

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

01/30/2019

APD ID: 10400032736 **Submission Date:** 08/03/2018

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: JAYHAWK 7 FED Well Number: 9H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
1		3315	0	Ö	OTHER : Surface	NONE	No
2	RUSTLER	2424	891	891	SANDSTONE	NONE	No
3	TOP SALT	2064	1251	1251	SALT	NONE	No
4	BELL CANYON	-1646	4961	4961	SANDSTONE	NATURAL GAS,OIL	No
5	BASE OF SALT	-1646	4961	4961	LIMESTONE	NONE	No
6	CHERRY CANYON	-2986	6301	6301	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-4616	7931	7931	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING	-6126	9441	9441	SHALE	NATURAL GAS,OIL	No
9	BONE SPRING 1ST	-7066	10381	10381	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7606	10921	10921	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-8756	12071	12071	SANDSTONE	NATURAL GAS,OIL	No
12	WOLFCAMP	-9176	12491	12491	SHALE	NATURAL GAS,OIL	Yes
13	STRAWN	-11696	15011	15011	LIMESTONE	NATURAL GAS,OIL	No

Section 2 - Blowout Prevention

Well Name: JAYHAWK 7 FED Well Number: 9H

Pressure Rating (PSI): 10M Rating Depth: 12830

Equipment: BOP/BOPE will be installed per Onshore Oil & Order #2 requirements prior to drilling below intermediate casing, a 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart. Devon requests a variance to run a 5M annular on a 10M BOP system. See separately attached variance request and support documents in Sec. 8.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. 5M annular on 10M system will be tested to 100% of rated working pressure.

Choke Diagram Attachment:

10M_BOPE_CHK_DR_CLS_RKL_20190129101416.pdf

BOP Diagram Attachment:

10M_BOPE_CHK_DR_CLS_RKL_20190129101426.pdf

Pressure Rating (PSI): 5M Rating Depth: 12706

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

Jayhawk_7_Fed_9H_5M_BOPE__CK_20180803072300.pdf

BOP Diagram Attachment:

Jayhawk_7_Fed_9H_5M_BOPE__CK_20180803072311.pdf

Well Name: JAYHAWK 7 FED Well Number: 9H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	900	0	900			900	J-55	40.5	STC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
2	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	12269	0	12257			12269	P- 110	-	OTHER - BTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	INTERMED IATE	8.75	7.625	NEW	API	N	12269	12718	12257	12706			449	P- 110	-	OTHER - FLUSHMAX	l	1.25	BUOY	1.6	BUOY	1.6
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	17631	0	12830			17631	P- 110		OTHER - VAM SG	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Jayhawk_7_Fed_9H_Surf_Csg_Ass_20180803072324.pdf

Well Name: JAYHAWK 7 FED	Well Number: 9H
Casing Attachments	
Casing ID: 2 String Type: INTER	MEDIATE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet	c(s):
Jayhawk_7_Fed_9H_Int_Csg_Ass_2018	0803072356.pdf
Casing ID: 3 String Type: INTER	MEDIATE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet	:(s):
Jayhawk_7_Fed_9H_Int_Csg_Ass_2018	0803072428.pdf
Casing ID: 4 String Type: PROD	UCTION
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet	:(s):
Jayhawk 7 Fed 9H Prod Csg Ass 20'	180803072457.pdf

Section 4 - Cement

Well Name: JAYHAWK 7 FED Well Number: 9H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		0	0	0	0	0	0		N/A	N/A

SURFACE	Lead	0	900	560	1.34	14.8	750	50	CLASS C	1% Calcium Chloride

INTERMEDIATE	Lead	0	8718	348	3.27	9	1138	30	TUNED	Tuned Light
INTERMEDIATE	Tail	8718	1271 8	656	1.6	13.2	1049	30		Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite
PRODUCTION	Lead	1251 8	1763 1	401.0 1	1.33	13.2	533	25	Class H	0.125 lbs/sack Poly-E- Flake

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Well Name: JAYHAWK 7 FED Well Number: 9H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	900	SPUD MUD	8.33	9				2			
900	1271 8	SALT SATURATED	9	10				2			
900	1271 8	SALT SATURATED	9	10				2			
1271 8	1763 1	OIL-BASED MUD	10	12				12			

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement. Stated logs run will be in the Completion Report and submitted to the BLM.

List of open and cased hole logs run in the well:

CALIPER, CBL, DS, GR, MUDLOG

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7000 Anticipated Surface Pressure: 4177.39

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Jayhawk_7_Fed_9H_H2S_Plan_20180803072711.pdf

Well Name: JAYHAWK 7 FED Well Number: 9H

Section 8 - Other Information

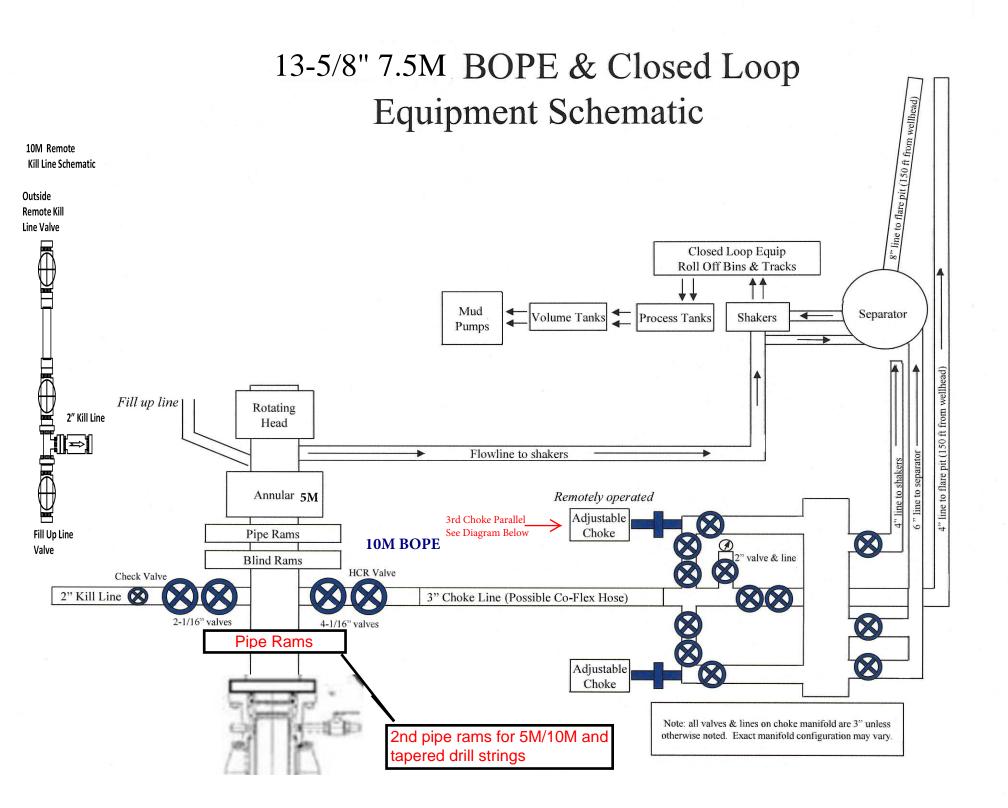
Proposed horizontal/directional/multi-lateral plan submission:

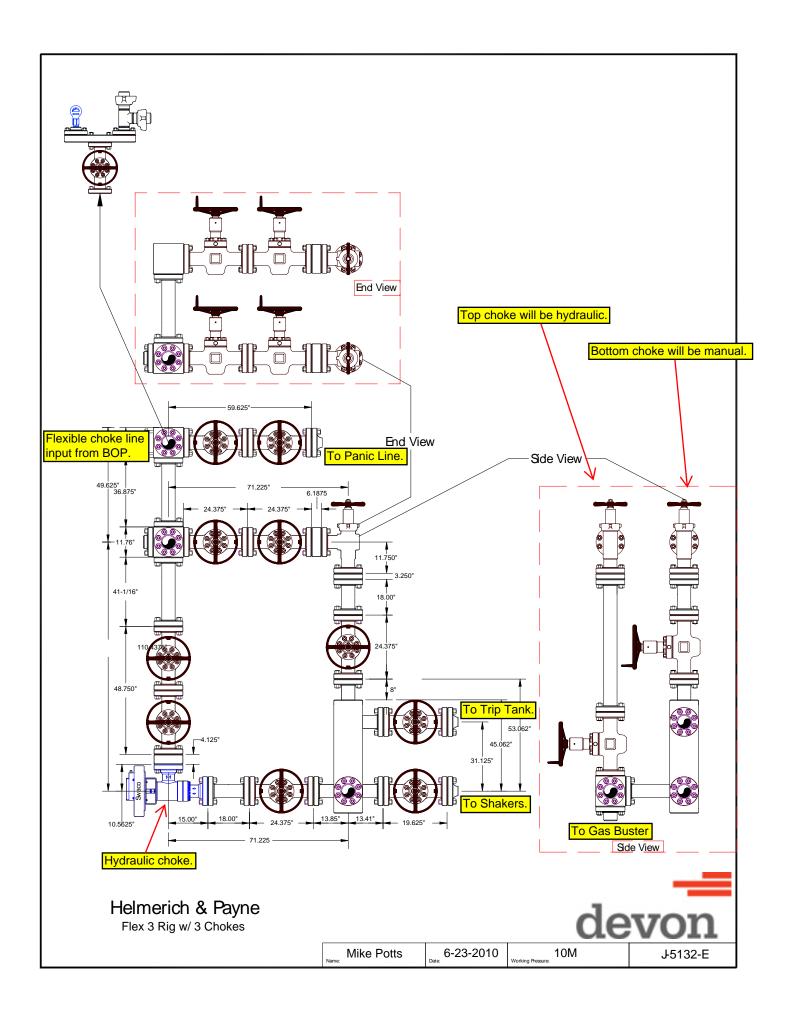
Jayhawk_7_FED_09H_DIR_SVY_20180803072721.pdf

Other proposed operations facets description:

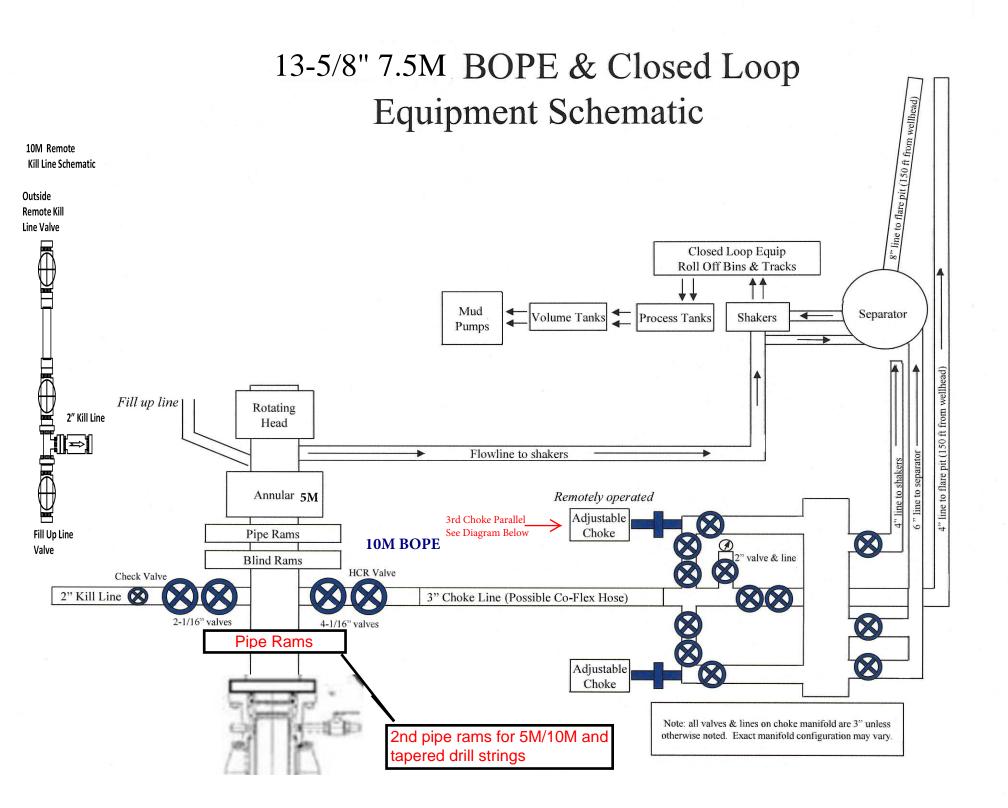
MULTI-BOWL VERBIAGE
MULTI-BOWL WELLHEAD - 2 VARIATIONS OF 10M
10M ANNULAR VARIANCE REQUEST DOC & SCHEMATIC
CLOSED LOOP DESIGN PLAN
DRILLING PLAN
AC REPORT
CO-FLEX HOSE
SPUDDER RIG REQUEST
GCP FORM
SPEC SHEETS - 5

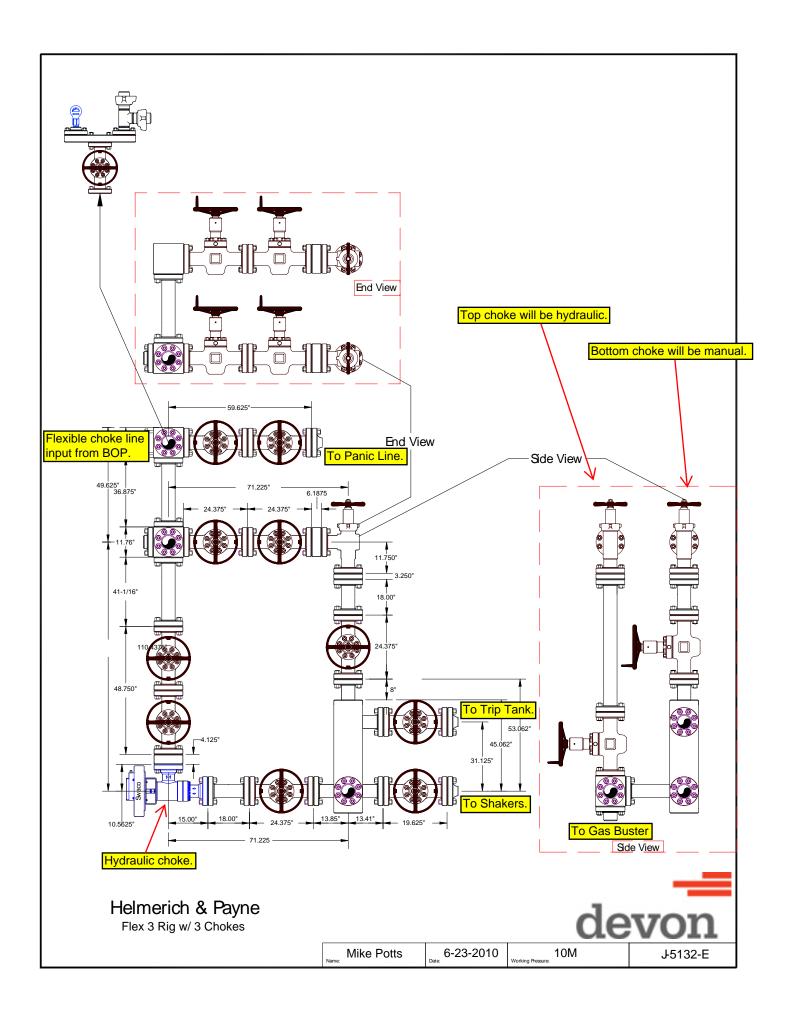
Other proposed operations facets attachment:


5.5_x_20_P110_EC_VAMSG_20180803072923.pdf 5.5_x_20_P110_EC_VAMTOP_HT_20180803072923.pdf 8.625_32__P110EC___7.875_SD_20180803072924.pdf 8.625_32__P110EC_VAM_FJL_NA_7.875_SD_20180803072924.PDF 7.625 29.70 P110 Flushmax 20180803072923.pdf Jayhawk_7_Fed_9H_Clsd_Loop_20180803072926.pdf Jayhawk 7 Fed 9H GCP Form 20180803072927.pdf Jayhawk_7_Fed_9H_MB_Wellhd_5M___Use_for_Wolfcamp_5M_Only_20180803072929.pdf Jayhawk_7_Fed_9H_MB_Wellhd_10M_20180803072929.pdf Jayhawk_7_Fed_9H_Spudder_Rig_Info_20180803072930.pdf Jayhawk 7 FED 09H PLOT 20180803072944.pdf Jayhawk_7_Fed_9H_MB_Wellhd_10M_2_20180803073043.PDF MB_WH_Diagram_20181212110655.pdf Jayhawk 7 Fed 9H MB Verb 5M Alt R2 20190114133020.pdf Jayhawk_7_Fed_9H_MB_Verb_10M_R_20190114133051.pdf Jayhawk_7_Fed_9H_Drilling_Document_R6_20190129101741.pdf


Other Variance attachment:

Jayhawk_7_Fed_9H_Co_flex_20180803073145.pdf


Jayhawk_7_Fed_9H_Annular_Preventer_Summary_20190114130749.pdf


10M_BOPE_DR_CLS_RKL_20190114133223.pdf

4" line to flare pit (150 ft from wellhead) 8" line to flare pit (150 ft from wellhead) 6 " line to separator Separator 4" line to shakers Note: all valves & lines on choke manifold are 3" unless otherwise noted. Exact manifold configuration may vary. 13-5/8" 5 M BOPE & Closed Loop Roll Off Bins & Tracks Closed Loop Equip Shakers Process Tanks Equipment Schematic 88 Remotely operated Volume Tanks Adjustable Choke Adjustable Choke 3" Choke Line (Possible Co-Flex Hose) Flowline to shakers Mud Pumps Pipe Rams Blind Rams Rotating Head Annular Fill up line Check Valve 2" Kill Line 🚫

4" line to flare pit (150 ft from wellhead) 8" line to flare pit (150 ft from wellhead) 6 " line to separator Separator 4" line to shakers Note: all valves & lines on choke manifold are 3" unless otherwise noted. Exact manifold configuration may vary. 13-5/8" 5 M BOPE & Closed Loop Roll Off Bins & Tracks Closed Loop Equip Shakers Process Tanks Equipment Schematic 88 Remotely operated Volume Tanks Adjustable Choke Adjustable Choke 3" Choke Line (Possible Co-Flex Hose) Flowline to shakers Mud Pumps Pipe Rams Blind Rams Rotating Head Annular Fill up line Check Valve 2" Kill Line 🚫

1. Geologic Formations

TVD of target	12,830'	Pilot hole depth	N/A
MD at TD:	17,631'	Deepest expected fresh water:	890'

Basin

Dasin			
Formation	Depth	Water/Mineral Bearing/	Hazards*
	(TVD)	Target Zone?	
	from KB		
RUSTLER	891		
TOP SALT	1251		
BASE OF SALT	4961		
BELL CANYON	4961		
CHERRY CANYON	6301		
BRUSHY CANYON	7931		
BONE SPRING	9441		
BONE SPRING 1ST	10381		
BONE SPRING 2ND	10921		
BONE SPRING 3RD	12071		
WOLFCAMP	12491		
STRAWN	15011		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF	SF
Size	From	To	Size	(lbs)			Collapse	Bur	Tension
								st	
14.75"	0	900'	10.75"	40.5	J-55	STC	1.125	1.25	1.6
		TVD/MD							
9.875"	0	12,257'	7.625"	29.7	P110	BTC	1.125	1.25	1.6
		TVD/MD							
8.75"	12,257'	12,706'	7.625"	29.7	P110	Flushmax III	1.125	1.25	1.6
		TVD/MD							
6.75"	0	17,631'	5.5"	20	P110	Vam SG	1.125	1.25	1.6
		TD							

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

A variance is requested to wave the centralizer requirement for the 7-5/8" flush casing in the 8-3/4" hole and the 5-1/2" SF/Flush casing in the 6-3/4" hole.

Casing Program (Alternate Design)

Hole	Cas	Casing Interval		Weight	Grade	Conn.	SF	SF	SF
Size	From	To	Size	(lbs)			Collapse	Burst	Tension
17.5"	0	900'	13.375"	48	H-40	STC	1.125	1.25	1.6
		TVD/MD							
10.625"	0	5000'	8.625"	32	P110EC	BTC	1.125	1.25	1.6
		TVD/MD							
9.875"	5000'	12,706'	8.625"	32	P110EC	VAM	1.125	1.25	1.6
		TVD/MD				FJL			
7.875"	0	17,631' TD	5.5"	20	P110	Vam	1.125	1.25	1.6
						SG			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

A variance is requested to wave the centralizer requirement for the 8-5/8" flush casing in the 9-7/8" hole and the 5-1/2" SF/Flush casing in the 7-7/8" hole.

8-5/8" Intermediate casing will be kept fluid filled to 100%

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N

Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program (Primary Design)

Casing	Casing # Sks Wt. lb/ H ₂ 0 gal/sk Ylo		Yld ft3/	Slurry Description	
		gal		sack	
Surface	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
Int	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
1111	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS
	1000	14.8	6.32	1.33	Class C Cement + 0.125
				1.55	lbs/sack Poly-E-Flake
Intermediate Two-Stage					Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5% bwoc
(Bradenhead)	640	13.2	5.31	1.6	HALAD-344 + 0.4% bwoc CFR-
					3 + 0.2% BWOC HR-601 + 2%
					bwoc Bentonite
Production	See AFMSS	See AFMSS	See AFMSS	See AFMSS	See AFMSS

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	%
		Excess
Surface	0'	50%
Intermediate	0'	30%
Production Casing	200' Tie-Back to intermediate	25%

Cementing Program (Alternate Design)

Casing	# Sks	Wt. lb/	H₂0 gal/sk	Yld ft3/	Slurry Description	
		gal		sack		
Surface	823	14.8	6.34	1.34	Tail: Class C Cement + 1% Calcium Chloride	
	436	9	13.5	3.27	Lead: Tuned Light® Cement	
Int					Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5%	
IIIC	482	13.2	5.31	1.6	bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC	
					HR-601 + 2% bwoc Bentonite	
	1000	14.8	6.32	1.33	Class C Cement + 0.125 lbs/sack Poly-E-Flake	
Intermediate Two-Stage					Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5%	
(Bradenhead)	482	13.2	5.31	1.6	bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC	
					HR-601 + 2% bwoc Bentonite	
Producti	800	14.8	6.32	1.33	Class H Cement + 0.125 lbs/sack Poly-E-Flake	
on	800	14.0	0.52	1.55	Class in Cement + 0.123 ibs/sack Poly-E-riake	

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	тос	%
		Excess
Surface	0'	50%
Intermediate	0'	30%
Production Casing	200' Tie-Back to intermediate	25%

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туј	oe	✓	Tested to:
			Annı	ılar	X	50% of rated working pressure
T., 4 1' . 4 .	12 5/02	53 A	Blind	Ram	X	
Intermediate	13-5/8"	5M	Pipe I	Ram	X	5M
			Double	Ram	X	5101
			Other*			
			Annulai	(5M)	X	100% of rated working
Production	13-5/8"	10 M				pressure
			Blind	Ram	X	10M

Pij	e Ram	X
Dou	ble Ram	X
Other*		

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

- Y Formation integrity test will be performed per Onshore Order #2.
 On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
- A variance is requested for the use of a flexible choke line from the BOP to Choke Y Manifold. See attached for specs and hydrostatic test chart.
 - Y Are anchors required by manufacturer?
- Y A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate
 the lower head after cementing intermediate casing. After installation of the packoff, the pack-off and the lower flange will be tested to 3M, as shown on the
 attached schematic. Everything above the pack-off will not have been altered
 whatsoever from the initial nipple up. Therefore the BOP components will not be
 retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.

- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Devon requests a variance to use a flexible line with flanged ends between the BOP and the choke manifold (choke line). The line will be kept as straight as possible with minimal turns.

Devon requests a variance to run a 5M annular on a 10M BOP system. See separately attached variance request and support documents in AFMSS.

5. Mud Program

Dej	Type	Weight	Viscosi	Water	
From	To		(ppg)	ty	Loss
0	Surface Casing Shoe	FW Gel	See	See	See
			AFMSS	AFMSS	AFMSS
Surface Casing Shoe	Intermediate Casing Shoe	DBE/Brine	See	See	See
_			AFMSS	AFMSS	AFMSS
Intermediate Casing Shoe	TD	Oil Based Mud	See	See	See
			AFMSS	AFMSS	AFMSS

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.				
X	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated				
	logs run will be in the Completion Report and submitted to the BLM.				
	No Logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain				
	Coring? If yes, explain				

Additional logs planned		Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N	H2S is present
Y	H2S Plan attached

8. Other facets of operation

Is this a walking operation? Potentially

- 1. In the event the spudder rig is unable to drill the surface holes the drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2. The drilling rig will then batch drill the intermediate sections with either OBM or cut brine and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3. The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1. Spudder rig will move in and drill surface hole.
 - **a.** Rig will utilize fresh water based mud to drill 14 ¾" surface hole to TD. Solids control will be handled entirely on a closed loop basis.

- **2.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- **3.** The wellhead will be installed and tested once the 10-3/4" surface casing is cut off and the WOC time has been reached.
- **4.** A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5. Spudder rig operations is expected to take 4-5 days per well on a multi well pad.
- **6.** The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- **7.** Drilling operations will be performed with the drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - **a.** The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
x Directional Plan	
Other, describe	

Devon Energy Annular Preventer Summary

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

6-3/4" Production hole section, 10M requirement

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
HWDP	4.5"	Fixed lower 4.5"	10M
		Upper 4.5-7" VBR	
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

Devon Energy Annular Preventer Summary

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with toolioint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan