Form 3160-3 (June 2015) UNITED STAT DEPARTMENT OF THI BUREAU OF LAND MA APPLICATION FOR PERMIT TO	TES E INTERIOR NAGEMENT		BS D	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018 5. Lease Serial No. 6. If Indian, Allotee or Tribe Name				
1a. Type of work: DRILL	REENTER			7. If Unit or CA Agi	reement, Name	and No.		
1b. Type of Well: Oil Well Gas Well	Other	_		8. Lease Name and	Well No.			
1c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		[317432]			
2. Name of Operator [260297]				9. API Well No. 3	0-025-47	519		
3a. Address	3b. Phone No	o. (include area code		10. Field and Pool,	or Exploratory	[98180]		
4. Location of Well (Report location clearly and in accordance)	ce with any State	requirements.*)		11. Sec., T. R. M. of	r Blk. and Surve	ey or Area		
At surface								
At proposed prod. zone								
14. Distance in miles and direction from nearest town or post	office*			12. County or Parisl	h 13. S	state		
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No of act	res in lease	17. Spacir	ng Unit dedicated to t	his well			
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed	l Depth	20./BLM/	BIA Bond No. in file				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)		nate date work will s	start*	23. Estimated durat	ion			
	24. Attach							
The following, completed in accordance with the requirement (as applicable)	ts of Onshore Oil a	and Gas Order No. 1,	, and the H	ydraulic Fracturing r	rule per 43 CFR	3162.3-3		
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the Item 20 above).	e operation	s unless covered by an	n existing bond	on file (see		
 A Surface Use Plan (if the location is on National Forest Sy SUPO must be filed with the appropriate Forest Service Of 		5. Operator certifica		mation and/or plans as	s may be request	ed by the		
25. Signature	Name	(Printed/Typed)			Date			
Title								
Approved by (Signature)	Name	(Printed/Typed)			Date			
Title	Office							
Application approval does not warrant or certify that the appli applicant to conduct operations thereon. Conditions of approval, if any, are attached.	icant holds legal o	r equitable title to the	ose rights i	in the subject lease w	which would ent	itle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212 of the United States any false, fictitious or fraudulent statement					any department	or agency		
GCP Rec 07/31/2020					1			

Approval Date: 07/30/2020

(Continued on page 2)

SL

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BTA OIL PRODUCERS LLC
LEASE NO.:	NMNM097153
WELL NAME & NO.:	VACA DRAW 9418 10 FEDERAL 26H
SURFACE HOLE FOOTAGE:	420'/S & 1305'/E
BOTTOM HOLE FOOTAGE	50'/N & 990'/E
LOCATION:	Section 10, T.25 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

COA

H2S	• Yes	🔿 No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	Flex Hose	O Other
Wellhead	Conventional	O Multibowl	Observation Both
Other	□4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	□ Water Disposal	COM	🗆 Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Wildcat Pool formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The **10-3/4** inch surface casing shall be set at approximately **1,155** feet (a minimum of **25 feet (Lea County)** into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

Page 1 of 8

completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing, which shall be set at approximately **12,367** feet is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
- 3. The minimum required fill of cement behind the $5 \frac{1}{2} \times 5$ inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

Page 6 of 8

lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA07282020

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Sammy Hajar		Signed on: 04/17/2019
Title: Regulatory Analys	st	
Street Address: 104 S	. Pecos	
City: Midland	State: TX	Zip: 79701
Phone: (432)682-3753		
Email address: shajar	@btaoil.com	
Field Repres	entative	
Representative Name:		
Street Address: 104 Se	outh Pecos	
City: Midland	State: TX	Zip: 79701
Phone: (432)682-3753		
Email address: neaton	@btaoil.com	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400040946

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FEDERAL

Well Type: OIL WELL

Submission Date: 04/17/2019

Well Number: 26H Well Work Type: Drill Highlighted data reflects the most recent changes

07/31/2020

Application Data Report

Show Final Text

Section 1 - General	
---------------------	--

APD ID:	10400040946	Tie to previous NOS?	Submission Date: 04/17/2019
BLM Office:	: CARLSBAD	User: Sammy Hajar	Title: Regulatory Analyst
Federal/Ind	ian APD: FED	Is the first lease penetra	ated for production Federal or Indian? FED
Lease num	ber: NMNM097153	Lease Acres: 640	
Surface acc	ess agreement in place?	Allotted?	Reservation:
Agreement	in place? NO	Federal or Indian agree	ment:
Agreement	number:		
Agreement	name:		
Keep applic	ation confidential? YES		
Permitting A	Agent? NO	APD Operator: BTA OIL	PRODUCERS LLC
Operator le	tter of designation:		

Operator Info

Operator Organization Name: BTA	OIL PRODUCERS LLC	
Operator Address: 104 S. Pecos		7 :n: 70701
Operator PO Box:	Zip: 79701	
Operator City: Midland	State: TX	
Operator Phone: (432)682-3753		
Operator Internet Address:		

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name:							
Well in Master SUPO? NO	Master SUPO name:							
Well in Master Drilling Plan? NO	Master Drilling Plan name:							
Well Name: VACA DRAW 9418 10 FEDERAL	Well Number: 26H	Well API Number:						
Field/Pool or Exploratory? Field and Pool	Field Name: JOHNSON RANCH	Pool Name: WOLFCAMP						
Is the proposed well in an area containing other mine	ral resources? NONE							

Page 1 of 3

Well Number: 26H

Is the proposed well in an area containing other mineral resources? NONE

Is the proposed well in a Helium produ	iction area? N	Use Existing Well Pad?	YES	New surface disturbance? Y
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name		Number: 24-27
Well Class: HORIZONTAL		DRAW 9418 10 FEDERA Number of Legs:	AL .	
Well Work Type: Drill				
Well Type: OIL WELL				
Describe Well Type:				
Well sub-Type: INFILL				
Describe sub-type:				
Distance to town: 22 Miles	Distance to ne	arest well: 1760 FT	Distanc	e to lease line: 420 FT
Reservoir well spacing assigned acres	Measurement:	160 Acres		
Well plat: Vaca_Draw_9418_10_Fed	eral_26H_c102_	_20190417151436.pdf		
Well work start Date: 09/19/2019		Duration: 30 DAYS		

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NGVD29

Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	420	FSL	130 5	FEL	25S	33E	10	Aliquot SESE	32.13896 3	- 103.5558 68	LEA	NEW MEXI CO			NMNM 097153		0	0	
KOP Leg #1	330	FSL	990	FEL	25S	33E	_	Aliquot SESE	32.13871 4	- 103.5548 52	LEA	NEW MEXI CO			NMNM 097153	- 902 2	124 16	123 99	
PPP Leg #1-1	330	FSL	990	FEL	25S	33E	-	Aliquot SESE	32.13871 4	- 103.5548 52	LEA	NEW MEXI CO			NMNM 097153	- 894 9	123 43	123 26	

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
EXIT	330	FNL	990	FEL	25S	33E	10	Aliquot	32.15142		LEA			F	NMNM	-	179	126	
Leg								NENE	3	103.5548		MEXI			097153	931	59	92	
#1										58		со	со			5			
BHL	50	FNL	990	FEL	25S	33E	10	Aliquot	32.15219	-	LEA	NEW	NEW	F	NMNM	-	179	129	
Leg								NENE	3	103.5548		MEXI			097153	959	59	72	
#1										59		co	co			5			

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FEDERAL

APD ID: 10400040946

Submission Date: 04/17/2019

Highlighted data reflects the most recent changes

Show Final Text

Well Type: OIL WELL

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
440673	QUATERNARY	3377	0	0	ALLUVIUM	NONE	N
440671	RUSTLER	2276	1101	1101		NONE	N
440676	TOP SALT	1868	1509	1509		NONE	N
440678	BASE OF SALT	-1443	4820	4820		NONE	N
440677	DELAWARE	-1693	5070	5070		NATURAL GAS, OIL	N
440681	BELL CANYON	-1720	5097	5097		NATURAL GAS, OIL	N
440682	CHERRY CANYON	-2992	6369	6369		NATURAL GAS, OIL	N
440683	BRUSHY CANYON	-4285	7662	7662		NATURAL GAS, OIL	N
440679	BONE SPRING	-5837	9214	9214		NATURAL GAS, OIL	N
440684	FIRST BONE SPRING SAND	-6599	9976	9976		NATURAL GAS, OIL	N
440685	BONE SPRING 2ND	-7386	10763	10763		NATURAL GAS, OIL	N
440686	BONE SPRING 3RD	-8379	11756	11756		NATURAL GAS, OIL	N
440680	WOLFCAMP	-8949	12326	12326		NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Drilling Plan Data Report

07/31/2020

Well Number: 26H

Well Work Type: Drill

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Pressure Rating (PSI): 10M

Rating Depth: 14000

Equipment: The blowout preventer equipment (BOP) shown in Exhibit A will consist of a (10M system) double ram type (10,000 psi WP) preventer and a bag-type (Hydril) preventer (5000 psi WP). Both units will be hydraulically operated and the ram type preventer will be equipped with blind rams on top and 5" drill pipe rams on bottom. The BOP's will be installed on the 13-3/8" surface casing and utilized continuously until total depth is reached. A 2" kill line and 3" choke line will be incorporated in the drilling spool below the ram-type BOP. A remote kill line will be used for the 10M system as per onshore order #2. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines, and choke manifold having a 10,000 psi WP rating. The 5M annular on the 10M system will be tested to 100% of rated working pressure. **Requesting Variance?** YES

Variance request: A Choke Hose Variance is requested. See attached test chart and spec. 5M annular variance requested.

Testing Procedure: Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily driller's log. All BOP's and associated equipment will be tested as per BLM drilling Operations Order No. 2.

Choke Diagram Attachment:

Choke_Hose___Test_Chart_and_Specs_20181129153440.pdf

10M_choke_mannifold_20181129153440.pdf

BOP Diagram Attachment:

5M_annular_well_control_plan_for_BLM_20181129153535.docx

10M_annular_variance__20190205150746.pdf

BLM_10M_BOP_with_5M_annular_20190205150734.pdf

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1150	0	1150			1150	J-55	40.5	ST&C	3.2	6.3	DRY	9	DRY	13.5
2	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	12167	0	12149			12167	P- 110	20	BUTT	1.3	1.4	DRY	2.7	DRY	2.6
3	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	12367	0	12349			12367	P- 110	29.7	BUTT	1.6	1.6	DRY	2.6	DRY	2.6
4	PRODUCTI ON	6.75	5.0	NEW	API	Y	12167	17959	12149	12972			5792	P- 110	18	BUTT	1.4	1.4	DRY	2.8	DRY	2.5

Section 3 - Casing

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_26H_Casing_Assumption_20190417154843.JPG

Casing ID: 2 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

vaca_draw_5.5_tapered_string_spec_20190327151801.JPG

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_26H_Casing_Assumption_20190417154837.JPG

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_26H_Casing_Assumption_20190417154831.JPG

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Casing Attachments

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

vaca_draw_5_tapered_string_spec_20190327151747.JPG

Casing Design Assumptions and Worksheet(s):

Vaca_Draw_26H_Casing_Assumption_20190417154824.JPG

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	905	560	1.8	13.5	1008	100	Class C	2% CaCl2
SURFACE	Tail		905	1150	200	1.34	14.8	268	100	Class C	2% CaCl2
INTERMEDIATE	Lead		0	4620	740	2.19	12.7	1620. 6	50	Class C	0.5% CaCl2
INTERMEDIATE	Tail		4620	5050	150	1.33	14.8	199.5	50	Class C	1% CaCl2
INTERMEDIATE	Lead	5050	5050	1181 0	2160	2.64	10.5	5702. 4	15	Class H	0.5% CaCl2
INTERMEDIATE	Tail		1181 0	1236 7	400	1.19	15.6	476	15	Class H	1% CaCl2
PRODUCTION	Lead		1126 5	1216 7	0	0	0	0		n/a	n/a

PRODUCTION	Lead	1216	1795	630	1.27	14.8	800.1	10	Class H	0.1% Fluid Loss
		7	9							

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

	1 1										
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1150	OTHER : FW Spud	8.3	8.4							
1150	1236 7	OTHER : DBE	9	9.4							
1236 7	1297 2	OIL-BASED MUD	11	14							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Drill Stem Tests will be based on geological sample shows.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

None planned

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 9444

Anticipated Surface Pressure: 6590.16

Anticipated Bottom Hole Temperature(F): 185

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20181129153648.pdf

H2S_Equipment_Schematic_20181129153733.pdf

BTA_Oil_Producers_LLC___EMERGENCY_CALL_LIST_20190205154800.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Vaca_Draw__26H_directional_plan_20190417155504.pdf

Vaca_Draw__26H_wall_plot_20190417155505.pdf

Vaca_Draw_9418_10_Federal_26H_Gas_Capture_Plan_20190417155515.pdf

Other proposed operations facets description:

A variance is requested for a Multi Bowl Wellhead. See the attached schematic and running procedure. *All strings will be kept 1/3 full while running.

Other proposed operations facets attachment:

Other Variance attachment:

Casing_Head_Running_Procedure_20181129153916.pdf Multi_Bowl_Diagram__3_STRING_10_34_SOW_For_VACA_DRAW_20191015144543.pdf

Drilling

- 1. Sound alarm (alert crew).
- 2. Space out drill string.
- 3. Shut down pumps (stop pumps and rotary).
- 4. Shut-in Well with annular with HCR and choke in closed position.
- 5. Confirm shut-in.
- 6. Notify tool pusher/company representative.
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Time of shut in
- c. Pit gain

8. Regroup and identify forward plan. If pressure has increased to 2500 psi, confirm spacing and close the upper variable bore rams.

9. Prepare for well kill operation.

Tripping

- 1. Sound alarm (alert rig crew)
- 2. Stab full opening safety valve and close valve
- 3. Sapce out drill string
- 4. Shut in the well with the annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
- a. Time of shut in
- b. SIDPP and SICP
- c. Pit gain

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

While Running Casing

- 1. Sound alarm (alert rig crew)
- 2. Stab crossover and full opening safety valve and close valve
- 3. Space out casing string
- 4. Shut in well with annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Pit gain
- c. Time

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

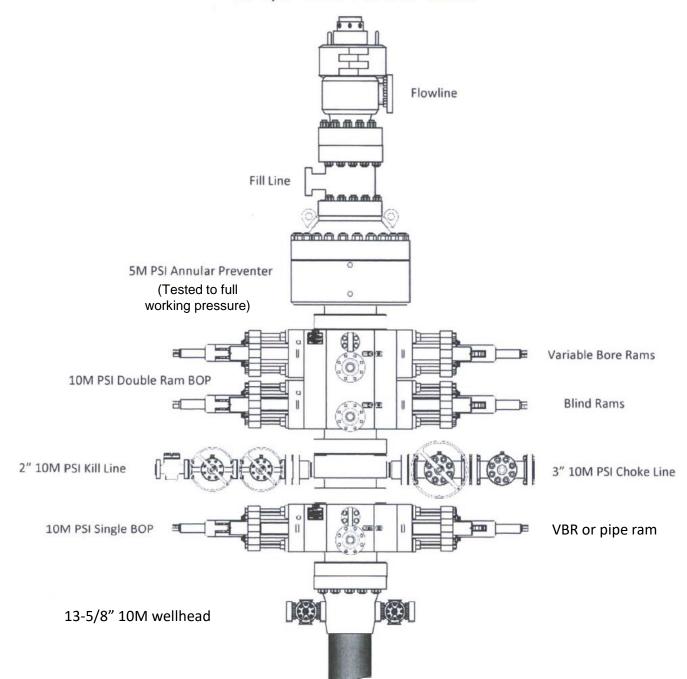
No Pipe In Hole (Open Hole)

1. Sound alarm (alert rig crew)

Well control plan for 10M BOPE with 5M annular

- Shut in blind rams with HCR and choke in closed position 2.
- 3. Confirm shut in
- 4. Notify tool pusher/company representative
- Read and record the following: 5.
- SICP a.
- Pit gain b.
- Time c.
- Prepare for well kill operation 6.

- Pulling BHA thru Stack 1. Prior to pulling last joint of drill pipe thru the stack
 - Perform flow check, if flowing: a.
 - Sound Alarm (alert crew) a.i.
 - Stab full opening safety valve and close valve a.ii.
 - Space out drill string a.iii.
 - Shut in using upper most VBR, choke and HCR in closed positon a.iv.
 - a.v. Confirm shut in
 - Notify tool pusher/company representative. a.vi.
 - Read and record the following: a.vii.
 - a.vii.1. SIDPP and SICP
 - a.vii.2. Pit gain
 - a.vii.3. Time
 - Prepare for well kill operation a.viii.
 - With BHA in the stack: 2.
 - If possible pull BHA clear of stack a.
 - a.i. Follow 'open hole' procedure above
 - If unable to pull BHA clear of stack b.
 - Stab crossover with full opening safety valve, close valve. b.i.
 - Space out b.ii.
 - Shut in using upper most VBR. HCR and choke in closed position. b.iii.
 - Confirm shut in b.iv.
 - b.v. Notify tool pusher/company rep
 - Read and record the following: b.vi.
 - b.vi.1. SIDPP and SICP
 - b.vi.2. Pit gain
 - b.vi.3. Time
 - Prepare for well kill operation b.vii.


Drilling component and preventer compatibility table for 10M approval

The following table outlines the drilling and production liner components for Wolfcamp targets requiring 10M BOPE approval. Variance is requested to utilize a 5M annular preventer in 6-1/8" hole as all components can be covered using 10M rated VBR's (variable bore rams). 5M annular on the 10M system will be tested to 100% of rated working pressure.

6-1/8" ho	e section – 10M	BOPE requirement (13-5	5/8" BOP)
Component	OD	Preventer	RWP
Drill pipe	4″	3.5"-5.5" VBR	10M
HWDP	4″	3.5"-5.5" VBR	10M
Jars	5″	3.5"-5.5" VBR	10M
DC's and NMDC's	4-3/4"	3.5"-5.5" VBR	10M
Mud motor	5″	3.5"-5.5" VBR	10M
Casing	4-1/2"	3.5"-5.5" VBR	10M
Open hole	NA	Blind rams	10M

12-1/4" & 8	-3/4" hole sect	ions – 5M BOPE requiremen	t (13-5/8" BOP)
Component	OD	Preventer	RWP
Drill pipe	5″	3.5"-5.5" VBR or 5" pipe rams	10M
HWDP	5″	3.5"-5.5" VBR or 5" pipe rams	10M
Jars	6-1/4"	Annular	5M
DC's and NMDC's	7"-8"	Annular	5M
Mud motor	7"-8"	Annular	5M
Casing	9-5/8" & 7"	Annular	5M
Open hole	NA	Blind rams	10M

STRENGTHS OF CASING

-	_	ernali Yiel	d Pressure	PSI**	Body		Joint Str	ength - 100	00 Lbs.**
1.105	Plain End or	Roun	d Thread	But-	Yield	Thread	ded & Cplg.	Joint	Ext.
Constraints'	Ext.	Short	Long	tress	Stgth. 1,000	Round	d Thread	Bul-	Line
	Line	Chort	cong	Thd.	Lbs	Short	Long	tress Thd.	Joint
	16,990	-	-	-	828	-		-	
1,1100	18,810	-	-	-	909	-			
Sec.	20,770	-	-	-	987			_	-
	22,670	-	-	-	1.063	_		-	1 3
	24,540	-	1 1 1 2 -	-	1,136			-	-
	26,450				1,208	-		-	-
11000	10,640	10	10,640	10.640	546	_	445	568	-
1.12.000	10,640	-	10,640	10,640	546	-	445	568	620
	12,640	_	12.640	12,360	641		548	667	654
	14,520	-	13,580	12,360	729		643	724	722
	16,660	-	-	-		569†	393††	5641	89211
-	12,090	-	12,090	12,090	620		481	620	032++
1716	12,090	-	12.090	12,090	620	-	481	620	-
	14.360	-	14,360	14.050	729		592	728	-
	16,510		15,430	14.050	829		694	782	1000
	18,930		15,430	14,050	939		808	782	
	13,540	-	13,540	13,540	695	-	534	690	-
	16,080	-	16,080	15,740	816	-	657	810	_
(7)	18,490	-	17.290	15,740	928	_	771	869	_
-	17,230	-	17.230	16,860	874		701	865	122
	1000		17.230	16.860	874	-	701	908	
	THE THE	-	18,520	16,860	994	-	823	910	문제
		-	22,720	1-	-	-	-	-	722‡
28	11,870		9.880	8 990	617		FOX		

		Wt.		Thread 8	Cplg	Extrem	e Line	Collose
Size O.D. In.	Grade	Per FL With Cplg., Lb	Inside Dia. In.	Drift Dia. In.	O.D. of Cpig. In.	Drift Dia. In.	O.D. of Box In	Resis- tance PSI
5 ¹ / ₂	T-95 T-95 T-95 T-95 T-95 HCP-110 P-1	29,70 32,60 35,30 38,00 40,50 43,10 17,00 17,00 20,00 23,00 26,00 17,00 23,00 23,00 23,00 23,00 23,00 20,00 20,00 20,00	4.778 4.778 4.670	4 251 4 125 4 001 3 875 3 751 3 625 4 767 4 853 4 545 4 767 4 767 4 653 4 545 4 767 4 653 4 545 4 653 4 545 4 653 4 653 4 653 4 653 4 653 4 653 4 653 4 653		-		17,430 19,140 20,760 22,380 23,920 25,400 8,580 7,460 14,520 17,390 14,520 17,390 12,080 12,080 12,080 12,080 12,080 12,080 12,080 12,080 12,080 12,080 12,080 12,080 13,480 13,480 13,480 13,480 13,480

DIMENSIONS AND

3 9

1. A. 197-

H.L. H

1.11

**	e Line	Extrem	Cplg	Thread &		WL		T
Col'pse Resis- tance PSI	O D, of Box In,	Drift Dia In.	O.D. of Cplg, In	Drift Dia. In.	Inside Dia. In.	Per Ft. With Cplg.	Grade	Size O.D. In.
11,240	5.094	4.059	-		4.184	20.30	C-75*	5
12,970	5.094‡	3.919	-		4.044	23.20	C-75*	°
9,380	-	-	-	4.283	4.408	15.00	HCL-80+	- 1
11,880	-	-	_	4,151	4.276	18.00	HCL-80+	- 1
15.820		-	_	3.919	4.044	23.20	HCL-80+	- 1
9,380		-	-	4 283	4.408	15.00		- 1
11,880		_ 1		4 151	4 276	18.00	HCN-80+	
15.820	-		8	3.919	4.044		HCN-80+	- 1
7,250		_	-	4 283	4,408	23 20	HCN-80+	
14,400	-		_	3.875		15.00	1-80	- 1
10,500	-	-	_	4.151	4.000	24.10	L-80	- 1
12,760	-		_		4.276	18,00	L-80	
13.830				4,001	4.126	21,40	L-80	
7,250	5.360	4.151	5 500	3.919	4.044	23.20	L-80	- 1
10,490	5 360	4.151	5.563	4 283	4,408	15.00	N-80	
11,990	5 250		5.563	4.151	4 276	18.00	N-80	
13,830	5.0941	4.059	-	-	4.184	20.30	N-80	
12,760	2,09#1	3.919	-	-	4.044	23.20	N-80	
14,400	-	-	-	4,001	4.126	21.40	N-80	
	-	-		3,875	4,000	24.10	N-80	
7,840	-	-	-	4.233	4.408	15.00	C-90	
11,530	-	-	-	4.151	4.276	18.00	C-90	
14,360	-	-		4.001	4,126	21.40	C-90	
15,560	-		-	3.919	4.044	23.20	C-90	
16,200	-	-	-	3.875	4.000	24.10	C-90	
8,090	5.360	4.151	5.563	4.283	4.408	15.00	C-95	
12,010	5.360	4.151	5.563	4.151	4.276	18.00	C-95	
14,250	5.250	4.059	_	_	4.184	20.30	C-95	
16,430	5.094‡	3.919	_	_	4.044	23 20		
15,160	-	-	_	4.001	4.126	21 40	C-95	
17,100	-	-	1.1.1	3.875	4.000		C-95	
9,380		-	-	4 283	4.408	24.10	C-95	
12,030		_	1	4.151	4,408	15.00	S-95+	
16.430	-	-	-	3.919	4.276	18,00	S-95+	
8,110	-	1	Print Contract	4.283		23.20	S-95+	
12.030	-				4,408	15.00	T-95	
15.160	12	E	-	4.151	4,276	18.00	T-95	
16.430			-	4,001	4 126	21_40	T-95	
17,100		-	-	3,919	4.044	23 20	T-95	
8,830	5.360	1.100	-	3.875	4.000	24.10	T-95	
13,450	5.360	4,151	5.563	4,283	4,408	15.00	P-110	
	5.094‡	4.151	5.563	4.151	4.276	18.00	P-110	

	emai vie	d Pressur	e PSI**	Body		Joint St	rength - 10	OO Lbs.
Plain End or	Rour	d Thread	But-	Yield	Threa	ded & Cplg		1
Ext.	Short	Lun	tress	Stgth, 1,000	Roun	d Thread	But-	Ext Line
Line	oliun	Long	Thd	Lbs	Short	Long	Thd.	Join
10,710 12,550	-	-	-	-	369†	-	-	529
	-			-	3691			529
8,290	-	8,290	8,290	-	-	311	408	525
10,140	-	10,140	9,910	422	-	396	492	
13,380	-	10,810	9,910	543	-	540	518	1 1
8,290	-	8,290	8.290	350	-	311	408	
10,140	-	10 140	9,910	422	-	396	492	
13,380		10,810	9,910	543		540		
8,290		8,290	8,290	350		295	537	
14,000	-	10.810	9,910	566			379	
10,140		10,140	9,910	422	_	538	510	1 7
12,240		10,810	9,910	501	-	377	457	
13,380	-	10,810	9,910	543	-	466	510	1 ·
8.290	1000	8,290	8,290	350		513	510	-
10,140	and a	10,140	9,910		-	311	396	43
11,420	-	10,140	9,910	422	-	396	477	46
13,380		1 3	三	-	388†	284††	363‡	556t
12.240	_	10,810		-	388†	28411	3631	556t
14.000		10,810	9,910	501	-	490	537	
9,320	-		9,910	566	-	558	537	
11,400		9,320	9,320	394		311	404	-
13,770	-	11,400	11,150	475	-	396	484	
15,060	-	12,170	11,150	564		490	537	1 2
15,750	1	12,170	11,150	611		540	537	
		12,170	11,150	636	-	567	537	
9,840	-	9,840	9,840	416	-	326	424	459
12.040		12.040	11,770	501		416	512	493
13,560	-	-		-	- 1		OTE	58411
15,890		-				100		58411
4,530	-	12,840	11,770	595	_	515	563	36411
6,630		12,840	11,770	672	-	595	563	-
9,840		9,840	9,840	416		342	441	-
2,040	-	12,040	11,770	501		436	532	53
5,890	-	12.840	11,770	645		594		_
9,840	-	9.840	9,840	416		326	590	-
2,040	-	12.040	11,770	501		416	424	-
4,530	-	12.840	11.770	595	-		512	-
5.890	-	12.840	11.770	645		515	563	-
6.630	-	12.840	11,770			567	563	-
1.400		11,400		672		595	563	-
3.940	_		11,400	481	-	388	503	547
5.710		10,040	13,020	580	195+	495	606	587

STRENGTHS OF CASING

NO. 203

101		BTA Oi 104 S I	l Producer:	s, <mark>LL</mark> C							Vaca D 12972		10 Fed	#26H (WI	MPA)
102	UAS		ecos 1. TX 7970.	1						TVD: MD:	17959				
		Midiand	I, IA (970.	1		DF	RILLING F	I.AN		IVIL).	17908				
								Lint							
Casing Pro	ogram														
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	1150	0	1150	No	40.5	J-55	STC	3.2	6.3	13.5	9.0	Dry	8.3
9 7/8	7 5/8	0	12367	0	12349	No	29.7	P110	Buttress	1.6	1.6	2.6	2.6	Dry	9.4
3 3/4	5 1/2	0	12167	0	12149	Yes	20	P110	Buttress	1.3	1.4	2.6	2.7	Dry	14
3 3/4	5	12167	17959	12149	12972	Yes	18	P110	Buttress	1.4	1.4	2.5	2.8	Dry	14
		@ 5050'											-		

101		BTA Oi 104 S I	l Producer:	s, <mark>LL</mark> C							Vaca D 12972		10 Fed	#26H (WI	MPA)
102	UAS		ecos 1. TX 7970.	1						TVD: MD:	17959				
		Midiand	I, IA (970.	1		DF	RILLING F	I.AN		IVIL).	17908				
								Lint							
Casing Pro	ogram														
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	1150	0	1150	No	40.5	J-55	STC	3.2	6.3	13.5	9.0	Dry	8.3
9 7/8	7 5/8	0	12367	0	12349	No	29.7	P110	Buttress	1.6	1.6	2.6	2.6	Dry	9.4
3 3/4	5 1/2	0	12167	0	12149	Yes	20	P110	Buttress	1.3	1.4	2.6	2.7	Dry	14
3 3/4	5	12167	17959	12149	12972	Yes	18	P110	Buttress	1.4	1.4	2.5	2.8	Dry	14
		@ 5050'											-		

104 S P Midland	I, TX 7970	1		DF	RILLING P	LAN		TVD: MD:	12972 17959				
				DF	RILLING P	LAN			11000				
From (MD)													
From (MD)													
	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
0	1150	0	1150	No	40.5	J-55	STC	3.2	6.3	13.5	9.0	Dry	8.3
0	12367	0	12349	No	29.7	P110	Buttress	1.6	1.6	2.6	2.6	Dry	9.4
0	12167	0	12149	Yes	20	P110	Buttress	1.3	1.4	2.6	2.7	Dry	14
12167	17959	12149	12972	Yes	18	P110	Buttress	1.4	1.4	2.5	2.8	Dry	14
	0 0 12167		0 12367 0 0 12167 0	0 12367 0 12349 0 12167 0 12149 12167 17959 12149 12972	0 12367 0 12349 No 0 12167 0 12149 Yes 12167 17959 12149 12972 Yes	0 12367 0 12349 No 29.7 0 12167 0 12149 Yes 20 12167 17959 12149 12972 Yes 18	0 12367 0 12349 No 29.7 P110 0 12167 0 12149 Yes 20 P110 12167 17959 12149 Yes 18 P110	0 12367 0 12349 No 29.7 P110 Buttress 0 12167 0 12149 Yes 20 P110 Buttress 12167 17959 12149 Yes 18 P110 Buttress	0 12367 0 12349 No 29.7 P110 Buttress 1.6 0 12167 0 12149 Yes 20 P110 Buttress 1.3 12167 17959 12149 Yes 18 P110 Buttress 1.4	0 12367 0 12349 No 29.7 P110 Buttress 1.6 1.6 0 12167 0 12149 Yes 20 P110 Buttress 1.3 1.4 12167 17959 12149 Yes 18 P110 Buttress 1.4	No 20.7 P10 Buttress 1.6 2.6 12167 0 12149 Yes 20 P110 Buttress 1.3 1.4 2.6 12167 17959 12149 Yes 18 P110 Buttress 1.4 2.6	No Sector Sec	No Since Since No Since Since

104 S P Midland	I, TX 7970	1		DF	RILLING P	LAN		TVD: MD:	12972 17959				
				DF	RILLING P	LAN			11000				
From (MD)													
From (MD)													
	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
0	1150	0	1150	No	40.5	J-55	STC	3.2	6.3	13.5	9.0	Dry	8.3
0	12367	0	12349	No	29.7	P110	Buttress	1.6	1.6	2.6	2.6	Dry	9.4
0	12167	0	12149	Yes	20	P110	Buttress	1.3	1.4	2.6	2.7	Dry	14
12167	17959	12149	12972	Yes	18	P110	Buttress	1.4	1.4	2.5	2.8	Dry	14
	0 0 12167		0 12367 0 0 12167 0	0 12367 0 12349 0 12167 0 12149 12167 17959 12149 12972	0 12367 0 12349 No 0 12167 0 12149 Yes 12167 17959 12149 12972 Yes	0 12367 0 12349 No 29.7 0 12167 0 12149 Yes 20 12167 17959 12149 12972 Yes 18	0 12367 0 12349 No 29.7 P110 0 12167 0 12149 Yes 20 P110 12167 17959 12149 Yes 18 P110	0 12367 0 12349 No 29.7 P110 Buttress 0 12167 0 12149 Yes 20 P110 Buttress 12167 17959 12149 Yes 18 P110 Buttress	0 12367 0 12349 No 29.7 P110 Buttress 1.6 0 12167 0 12149 Yes 20 P110 Buttress 1.3 12167 17959 12149 Yes 18 P110 Buttress 1.4	0 12367 0 12349 No 29.7 P110 Buttress 1.6 1.6 0 12167 0 12149 Yes 20 P110 Buttress 1.3 1.4 12167 17959 12149 Yes 18 P110 Buttress 1.4	No 20.7 P10 Buttress 1.6 2.6 12167 0 12149 Yes 20 P110 Buttress 1.3 1.4 2.6 12167 17959 12149 Yes 18 P110 Buttress 1.4 2.6	No Sector Sec	No Since Since No Since Since

BTA OIL PRODUCERS LLC

HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

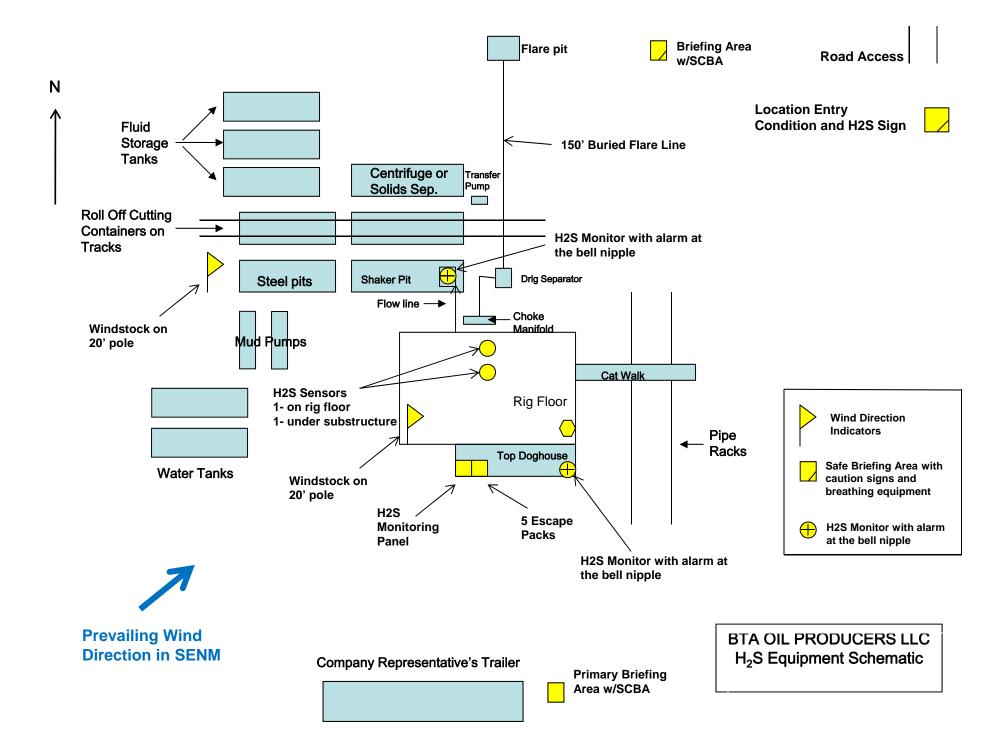
Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment: Flare line. Choke manifold with remotely operated choke. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit. Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.
b. Protective equipment for essential personnel:

- Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy: All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication: Company vehicles equipped with cellular telephone.


WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH BTA OIL PRODUCERS LLC FOREMAN AT MAIN OFFICE

BTA OIL PRODUCERS LLC

1-432-682-3753

EMERGENCY CALL LIST

	<u>OFFICE</u>	<u>MOBILE</u>
BTA Oil Producers LLC OFFICE	432-682-3753	
BEN GRIMES, Operations	432-682-3753	432-559-4309
NICK EATON, Drilling	432-682-3753	432-260-7841
TRACE WOHLFAHRT, Completions	432-682-3753	

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

BTA Oil Producers, LLC

Lea County, NM (NAD 83) Vaca Draw Sec 10, T25S, R33E Vaca Draw #26H

Wellbore #1

Plan: Design #1

Standard Planning Report - Geographic

10 April, 2019

Microsoft Planning Report - Geographic

Database:OldCompany:BTA Oil Producers, LLCProject:Lea County, NM (NAD 83)Site:Vaca Draw Sec 10, T25S, R33EWell:Vaca Draw #26HWellbore:Wellbore #1Design:Design #1					Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:			Well Vaca Draw #26H GL @ 3377.0usft GL @ 3377.0usft Grid Minimum Curvature			
Project	Lea Co	ounty, NM (NA	D 83), Lea Cou	inty, NM							
Map System: Geo Datum: Map Zone:	North Ar	e Plane 1983 nerican Datum xico Eastern Z			System Dat	tum:		ound Level	cale factor		
Site	Vaca D)raw Sec 10, T	25S, R33E								
Site Position: From: Position Uncertai	Ma nty:		North Easti .0 usft Slot I	-		,812.34 usft ,596.21 usft 13-3/16 "	Latitude: Longitude: Grid Converg	jence:		32° 9' 6.483 N 103° 33' 48.478 W 0.41 °	
Well	Vaca D	raw #26H									
Well Position Position Uncertai	+N/-S +E/-W nty		0.0 usft E	orthing: asting: /ellhead Eleva	tion:	415,159.00 781,981.60) usft Lor	itude: ngitude: ound Level:		32° 8' 20.267 N 103° 33' 21.124 W 3,377.0 usft	
Wellbore	Wellbo	ore #1									
Magnetics	Mo	odel Name	Samp	le Date	Declina (°)	tion	Dip A	-		trength T)	
		IGRF200510)	12/31/2009		7.74		60.16	48,7	43.74959692	
Design	Design	1 #1									
Audit Notes:											
Version:			Phas	e:	PROTOTYPE	Tie	On Depth:		0.0		
Vertical Section:			Depth From (T (usft) 0.0	VD)	+N/-S (usft) 0.0	(u	sft) 0.0		rection (°) 3.30		
	_										
Plan Survey Tool Depth From (usft)	-		4/10/2019 y (Wellbore)		Tool Name		Remarks				
1	0.0 17	7,959.1 Desigr	n #1 (Wellbore	#1)							
Plan Sections											
			Vertical			Dogleg Rate	Build Rate	Turn Rate	TFO		
Measured Depth li (usft)	nclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target	
Depth li (usft) 0.0	(°) 0.00	(°) 0.00	Depth (usft) 0.0	(usft) 0.0	(usft) 0.0	(°/ 100usft) 0.00	(°/ 100usft) 0.00	0.00	0.00	Target	
Depth li (usft) 0.0 4,867.9	(°) 0.00 0.00	(°) 0.00 0.00	Depth (usft) 0.0 4,867.9	(usft) 0.0 0.0	(usft) 0.0 0.0	(°/100usft) 0.00 0.00	(°/100usft) 0.00 0.00	0.00	0.00 0.00	Target	
Depth li (usft) 0.0	(°) 0.00	(°) 0.00	Depth (usft) 0.0	(usft) 0.0	(usft) 0.0	(°/ 100usft) 0.00	(°/ 100usft) 0.00	0.00	0.00	Target	
Depth (usft) 0.0 4,867.9 5,067.9 12,166.6 12,366.6	(°) 0.00 0.00 4.00 4.00 0.00	(°) 0.00 141.78 141.78 0.00	Depth (usft) 0.0 4,867.9 5,067.7 12,149.2 12,349.0	(usft) 0.0 -5.5 -394.5 -400.0	(usft) 0.0 4.3 310.7 315.0	(°/100usft) 0.00 0.00 2.00 0.00 2.00	(°/100usft) 0.00 0.00 2.00 0.00 -2.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 141.78 0.00 180.00	Target	
Depth (usft) 0.0 4,867.9 5,067.9 12,166.6	(°) 0.00 0.00 4.00 4.00	(°) 0.00 0.00 141.78 141.78	Depth (usft) 0.0 4,867.9 5,067.7 12,149.2	(usft) 0.0 0.0 -5.5 -394.5	(usft) 0.0 4.3 310.7	(°/100usft) 0.00 0.00 2.00 0.00	(°/100usft) 0.00 0.00 2.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 141.78 0.00	Target	

Microsoft Planning Report - Geographic

Database:	Old	Local Co-ordinate Reference:	Well Vaca Draw #26H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3377.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3377.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Well:	Vaca Draw #26H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
100.0	0.00	0.00	100.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
200.0	0.00	0.00	200.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
300.0	0.00	0.00	300.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
400.0	0.00	0.00	400.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
500.0	0.00	0.00	500.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
600.0	0.00	0.00	600.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
700.0	0.00	0.00	700.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
800.0	0.00	0.00	800.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
900.0	0.00	0.00	900.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,100.0	0.00	0.00	2,100.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,200.0	0.00	0.00	2,200.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,300.0	0.00	0.00	2,300.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,400.0	0.00	0.00	2,400.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,500.0	0.00	0.00	2,500.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,600.0	0.00	0.00	2,600.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,700.0	0.00	0.00	2,700.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,800.0	0.00	0.00	2,800.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
2,900.0	0.00	0.00	2,900.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,000.0	0.00	0.00	3,000.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,100.0	0.00	0.00	3,100.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,200.0	0.00	0.00	3,200.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,300.0	0.00	0.00	3,300.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,400.0	0.00	0.00	3,400.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,500.0	0.00	0.00	3,500.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,600.0	0.00	0.00	3,600.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,700.0	0.00	0.00	3,700.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,800.0	0.00	0.00	3,800.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
3,900.0	0.00	0.00	3,900.0	0.0 0.0	0.0 0.0	415,159.00	781,981.60 781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
4,000.0	0.00 0.00	0.00	4,000.0			415,159.00	,	32° 8' 20.267 N	103° 33' 21.124 W 103° 33' 21.124 W
4,100.0		0.00	4,100.0 4,200.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
4,200.0 4,300.0	0.00 0.00	0.00 0.00	4,200.0 4,300.0	0.0 0.0	0.0 0.0	415,159.00	781,981.60 781 981 60	32° 8' 20.267 N 32° 8' 20.267 N	103 33 21.124 W
	0.00			0.0		415,159.00	781,981.60 781 981 60	32° 8' 20.267 N 32° 8' 20.267 N	103 33 21.124 W
4,400.0 4,500.0	0.00	0.00 0.00	4,400.0 4,500.0	0.0	0.0 0.0	415,159.00 415,159.00	781,981.60 781,981.60	32° 8' 20.267 N 32° 8' 20.267 N	103° 33' 21.124 W
4,600.0	0.00	0.00	4,600.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
4,000.0	0.00	0.00	4,000.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N 32° 8' 20.267 N	103° 33' 21.124 W
4,700.0	0.00	0.00	4,700.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
4,800.0	0.00	0.00	4,800.0	0.0	0.0	415,159.00	781,981.60	32° 8' 20.267 N	103° 33' 21.124 W
4,807.9	0.64	141.78	4,807.9	-0.1	0.0	415,158.86	781,981.71	32° 8' 20.266 N	103° 33' 21.124 W
5,000.0	2.64	141.78	4,900.0 5,000.0	-2.4	1.9	415,156.61	781,983.48	32° 8' 20.243 N	103° 33' 21.122 W
5,067.9	4.00	141.78	5,067.7	-2.4	4.3	415,153.52	781,985.91	32° 8' 20.243 N 32° 8' 20.213 N	103° 33' 21.074 W
5,100.0	4.00	141.78	5,099.8	-7.2	5.7	415,151.76	781,987.30	32° 8' 20.215 N 32° 8' 20.195 N	103° 33' 21.074 W
5,200.0	4.00	141.78	5,199.5	-12.7	10.0	415,146.28	781,991.62	32° 8' 20.140 N	103° 33' 21.008 W
5,200.0	4.00	141.78	5,199.5	-12.7	10.0	415,146.28	781,991.62	32 8 20.140 N	103 33 21.008 W

Microsoft Planning Report - Geographic

Database:	Old	Local Co-ordinate Reference:	Well Vaca Draw #26H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3377.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3377.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Well:	Vaca Draw #26H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

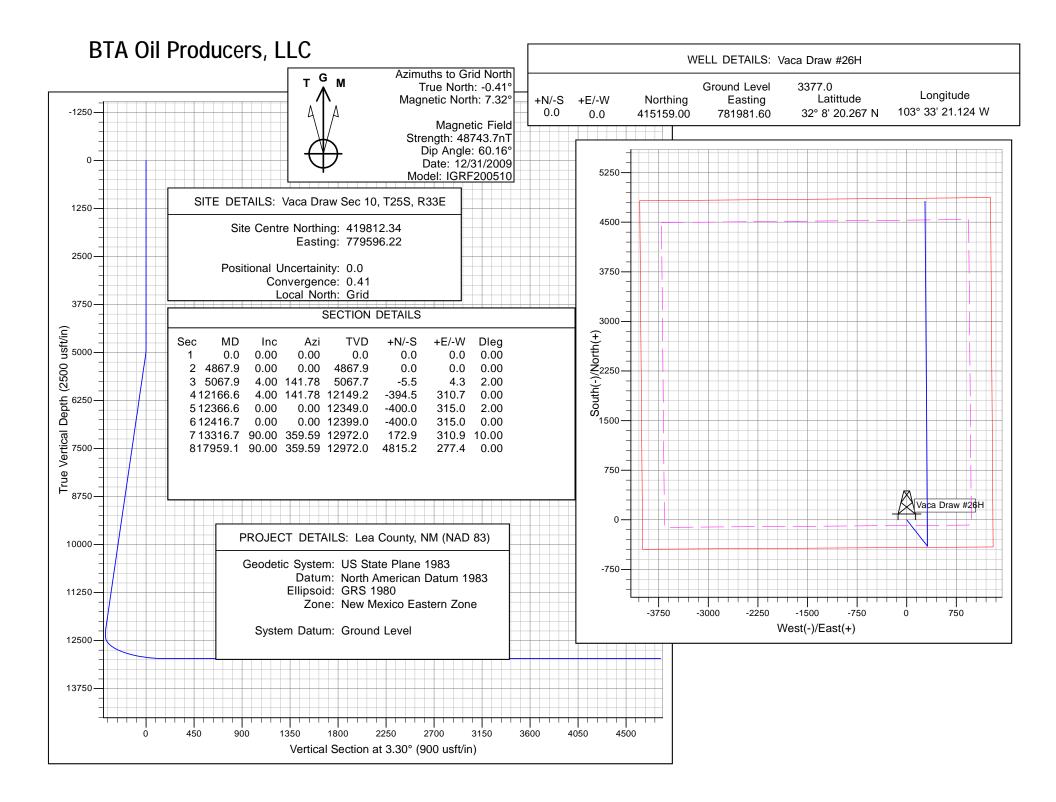
Planned Survey

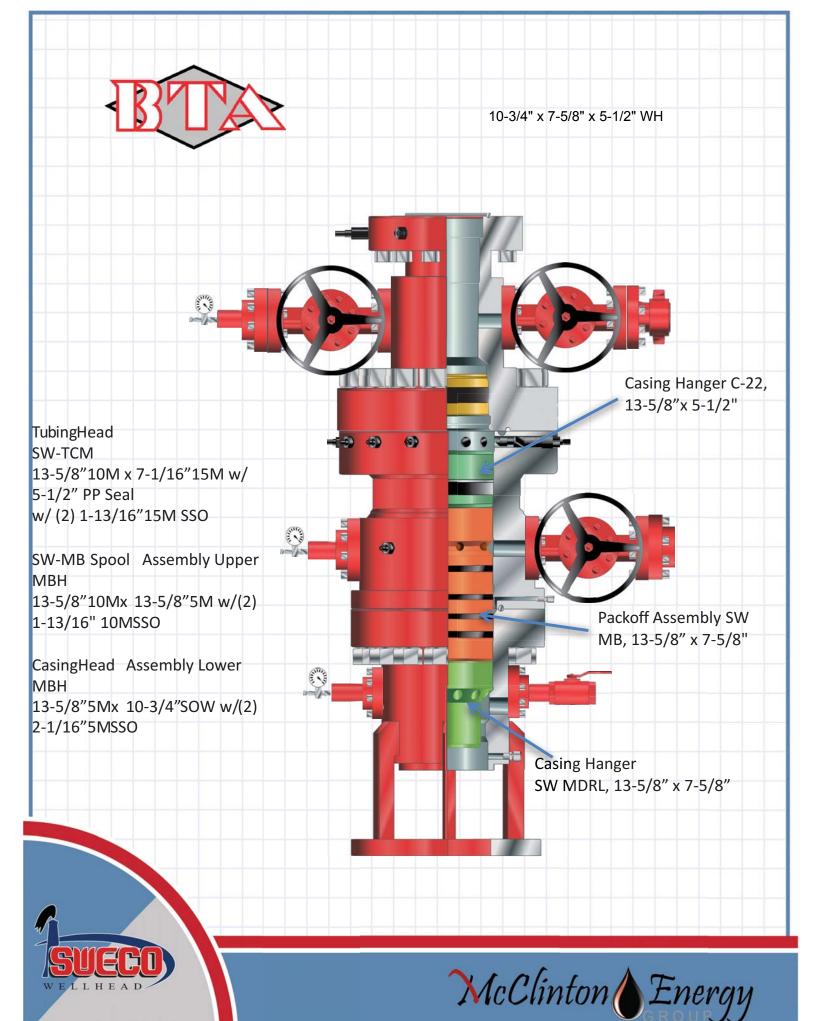
leasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,300.0	4.00	141.78	5,299.3	-18.2	14.3	415,140.79	781,995.93	32° 8' 20.086 N	103° 33' 20.959 W
5,400.0	4.00	141.78	5,399.0	-23.7	18.7	415,135.31	782,000.25	32° 8' 20.031 N	103° 33' 20.909 W
5,500.0	4.00	141.78	5,498.8	-29.2	23.0	415,129.83	782,004.56	32° 8' 19.977 N	103° 33' 20.859 W
5,600.0	4.00	141.78	5,598.5	-34.6	27.3	415,124.35	782,008.88	32° 8' 19.922 N	103° 33' 20.809 W
5,700.0	4.00	141.78	5,698.3	-40.1	31.6	415,118.87	782,013.20	32° 8' 19.868 N	103° 33' 20.760 W
5,800.0	4.00	141.78	5,798.1	-45.6	35.9	415,113.39	782,017.51	32° 8' 19.813 N	103° 33' 20.710 W
5,900.0	4.00	141.78	5,897.8	-51.1	40.2	415,107.91	782,021.83	32° 8' 19.759 N	103° 33' 20.660 W
6,000.0	4.00	141.78	5,997.6	-56.6	44.5	415,102.43	782,026.14	32° 8' 19.704 N	103° 33' 20.610 W
6,100.0	4.00	141.78	6,097.3	-62.0	48.9	415,096.95	782,030.46	32° 8' 19.650 N	103° 33' 20.561 W
6,200.0	4.00	141.78	6,197.1	-67.5	53.2	415,091.47	782,034.77	32° 8' 19.595 N	103° 33' 20.511 W
6,300.0	4.00	141.78	6,296.8	-73.0	57.5	415,085.99	782,039.09	32° 8' 19.541 N	103° 33' 20.461 W
6,400.0	4.00	141.78	6,396.6	-78.5	61.8	415,080.51	782,043.41	32° 8' 19.486 N	103° 33' 20.411 W
6,500.0	4.00	141.78	6,496.3	-84.0	66.1	415,075.03	782,047.72	32° 8' 19.431 N	103° 33' 20.362 W
6,600.0	4.00	141.78	6,596.1	-89.4	70.4	415,069.55	782,052.04	32° 8' 19.377 N	103° 33' 20.312 W
6,700.0	4.00	141.78	6,695.9	-94.9	74.8	415,064.07	782,056.35	32° 8' 19.322 N	103° 33' 20.262 W
6,800.0	4.00	141.78	6,795.6	-100.4	79.1	415,058.59	782,060.67	32° 8' 19.268 N	103° 33' 20.213 W
6,900.0	4.00	141.78	6,895.4	-105.9	83.4	415,053.11	782,064.98	32° 8' 19.213 N	103° 33' 20.163 W
7,000.0	4.00	141.78	6,995.1	-111.4	87.7	415,047.63	782,069.30	32° 8' 19.159 N	103° 33' 20.113 W
7,100.0	4.00	141.78	7,094.9	-116.9	92.0	415,042.15	782,073.62	32° 8' 19.104 N	103° 33' 20.063 W
7,200.0	4.00	141.78	7,194.6	-122.3	96.3	415,036.67	782,077.93	32° 8' 19.050 N	103° 33' 20.014 W
7,300.0	4.00	141.78	7,294.4	-127.8	100.7	415,031.19	782,082.25	32° 8' 18.995 N	103° 33' 19.964 W
7,400.0	4.00	141.78	7,394.2	-133.3	105.0	415,025.71	782,086.56	32° 8' 18.941 N	103° 33' 19.914 W
7,500.0	4.00	141.78	7,493.9	-138.8	109.3	415,020.23	782,090.88	32° 8' 18.886 N	103° 33' 19.864 W
7,600.0	4.00	141.78	7,593.7	-144.3	113.6	415,014.75	782,095.19	32° 8' 18.832 N	103° 33' 19.815 W
7,700.0	4.00	141.78	7,693.4	-149.7	117.9	415,009.27	782,099.51	32° 8' 18.777 N	103° 33' 19.765 W
7,800.0	4.00	141.78	7,793.2	-155.2	122.2	415,003.79	782,103.82	32° 8' 18.723 N	103° 33' 19.715 W
7,900.0	4.00	141.78	7,892.9	-160.7	126.5	414,998.31	782,108.14	32° 8' 18.668 N	103° 33' 19.666 W
8,000.0	4.00	141.78	7,992.7	-166.2	130.9	414,992.83	782,112.46	32° 8' 18.613 N	103° 33' 19.616 W
8,100.0	4.00	141.78	8,092.5	-171.7	135.2	414,987.35	782,116.77	32° 8' 18.559 N	103° 33' 19.566 W
8,200.0	4.00	141.78	8,192.2	-177.1	139.5	414,981.87	782,121.09	32° 8' 18.504 N	103° 33' 19.516 W
8,300.0	4.00	141.78	8,292.0	-182.6	143.8	414,976.39	782,125.40	32° 8' 18.450 N	103° 33' 19.467 W
8,400.0	4.00	141.78	8,391.7	-188.1	148.1	414,970.91	782,129.72	32° 8' 18.395 N	103° 33' 19.417 W
8,500.0	4.00	141.78	8,491.5	-193.6	152.4	414,965.43	782,134.03	32° 8' 18.341 N	103° 33' 19.367 W
8,600.0	4.00	141.78	8,591.2	-199.1	156.8	414,959.95	782,138.35	32° 8' 18.286 N	103° 33' 19.317 W
8,700.0	4.00	141.78	8,691.0	-204.5	161.1	414,954.47	782,142.67	32° 8' 18.232 N	103° 33' 19.268 W
8,800.0	4.00	141.78	8,790.7	-210.0	165.4	414,948.99	782,146.98	32° 8' 18.177 N	103° 33' 19.218 W
8,900.0	4.00	141.78	8,890.5	-215.5	169.7	414,943.51	782,151.30	32° 8' 18.123 N	103° 33' 19.168 W
9,000.0	4.00	141.78	8,990.3	-221.0	174.0	414,938.03	782,155.61	32° 8' 18.068 N	103° 33' 19.119 W
9,100.0	4.00	141.78	9,090.0	-226.5	178.3	414,932.55	782,159.93	32° 8' 18.014 N	103° 33' 19.069 W
9,200.0	4.00	141.78	9,189.8	-231.9	182.7	414,927.07	782,164.24	32° 8' 17.959 N	103° 33' 19.019 W
9,300.0	4.00	141.78	9,289.5	-237.4	187.0	414,921.59	782,168.56	32° 8' 17.904 N	103° 33' 18.969 W
9,400.0	4.00	141.78	9,389.3	-242.9	191.3	414,916.11	782,172.87	32° 8' 17.850 N	103° 33' 18.920 W
9,500.0	4.00	141.78	9,489.0	-248.4	195.6	414,910.63	782,177.19	32° 8' 17.795 N	103° 33' 18.870 W
9,600.0	4.00	141.78	9,588.8	-253.9	199.9	414,905.15	782,181.51	32° 8' 17.741 N	103° 33' 18.820 W
9,700.0	4.00	141.78	9,688.6	-259.3 -264.8	204.2	414,899.67	782,185.82	32° 8' 17.686 N	103° 33' 18.770 W
9,800.0	4.00	141.78	9,788.3		208.5	414,894.19	782,190.14	32° 8' 17.632 N	103° 33' 18.721 W
9,900.0 10,000.0	4.00	141.78 141.78	9,888.1 9,987.8	-270.3 -275.8	212.9 217.2	414,888.71	782,194.45	32° 8' 17.577 N	103° 33' 18.671 W 103° 33' 18.621 W
	4.00					414,883.23	782,198.77	32° 8' 17.523 N	
10,100.0	4.00	141.78	10,087.6	-281.3	221.5	414,877.75 414,872.27	782,203.08	32° 8' 17.468 N	103° 33' 18.571 W
10,200.0 10,300.0	4.00	141.78 141.78	10,187.3 10,287.1	-286.7 -292.2	225.8 230.1	414,872.27 414,866.79	782,207.40 782,211.72	32° 8' 17.414 N 32° 8' 17.359 N	103° 33' 18.522 W 103° 33' 18.472 W
10,300.0	4.00 4.00	141.78	10,287.1	-292.2 -297.7	230.1	414,861.31	782,211.72	32° 8' 17.305 N	103° 33' 18.422 W
10,400.0	4.00	141.78	10,386.6	-303.2	234.4	414,855.83	782,220.35	32° 8' 17.250 N	103° 33' 18.373 W
10,600.0	4.00	141.78	10,486.6	-303.2	238.8	414,850.35	782,220.35	32° 8' 17.195 N	103° 33' 18.323 W
10,000.0	4.00	141.78	10,586.4	-308.7	243.1	414,850.55	782,224.00	32° 8' 17.195 N	103° 33' 18.273 W
10,100.0	+.00	1-11.70	10,000.1	517.1			102,220.00	02 0 17.1 1 1 N	100 00 10.270 W

Microsoft Planning Report - Geographic

Database:	Old	Local Co-ordinate Reference:	Well Vaca Draw #26H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3377.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3377.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Well:	Vaca Draw #26H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey


Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Map Northing (usft)	Map Easting (usft)		
	(°)	(°)		(usft)	(usft)	. ,	. ,	Latitude	Longitude
10,800.0		141.78	10,785.9	-319.6	251.7	414,839.38	782,233.29	32° 8' 17.086 N	103° 33' 18.223 W
10,900.0		141.78	10,885.6	-325.1	256.0	414,833.90	782,237.61	32° 8' 17.032 N	103° 33' 18.174 W
11,000.0		141.78	10,985.4	-330.6	260.3	414,828.42	782,241.93	32° 8' 16.977 N	103° 33' 18.124 W
11,100.0		141.78	11,085.1	-336.1	264.6	414,822.94	782,246.24	32° 8' 16.923 N	103° 33' 18.074 W
11,200.0		141.78 141.78	11,184.9 11,284.7	-341.5 -347.0	269.0 273.3	414,817.46	782,250.56	32° 8' 16.868 N	103° 33' 18.024 W 103° 33' 17.975 W
11,300.0 11,400.0		141.78	11,284.7	-347.0	273.3	414,811.98 414,806.50	782,254.87 782,259.19	32° 8' 16.814 N 32° 8' 16.759 N	103° 33' 17.975 W
11,500.0		141.78	11,484.2	-352.5	281.9	414,800.50	782,263.50	32° 8' 16.705 N	103° 33' 17.875 W
11,600.0		141.78	11,484.2	-363.5	286.2	414,795.54	782,267.82	32° 8' 16.650 N	103° 33' 17.826 W
11,700.0		141.78	11,683.7	-368.9	290.2	414,790.06	782,272.13	32° 8' 16.596 N	103° 33' 17.776 W
11,800.0		141.78	11,783.4	-374.4	294.9	414,784.58	782,276.45	32° 8' 16.541 N	103° 33' 17.726 W
11,900.0		141.78	11,883.2	-379.9	299.2	414,779.10	782,280.77	32° 8' 16.487 N	103° 33' 17.676 W
12,000.0		141.78	11,983.0	-385.4	303.5	414,773.62	782,285.08	32° 8' 16.432 N	103° 33' 17.627 W
12,100.0		141.78	12,082.7	-390.9	307.8	414,768.14	782,289.40	32° 8' 16.377 N	103° 33' 17.577 W
12,166.6		141.78	12,149.2	-394.5	310.7	414,764.49	782,292.27	32° 8' 16.341 N	103° 33' 17.544 W
12,200.0	3.33	141.78	12,182.5	-396.2	312.0	414,762.81	782,293.59	32° 8' 16.324 N	103° 33' 17.529 W
12,300.0	1.33	141.78	12,282.4	-399.4	314.5	414,759.62	782,296.11	32° 8' 16.293 N	103° 33' 17.500 W
12,366.6	0.00	0.00	12,349.0	-400.0	315.0	414,759.01	782,296.59	32° 8' 16.287 N	103° 33' 17.494 W
12,400.0	0.00	0.00	12,382.4	-400.0	315.0	414,759.01	782,296.59	32° 8' 16.287 N	103° 33' 17.494 W
12,416.7	0.00	0.00	12,399.0	-400.0	315.0	414,759.01	782,296.59	32° 8' 16.287 N	103° 33' 17.494 W
12,500.0	8.33	359.59	12,482.1	-393.9	315.0	414,765.06	782,296.55	32° 8' 16.346 N	103° 33' 17.494 W
12,600.0		359.59	12,579.3	-370.9	314.8	414,788.09	782,296.38	32° 8' 16.574 N	103° 33' 17.494 W
12,700.0		359.59	12,671.0	-331.4	314.5	414,827.65	782,296.09	32° 8' 16.966 N	103° 33' 17.494 W
12,800.0		359.59	12,754.4	-276.5	314.1	414,882.53	782,295.70	32° 8' 17.509 N	103° 33' 17.494 W
12,900.0		359.59	12,827.1	-207.9	313.6	414,951.06	782,295.21	32° 8' 18.187 N	103° 33' 17.494 W
13,000.0		359.59	12,886.7	-127.8	313.0	415,031.17	782,294.63	32° 8' 18.980 N	103° 33' 17.494 W
13,100.0		359.59	12,931.5	-38.6	312.4	415,120.42	782,293.98	32° 8' 19.863 N	103° 33' 17.494 W
13,200.0		359.59	12,960.2	57.1 156.3	311.7 311.0	415,216.09	782,293.29	32° 8' 20.810 N	103° 33' 17.494 W
13,300.0 13,316.7		359.59 359.59	12,971.8 12,972.0	156.5	310.9	415,315.28 415,331.94	782,292.58 782,292.46	32° 8' 21.791 N 32° 8' 21.956 N	103° 33' 17.494 W 103° 33' 17.494 W
13,400.0		359.59	12,972.0	256.3	310.3	415,415.27	782,292.40	32° 8' 22.781 N	103° 33' 17.494 W
13,500.0		359.59	12,972.0	356.3	309.5	415,515.27	782,291.14	32° 8' 23.770 N	103° 33' 17.494 W
13,600.0		359.59	12,972.0	456.3	308.8	415,615.26	782,290.42	32° 8' 24.760 N	103° 33' 17.494 W
13,700.0		359.59	12,972.0	556.3	308.1	415,715.26	782,289.70	32° 8' 25.749 N	103° 33' 17.494 W
13,800.0		359.59	12,972.0	656.3	307.4	415,815.25	782,288.98	32° 8' 26.739 N	103° 33' 17.494 W
13,900.0		359.59	12,972.0	756.3	306.7	415,915.25	782,288.26	32° 8' 27.728 N	103° 33' 17.494 W
14,000.0	90.00	359.59	12,972.0	856.3	305.9	416,015.24	782,287.53	32° 8' 28.718 N	103° 33' 17.494 W
14,100.0	90.00	359.59	12,972.0	956.3	305.2	416,115.24	782,286.81	32° 8' 29.708 N	103° 33' 17.494 W
14,200.0	90.00	359.59	12,972.0	1,056.3	304.5	416,215.23	782,286.09	32° 8' 30.697 N	103° 33' 17.494 W
14,300.0	90.00	359.59	12,972.0	1,156.3	303.8	416,315.23	782,285.37	32° 8' 31.687 N	103° 33' 17.494 W
14,400.0	90.00	359.59	12,972.0	1,256.3	303.1	416,415.22	782,284.65	32° 8' 32.676 N	103° 33' 17.494 W
14,500.0		359.59	12,972.0	1,356.3	302.3	416,515.22	782,283.93	32° 8' 33.666 N	103° 33' 17.494 W
14,600.0		359.59	12,972.0	1,456.3	301.6	416,615.21	782,283.21	32° 8' 34.655 N	103° 33' 17.494 W
14,700.0		359.59	12,972.0	1,556.2	300.9	416,715.21	782,282.49	32° 8' 35.645 N	103° 33' 17.494 W
14,800.0		359.59	12,972.0	1,656.2	300.2	416,815.20	782,281.77	32° 8' 36.634 N	103° 33' 17.494 W
14,900.0		359.59	12,972.0	1,756.2	299.5	416,915.20	782,281.05	32° 8' 37.624 N	103° 33' 17.494 W
15,000.0		359.59	12,972.0	1,856.2	298.7	417,015.19 417,115.19	782,280.33	32° 8' 38.613 N	103° 33' 17.493 W
15,100.0		359.59 359.59	12,972.0 12,972.0	1,956.2	298.0 297.3	417,115.19 417,215.18	782,279.61 782,278.88	32° 8' 39.603 N 32° 8' 40.592 N	103° 33' 17.493 W 103° 33' 17.493 W
15,200.0 15,300.0		359.59	12,972.0 12,972.0	2,056.2 2,156.2	297.3	417,315.18	782,278.16	32° 8' 41.582 N	103° 33' 17.493 W
15,400.0		359.59	12,972.0	2,150.2	290.0	417,415.17	782,277.44	32° 8' 42.571 N	103° 33' 17.493 W
15,500.0		359.59	12,972.0	2,356.2	295.1	417,515.17	782,276.72	32° 8' 43.561 N	103° 33' 17.493 W
15,600.0		359.59	12,972.0	2,456.2	294.4	417,615.16	782,276.00	32° 8' 44.550 N	103° 33' 17.493 W
15,700.0		359.59	12,972.0	2,556.2	293.7	417,715.16	782,275.28	32° 8' 45.540 N	103° 33' 17.493 W
15,800.0		359.59	12,972.0	2,656.2	293.0	417,815.15	782,274.56	32° 8' 46.530 N	103° 33' 17.493 W


Microsoft Planning Report - Geographic

Database:	Old	Local Co-ordinate Reference:	Well Vaca Draw #26H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3377.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL @ 3377.0usft
Site:	Vaca Draw Sec 10, T25S, R33E	North Reference:	Grid
Well:	Vaca Draw #26H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)		+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15,900.0	90.00	359.59	12,972.0	2,756.2	292.2	417,915.15	782,273.84	32° 8' 47.519 N	103° 33' 17.493 W
16,000.0	90.00	359.59	12,972.0	2,856.2	291.5	418,015.14	782,273.12	32° 8' 48.509 N	103° 33' 17.493 W
16,100.0	90.00	359.59	12,972.0	2,956.2	290.8	418,115.14	782,272.40	32° 8' 49.498 N	103° 33' 17.493 W
16,200.0	90.00	359.59	12,972.0	3,056.2	290.1	418,215.13	782,271.68	32° 8' 50.488 N	103° 33' 17.493 W
16,300.0	90.00	359.59	12,972.0	3,156.2	289.4	418,315.13	782,270.96	32° 8' 51.477 N	103° 33' 17.493 W
16,400.0	90.00	359.59	12,972.0	3,256.2	288.6	418,415.12	782,270.24	32° 8' 52.467 N	103° 33' 17.493 W
16,500.0	90.00	359.59	12,972.0	3,356.2	287.9	418,515.12	782,269.51	32° 8' 53.456 N	103° 33' 17.493 W
16,600.0	90.00	359.59	12,972.0	3,456.2	287.2	418,615.11	782,268.79	32° 8' 54.446 N	103° 33' 17.493 W
16,700.0	90.00	359.59	12,972.0	3,556.2	286.5	418,715.11	782,268.07	32° 8' 55.435 N	103° 33' 17.493 W
16,800.0	90.00	359.59	12,972.0	3,656.2	285.8	418,815.10	782,267.35	32° 8' 56.425 N	103° 33' 17.493 W
16,900.0	90.00	359.59	12,972.0	3,756.2	285.0	418,915.10	782,266.63	32° 8' 57.414 N	103° 33' 17.493 W
17,000.0	90.00	359.59	12,972.0	3,856.2	284.3	419,015.09	782,265.91	32° 8' 58.404 N	103° 33' 17.493 W
17,100.0	90.00	359.59	12,972.0	3,956.2	283.6	419,115.09	782,265.19	32° 8' 59.393 N	103° 33' 17.493 W
17,200.0	90.00	359.59	12,972.0	4,056.2	282.9	419,215.08	782,264.47	32° 9' 0.383 N	103° 33' 17.493 W
17,300.0	90.00	359.59	12,972.0	4,156.2	282.2	419,315.08	782,263.75	32° 9' 1.372 N	103° 33' 17.493 W
17,400.0	90.00	359.59	12,972.0	4,256.2	281.4	419,415.07	782,263.03	32° 9' 2.362 N	103° 33' 17.493 W
17,500.0	90.00	359.59	12,972.0	4,356.2	280.7	419,515.07	782,262.31	32° 9' 3.352 N	103° 33' 17.493 W
17,600.0	90.00	359.59	12,972.0	4,456.2	280.0	419,615.06	782,261.59	32° 9' 4.341 N	103° 33' 17.493 W
17,700.0	90.00	359.59	12,972.0	4,556.2	279.3	419,715.06	782,260.86	32° 9' 5.331 N	103° 33' 17.493 W
17,800.0	90.00	359.59	12,972.0	4,656.2	278.6	419,815.05	782,260.14	32° 9' 6.320 N	103° 33' 17.493 W
17,900.0	90.00	359.59	12,972.0	4,756.2	277.8	419,915.05	782,259.42	32° 9' 7.310 N	103° 33' 17.493 W
17,959.1	90.00	359.59	12,972.0	4,815.2	277.4	419,974.10	782,259.00	32° 9' 7.894 N	103° 33' 17.493 W
Design Targets									
Target Name	of Dia	Angle Dia		IN/ S		Northing	Fasting		
- hit/miss targ - Shape	•	· ·	Dir. TVD (°) (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Vaca Draw #26H - plan hits tar - Point	get center	0.00	0.00 12,972	.0 4,815.2	277.4	419,974.10	782,259.00	32° 9' 7.894 N	103° 33' 17.493 W

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400040946

Operator Name: BTA OIL PRODUCERS LLC

Well Name: VACA DRAW 9418 10 FEDERAL

Well Type: OIL WELL

Submission Date: 04/17/2019

Row(s) Exist? NO

Well Number: 26H Well Work Type: Drill Highlighted data reflects the most recent changes

07/31/2020

SUPO Data Report

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

18110535_Vaca_Draw_9418_10_Federal__26H_Vicinity_Map_20190417155556.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

18110535_Vaca_Draw_9418_10_Federal__26H_Topographical___Access_Rd_20190417155612.pdf

New road type: RESOURCE

Length: 1063.9

Width (ft.): 25

Max grade (%): 2

Max slope (%): 2

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 15

New road access erosion control: Road construction requirements and regular maintenance would alleviate potential impacts to the access road from water erosion damage. **New road access plan or profile prepared?** NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Turnout? N

Access surfacing type: OTHER

Access topsoil source: BOTH

Access surfacing type description: Native Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description: Material will be obtained from the closest existing caliche pit as designated by the BLM.

Onsite topsoil removal process: The top 6 inches of topsoil is pushed off and stockpiled along the side of the location. An approximate 160' X 160' area is used within the proposed well site to remove caliche. Subsoil is removed and stockpiled within the pad site to build the location and road. Then subsoil is pushed back in the hole and caliche is spread accordingly across proposed access road.

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Proposed access road will be crowned and ditched and constructed of 6 inch rolled and compacted caliche. Water will be diverted where necessary to avoid ponding, maintain good drainage, and to be consistent with local drainage patterns.

Road Drainage Control Structures (DCS) description: Any ditches will be at 3:1 slope and 3 feet wide.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

18110535_Vaca_Draw_9418_10_Fed__26H_1_MILE_RADIUS_20190417155643.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: If well is productive, we will use the existing well pad for the tank battery and all necessary production facilities. **Production Facilities map:**

Production_Facility_Layout_20191015144603.pdf

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Section 5 - Location an	d Types of Water Sup	ply
Water Source Tabl	e	
Water source type: OTHER		
Describe type: null		
Water source use type:	SURFACE CASING	
	STIMULATION	
	DUST CONTROL	
	INTERMEDIATE/PRODUCT CASING	ION
Source latitude:		Source longitude:
Source datum: NAD83		
Water source permit type:	OTHER	
Water source transport method:	TRUCKING	
	PIPELINE	
Source land ownership: FEDERAL		
Source transportation land owners	ship: FEDERAL	
Water source volume (barrels): 10	0000	Source volume (acre-feet): 12.88931
Source volume (gal): 4200000		
Water source and transportation map Vaca_Draw_24_27H_Water_Transport_		
Water source comments:		
New water well? NO		
New Water Well II	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness	of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing typ	e:

Well Name: VACA DRAW 9418 10 FEDERAL

Well casing outside diameter (in.):Well casingNew water well casing?Used casingDrilling method:Drill mGrout material:Grout casingCasing length (ft.):CasingWell Production type:ComplWater well additional information:State appropriation permit:Additional information attachment:Kell Production type:

Well Number: 26H

Well casing inside diameter (in.): Used casing source: Drill material: Grout depth: Casing top depth (ft.): Completion Method:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche used for construction of the drilling pad and access road will be obtained from the closest existing caliche pit as approved by the BLM or from prevailing deposits found under the location. If there is not sufficient material available, caliche will be purchased from the nearest caliche pit located in Section 1 T25S R33E Lea County, NM. Alternative location if original location closes will be located in Sec 34 T24S R33E **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and cuttings.

Amount of waste: 3990 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling fluids will be stored safely and disposed of properly.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Waste type: SEWAGE

Waste content description: Human waste and grey water.

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Safe containment description: Waste material will be stored safely and disposed of properly.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Waste type: GARBAGE

Waste content description: Trash

Amount of waste: 500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Trash produced during drilling and completion operations will be collected in a trash container and disposed of properly. **Safe containmant attachment:**

Sare containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO Are you storing cuttings on location? NO Description of cuttings location Cuttings area length (ft.) Cuttings area depth (ft.) Cuttings area depth (ft.) Is at least 50% of the cuttings area in cut? WCuttings area liner Cuttings area liner

Page 5 of 10

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments: It is possible that a mobile home will be used at the well site during drilling operations.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Access_Road_to_Vaca_24_25_26_27_20191015144821.pdf

0436_VACA_DRAW_E2_CTB_SOUTH_20191015144828.pdf

Vaca_Draw_E_CTB_access_road_for_16_19_and_24_27_pad_20191015144836.pdf

18110535_Vaca_Draw_9418_10_Federal__26H_Well_Site_Plan_with_Topsoil_and_IR__600s__20191106111254.pdf Rig_Layout_20191106111403.pdf

Comments: VACA DRAW 9418 10 FEDERAL 24H-27H will be on the same already approved pad as the VACA DRAW 9418 10 FEDERAL 16H-19H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: VACA DRAW 9418 10 FEDERAL

Multiple Well Pad Number: 24-27

Recontouring attachment:

Drainage/Erosion control construction: During construction proper erosion control methods will be used to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Well pad proposed disturbance	Well pad interim reclamation (acres):	Well pad long term disturbance
(acres): 0	4.49	(acres): 4.49
Road proposed disturbance (acres): 0	Road interim reclamation (acres): 0.26	Road long term disturbance (acres):
		0.16
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance
(acres): 0	0	(acres): 0
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 0	Other interim reclamation (acres): 0	(acres): 0
Other proposed disturbance (acres): (Other long term disturbance (acres): 0
Total proposed disturbance: 0	Total interim reclamation: 4.75	• • • •
iotal proposed disturbance.		Total long term disturbance: 4.65

Disturbance Comments: Interim Reclamation will be at North side of well pad, 50' (see attachment under SUPO Section 9).

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations. Topsoil will be at North side of well pad, 30' (see attachment under SUPO Section 9). **Soil treatment:** To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. **Existing Vegetation at the well pad:** The historic climax plant community is a grassland dominated by black grama, dropseeds, and blue stems with sand sage and shinnery oak distributed evenly throughout. Current landscape displays mesquite, shinnery oak, yucca, desert sage, fourwing saltbush, snakeweed, and bunch grasses. **Existing Vegetation at the well pad attachment:**

Existing Vegetation Community at the road: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Su	ummary
Seed Type	Pounds/Acre

Total pounds/Acre:

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Seed reclamation attachment:

	Operator Contact/Responsible	Official	Contact Info
--	-------------------------------------	----------	--------------

First Name: Chad

Phone: (432)682-3753

Last Name: Smith Email: csmith@btaoil.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: No invasive species present. Standard regular maintenance to maintain a clear location and road.

Weed treatment plan attachment:

Monitoring plan description: Identify areas supporting weeds prior to construction; prevent the introduction and spread of weeds from construction equipment during construction; and contain weed seeds and propagules by preventing segregated topsoil from being spread to adjacent areas. No invasive species present. Standard regular maintenance to maintain a clear location and road.

Monitoring plan attachment:

Success standards: To maintain all disturbed areas as per Gold Book standards.

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner Address:

Fee Owner: Harvey Williams

Phone: (325)653-8211

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: BTA will have a surface use agreement in place, before operations begin.

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Well Number: 26H

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: Onsite was conducted December 19th, 2018 by William DeGrush.

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT PWD Data Report

APD ID: 10400040946

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FEDERAL

Well Type: OIL WELL

Submission Date: 04/17/2019

Well Number: 26H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: **PWD surface owner:** Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment:

PWD disturbance (acres):

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Injection PWD discharge volume (bbl/day):	
Injection well mineral owner:	
Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO	
Produced Water Disposal (PWD) Location:	

 PWD surface owner:
 PWD disturbance (acres):

 Surface discharge PWD discharge volume (bbl/day):
 Surface Discharge NPDES Permit?

 Surface Discharge NPDES Permit attachment:
 Surface Discharge site facilities information:

 Surface discharge site facilities map:
 Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Well Name: VACA DRAW 9418 10 FEDERAL

Well Number: 26H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Info Data Report

07/31/2020

APD ID: 10400040946

Operator Name: BTA OIL PRODUCERS LLC Well Name: VACA DRAW 9418 10 FEDERAL Well Type: OIL WELL

Submission Date: 04/17/2019

100 m 10

Well Number: 26H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Bond Information

Federal/Indian APD: FED BLM Bond number: NMB001711 BIA Bond number: Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? BLM reclamation bond number: Forest Service reclamation bond number: Forest Service reclamation bond attachment: Reclamation bond number: Reclamation bond amount: Reclamation bond rider amount: Additional reclamation bond information attachment:

DISTRICT I 1625 N French Dr., Hob Phone, (575) 393-6161 DISTRICT II 811 S. First St., Artesia, Phone: (575) 748-1283 F DISTRICT III 1000 Rio Brazos Road, A Phone: (505) 334-6178 F DISTRICT IV 1220 S. St. Francis Dr., S Phone: (505) 476-3460 F	Fax: (575) 393- NM 88210 Fax: (575) 748-5 Aztec, NM 8741 Fax: (505) 334-6	9720 0 5170 7505 3462	C	DIL (1 Sa	con 220 nta F	SERVA South St Fe, New I	al Re FION Fran Mexi	sources De DIVISIO		D - HC 7 31 21 RECEN	DBBS Submit one 020 VED DAME	Form C-102 ised August 1, 2011 copy to appropriate District Office
	1 Number	WEL		Pool C			CEAC		Â	Pool Name	e	
30-025-4 Property Co		1	9818	30		Property	Name	ve-025 G	ô9 \$2	533091		CAMP
317432			١	AC.	A D			FEDERA	L			26H
OGRIDN 26029				вт				ERS, LLC				evation 377'
~5U ~					no	Surface L			-			
UL or lot No.	Section	Township	Range	Lot	ldn	Feet from t		North/South line	Feet	from the	East/West line	County
Р	10	25-S	33-E			420		SOUTH	1	305	EAST	LEA
				Botto	m Hol	e Location If	Differe	nt From Surface				
UL or lot No.	Section	Township	Range	Lot	ídn	Feet from t	he	North/South line	Feet	from the	East/West line	County
A	10	25-S	33-Е			50		NORTH	9	990	EAST	LEA
Dedicated Acres	Joint o	r Infill (Consolidation C	Code	Ord	er No.						
A - Y= 4 B - Y= 4 C - Y= 4 D - Y= 4 CORN A - Y= 4	N E T N G T N E T N T N	X= 740739. X= 742062. X= 740777. X= 742102. WATES TABLE NME X= 781925.	7 NME 116.0 N 173.5 E 52068' N 554386' W E POINT 7 NME 36.0 N 175.6 E 51299' N 554385' W 8 E 9 E 9 E 9 E 3 E			= 359°33'42" ST. = 4904.3	humber	AC AREA	330'	I bereby cer complete to that this org unleased mi proposed by well at this of such m pooling ag heretofore Signatur Signatur Signatur E-mail A SUR I bereby or was plotte	ATOR CERTIFIC trify that the information he the best of my knowledge, panization either owns a woo- meral interest in the land in bottom hole location or has a is location pursuant to a com- ineral or working interest, of greenent or a compulsory po- entered by the division.	rein is true and and belief, and rking interest or cluding the right to drill this tract with an owner or to a voluntary pooling order <u>3-14-19</u> Date <u>AOTL COM</u> ICATION shown on this plat surveys made by
C - Y= 4	14738.1 N, 14749.0 N, 2007 2017 2017 2017 2017 2017 2017 2017	X= 741 LAT.=32.1	2 E 7 E 7 NME 012.8 N 110.8 E 38590° N .554380° W VORDINATES NME .OCATION 01.0 N 95.8 E 18838° N			= 105 ⁻ 38'20" DIST. = 327.2'	St.	PRODUCING AREA	3300	and correct	ter my supervision, and that of to the best of my belief. MAY 1, 201 Survey Seal of Professional again the Number Gary of Konned	18 hSurveyor: Co4/2018 Eidson 12641

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department OCD-HOBBS

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit Original to Appropriate District Office

07/31/2020

GAS CAPTURE PLAN

Date:	31	14	/19

🛛 Original

260297 Operator & OGRID No.:

Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Vala Draw 9418		Sec 10; 25-5	420 FSL 1305 FEL	100	Flared	Battery Connected
10 Federal 26H	30-025-47					to ETP System

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to Gas Transporter and will be connected to Gas Transporter (ETP) low/high pressure gathering system located in LEA County, New Mexico. It will require 0 ' of pipeline to connect the facility to low/high pressure gathering system. Operator provides (periodically) to Gas Transporter a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, Operator and Gas Transporter have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Gas Transporter Processing Plant located in Sec. ____, Twn. ____, Rng. County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Gas Transporter system at that time. Based on current information, it is Operator's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines