exact solution)		System Dat	tum:	Me	an Sea Level		
Geo Datum:	NAD 19	27 (NADCON	CONUS)							
Map Zone:	New Me	exico East 3001					Us	ing geodetic sc	ale factor	
L										
Site	Big Ec	ldy Unit 29W V	ader			·		-		
Site Position:			North	ing:	570	,366.50 usft	Latitude:			32.566819
From:	Ma	IP	Eastir	ng:	670	,996.10 usft	Longitude:			-103.778286
Position Uncert	ainty:	0.0	0 usft Slot F	ladius:		13-3/16 "	Grid Converg	ence:		0.30 °
Well	#103H					-				
Well Position	+N/-S	0	00 usft N/	athing:		570 366 50	Iusfi lati	tude:		32 566819
The state	+E/-W	0	00 usft Es	etina:		670 996 10)usft Lon	aitude:		-103 778286
Depition Uppert		0.		althood Eleventi		010,330.10		und Level		3 513 00 008
Position Uncert		U.		ennead clevat	ion:	0.00	Jusit Gro			
	OH									
]	••••									
Magnetics	м	odel Name	Sampl	e Date	Declina	ition	Dip A	ngle	Field :	Strength
-					(°)		(°)	(nT)
		IGRF2015	···	10/9/2019		6.83		60.31		47,880
Design	PERM	NT		· ·	· · · ·	· · ·				
Audit Notes		• •								·
Audit Notes.			Phae	a. D	ΝΔΝ	τ.	o On Denth-		0.00	
Version.			- 1143	.			on Depui.		0.00	
Vertical Section	:	l	Depth From (T	/D)	+N/-S	+[E/-W	Die	rection	
ļ			(usn)		(usπ)	(U	isπ)		()	
l			0.00	· · ·	0.00	0	.00	2	70.03	
Plan Sections										
Measured			Vertical			Dogleg	Build	Turn		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Rate	Rate	Rate	TFO	
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
										-
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,520.00	0.00	0.00	5,520.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,769.84	5.00	29.99	5,769.52	9.43	5.44	2.00	2.00	0.00	29.99	
9,128.97	5.00	29.99	9,115.89	262.83	151.70	0.00	0.00	0.00	0.00	
10,059.94	90.60	270.03	9,712.00	308.72	-426.72	10.00	9.20	-12.89	-119.83	#103H: FTP/LP
20,433.41	90.60	270.03	9,602.53	313.30	-10,799.62	0.00	0.00	0.00	0.00	#103H: LTP
20,483.42	90.60	270.03	9,602.00	313.32	-10,849.62	0.00	0.00	0.00	0.00	#103H: PBHL (660' F:

____.

Planning Report

r			
Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well #103H
Company:	XTO Energy	TVD Reference:	RKB=30' @ 3543.00usft
Project:	Lea County, NM (NAD-27)	MD Reference:	RKB=30' @ 3543.00usft
Site:	Big Eddy Unit 29W Vader	North Reference:	Grid
Well:	#103H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	PERMIT		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
915.00	0.00	0.00	015.00	0.00	0.00	0.00	0.00	0.00	0.00
Buetlor	0.00	0.00	913.00	0.00	0.00	0.00	0.00	0.00	0.00
Rusuer									
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,270.00	0.00	0.00	1,270.00	0.00	0.00	0.00	0.00	0.00	0.00
Salado/Top o	of Salt								
1 300 00	0.00	0.00	1 300 00	0.00	0.00	0.00	0.00	0.00	0.00
1 400 00	0.00	0.00	1 400 00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2.300.00	0.00	0.00	2.300.00	0.00	0.00	0.00	0.00	0.00	0.00
2 400 00	0.00	0.00	2 400 00	0.00	0.00	0.00	0.00	0.00	0.00
2 430 00	0.00	0.00	2 430 00	0.00	0.00	0.00	0.00	0.00	0.00
Base of Salt	0.00	0.00	2,400.00	0.00		0.00	0.00	0.00	0.00
2 500 00	0.00	0.00	2 500 00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,862.00	0.00	0.00	2,862.00	0.00	0.00	0.00	0.00	0.00	0.00
Capitan Reet	r -								
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3 100 00	0.00	0.00	3 100 00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,600.00	0.00	0.00	3,600.00	0.00	0.00	0.00	0.00	0.00	0.00
3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
3,800.00	0.00	0.00	3,800.00	0.00	0.00	0.00	0.00	0.00	0.00
3,900.00	0.00	0.00	3,900.00	0.00	0.00	0.00	0.00	0.00	0.00
4,000.00	0.00	0.00	4,000.00	0.00	0.00	0.00	0.00	0.00	0.00
4 100 00	0.00	0.00	4 100 00	0.00	0.00	0.00	0.00	0.00	0.00
4 200 00	0.00	0.00	4 200 00	0.00	0.00	0.00	0.00	0.00	0.00
4 200.00	0.00	0.00	4,200.00	0.00	0.00	0.00	0.00	0.00	0.00
4 400 00	0.00	0.00	4,300.00	0.00	0.00	. 0.00	0.00	0.00	0.00
4,400.00	0.00	0.00	4,400.00	0.00	0.00	0.00	0.00	0.00	0.00

10/9/2019 10:07:21AM

Planning Report

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well #103H
Company:	XTO Energy	TVD Reference:	RKB=30' @ 3543.00usft
Project:	Lea County, NM (NAD-27)	MD Reference:	RKB=30' @ 3543.00usft
Site:	Big Eddy Unit 29W Vader	North Reference:	Grid
Well:	#103H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	PERMIT		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn	
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	
			· · · · · · · · · · · · · · · · · · ·			·	· · · · · · · · · · · · · · · · · · ·	·		
4,600.00	0.00	0.00	4,600.00	0.00	0.00	0.00	0.00	0.00	0.00	
4,700.00	0.00	0.00	4,700.00	0.00	0.00	0.00	0.00	0.00	0.00	
4,800.00	0.00	0.00	4,800.00	0.00	0.00	0.00	0.00	0.00	0.00	
4,888.00	0.00	0.00	4,888.00	0.00	0.00	0.00	0.00	0.00	0.00	
Delaware Sa	nd									
4 900 00	0.00	0.00	4 900 00	0.00	0.00	0.00	0.00	0.00	0.00	
4,000.00	0.00	0.00	4,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,000.00	0.00	0.00	5,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,069.00	0.00	0.00	5,069.00	0.00	0.00	0.00	0.00	0.00	0.00	
Manzanita M	larker									
5,100,00	0.00	0.00	5,100.00	0.00	0.00	0.00	0.00	0.00	0.00	
5 200 00	0.00	0.00	5 200 00	0.00	0.00	0.00	0.00	0.00	0.00	
5 300 00	0.00	0.00	5 300 00	0.00	0.00	0.00	0.00	0.00	0.00	
0,000.00	0.00	0.00	0,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,400.00	0.00	0.00	5,400.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,500.00	0.00	0.00	5,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,520.00	0.00	0.00	5,520.00	0.00	0.00	0.00	0.00	0.00	0.00	
5,600.00	1.60	29.99	5,599.99	0.97	0.56	-0.56	2.00	2.00	0.00	
5,700.00	3.60	29.99	5,699.88	4.90	2.83	-2.82	2.00	2.00	0.00	
5,769.84	5.00	29.99	5,769.52	9.43	5.44	-5.44	2.00	2.00	0.00	
5,800.00	5.00	29.99	5,799.57	11.70	6.76	-6.75	0.00	0.00	0.00	
5,900.00	5.00	29.9 9	5,899.19	19.25	11.11	-11.10	0.00	0.00	0.00	
6,000.00	5.00	29.99	5,998.81	26.79	15.46	-15.45	0.00	0.00	0.00	
6,100.00	5.00	29.9 9	6,098.43	34.34	19.82	-19.80	0.00	0.00	0.00	
6.122.66	5.00	29.99	6,121.00	36.04	20.80	-20.79	0.00	0.00	0.00	
Brushy Can	von Se									
6 200 00	5.00	20.00	6 198 05	41.88	24 17	-24 15	0.00	0.00	0.00	
6,200.00	5.00	23.33	6 207 67	41.00	29.17	-24.13	0.00	0.00	0.00	
6,300.00	5.00	29.99	0,297.07	49.42	20.00	-20.00	0.00	0.00	0.00	
6,400.00	5.00	29.99	0,397.29	50.97	32.66	-32.85	0.00	0.00	0.00	
6,500.00	5.00	29.99	0,490.91	64.51	37.23	-37.20	0.00	0.00	0.00	
6,600.00	5.00	29.99	6,596.53	72.05	41.59	-41.55	0.00	0.00	0.00	
6.700.00	5.00	29.99	6.696.15	79.60	45.94	-45.90	0.00	0.00	0.00	
6.800.00	5.00	29.99	6,795,77	87.14	50.30	-50.25	0.00	0.00	0.00	
6 900 00	5.00	29.99	6 895 39	94 68	54 65	-54 60	0.00	0.00	0.00	
7 000 00	5.00	20.00	6 995 01	102 23	59.00	-58.95	0.00	0.00	0.00	
7,000.00	0.00	20.00	0,000.01	102.20	00.00	-00.00	0.00	0.00	0.00	
7,100.00	5.00	29.99	7,094.63	109.77	63.36	-63.30	0.00	0.00	0.00	
7,200.00	5.00	29.99	7,194.25	117.31	67.71	-67.65	0.00	0.00	0.00	
7,300.00	5.00	29.99	7,293.87	124.86	72.07	-72.00	0.00	0.00	0.00	
7,400.00	5.00	29.99	7,393.49	132.40	76.42	-76.35	0.00	0.00	0.00	
7,445.69	5.00	29.99	7,439.00	135.85	78.41	-78.34	0.00	0.00	0.00	
Lower Brush	ny Canyon Ss.									
7 500 00	5.00	20.00	7 402 11	120.05	80.77	_90.70	0.00	0.00	0.00	
7,500.00	5.00	20.00	7 502 72	147.40	85.17	95.05	0.00	0.00	0.00	
7,000.00	5.00	29.99	7,092.73	147.45	00.10	-05.05	0.00	0.00	0.00	
7,097.04	5.00	29.99	7,050.00	134.05	09.30	-05.30	0.00	0.00	0.00	
Bone Spring	j Lm.									
7,700.00	5.00	29.99	7,692.35	155.03	89.48	-89.40	0.00	0.00	0.00	
7,800.00	5.00	29.99	7,791.97	162.58	93.84	-93.75	0.00	0.00	0.00	
7 847 21	5.00	29 99	7 839 00	166 14	95.89	-95 80	0.00	0.00	0.00	
1,071,21 Austan Co	5.00	20.00	7,000.00	100.14	33.03	30.00	0.00	0.00	5.00	
AVAIUII 35.	E 00	00.00	7 004 50	470.40	00.40	00 40	0.00	0.00	0.00	
7,900.00	5.00	29.99	7,091.09	170.12	95.19	-98.10	0.00	0.00	0.00	
7,943.58	5.00	29.99	7,935.00	1/3.41	100.09	-100.00	0.00	0.00	0.00	
Upper Avalo	n Sh.									
8,000.00	5.00	29.9 9	7,991.21	177.66	102.54	-102.45	0.00	0.00	0.00	
8,100.00	5.00	29.99	8,090.83	185.21	106.90	-106.80	0.00	0.00	0.00	
0 470 47	E 00	20.00	9 170 00	101 20	110.26	-140.36	0.00	0.00	0.00	
8,1/9.4/	5.00	29.99	6,170.00	191.20	110.30	-110.20	0.00	0.00	0.00	

Planning Report

-

EDM 5000.1 Single User Db Well #103H Database: Local Co-ordinate Reference: Company: **XTO Energy** RKB=30' @ 3543.00usft TVD Reference: Project: Lea County, NM (NAD-27) MD Reference: RKB=30' @ 3543.00usft Site: Big Eddy Unit 29W Vader North Reference: Grid Well: #103H Survey Calculation Method: Minimum Curvature Wellbore: он PERMIT Design: Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
Lw Avolon	Cart								
9 200 00	5 AD	20.00	9 100 45	102 75	111.25	111 15	0.00	0.00	0.00
0,200.00	5.00	29.99	0,190.45	192.75	111.20	-111.15	0.00	0.00	0.00
8,300.00	5.00	29.99	8,290.07	200.29	115.01	-115.50	0.00	0.00	0.00
8,342.09	5.00	29.99	8,332.00	203.47	117.44	-117.33	0.00	0.00	0.00
Lw. Avalon	Sh.								
8,400.00	5.00	29.99	8,389.69	207.84	119.96	-119.85	0.00	0.00	0.00
8,500.00	5.00	29.99	8.489.31	215.38	124.31	-124.20	0.00	0.00	0.00
8,547.87	5.00	29.99	8,537.00	218.99	126.40	-126.28	0.00	0.00	0.00
Bone Spring	a Carb.								
8.600.00	5.00	29.99	8.588.93	222.92	128.67	-128.55	0.00	0.00	0.00
8,700.00	5.00	29.99	8.688.55	230.47	133.02	-132.90	0.00	0.00	0.00
8,800.00	5.00	29.99	8,788,17	238.01	137.38	-137.25	0.00	0.00	0.00
8,818.90	5.00	29.99	8,807.00	239.44	138.20	-138.07	0.00	0.00	0.00
First Bone S	Spring Ss.								
8,900.00	5.00	29.99	8,887.79	245.56	141.73	-141.60	0.00	0.00	0.00
9,000.00	5.00	29.99	8,987.41	253.10	146.08	-145.95	0.00	0.00	0.00
9,030.71	5.00	29.99	9,018.00	255.42	147.42	-147.29	0.00	0.00	0.00
Second Bon	ne Spring Carb.								
9,100.00	5.00	29.99	9,087.03	260.64	150.44	-150.30	0.00	0.00	0.00
9,128.97	5.00	29.99	9.115.89	262.83	151.70	-151.56	0.00	0.00	0.00
9,150.00	4.35	5.18	9.136.85	264.42	152.23	-152.09	10.00	-3.07	-117.98
9.200.00	6.33	313.19	9,186.66	268.19	150.39	-150.25	10.00	3.95	-103.98
9 250 00	10.54	294 11	9 236 11	271 95	144 21	-144.06	10.00	8 42	-38.16
9 300 00	15.23	286.23	9,250.11	275.65	133 72	-133 58	10.00	0.42	-15 76
3,000.00	15.25	200.20	3,204.00	275.05	100.72	-100.00	10.00	3.50	-10.70
9,350.00	20.07	282.04	9,332.48	279.28	119.02	-118.87	10.00	9.68	-8.38
9,359.10	20.96	281.48	9,341.00	279.93	115.90	-115.75	10.00	9.76	-6.16
Second Bon	e Spring Ss.								
9,400.00	24.97	279.44	9,378.66	282.80	100.21	-100.06	10.00	9.81	-5.00
9,450.00	29.90	277.64	9,423.02	286.19	77.43	-77.28	10.00	9.86	-3.59
9,500.00	34.85	276.32	9,465.24	289.43	50.87	-50.71	10.00	9.90	-2.65
9 550 00	20.91	275 20	0 504 09	202.48	20.71	-20.56	10.00	0.02	-2.06
9,550.00	39.01	213.29	9,504.96	292.40	20.71	-20.00	10.00	9.92	-2.00
9,000.00	44.70	274.40	9,341.90	290.32	-12.00	12.90	10.00	9.94	-1.07
9,012.09	40.00	214.20	9,551.00	290.02	-21.90	22.11	10.00	9.94	-1.49
Second Bon	ie Spring A SS.	070 75	0 575 00	007.00	40.40	40.50	40.00	0.05	4.07
9,000.00	49.75	273.75	9,575.88	297.93	-49.42	49.58	10.00	9.95	-1.3/
9,700.00	54.73	273.14	9,000.48	300.30	-66.67	69.03	10.00	9.95	-1.21
9,750.00	59.71	272.61	9,633.55	302.41	-130.84	131.00	10.00	9.96	-1.07
9,777.84	62.48	272.33	9,647.00	303.46	-155.18	155.34	10.00	9.96	-0.99
Second Bon	e Spring B Ss.								
9,800.00	64.69	272.12	9,656.86	304.23	-175.02	175.18	10.00	9.96	-0.94
9,850.00	69.67	271.68	9.676.24	305.75	-221.07	221.23	10.00	9.97	-0.89
9,900.00	74.66	271.26	9,691.55	306.97	-268.63	268.79	10.00	9.97	-0.83
0.050.00	76.04	070.00	0 700 07	207.07	947.00	347 50	40.00	0.07	0.00
9,950.00	/9.64	270.86	9,702.67	307.87	-317.36	317.52	10.00	9.97	-0.80
10,000.00	84.63	270.48	9,709.51	308.45	-366.87	367.03	10.00	9.97	-0.77
10,050.00	89.61	270.10	9,712.02	308.71	-416.79	416.95	10.00	9.97	-0.76
10,059.94	90.60	270.03	9,712.00	308.72	-426.72	426.89	10.00	9.97	-0.76
10,100.00	90.60	270.03	9,711.58	308.74	-466.78	466.95	0.00	0.00	0.00
10.200.00	90.60	270.03	9,710.52	308.78	-566.78	566.94	0.00	0.00	0.00
10,300,00	00.00	270.03	9 709 47	308 82	-666 77	666 94	0.00	0.00	0.00
10 400 00	00.00	270.03	9 708 41	308.87	-766 77	766 93	0.00	0.00	0.00
10,500,00	00.00 00.00	270.03	0 707 36	308.01	-866 76	866.02	0.00	0.00	0.00
10,000.00	90.00	270.03	9,707.30	308.05	-066 76	066.02	0.00	0.00	0.00
.0,000.00	90.00	210.03	3,100.30	500.50	-300.70	300.32	0.00	0.00	0.00
10.700.00	90.60	270.03	9 705 25	309.00	-1.066.75	1.066.91	0.00	0.00	0.00

10/9/2019 10:07:21AM

Planning Report

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well #103H
Company:	XTO Energy	TVD Reference:	RKB=30' @ 3543.00usft
Project:	Lea County, NM (NAD-27)	MD Reference:	RKB=30' @ 3543.00usft
Site:	Big Eddy Unit 29W Vader	North Reference:	Grid
Well:	#103H	Survey Calculation Method:	Minimum Curvature
Wellbore:	он		
Design:	PERMIT		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Denth	Inclination	Animuth	Denth	TN/S	+C/.\M	Section	Rate	Rate	Rate
(ueff)	Inclination (A)	Azimuti	(ueff)	+IN/+3	+E/-W	(ueff)	(*/100ue#)	(°/100ueft)	(°/100ueft)
(USIC)			(usit)	(USπ)	(usrt)	(0811)	(/ loousity	(noousity	(71000310)
10,800.00	90.60	270.03	9,704,19	309.04	-1,166.75	1,166.91	0.00	0.00	0.00
10,900,00	90.60	270.03	9,703,13	309.09	-1.266.74	1,266.90	0.00	0.00	0.00
11 000 00	90.60	270.03	9 702 08	309.13	-1 366 73	1 366 90	0.00	0.00	0.00
11,000.00	90.60	270.03	9 701 02	300 18	-1 466 73	1 466 89	0.00	0.00	0.00
11,100.00	50.00	270.05	5,701.02	505.10	-1,400.75	1,400.03	0.00	0.00	0.00
11,200.00	90.60	270.03	9,699.97	309.22	-1,566.72	1,566.88	0.00	0.00	0.00
11,300.00	90.60	270.03	9,698.91	309.27	-1,666.72	1,666.88	0.00	0.00	0.00
11,400.00	90.60	270.03	9,697.86	309.31	-1,766.71	1,766.87	0.00	0.00	0.00
11,500.00	90.60	270.03	9,696,80	309.35	-1.866.71	1.866.87	0.00	0.00	0.00
11 600.00	90.60	270.03	9.695.75	309.40	-1.966.70	1,966.86	0.00	0.00	0.00
11,700.00	90.60	270.03	9,694.69	309.44	-2,066.70	2,066.86	0.00	0.00	0.00
11,800.00	90.60	270.03	9,693.64	309.49	-2,166.69	2,166.85	0.00	0.00	0.00
11,900.00	90.60	270.03	9,692.58	309.53	-2,266.68	2,266.85	0.00	0.00	0.00
12,000.00	90.60	270.03	9,691.53	309.57	-2,366.68	2,366.84	0.00	0.00	0.00
12,100.00	90.60	270.03	9,690.47	309.62	-2,466.67	2,466.83	0.00	0.00	0.00
12 200 00	00.60	370.02	0 690 43	200 66	2 566 67	2 566 82	0.00	0.00	0.00
12,200.00	90.60	270.03	9,009.42	309.00	-2,500.07	2,500.05	0.00	0.00	0.00
12,300.00	90.60	270.03	9,688.36	309.71	-2,666.66	2,000.82	0.00	0.00	0.00
12,400.00	90.60	270.03	9,687.31	309.75	-2,766.66	2,766.82	0.00	0.00	0.00
12,500.00	90.60	270.03	9,686.25	309.79	-2,866.65	2,866.81	0.00	0.00	0.00
12,600.00	90.60	270.03	9,685.19	309.84	-2,966.65	2,966.81	0.00	0.00	0.00
12 700 00	90.60	270.03	9 684 14	309 88	-3 066 64	3 066 80	0.00	0.00	0.00
12,700.00	90.60	270.03	0 693 09	309.00	-3 166 63	3 166 80	0.00	0.00	0.00
12,000.00	50.00	270.03	9,003.00	309.93	2 266 62	3,100.00	0.00	0.00	0.00
12,900.00	90.00	270.03	9,002.03	309.97	-3,200.03	3,200.79	0.00	0.00	0.00
13,000.00	90.60	270.03	9,060.97	310.02	-3,300.02	3,300.70	0.00	0.00	0.00
13,100.00	90.60	270.03	9,679.92	310.06	-3,466.62	3,466.78	0.00	0.00	0.00
13,200.00	90.60	270.03	9,678.86	310.10	-3,566.61	3,566.77	0.00	0.00	0.00
13,300.00	90.60	270.03	9.677.81	310.15	-3.666.61	3.666.77	0.00	0.00	0.00
13 400 00	90.60	270.03	9 676 75	310 19	-3 766 60	3 766 76	0.00	0.00	0.00
13,500.00	00.00	270.03	9 675 70	310.24	-3 866 60	3 866 76	0.00	0.00	0.00
13,500.00	90.00	270.03	9 674 64	310.24	-3,000.00	3 966 75	0.00	0.00	0.00
10,000.00	50.00	270.00	0,014.04	010.20	0,000.00	0,000.70	0.00	0.00	0.00
13,700.00	90.60	270.03	9,673.59	310.32	-4,066.58	4,066.75	0.00	0.00	0.00
13,800.00	90.60	270.03	9,672.53	310.37	-4,166.58	4,166.74	0.00	0.00	0.00
13,900.00	90.60	270.03	9,671.48	310.41	-4,266.57	4,266.73	0.00	0.00	0.00
14,000.00	90.60	270.03	9,670.42	310.46	-4,366.57	4,366.73	0.00	0.00	0.00
14,100.00	90.60	270.03	9,669.37	310.50	-4,466.56	4,466.72	0.00	0.00	0.00
14 200 00	00.60	270.02	0 668 31	310 54	-4 566 56	4 566 72	0.00	0.00	0.00
14,200.00	90.00	270.03	9,000.31	310.54	4,500.50	4,500.72	0.00	0.00	0.00
14,300.00	90.60	270.03	9,007.20	310.59	-4,000.00	4,000.71	0.00	0.00	0.00
14,400.00	90.60	270.03	9,666.20	310.63	-4,766.54	4,700.71	0.00	0.00	0.00
14,500.00	90.60	270.03	9,665.14	310.68	-4,866.54	4,866.70	0.00	0.00	0.00
14,600.00	90.60	270.03	9,664.09	310.72	-4,966.53	4,966.70	0.00	0.00	0.00
14,700.00	90.60	270.03	9,663.03	310.77	-5,066.53	5,066.69	0.00	0.00	0.00
14.800.00	90.60	270.03	9.661.98	310.81	-5.166.52	5,166.68	0.00	0.00	0.00
14 900 00	90.60	270.03	9,660,92	310.85	-5.266.52	5,266,68	0.00	0.00	0.00
15,000,00	90.00	270.03	9 659 87	310.90	-5 366 51	5 366 67	0.00	0.00	0.00
15,000.00	90.60	270.03	9 658 81	310.94	-5 466 51	5 466 67	0.00	0.00	0.00
15,100.00	50.00	210.05	5,000.01	510.54	-3,400.31	0,400.07	0.00	0.00	0.00
15,200.00	90.60	270.03	9,657.76	310.99	-5,566.50	5,566.66	0.00	0.00	0.00
15,300.00	90.60	270.03	9,656.70	311.03	-5,666.49	5,666.66	0.00	0.00	0.00
15.400.00	90.60	270.03	9,655.65	311.07	-5,766.49	5,766.65	0.00	0.00	0.00
15.500.00	90.60	270.03	9.654.59	311.12	-5,866.48	5,866.65	0.00	0.00	0.00
15.600.00	90.60	270.03	9.653.54	311.16	-5,966.48	5,966.64	0.00	0.00	0.00
10,000.00									
15,700.00	90.60	270.03	9,652.48	311.21	-6,066.47	6,066.63	0.00	0.00	0.00
15,800.00	90.60	270.03	9,651.42	311.25	-6,166.47	6,166.63	0.00	0.00	0.00
15,900.00	90.60	270.03	9,650.37	311.30	-6,266.46	6,266.62	0.00	0.00	0.00
16,000.00	90.60	270.03	9,649.31	311.34	-6,366.46	6,366.62	0.00	0.00	0.00
16,100.00	90.60	270.03	9,648.26	311.38	-6,466.45	6,466.61	0.00	0.00	0.00
}	-								

10/9/2019 10:07:21AM

Planning Report

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well #103H
Company:	XTO Energy	TVD Reference:	RKB=30' @ 3543.00usft
Project:	Lea County, NM (NAD-27)	MD Reference:	RKB=30' @ 3543.00usft
Site:	Big Eddy Unit 29W Vader	North Reference:	Grid
Well:	#103H	Survey Calculation Method:	Minimum Curvature
Wellbore:	он		
Design:	PERMIT		

Planned Survey

Measured		Vertical				Vertical	Dogleg	Build	Turn	
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
 (usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	
16,200.00	90.60	270.03	9,647.20	311.43	-6,566.44	6,566.61	0.00	0.00	0.00	
16,300.00	90.60	270.03	9,646.15	311.47	-6,666.44	6,666.60	0.00	0.00	0.00	
16,400.00	90.60	270.03	9,645.09	311.52	-6,766.43	6,766.60	0.00	0.00	0.00	
16,500.00	90.60	270.03	9,644.04	311.56	-6,866.43	6,866.59	0.00	0.00	0.00	
16,600.00	90.60	270.03	9,642.98	311.60	-6,966.42	6,966.58	0.00	0.00	0.00	
16,700.00	90.60	270.03	9,641.93	311.65	-7,066.42	7,066.58	0.00	0.00	0.00	
16,800.00	90.60	270.03	9,640.87	311.69	-7,166.41	7,166.57	0.00	0.00	0.00	
16,900.00	90.60	270.03	9,639.82	311.74	-7,266.41	7,266.57	0.00	0.00	0.00	
17,000.00	90.60	270.03	9,638.76	311.78	-7,366.40	7,366.56	0.00	0.00	0.00	
17,100.00	90.60	270.03	9,637.71	311.82	-7,466.39	7,466.56	0.00	0.00	0.00	
17,200.00	90.60	270.03	9,636.65	311.87	-7,566.39	7,566.55	0.00	0.00	0.00	
17,300.00	90.60	270.03	9,635.60	311.91	-7,666.38	7,666.55	0.00	0.00	0.00	
17,400.00	90.60	270.03	9,634.54	311.96	-7,766.38	7,766.54	0.00	0.00	0.00	
17,500.00	90.60	270.03	9,633.48	312.00	-7,866.37	7,866.53	0.00	0.00	0.00	
17,600.00	90.60	270.03	9,632.43	312.05	-7,966.37	7,966.53	0.00	0.00	0.00	
17,700.00	90.60	270.03	9,631.37	312.09	-8,066.36	8,066.52	0.00	0.00	0.00	
17.800.00	90.60	270.03	9,630.32	312.13	-8,166.36	8,166.52	0.00	0.00	0.00	
17,900.00	90.60	270.03	9.629.26	312.18	-8.266.35	8.266.51	0.00	0.00	0.00	
18,000.00	90.60	270.03	9.628.21	312.22	-8.366.34	8.366.51	0.00	0.00	0.00	
18,100.00	90.60	270.03	9,627.15	312.27	-8,466.34	8,466.50	0.00	0.00	0.00	
18,200.00	90.60	270.03	9,626.10	312.31	-8,566.33	8,566.50	0.00	0.00	0.00	
18,300.00	90.60	270.03	9,625.04	312.35	-8,666.33	8,666.49	0.00	0.00	0.00	
18,400.00	90.60	270.03	9,623.99	312.40	-8,766.32	8,766.48	0.00	0.00	0.00	
18,500.00	90.60	270.03	9.622.93	312.44	-8,866.32	8,866.48	0.00	0.00	0.00	
18,600.00	90.60	270.03	9,621.88	312.49	-8,966.31	8,966.47	0.00	0.00	0.00	
18,700.00	90.60	270.03	9,620.82	312.53	-9,066.31	9,066.47	0.00	0.00	0.00	
18,800.00	90.60	270.03	9,619.77	312.58	-9,166.30	9,166.46	0.00	0.00	0.00	
18,900.00	90.60	270.03	9,618.71	312.62	-9,266.29	9,266.46	0.00	0.00	0.00	
19,000.00	90.60	270.03	9,617.65	312.66	-9,366.29	9,366.45	0.00	0.00	0.00	1
19,100.00	90.60	270.03	9,616.60	312.71	-9,466.28	9,466.45	0.00	0.00	0.00	
19,200.00	90.60	270.03	9,615.54	312.75	-9,566.28	9,566.44	0.00	0.00	0.00	
19,300.00	90.60	270.03	9,614.49	312.80	-9,666.27	9,666.43	0.00	0.00	0.00	
19,400.00	90.60	270.03	9,613.43	312.84	-9,766.27	9,766.43	0.00	0.00	0.00	
19,500.00	90.60	270.03	9,612.38	312.88	-9,866.26	9,866.42	0.00	0.00	0.00	
19,600.00	90.60	270.03	9,611.32	312.93	-9,966.25	9,966.42	0.00	0.00	0.00	
19,700.00	90.60	270.03	9,610.27	312.97	-10,066.25	10,066.41	0.00	0.00	0.00	
19,800.00	90.60	270.03	9,609.21	313.02	-10,166.24	10,166.41	0.00	0.00	0.00	
19,900.00	90.60	270.03	9,608.16	313.06	-10,266.24	10,266.40	0.00	0.00	0.00	1
20,000.00	90.60	270.03	9,607.10	313.10	-10,366.23	10,366.40	0.00	0.00	0.00	
20,100.00	90.60	270.03	9,606.05	313.15	-10,466.23	10,466.39	0.00	0.00	0.00	
20,200.00	90.60	270.03	9,604.99	313.19	-10,566.22	10,566.38	0.00	0.00	0.00	
20,300.00	90.60	270.03	9,603.94	313.24	-10,666.22	10,666.38	0.00	0.00	0.00	
20,400.00	90.60	270.03	9,602.88	313.28	-10,766.21	10,766.37	0.00	0.00	0.00	
20,433.41	90.60	270.03	9,602.53	313.30	-10,799.62	10,799.78	0.00	0.00	0.00	
20,483.42	90.60	270.03	9,602.00	313.32	-10,849.62	10,849.79	0.00	0.00	0.00	

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	EDM 5000.1 XTO Energy Lea County, M Big Eddy Unit #103H OH PERMIT	Single User I NM (NAD-27 29W Vader	ЭБ)		Local Co-o TVD Refere MD Refere North Refe Survey Cal	rdinate Reference: ence: nce: rence: Iculation Method:	Well #103H RKB=30' @ 3543.00usft RKB=30' @ 3543.00usft Grid Minimum Curvature		
Design Targets									
- hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
#103H: SHL (349' FSL/ - plan hits target ce - Point	3 0.00 enter	0.00	0.00	0.00	0.00	570,366.50	670,996.10	32.566819	-103.778286
#103H: PBHL (660' FSI - plan hits target ce - Point	L 0.00 anter	0.00	9,602.00	313.32	-10,849.62	570,679.80	660,147.10	32.567831	-103.813495
#103H: LTP - plan misses targe - Point	0.00 at center by 0.0	0.00 2usft at 2043	9,602.53 3.41usft MD	313.32 (9602.53 TV	-10,799.62 D, 313.30 N, -	570,679.80 10799.62 E)	660,197.10	32.567830	-103.813333
#103H: FTP/LP - plan hits target ce - Point	0.00 enter	0.00	9,712.00	308.72	-426.72	570,675.20	670,569.40	32.567674	-103.779666

Formations

Measured Depth (usft)	Vertical Depth (usft)	Name	l ithology	Dip (°)	Dip Direction (°)	
915.00	915.00	Rustler				
1,270.00	1,270.00	Salado/Top of Salt				
2,430.00	2,430.00	Base of Salt				
2,862.00	2,862.00	Capitan Reef				
4,888.00	4,888.00	Delaware Sand				
5,069.00	5,069.00	Manzanita Marker				
6,122.66	6,121.00	Brushy Canyon Ss.				
7,445.69	7,439.00	Lower Brushy Canyon Ss.				
7,697.64	7,690.00	Bone Spring Lm.				
7,847.21	7,839.00	Avalon Ss.				
7,943.58	7,935.00	Upper Avalon Sh.				
8,179.47	8,170.00	Lw. Avalon Carb.				
8,342.09	8,332.00	Lw. Avalon Sh.				
8,547.87	8,537.00	Bone Spring Carb.				
8.818.90	8,807.00	First Bone Spring Ss.				
9,030.71	9,018.00	Second Bone Spring Carb.				
9,359.10	9,341.00	Second Bone Spring Ss.				
9,612.89	9,551.00	Second Bone Spring A Ss.				
9,777.84	9,647.00	Second Bone Spring B Ss.				

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400049102

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: BIG EDDY UNIT 29W VADER

Well Type: OIL WELL

Submission Date: 10/30/2019

PWD Data Report

12/18/2019

Well Number: 103H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

PWD disturbance (acres):

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: BIG EDDY UNIT 29W VADER

Well Number: 103H

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: BIG EDDY UNIT 29W VADER

Well Number: 103H

Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: Section 4 - Injection Would you like to utilize Injection PWD options? N **Produced Water Disposal (PWD) Location: PWD surface owner:** PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: **Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Other Would you like to utilize Other PWD options? N **Produced Water Disposal (PWD) Location:**

Other PWD discharge volume (bbl/day):

PWD surface owner:

PWD disturbance (acres):

Operator Name: XTO PERMIAN OPERATING LLC

Well Number: 103H

Well Name: BIG EDDY UNIT 29W VADER

Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

/

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400049102

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: BIG EDDY UNIT 29W VADER

Well Type: OIL WELL

Bond Information

Federal/Indian APD: FED BLM Bond number: COB000050 BIA Bond number: Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? BLM reclamation bond number: Forest Service reclamation bond number: Forest Service reclamation bond attachment: Reclamation bond number: Reclamation bond amount: Reclamation bond rider amount:

Additional reclamation bond information attachment:

Submission Date: 10/30/2019

Well Number: 103H Well Work Type: Drill

-

tign gríða dala Litil ar tign ar da Sið Fill ar gríði

12/18/2019

Bond Info Data Report

Show Final Text