UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

APPLICATION FOR PERMIT TO DRILL OR REENTER

OCD - HOBBS 09|14|2020 RECEIVED

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

	_
5. Lease Serial No.	
NMLC0066438	

6. If Indian, Allotee or Tribe Name

1a. Type of work: ✓ DRILL RE 1b. Type of Well: ✓ Oil Well Gas Well Other Description	ENTER her	7. If Unit or CA Agreement, Name and No. BELL LAKE / NMNM 068292X 8. Lease Name and Well No.
lc. Type of Completion: Hydraulic Fracturing Sin	ngle Zone Multiple Zone	BELL LAKE UNIT NORTH [316707] 420H
Name of Operator KAISER FRANCIS OIL COMPANY [12361]		9. API Well No. 30-025-47767
3a. Address 6733 S. Yale Ave., Tulsa, OK 74121	3b. Phone No. <i>(include area code)</i> (918) 491-0000	10. Field and Pool, or Exploratory [98265 OJO CHISO/WOLFCAMP, SOUTHWEST
4. Location of Well (Report location clearly and in accordance w	ith any State requirements.*)	11. Sec., T. R. M. or Blk. and Survey or Area
At surface NWSW / 2388 FSL / 380 FWL / LAT 32.3329	992 / LONG -103.533404	SEC 1/T23S/R33E/NMP
At proposed prod. zone NWNW / 330 FNL / 1230 FWL / L	AT 32.354537 / LONG -103.530658	
14. Distance in miles and direction from nearest town or post office 20 miles	ce*	12. County or Parish 13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of acres in lease 17. Spaci 479.85 480.0	ng Unit dedicated to this well
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	12073 feet / 19997 feet FED: W	/BIA Bond No. in file YB000055
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3530 feet	22. Approximate date work will start* 06/01/2020	23. Estimated duration 40 days
	24. Attachments	
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil and Gas Order No. 1, and the I	Hydraulic Fracturing rule per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.	4. Bond to cover the operation Item 20 above).	ns unless covered by an existing bond on file (see
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office)		rmation and/or plans as may be requested by the
25. Signature (Electronic Submission)	Name (Printed/Typed) MELANIE WILSON / Ph: (918) 49	Date 01/20/2020
Title Regulatory Analyst		
Approved by (Signature) (Electronic Submission)	Name (<i>Printed/Typed</i>) Cody Layton / Ph: (575) 234-5959	Date 09/09/2020
Title Assistant Field Manager Lands & Minerals	Office Carlsbad Field Office	
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	holds legal or equitable title to those rights	in the subject lease which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma	ake it a crime for any person knowingly and	willfully to make to any department or agency

GCP Rec 09/14/2020

APPROVED WITH CONDITIONS

Approval Date: 09/09/2020

of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

10/05/2020

SL

*(Instructions on page 2)

NAME: Melanie Wilson

Email address:

Operator Certification Data Report 09/11/2020

Signed on: 01/14/2020

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Title: Regulatory Analyst		
Street Address: 106 W. Riverside	e Drive	
City: Carlsbad	State: NM	Zip: 88220
Phone: (575)914-1461		
Email address: nmogrservices@	gmail.com	
Field Representative	e	
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: BELL LAKE UNIT NORTH

Application Data Report

Operator Name: KAISER FRANCIS OIL COMPANY

Well Number: 420H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

BLM Office: CARLSBAD User: Melanie Wilson Title: Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMLC0066438 Lease Acres: 479.85

Surface access agreement in place? Allotted? Reservation:

Agreement in place? YES Federal or Indian agreement: FEDERAL

Agreement number: NMNM068292X

Agreement name: BELL LAKE

Keep application confidential? Y

Permitting Agent? NO APD Operator: KAISER FRANCIS OIL COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: KAISER FRANCIS OIL COMPANY

Operator Address: 6733 S. Yale Ave.

Operator PO Box: PO Box 21468

Operator City: Tulsa State: OK

Operator Phone: (918)491-0000 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: BELL LAKE UNIT NORTH Well Number: 420H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: OJO CHISO Pool Name: WOLFCAMP,

SOUTHWEST

Zip: 74121

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Page 1 of 3

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 1

Well Class: HORIZONTAL

NORTH BELL LAKE UNIT

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: EXPLORATORY (WILDCAT)

Describe sub-type:

Distance to town: 20 Miles Distance to nearest well: 30 FT Distance to lease line: 380 FT

Reservoir well spacing assigned acres Measurement: 480 Acres

Well plat: BLUN 420H C102 20200114125341.pdf

BLUN_420H_Pymt_20200115110504.pdf

Well work start Date: 06/01/2020 Duration: 40 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 7073 Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg #1	238 8	FSL	380	FW L	23S	33E	1	Aliquot NWS W	32.33299 2	- 103.5334 04	LEA	NEW MEXI CO	• • • • • •	F	NMLC0 066438		0	0	N
KOP Leg #1	238 8	FSL	380	FW L	23S	33E	1	Aliquot NWS W	32.33299 2	- 103.5334 04	LEA		NEW MEXI CO	F	NMLC0 066438	- 795 2	115 27	114 82	N

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	0	FSL	123	FW	22S	33E	36	Aliquot	32.34092		LEA	NEW	NEW	S	STATE	-	150	120	Υ
Leg #1-1			0	L				SWS W	9	103.5306 34		MEXI CO	CO			854 3	47	73	
PPP	260	FNL	124	FW	23S	33E	1	Aliquot	32.33378	-	LEA	NEW	NEW	F	NMLC0	-//	124	120	Υ
Leg	0		0	L				SWN	3	103.5306				٦	066438	854	47	73	
#1-2								W		21		СО	СО		0.0	3			
EXIT	330	FNL	123	FW	22S	33E	36	Aliquot	32.35453		LEA			S	STATE	-	199	120	Υ
Leg			0	L				NWN	7	103.5306	. 47	MEXI	MEXI	٦	11.	854	97	73	
#1								W		58		СО	СО			3			
BHL	330	FNL	123	FW	22S	33E	36	Aliquot	32.35453		LEA	NEW	NEW	S	STATE	_	199	120	Υ
Leg			0	L				NWN	7	103.5306	· .	MEXI	MEXI	b		854	97	73	
#1								W		58		СО	СО			3			

Kaiser-Francis Oil Company Bell Lake Unit North 419H Casing Assumptions

Interval Conductor	Length		Weight (#/ft)	Grade	Thread	Condition New	Hole Size		Mud Type	Mud Weight Hole Control	Depth	Viscosity	Fluid Loss	Anticipated Mud Weight (ppg)		Collance	(nsi)	Tensile	Joint Tensile Strength	Collapse Safety Factor (Min 1.1)	Burst Safety Factor (Min 1.0)	Body Tensile Safety Factor (Min 1.8)	Joint Tensile Safety Factor (Min 1.8)
Surface	1600	10-3/4"	40.5	J-55	STC	New	14-3/4"	1600	FW	8.4 - 9.0	1350'	32 - 34	NC	9	749	1580	3130	629000	420000	2.1	4.2	9.7	6.5
Intermediate	11421	7-5/8"	29.7	HCP110	LTC	New	9-7/8"	11378	Brine	8.7 - 9.0	11426'	28-29	NC	9	5325	6700	9460	940000	769000	1.3	1.8	2.8	2.3
Production	19997	5-1/2"	20	P110 HP	USS Eagle SFH	New	6-3/4"	12073	ОВМ	10.0-12.0	19882'	55-70		12	7534	13150	14360	729000	629000	1.7	1.9	3.0	2.6

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000		psi
Maximum Yield Strength	140,000		psi
Minimum Tensile Strength	130,000		psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	20.00		lbs/ft
Plain End Weight	19.83		lbs/ft
SECTION AREA			
Cross Sectional Area Critical Area	5.828	5.027	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		629,000	lbs
Compression Rating		629,000	lbs
Reference Length		21,146	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
MAKE-UP DATA			
Minimum Make-Up Torque		14,200	ft-lbs
Maximum Make-Up Torque		16,800	ft-lbs
Maximum Operating Torque		25,700	ft-lbs
Make-Up Loss		5.92	in.

Notes:

- Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- 6) Connection external pressure resistance has been verified to 10,000 psi (Fit-For-Service testing protocol).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev26 (Sept)

Kaiser-Francis Oil Company Bell Lake Unit North 419H Casing Assumptions

Interval Conductor	Length		Weight (#/ft)	Grade	Thread	Condition New	Hole Size		Mud Type	Mud Weight Hole Control	Depth	Viscosity	Fluid Loss	Anticipated Mud Weight (ppg)		Collance	(nsi)	Tensile	Joint Tensile Strength	Collapse Safety Factor (Min 1.1)	Burst Safety Factor (Min 1.0)	Body Tensile Safety Factor (Min 1.8)	Joint Tensile Safety Factor (Min 1.8)
Surface	1600	10-3/4"	40.5	J-55	STC	New	14-3/4"	1600	FW	8.4 - 9.0	1350'	32 - 34	NC	9	749	1580	3130	629000	420000	2.1	4.2	9.7	6.5
Intermediate	11421	7-5/8"	29.7	HCP110	LTC	New	9-7/8"	11378	Brine	8.7 - 9.0	11426'	28-29	NC	9	5325	6700	9460	940000	769000	1.3	1.8	2.8	2.3
Production	19997	5-1/2"	20	P110 HP	USS Eagle SFH	New	6-3/4"	12073	ОВМ	10.0-12.0	19882'	55-70		12	7534	13150	14360	729000	629000	1.7	1.9	3.0	2.6

KAISER-FRANCIS OIL COMPANY HYDROGEN SULFIDE (H₂S) CONTINGENCY PLAN FOR DRILLING/COMPLETION WORKOVER/FACILITY

Bell Lake Unit North SECTION 1 -T23S-R33E SECTION 6 -T23S-R34E SECTION 5 -T23S-R34E

LEA COUNTY, NM

This well/facility is not expected to have H_2S , but due to the sensitive location, the following is submitted as requested.

TABLE OF CONTENTS

Emergency Response Activation and General Responsibilities	3
Individual Responsibilities During An H₂S Release	4
Procedure For Igniting An Uncontrollable Condition	5
Emergency Phone Numbers	6
Protection Of The General Public/Roe	7
Characteristics Of H ₂ S And SO ₂	8
Training	8
Public Relations	8
Maps	

EMERGENCY RESPONSE ACTIVATION AND GENERAL RESPONSIBILITIES

Activation of the Emergency Action Plan

In the event of any emergency situation, all personnel on location should first ensure that the following items are initiated. After that, they should refer to the appropriate Specific Emergency Guidance sections below for further responsibilities:

- 1. Notify the senior ranking contract representative on site.
- 2. Notify Kaiser-Francis representative in charge.
- 3. Notify civil authorities if the Kaiser-Francis Representative cannot be contacted and the situation dictates.
- 4. Perform rescue and first aid as required (without jeopardizing additional personnel).

General Responsibilities

In the event of an H₂S emergency, the following plan will be initiated.

- 1) All personnel will immediately evacuate to an up-wind and if possible up-hill "safe area".
- 2) If for any reason a person must enter the hazardous area, they must wear a SCBA (Self contained breathing apparatus).
- 3) Always use the "buddy system".
- 4) Isolate the well/problem if possible.
- 5) Account for all personnel
- 6) Display the proper colors, warning all unsuspecting personnel of the danger at hand
- 7) Contact the Company personnel as soon as possible if not at the location. (use the enclosed call list as instructed)

At this point the company representative will evaluate the situation and coordinate the necessary duties to bring the situation under control, and if necessary, the notification of emergency response agencies and residents.

INDIVIDUAL RESPONSIBILITIES DURING AN H2S RELEASE

The following procedures and responsibilities will be implemented on activation of the H₂S siren and lights.

All Personnel:

1. On alarm, don escape unit (if available) and report to upwind briefing area.

Rig Manager/Tool Pusher:

- 1. Check that all personnel are accounted for and their condition.
- 2. Administer or arrange for first aid treatment, and/or call EMTs as needed.
- 3. Identify two people best suited to secure well and perform rescue, and instruct them to don SCBA.
- 4. Notify Contract management and Kaiser-Francis Representative.
- 5. Remain at the briefing area, assess and monitor personnel and overall situation for hazards or conditions that might warrant a change in the action plan.

Two People Responsible for Shut-in and Rescue:

- 1. Don SCBA and acquire tools to secure well and perform rescue, i.e., wrenches, retrieval ropes, etc.
- 2. Utilize the buddy system to secure well and perform rescue(s).
- 3. Return to the briefing area and stand by for further instructions.

All Other Personnel:

1. Isolate the area and prevent entry by other persons into the 100 ppm ROE. Additionally the first responder(s) must evacuate any public places encompassed by the 100 ppm ROE. First responder(s) must take care not to injure themselves during this operation. Company and/or local officials must be contacted to aid in this operation. Evacuation of the public should be beyond the 100 ppm ROE.

Kaiser-Francis Oil Company Representative:

- 1. Remain at the briefing area, assess and monitor personnel and overall situation for hazards or conditions that might warrant a change in the action plan.
- 2. Notify company management or Local Incident Commander, and Police, Fire Department, or other local emergency services as required.

PROCEDURE FOR IGNITING AN UNCONTROLLABLE CONDITION:

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police shall be the Incident Command of any major release.

The decision to ignite a well should be a last resort and one if not both of the following pertain.

- 1) Human life and/or property are in danger.
- 2) There is no hope of bringing the situation under control with the prevailing conditions at the site.

INSTRUCTIONS FOR IGNITION:

- 1) Two people are required. They must be equipped with positive pressure; self contained breathing apparatus and a "D"-ring style, full body, OSHA approved safety harness. Non-flammable rope will be attached.
- 2) One of the people will be a qualified safety person who will test the atmosphere for H₂S, Oxygen, & LFL. The other person will be the company supervisor; he is responsible for igniting the well.
- 3) Ignite up-wind from a distance no closer than necessary. Make sure that where you ignite from has the maximum escape avenue available. A 25mm flare gun shall be used, with a +/-500' range to ignite the gas.
- 4) Prior to ignition, make a final check for combustible gases.
- 5) Following ignition, continue with the emergency actions & procedures as before.

CONTACTING AUTHORITIES

Kaiser-Francis personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. This response plan must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER).

EMERGENCY CALL LIST: (Start and continue until ONE of these people have been reached)

Kaiser-Francis Oil Co.	<u>OFFCE</u> 918/494-0000	<u>MOBILE</u>
Bill Wilkinson	580/668-2335	580/221-4637
David Zerger	918/491-4350	918/557-6708
Charles Lock	918/491-4337	918/671-6510
Stuart Blake	918/491-4347	918/510-4126
Robert Sanford	918/491-4201	918/770-2682
Eric Hansen	918/491-4339	918/527-5260

EMERGENCY RESPONSE NUMBERS: Lea County, New Mexico

State Police – Artesia	575/748-9718
State Police – Hobbs	575/392-5580
State Police – Carlsbad	575/885-3138
Lea County Sheriff - Lovington	575/396-3611
Local Emergency Planning Center – Lea County	575/396-8607
Local Emergency Planning Center – Eddy County	575/885-3581
Fire Fighting, Rescue & Ambulance – Carlsbad	911 or 575/885-3125
Fire Fighting, Rescue & Ambulance – Hobbs	911 or 575/397-9308
Fire Fighting – Jal Volunteer Fire Department	911 or 505/395-2221
New Mexico Oil & Gas Commission – Artesia	575/748-1283
New Mexico Oil & Gas Commission – Hobbs	575/393-6161
Air Medical Transport Services – Hobbs	800/550-1025
Med Flight Air Ambulance – Albuquerque	505/842-4433
Angel MedFlight	844/553-9033
DXP	432/580-3770
BJ Services	575/392-5556
Halliburton	575/392-6531 800/844-8451

PROTECTION OF THE GENERAL PUBLIC/ROE:

In the event of a release with a concentration greater than 100 ppm H₂S, the ROE (Radius of Exposure) calculations will be done to determine if the following conditions have been met:

- Does the 100 ppm ROE include any public area (any place not associated with this site)
- Does the 500 ppm ROE include any public road (any road which the general public may travel)
- Is the 100 ppm ROE equal to or greater than 3000 feet

If any one of these conditions have been met then the Contingency Plan will be implemented. The following shows how to calculate the radius of exposure and an example.

Calculation for the 100 ppm ROE:

(H2S concentrations in decimal form)

10,000 ppm +=1.+

1,000 ppm += 1+

100 ppm +=.01+

10 ppm += .001+

X = [(1.589)(concentration)(Q)] (0.6258)Calculation for the 500 ppm ROE:

X+[(0.4546)(concentration)(Q)] (.06258)

EXAMPLE: If a well/facility has been determined to have 150 ppm H₂S in the gas mixture and the well/facility is producing at a gas rate of 200 MCFPD then:

ROE for 100 PPM X=[(1.589)(.0150)(200)] (0.6258)

X=2.65'

ROE for 500 PPM X=[(.4546)(.0150)(200)] (0.6258)

X=1.2'

(These calculations will be forwarded to the appropriate District NMOCD office when applicable.)

PUBLIC EVACUATION PLAN:

(When the supervisor has determined that the General Public will be involved, the following plan will be implemented)

- 1) Notification of the emergency response agencies of the hazardous condition and Implement evacuation procedures.
- 2) A trained person in H₂S safety, shall monitor with detection equipment the H₂S Concentration, wind and area of exposure (ROE). This person will determine the outer perimeter of the hazardous area. The extent of the evacuation area will be determined from the data being collected. Monitoring shall continue until the situation has been resolved. (All monitoring equipment will be UL approved, for use in class I groups A,B,C & D, Division I, hazardous locations. All monitors will have a minimum capability of measuring H₂S, oxygen, and flammable values.)
- 3) Law enforcement shall be notified to set up necessary barriers and maintain such for the duration of the situation as well as aid in the evacuation procedure.
- 4) The company supervising personnel shall stay in communication with all agencies through out the duration of the situation and inform such agencies when the situation has been contained and the effected area(s) is safe to enter.

CHARACTERISTICS OF H₂S AND SO₂

Common	Chemical	Specific	Threshold	Hazardous	Lethal
Name	Formula	Gravity	Limit	Limit	Concentration
Hydrogen		1.189			
Sulfide	H ₂ S	Air = 1	10 ppm	100 ppm	600 ppm
		2.21			
Sulfur Dioxide	SO ₂	Air = 1	2 ppm	N/A	1000 ppm

TRAINING:

All responders must have training in the detection of H_2S measures for protection against the gas, equipment used for protection and emergency response. Weekly drills by all crews will be conducted and recorded in the IADC daily log. Additionally, responders must be equipped with H_2S monitors at all times.

PUBLIC RELATIONS

Kaiser-Francis recognizes that the news media have a legitimate interest in incidents at Kaiser-Francis facilities that could affect the public. It is to the company's benefit to cooperate with the news media when incidents occur because these media are our best liaison with the public.

Our objective is to see that all reports of any emergency are factual and represent the company's position fairly and accurately. Cooperation with news media representatives is the most reliable guarantee that this objective will be met.

All contract and Kaiser-Francis employees are instructed <u>NOT</u> to make any statement to the media concerning the emergency incident. If a media representative contacts any employee, they should refer them to the designated Emergency Command Center where they should contact the Incident Commander or his designated relief for any information concerning the incident.

Kaiser Francis

Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H

Plan: 191213 Bell Lake Unit North 420H

Morcor Standard Plan

13 December, 2019

Site

Morcor Engineering

Morcor Standard Plan

Company: Kaiser Francis

Bell Lake Unit North 420H Project: Site: Bell Lake Unit North 420H Well: Bell Lake Unit North 420H Wellbore: Bell Lake Unit North 420H

191213 Bell Lake Unit North 420H Design: Project Bell Lake Unit North 420H

US State Plane 1983 Map System: North American Datum 1983

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Database:

System Datum:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)

WELL @ 3552.2usft (Original Well Elev)

Mean Sea Level

Minimum Curvature EDM 5000.1 Single User Db

Geo Datum: Map Zone: New Mexico Eastern Zone

Bell Lake Unit North 420H

Site Position: Position Uncertainty:

Northing: Easting: 1.0 usft Slot Radius:

485,737.20 usft 747,225.88 usft 17-1/2 "

Latitude: Longitude: Grid Convergence:

32° 20' 0.968 N 103° 40' 0.240 W 0.36 °

Well Bell Lake Unit North 420H

0.0 usft **Well Position** +N/-S Northing: 485,737.20 usft 0.0 usft +E/-W Easting: Position Uncertainty 1.0 usft

747,225.88 usft Wellhead Elevation:

Latitude: 32° 20' 0.968 N 103° 40' 0.240 W Longitude: Ground Level: 3,530.2 usft

Bell Lake Unit North 420H Wellbore

Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)
	IGRF2010	12/13/2019	6.58	60.05	47,822

Design	191213 Bell Lake Unit North 420H				
Audit Notes:					
Version:	Phase:	PLAN	Tie On Depth:	0.0	
Vertical Section:	Depth From (TVD) (usft)	+N/-S (usft)	+E/-W (usft)	Direction (°)	
	0.0	0.0	0.0	5.75	

Survey Tool Program	Date 12/13/2019		
From	То		
(usft)	(usft) Survey (Wellbore)	Tool Name	Description
0.0	19,997.8 191213 Bell Lake Unit North 420H (Bell La	MWD	MWD - Standard

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Database:

Well Bell Lake Unit North 420H

WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

•										
ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
0.0	0.00	0.00	0.0	-3,552.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
100.0	0.00	0.00	100.0	-3,452.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
120.0	0.00	0.00	120.0	-3,432.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
20" Conductor										
200.0	0.00	0.00	200.0	-3,352.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
300.0	0.00	0.00	300.0	-3,252.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
400.0	0.00	0.00	400.0	-3,152.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
500.0	0.00	0.00	500.0	-3,052.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
600.0	0.00	0.00	600.0	-2,952.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
700.0	0.00	0.00	700.0	-2,852.2	0.0	0.0	747,225.88	485,737.20	0.00	0.00
800.0	0.00	0.00	800.0	-2,752.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
900.0	0.00	0.00	900.0	-2,652.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,000.0	0.00	0.00	1,000.0	-2,552.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,100.0	0.00	0.00	1,100.0	-2,452.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,200.0	0.00	0.00	1,200.0	-2,352.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,248.0	0.00	0.00	1,248.0	-2,304.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
Rustler										
1,300.0	0.00	0.00	1,300.0	-2,252.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,400.0	0.00	0.00	1,400.0	-2,152.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,500.0	0.00	0.00	1,500.0	-2,052.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,600.0	0.00	0.00	1,600.0	-1,952.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
10 3/4" Surface										
1,645.0	0.00	0.00	1,645.0	-1,907.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
Salado										
1,700.0	0.00	0.00	1,700.0	-1,852.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,800.0	0.00	0.00	1,800.0	-1,752.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0
1,900.0	0.00	0.00	1,900.0	-1,652.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

Minimum Curvature
EDM 5000.1 Single User Db

gn: 1912	213 Bell Lake Unit	North 420H		Database:					EDM 5000.1 Single User Db			
ned Survey												
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)		
1,972.0	0.00	0.00	1,972.0	-1,580.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
Top of Salt												
2,000.0	0.00	0.00	2,000.0	-1,552.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,100.0	0.00	0.00	2,100.0	-1,452.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,200.0	0.00	0.00	2,200.0	-1,352.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,300.0	0.00	0.00	2,300.0	-1,252.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,400.0	0.00	0.00	2,400.0	-1,152.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,500.0	0.00	0.00	2,500.0	-1,052.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,600.0	0.00	0.00	2,600.0	-952.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,700.0	0.00	0.00	2,700.0	-852.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
2,800.0	0.00	0.00	2,800.0	-752.2	0.0	0.0	747,225.88	485,737.20	0.00	0.		
2,900.0	0.00	0.00	2,900.0	-652.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
3,000.0	0.00	0.00	3,000.0	-552.2	0.0	0.0	747,225.88	485,737.20	0.00	0.0		
3,100.0	0.00	0.00	3,100.0	-452.2	0.0	0.0	747,225.88	485,737.20	0.00	0.		
3,200.0	0.00	0.00	3,200.0	-352.2	0.0	0.0	747,225.88	485,737.20	0.00	0.		
3,300.0	0.00	0.00	3,300.0	-252.2	0.0	0.0	747,225.88	485,737.20	0.00	0.		
Start Build 3.00												
3,400.0	3.00		3,400.0	-152.2	-0.9	2.5	747,228.35	485,736.34	-0.61	3.		
3,500.0	6.00	109.12	3,499.6	-52.6	-3.4	9.9	747,235.77	485,733.77	-2.42	3.		
3,500.4	6.01	109.12	3,500.0	-52.2	-3.4	9.9	747,235.80	485,733.76	-2.43	3.		
	old at 3500.4 MD											
3,600.0	6.01	109.12	3,599.1	46.9	-6.9	19.8	747,245.66	485,730.34	-4.84	0.		
3,700.0	6.01	109.12	3,698.5	146.3	-10.3	29.7	747,255.55	485,726.91	-7.26	0.		
3,800.0	6.01	109.12	3,798.0	245.8	-13.7	39.6	747,265.45	485,723.48	-9.69	0.		
3,900.0	6.01	109.12	3,897.4	345.2	-17.1	49.5	747,275.34	485,720.05	-12.11	0.		
4,000.0	6.01	109.12	3,996.9	444.7	-20.6	59.4	747,285.24	485,716.62	-14.53	0.		
4,100.0	6.01	109.12	4,096.3	544.1	-24.0	69.3	747,295.13	485,713.19	-16.95	0.		

12/13/2019 8:11:58AM Page 4 COMPASS 5000.1 Build 56

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

Database:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

Minimum Curvature EDM 5000.1 Single User Db

ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
4,200.0	6.01	109.12	4,195.8	643.6	-27.4	79.1	747,305.02	485,709.76	-19.38	0.0
4,300.0	6.01	109.12	4,295.2	743.0	-30.9	89.0	747,314.92	485,706.33	-21.80	0.0
4,400.0	6.01	109.12	4,394.7	842.5	-34.3	98.9	747,324.81	485,702.90	-24.22	0.0
4,500.0	6.01	109.12	4,494.1	941.9	-37.7	108.8	747,334.71	485,699.47	-26.64	0.0
4,600.0	6.01	109.12	4,593.6	1,041.4	-41.2	118.7	747,344.60	485,696.04	-29.06	0.0
4,700.0	6.01	109.12	4,693.0	1,140.8	-44.6	128.6	747,354.50	485,692.61	-31.49	0.0
4,800.0	6.01	109.12	4,792.5	1,240.3	-48.0	138.5	747,364.39	485,689.18	-33.91	0.00
4,900.0	6.01	109.12	4,891.9	1,339.7	-51.5	148.4	747,374.28	485,685.75	-36.33	0.00
4,980.5	6.01	109.12	4,972.0	1,419.8	-54.2	156.4	747,382.25	485,682.99	-38.28	0.00
Base of Salt										
5,000.0	6.01	109.12	4,991.4	1,439.2	-54.9	158.3	747,384.18	485,682.32	-38.75	0.0
5,100.0	6.01	109.12	5,090.8	1,538.6	-58.3	168.2	747,394.07	485,678.89	-41.18	0.0
5,200.0	6.01	109.12	5,190.3	1,638.1	-61.7	178.1	747,403.97	485,675.46	-43.60	0.0
5,231.9	6.01	109.12	5,222.0	1,669.8	-62.8	181.2	747,407.12	485,674.36	-44.37	0.0
Lamar										
5,300.0	6.01	109.12	5,289.7	1,737.5	-65.2	188.0	747,413.86	485,672.03	-46.02	0.00
5,400.0	6.01	109.12	5,389.2	1,837.0	-68.6	197.9	747,423.76	485,668.60	-48.44	0.00
5,500.0	6.01	109.12	5,488.6	1,936.4	-72.0	207.8	747,433.65	485,665.17	-50.87	0.00
5,533.5	6.01	109.12	5,522.0	1,969.8	-73.2	211.1	747,436.97	485,664.02	-51.68	0.00
Bell Canyon										
5,600.0	6.01	109.12	5,588.1	2,035.9	-75.5	217.7	747,443.54	485,661.74	-53.29	0.00
5,700.0	6.01	109.12	5,687.5	2,135.3	-78.9	227.6	747,453.44	485,658.31	-55.71	0.00
5,800.0	6.01	109.12	5,787.0	2,234.8	-82.3	237.5	747,463.33	485,654.88	-58.13	0.0
5,900.0	6.01	109.12	5,886.4	2,334.2	-85.8	247.3	747,473.23	485,651.45	-60.55	0.00
6,000.0	6.01	109.12	5,985.9	2,433.7	-89.2	257.2	747,483.12	485,648.02	-62.98	0.0
6,100.0	6.01	109.12	6,085.3	2,533.1	-92.6	267.1	747,493.02	485,644.59	-65.40	0.0
6,200.0	6.01	109.12	6,184.8	2,632.6	-96.0	277.0	747,502.91	485,641.15	-67.82	0.00

12/13/2019 8:11:58AM Page 5 COMPASS 5000.1 Build 56

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

Minimum Curvature EDM 5000.1 Single User Db

						Database:		EDM 5000.1 Single User Db		
ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) TV		TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
6,300.0	6.01	109.12	6,284.2	2,732.0	-99.5	286.9	747,512.80	485,637.72	-70.24	0.
6,400.0	6.01	109.12	6,383.7	2,831.5	-102.9	296.8	747,522.70	485,634.29	-72.67	0
6,500.0	6.01	109.12	6,483.1	2,930.9	-106.3	306.7	747,532.59	485,630.86	-75.09	0
6,600.0	6.01	109.12	6,582.6	3,030.4	-109.8	316.6	747,542.49	485,627.43	-77.51	0
6,700.0	6.01	109.12	6,682.0	3,129.8	-113.2	326.5	747,552.38	485,624.00	-79.93	0
6,740.2	6.01	109.12	6,722.0	3,169.8	-114.6	330.5	747,556.36	485,622.62	-80.91	0
Cherry Can										
6,800.0	6.01	109.12	6,781.5	3,229.3	-116.6	336.4	747,562.28	485,620.57	-82.35	0
6,900.0	6.01	109.12	6,880.9	3,328.7	-120.1	346.3	747,572.17	485,617.14	-84.78	0
7,000.0	6.01	109.12	6,980.4	3,428.2	-123.5	356.2	747,582.06	485,613.71	-87.20	C
7,100.0	6.01	109.12	7,079.8	3,527.6	-126.9	366.1	747,591.96	485,610.28	-89.62	0
7,200.0	6.01	109.12	7,179.3	3,627.1	-130.3	376.0	747,601.85	485,606.85	-92.04	C
7,300.0	6.01	109.12	7,278.7	3,726.5	-133.8	385.9	747,611.75	485,603.42	-94.47	0
7,400.0	6.01	109.12	7,378.2	3,826.0	-137.2	395.8	747,621.64	485,599.99	-96.89	C
7,500.0	6.01	109.12	7,477.6	3,925.4	-140.6	405.7	747,631.54	485,596.56	-99.31	(
7,600.0	6.01	109.12	7,577.1	4,024.9	-144.1	415.5	747,641.43	485,593.13	-101.73	0
7,700.0	6.01	109.12	7,676.5	4,124.3	-147.5	425.4	747,651.32	485,589.70	-104.16	0
7,800.0	6.01	109.12	7,776.0	4,223.8	-150.9	435.3	747,661.22	485,586.27	-106.58	C
7,900.0	6.01	109.12	7,875.4	4,323.2	-154.4	445.2	747,671.11	485,582.84	-109.00	C
8,000.0	6.01	109.12	7,974.9	4,422.7	-157.8	455.1	747,681.01	485,579.41	-111.42	0
8,100.0	6.01	109.12	8,074.3	4,522.1	-161.2	465.0	747,690.90	485,575.98	-113.84	(
8,200.0	6.01	109.12	8,173.8	4,621.6	-164.7	474.9	747,700.80	485,572.55	-116.27	(
8,300.0	6.01	109.12	8,273.2	4,721.0	-168.1	484.8	747,710.69	485,569.12	-118.69	(
8,400.0	6.01	109.12	8,372.7	4,820.5	-171.5	494.7	747,720.58	485,565.69	-121.11	0
8,450.6	6.01	109.12	8,423.0	4,870.8	-173.2	499.7	747,725.59	485,563.95	-122.34	(
Brushy Can	iyon									
8,500.0	6.01	109.12	8,472.1	4,919.9	-174.9	504.6	747,730.48	485,562.26	-123.53	(

12/13/2019 8:11:58AM Page 6 COMPASS 5000.1 Build 56

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

Database:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

nned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
8,600.0	6.01	109.12	8,571.6	5,019.4	-178.4	514.5	747,740.37	485,558.83	-125.96	0.0
8,675.8	6.01	109.12	8,647.0	5,094.8	-181.0	522.0	747,747.87	485,556.23	-127.79	0.00
Bone Spring										
8,700.0	6.01	109.12	8,671.0	5,118.8	-181.8	524.4	747,750.27	485,555.40	-128.38	0.00
8,800.0	6.01	109.12	8,770.5	5,218.3	-185.2	534.3	747,760.16	485,551.97	-130.80	0.00
8,900.0	6.01	109.12	8,869.9	5,317.7	-188.7	544.2	747,770.06	485,548.54	-133.22	0.00
9,000.0	6.01	109.12	8,969.4	5,417.2	-192.1	554.1	747,779.95	485,545.11	-135.64	0.00
9,040.8	6.01	109.12	9,010.0	5,457.8	-193.5	558.1	747,783.99	485,543.71	-136.63	0.00
Avalon										
9,100.0	6.01	109.12	9,068.8	5,516.6	-195.5	564.0	747,789.84	485,541.68	-138.07	0.00
9,200.0	6.01	109.12	9,168.3	5,616.1	-199.0	573.9	747,799.74	485,538.25	-140.49	0.00
9,300.0	6.01	109.12	9,267.7	5,715.5	-202.4	583.8	747,809.63	485,534.82	-142.91	0.00
9,400.0	6.01	109.12	9,367.2	5,815.0	-205.8	593.6	747,819.53	485,531.39	-145.33	0.00
9,500.0	6.01	109.12	9,466.6	5,914.4	-209.2	603.5	747,829.42	485,527.95	-147.76	0.0
9,600.0	6.01	109.12	9,566.1	6,013.9	-212.7	613.4	747,839.31	485,524.52	-150.18	0.0
9,700.0	6.01	109.12	9,665.5	6,113.3	-216.1	623.3	747,849.21	485,521.09	-152.60	0.0
9,800.0	6.01	109.12	9,765.0	6,212.8	-219.5	633.2	747,859.10	485,517.66	-155.02	0.00
9,900.0	6.01	109.12	9,864.4	6,312.2	-223.0	643.1	747,869.00	485,514.23	-157.45	0.00
10,000.0	6.01	109.12	9,963.9	6,411.7	-226.4	653.0	747,878.89	485,510.80	-159.87	0.0
10,034.3	6.01	109.12	9,998.0	6,445.8	-227.6	656.4	747,882.28	485,509.63	-160.70	0.0
1st BS Sand										
10,100.0	6.01	109.12	10,063.3	6,511.1	-229.8	662.9	747,888.79	485,507.37	-162.29	0.0
10,200.0	6.01	109.12	10,162.8	6,610.6	-233.3	672.8	747,898.68	485,503.94	-164.71	0.0
10,300.0	6.01	109.12	10,262.2	6,710.0	-236.7	682.7	747,908.57	485,500.51	-167.13	0.0
10,400.0	6.01	109.12	10,361.7	6,809.5	-240.1	692.6	747,918.47	485,497.08	-169.56	0.0
10,500.0	6.01	109.12	10,461.1	6,908.9	-243.5	702.5	747,928.36	485,493.65	-171.98	0.0
10,562.2	6.01	109.12	10,523.0	6,970.8	-245.7	708.6	747,934.52	485,491.52	-173.49	0.0
2nd BS Sand										

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

ın: 1912	213 Bell Lake Unit	NORTH 420H					EDM 5000.1 Single User Db			
ed Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
10,600.0	6.01	109.12	10,560.6	7,008.4	-247.0	712.4	747,938.26	485,490.22	-174.40	0.0
10,700.0	6.01	109.12	10,660.0	7,107.8	-250.4	722.3	747,948.15	485,486.79	-176.82	0.0
10,800.0	6.01	109.12	10,759.5	7,207.3	-253.8	732.2	747,958.05	485,483.36	-179.25	0.0
10,900.0	6.01	109.12	10,858.9	7,306.7	-257.3	742.1	747,967.94	485,479.93	-181.67	0.0
11,000.0	6.01	109.12	10,958.4	7,406.2	-260.7	752.0	747,977.83	485,476.50	-184.09	0.0
11,090.1	6.01	109.12	11,048.0	7,495.8	-263.8	760.9	747,986.75	485,473.41	-186.27	0.0
3rd BS Lime										
11,100.0	6.01	109.12	11,057.8	7,505.6	-264.1	761.8	747,987.73	485,473.07	-186.51	0.0
11,200.0	6.01	109.12	11,157.3	7,605.1	-267.6	771.7	747,997.62	485,469.64	-188.93	0.0
11,300.0	6.01	109.12	11,256.7	7,704.5	-271.0	781.6	748,007.52	485,466.21	-191.36	0.0
11,400.0	6.01	109.12	11,356.2	7,804.0	-274.4	791.5	748,017.41	485,462.78	-193.78	0.
11,421.9	6.01	109.12	11,378.0	7,825.8	-275.2	793.7	748,019.58	485,462.03	-194.31	0.
7 5/8" Intermed										
11,500.0	6.01	109.12	11,455.6	7,903.4	-277.9	801.4	748,027.31	485,459.35	-196.20	0.
11,527.3	6.01	109.12	11,482.8	7,930.6	-278.8	804.1	748,030.00	485,458.41	-196.86	0.
Start DLS 10.00										
11,600.0	7.72	46.50	11,555.1	8,002.9	-276.7	811.3	748,037.16	485,460.53	-194.04	10.
11,618.1	9.05	38.00	11,573.0	8,020.8	-274.7	813.0	748,038.92	485,462.49	-191.91	10.
3rd BS Sand										
11,700.0	16.25	19.38	11,652.9	8,100.7	-258.8	820.8	748,046.69	485,478.40	-175.30	10.
11,800.0	25.84	11.30	11,746.1	8,193.9	-224.1	829.7	748,055.63	485,513.06	-139.93	10.
11,900.0	35.65	7.43	11,832.0	8,279.8	-173.7	837.8	748,063.69	485,563.46	-88.97	10.
11,952.3	40.81	6.08	11,873.0	8,320.8	-141.6	841.6	748,067.47	485,595.57	-56.64	10.
Wolfcamp										
12,000.0	45.53	5.07	11,907.8	8,355.6	-109.1	844.7	748,070.63	485,628.06	-24.00	10.
12,100.0	55.45	3.40	11,971.3	8,419.1	-32.3	850.4	748,076.24	485,704.90	53.02	10
12,200.0	65.38	2.09	12,020.7	8,468.5	54.5	854.5	748,080.35	485,791.66	139.75	10
12,300.0	75.33	0.97	12,054.2	8,502.0	148.5	857.0	748,082.83	485,885.69	233.55	10

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Local Co-ordinate Reference:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

	191213 Bell Lake Unit North 420H					Database:		EDM 5000.1 Single User Db			
ned Survey											
MD (usft)	Inc (°)	Azi (azimuth) TVE		VDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)	
12,400.0	85.28	359.95	12,071.0	8,518.8	246.9	857.7	748,083.61	485,984.13	331.58	10.	
12,447.4	90.00	359.48	12,073.0	8,520.8	294.3	857.5	748,083.38	486,031.52	378.71	10.	
Start 7550.4	hold at 12447.4 MD										
12,500.0	90.00	359.48	12,073.0	8,520.8	346.9	857.0	748,082.91	486,084.07	430.95	0.	
12,600.0	90.00	359.48	12,073.0	8,520.8	446.9	856.1	748,082.01	486,184.07	530.36	0.	
12,700.0	90.00	359.48	12,073.0	8,520.8	546.9	855.2	748,081.11	486,284.07	629.76	0.	
12,800.0	90.00	359.48	12,073.0	8,520.8	646.9	854.3	748,080.20	486,384.06	729.16	0.	
12,900.0	90.00	359.48	12,073.0	8,520.8	746.9	853.4	748,079.30	486,484.06	828.56	0.	
13,000.0	90.00	359.48	12,073.0	8,520.8	846.9	852.5	748,078.40	486,584.05	927.97	0	
13,100.0	90.00	359.48	12,073.0	8,520.8	946.9	851.6	748,077.50	486,684.05	1,027.37	0	
13,200.0	90.00	359.48	12,073.0	8,520.8	1,046.8	850.7	748,076.60	486,784.05	1,126.77	0	
13,300.0	90.00	359.48	12,073.0	8,520.8	1,146.8	849.8	748,075.70	486,884.04	1,226.18	0	
13,400.0	90.00	359.48	12,073.0	8,520.8	1,246.8	848.9	748,074.80	486,984.04	1,325.58	0	
13,500.0	90.00	359.48	12,073.0	8,520.8	1,346.8	848.0	748,073.90	487,084.03	1,424.98	0	
13,600.0	90.00	359.48	12,073.0	8,520.8	1,446.8	847.1	748,073.00	487,184.03	1,524.39	0	
13,700.0	90.00	359.48	12,073.0	8,520.8	1,546.8	846.2	748,072.10	487,284.03	1,623.79	0	
13,800.0	90.00	359.48	12,073.0	8,520.8	1,646.8	845.3	748,071.20	487,384.02	1,723.19	0	
13,900.0	90.00	359.48	12,073.0	8,520.8	1,746.8	844.4	748,070.30	487,484.02	1,822.60	0	
14,000.0	90.00	359.48	12,073.0	8,520.8	1,846.8	843.5	748,069.40	487,584.01	1,922.00	0	
14,100.0	90.00	359.48	12,073.0	8,520.8	1,946.8	842.6	748,068.49	487,684.01	2,021.40	0	
14,200.0	90.00	359.48	12,073.0	8,520.8	2,046.8	841.7	748,067.59	487,784.01	2,120.80	0	
14,300.0	90.00	359.48	12,073.0	8,520.8	2,146.8	840.8	748,066.69	487,884.00	2,220.21	0	
14,400.0	90.00	359.48	12,073.0	8,520.8	2,246.8	839.9	748,065.79	487,984.00	2,319.61	0	
14,500.0	90.00	359.48	12,073.0	8,520.8	2,346.8	839.0	748,064.89	488,083.99	2,419.01	0	
14,600.0	90.00	359.48	12,073.0	8,520.8	2,446.8	838.1	748,063.99	488,183.99	2,518.42	0	
14,700.0	90.00	359.48	12,073.0	8,520.8	2,546.8	837.2	748,063.09	488,283.99	2,617.82	0	
14,800.0	90.00	359.48	12,073.0	8,520.8	2,646.8	836.3	748,062.19	488,383.98	2,717.22	0	

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Database:

Local Co-ordinate Reference:

Well Bell Lake Unit North 420H

WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

anned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
14,900.0	90.00	359.48	12,073.0	8,520.8	2,746.8	835.4	748,061.29	488,483.98	2,816.63	0.0
15,000.0	90.00	359.48	12,073.0	8,520.8	2,846.8	834.5	748,060.39	488,583.97	2,916.03	0.0
15,100.0	90.00	359.48	12,073.0	8,520.8	2,946.8	833.6	748,059.49	488,683.97	3,015.43	0.0
15,200.0	90.00	359.48	12,073.0	8,520.8	3,046.8	832.7	748,058.59	488,783.96	3,114.84	0.0
15,300.0	90.00	359.48	12,073.0	8,520.8	3,146.8	831.8	748,057.69	488,883.96	3,214.24	0.0
15,400.0	90.00	359.48	12,073.0	8,520.8	3,246.8	830.9	748,056.78	488,983.96	3,313.64	0.0
15,500.0	90.00	359.48	12,073.0	8,520.8	3,346.8	830.0	748,055.88	489,083.95	3,413.05	0.0
15,600.0	90.00	359.48	12,073.0	8,520.8	3,446.7	829.1	748,054.98	489,183.95	3,512.45	0.0
15,700.0	90.00	359.48	12,073.0	8,520.8	3,546.7	828.2	748,054.08	489,283.94	3,611.85	0.0
15,800.0	90.00	359.48	12,073.0	8,520.8	3,646.7	827.3	748,053.18	489,383.94	3,711.25	0.0
15,900.0	90.00	359.48	12,073.0	8,520.8	3,746.7	826.4	748,052.28	489,483.94	3,810.66	0.0
16,000.0	90.00	359.48	12,073.0	8,520.8	3,846.7	825.5	748,051.38	489,583.93	3,910.06	0.0
16,100.0	90.00	359.48	12,073.0	8,520.8	3,946.7	824.6	748,050.48	489,683.93	4,009.46	0.0
16,200.0	90.00	359.48	12,073.0	8,520.8	4,046.7	823.7	748,049.58	489,783.92	4,108.87	0.
16,300.0	90.00	359.48	12,073.0	8,520.8	4,146.7	822.8	748,048.68	489,883.92	4,208.27	0.
16,400.0	90.00	359.48	12,073.0	8,520.8	4,246.7	821.9	748,047.78	489,983.92	4,307.67	0.
16,500.0	90.00	359.48	12,073.0	8,520.8	4,346.7	821.0	748,046.88	490,083.91	4,407.08	0.
16,600.0	90.00	359.48	12,073.0	8,520.8	4,446.7	820.1	748,045.98	490,183.91	4,506.48	0.
16,700.0	90.00	359.48	12,073.0	8,520.8	4,546.7	819.2	748,045.08	490,283.90	4,605.88	0.
16,800.0	90.00	359.48	12,073.0	8,520.8	4,646.7	818.3	748,044.17	490,383.90	4,705.29	0.
16,900.0	90.00	359.48	12,073.0	8,520.8	4,746.7	817.4	748,043.27	490,483.90	4,804.69	0.
17,000.0	90.00	359.48	12,073.0	8,520.8	4,846.7	816.5	748,042.37	490,583.89	4,904.09	0.
17,100.0	90.00	359.48	12,073.0	8,520.8	4,946.7	815.6	748,041.47	490,683.89	5,003.50	0.
17,200.0	90.00	359.48	12,073.0	8,520.8	5,046.7	814.7	748,040.57	490,783.88	5,102.90	0.
17,300.0	90.00	359.48	12,073.0	8,520.8	5,146.7	813.8	748,039.67	490,883.88	5,202.30	0.
17,400.0	90.00	359.48	12,073.0	8,520.8	5,246.7	812.9	748,038.77	490,983.88	5,301.70	0.
17,500.0	90.00	359.48	12,073.0	8,520.8	5,346.7	812.0	748,037.87	491,083.87	5,401.11	0.0

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H Design: 191213 Bell Lake Unit North 420H Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method:

Well Bell Lake Unit North 420H WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

	191213 Bell Lake Unit North 420H					Database:	on method.	EDM 5000.1 Single User Db		
ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
17,600.0	90.00	359.48	12,073.0	8,520.8	5,446.7	811.1	748,036.97	491,183.87	5,500.51	0
17,700.0	90.00	359.48	12,073.0	8,520.8	5,546.7	810.2	748,036.07	491,283.86	5,599.91	0
17,800.0	90.00	359.48	12,073.0	8,520.8	5,646.7	809.3	748,035.17	491,383.86	5,699.32	0
17,900.0	90.00	359.48	12,073.0	8,520.8	5,746.7	808.4	748,034.27	491,483.86	5,798.72	0
18,000.0	90.00	359.48	12,073.0	8,520.8	5,846.7	807.5	748,033.37	491,583.85	5,898.12	0
18,100.0	90.00	359.48	12,073.0	8,520.8	5,946.6	806.6	748,032.46	491,683.85	5,997.53	0
18,200.0	90.00	359.48	12,073.0	8,520.8	6,046.6	805.7	748,031.56	491,783.84	6,096.93	0
18,300.0	90.00	359.48	12,073.0	8,520.8	6,146.6	804.8	748,030.66	491,883.84	6,196.33	0
18,400.0	90.00	359.48	12,073.0	8,520.8	6,246.6	803.9	748,029.76	491,983.84	6,295.74	0
18,500.0	90.00	359.48	12,073.0	8,520.8	6,346.6	803.0	748,028.86	492,083.83	6,395.14	0
18,600.0	90.00	359.48	12,073.0	8,520.8	6,446.6	802.1	748,027.96	492,183.83	6,494.54	0
18,700.0	90.00	359.48	12,073.0	8,520.8	6,546.6	801.2	748,027.06	492,283.82	6,593.95	0
18,800.0	90.00	359.48	12,073.0	8,520.8	6,646.6	800.3	748,026.16	492,383.82	6,693.35	0
18,900.0	90.00	359.48	12,073.0	8,520.8	6,746.6	799.4	748,025.26	492,483.81	6,792.75	0
19,000.0	90.00	359.48	12,073.0	8,520.8	6,846.6	798.5	748,024.36	492,583.81	6,892.15	0
19,100.0	90.00	359.48	12,073.0	8,520.8	6,946.6	797.6	748,023.46	492,683.81	6,991.56	0
19,200.0	90.00	359.48	12,073.0	8,520.8	7,046.6	796.7	748,022.56	492,783.80	7,090.96	0
19,300.0	90.00	359.48	12,073.0	8,520.8	7,146.6	795.8	748,021.66	492,883.80	7,190.36	0
19,400.0	90.00	359.48	12,073.0	8,520.8	7,246.6	794.9	748,020.75	492,983.79	7,289.77	0
19,500.0	90.00	359.48	12,073.0	8,520.8	7,346.6	794.0	748,019.85	493,083.79	7,389.17	0
19,600.0	90.00	359.48	12,073.0	8,520.8	7,446.6	793.1	748,018.95	493,183.79	7,488.57	0
19,700.0	90.00	359.48	12,073.0	8,520.8	7,546.6	792.2	748,018.05	493,283.78	7,587.98	0
19,800.0	90.00	359.48	12,073.0	8,520.8	7,646.6	791.3	748,017.15	493,383.78	7,687.38	0
19,900.0	90.00	359.48	12,073.0	8,520.8	7,746.6	790.4	748,016.25	493,483.77	7,786.78	0
19,997.8	90.00	359.48	12,073.0	8,520.8	7,844.4	789.5	748,015.37	493,581.57	7,884.00	0

Design:

Morcor Engineering

Morcor Standard Plan

Company: Project: Site: Kaiser Francis Bell Lake Unit North 420H Bell Lake Unit North 420H Bell Lake Unit North 420H Well: Wellbore: Bell Lake Unit North 420H

191213 Bell Lake Unit North 420H

Local Co-ordinate Reference: TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Database:

Well Bell Lake Unit North 420H

WELL @ 3552.2usft (Original Well Elev)
WELL @ 3552.2usft (Original Well Elev)

Casing Points						
	Measured Depth	Vertical Depth			Casing Diameter	Hole Diameter
	(usft)	(usft)	Na	ame	(")	(")
	120.0	120.0	20" Conductor		20	26
	1,600.0	1,600.0	10 3/4" Surface Casing		10-3/4	12-1/4
	11,421.9	11,378.0	7 5/8" Intermediate Casing		7-5/8	9-7/8
	19,997.8	12,073.0	5 1/2" Production Casing		5-1/2	6-3/4

Measured Depth (usft)	Vertical Depth (usft)		Name	Lithology	Dip (°)	Dip Direction (°)
10,034.3	9,998.0	1st BS Sand			0.00	
10,562.2	10,523.0	2nd BS Sand			0.00	
8,450.6	8,423.0	Brushy Canyon			0.00	
4,980.5	4,972.0	Base of Salt			0.00	
6,740.2	6,722.0	Cherry Canyon			0.00	
11,618.1	11,573.0	3rd BS Sand			0.00	
9,040.8	9,010.0	Avalon			0.00	
1,645.0	1,645.0	Salado			0.00	
5,231.9	5,222.0	Lamar			0.00	
11,090.1	11,048.0	3rd BS Lime			0.00	
1,248.0	1,248.0	Rustler			0.00	
11,952.3	11,873.0	Wolfcamp			0.00	
8,675.8	8,647.0	Bone Spring			0.00	
1,972.0	1,972.0	Top of Salt			0.00	
5,533.5	5,522.0	Bell Canyon			0.00	

Design:

191213 Bell Lake Unit North 420H

Morcor Engineering

Morcor Standard Plan

 Company:
 Kaiser Francis
 Local Co-ordinate Reference:
 Well Bell Lake Unit North 420H

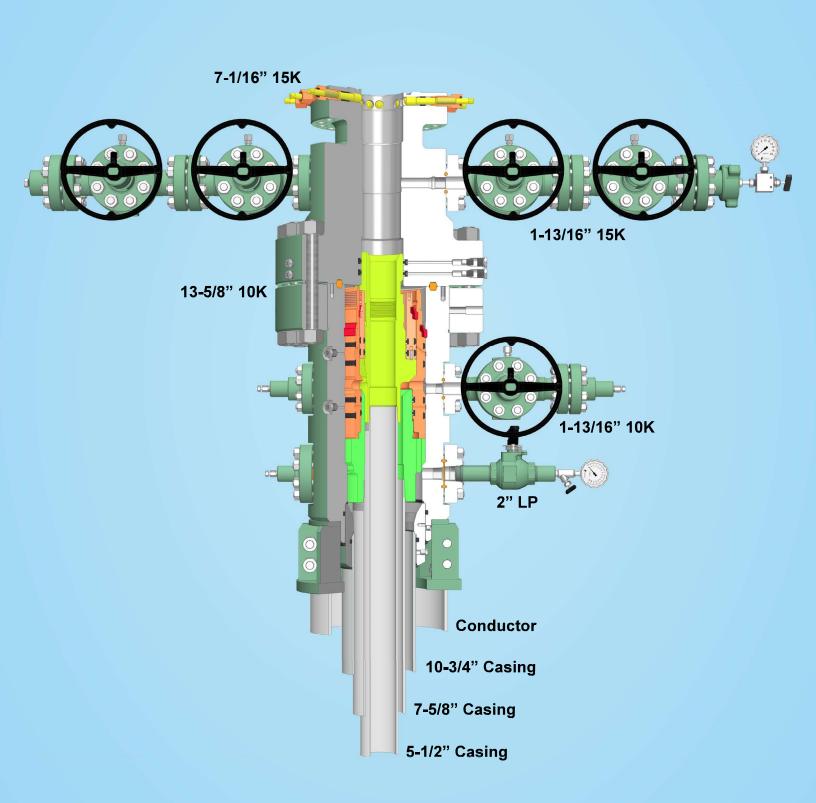
 Project:
 Bell Lake Unit North 420H
 TVD Reference:
 WELL @ 3552.2usft (Original Well Elev)

 Site:
 Bell Lake Unit North 420H
 MD Reference:
 WELL @ 3552.2usft (Original Well Elev)

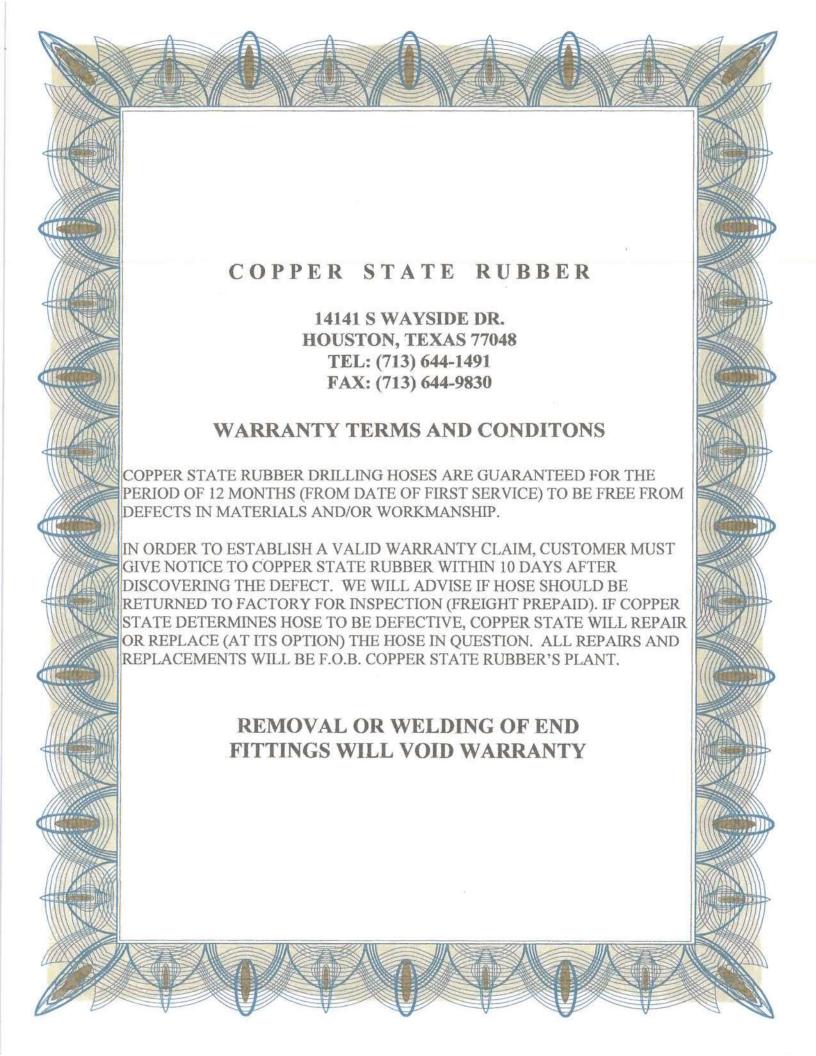
 Site:
 Bell Lake Unit North 420H
 MD Reference:
 WELL @ 3552.2usft (Original W Well:

 Well:
 Bell Lake Unit North 420H
 North Reference:
 Grid

 Wellbore:
 Bell Lake Unit North 420H
 Survey Calculation Method:
 Minimum Curvature


Plan Annotations Vertical Measured **Local Coordinates** Depth (usft) Depth (usft) +N/-S +E/-W (usft) (usft) Comment 0.0 3,300.0 3,300.0 0.0 Start Build 3.00 3,500.4 3,500.0 -3.4 9.9 Start 8026.9 hold at 3500.4 MD Start DLS 10.00 TFO -109.54 11,527.3 11,482.8 -278.8 804.1 12,447.4 12,073.0 294.3 857.5 Start 7550.4 hold at 12447.4 MD 19,997.8 12,073.0 7,844.4 TD at 19997.8 789.5

Database:


EDM 5000.1 Single User Db

Checked By: Approved By: Date:	
--------------------------------	--

Kaiser-Francis Oil Company

BUREAU OF LAND MANAGEMENT

SUPO Data Report

APD ID: 10400053232

Well Type: OIL WELL

Submission Date: 01/20/2020

Highlighted data reflects the most recent changes

Operator Name: KAISER FRANCIS OIL COMPANY

Well Number: 420H

Show Final Text

Well Name: BELL LAKE UNIT NORTH

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

BLUN_420H_Existing_Roads_20200114131532.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

BLUN_420H_1_Mile_Map_20200114131701.pdf BLUN 420H 1 Mile Data 20200114131918.pdf

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: Production facilities are planned for the south side of pad. Plan for initial wells: 2-1000 bbl water tanks and 5 -1000 bbl oil tanks, a temporary 6X20 horizontal 3-phase sep, a 48 X 10 3-phase sep, a 8 X 20 heater treater and a 48X 10 2-phase sep

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: Brine Water

Water source use type: INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: PRIVATE

Source transportation land ownership: STATE

Water source volume (barrels): 20000 Source volume (acre-feet): 2.57786193

Source volume (gal): 840000

Water source type: OTHER

Describe type: FRESH WATER

Water source use type: STIMULATION

OTHER Describe use type: ROAD/PAD CONSTRUCTION ANI

SURFACE CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Water source transport method: TRUCKING

Source land ownership: PRIVATE

Source transportation land ownership: OTHER

Water source volume (barrels): 250000

Source volume (gal): 10500000

Describe transportation land ownership: Source tran

is a mixture of Federal, State and County. **Source volume (acre-feet):** 32.223274

Water source and transportation map:

BLUN_Pad_1_Wtr_Source_Map_20200114115948.pdf

Water source comments: Source transportation land ownership is a mixture of Federal, State and County.

New water well? N

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aguifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: On site caliche will be used for construction if sufficient. In the event insufficient quantities of caliche are available onsite, caliche will be trucked in from BLM's caliche pit in SWSW Section 22-T24-R34E or NENE Section 20-T23S-R33E.

Construction Materials source location attachment:

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Section 7 - Methods for Handling Waste

Waste type: GARBAGE

Waste content description: Miscellaneous trash

Amount of waste: 500 pounds

Waste disposal frequency: Weekly

Safe containment description: Trash produced during drilling and completion operations will be collected in a trash

container and disposed of properly Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility (Sandpoint Landfill (solid materials dump) NW/4

Section 11-T21S-R28E)

Waste type: SEWAGE

Waste content description: Human waste and grey water

Amount of waste: 1000 gallons

Waste disposal frequency: Weekly

Safe containment description: Waste material will be stored safely and disposed of properly

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility (Carlsbad sewer plant SENW Section 10-T22S-

R27E)

Waste type: DRILLING

Waste content description: Drilling fluids and cuttings

Amount of waste: 3900 barrels

Waste disposal frequency: Weekly

Safe containment description: All drilling fluids will be stored safely and disposed of properly

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Cuttings will be hauled to R360's facility located in Section 27-T20S-R32E on US 62/180 at

Halfway, NM

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.) Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Cuttings will be stored in roll off bins and hauled to R360 located in Section 27-T20S-R32E on US 62/180 near Halfway.

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BLUN_420H_Well_Site_Layout_20200120155936.pdf BLUN_420H_Rig_Layout_20200806183825.pdf

Comments:

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: NORTH BELL LAKE UNIT

Multiple Well Pad Number: 1

Recontouring attachment:

BLUN 420H IR Plat 20200114132103.pdf

Drainage/Erosion control construction: During construction proper erosion control methods will be used to control erosion, runoff and siltation of the surrounding area.

Drainage/Erosion control reclamation: Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.

Well pad proposed disturbance

(acres): 6.71

Road proposed disturbance (acres):

0.097

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 6.807

Well pad interim reclamation (acres): Well pad long term disturbance

1.03

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

0

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 1.03

(acres): 5.68

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): 0

Total long term disturbance: 5.777

Disturbance Comments:

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations

Soil treatment: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

Existing Vegetation at the well pad: The historic climax plant community is a grassland dominated by black grama, dropseeds, and blue stems with sand sage and shinnery oak distributed evenly throughout. Current landscape displays mesquite, shinnery oak, yucca, desert sage, fourwing saltbush, snakeweed, and bunch grasses Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the pipeline attachment:

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Existing Vegetation Community at other disturbances: None

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: No invasive species present. Standard regular maintenance to maintain a clear location and road.

Weed treatment plan attachment:

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

Monitoring plan description: Identify areas supporting weeds prior to construction; prevent the introduction and spread of weeds from construction equipment during construction; and contain weed seeds and propagules by preventing segregated topsoil from being spread to adjacent areas. No invasive species present. Standard regular maintenance to maintain a clear location and road.

Monitoring plan attachment:

Success standards: To maintain all disturbed areas as per Gold Book standards

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: NM STATE LAND OFFICE, 602 N CANAL ST B, CARLSBAD, NM 88220

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland: USFS Ranger District:

Section 12 - Other Information

Right of Way needed? N

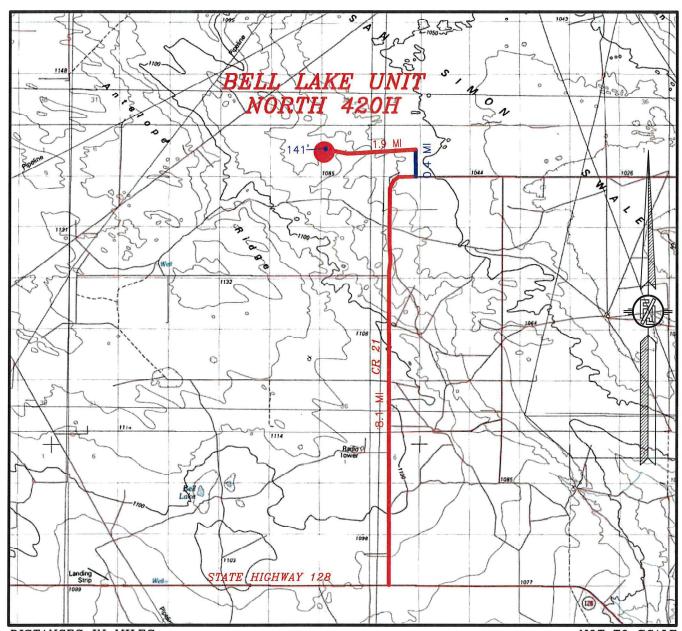
Use APD as ROW?

ROW Type(s):

ROW Applications

Well Name: BELL LAKE UNIT NORTH Well Number: 420H

SUPO Additional Information: APD's for the Bell Lake Unit North 119H and 211H on this pad (BLUN Pad 1) are APPROVED.


Use a previously conducted onsite? Y

Previous Onsite information: Onsite conducted 07/20/2017 by Fernando Banos (BLM), Matt Warner & Melanie Wilson (Kaiser-Francis), Jimmy Harrison (John West Surveying) and Jeff (APAC archaeologist).

Other SUPO Attachment

BELL_LAKE_UNIT_NORTH_Pad_1_SUPO_20200806183901.pdf

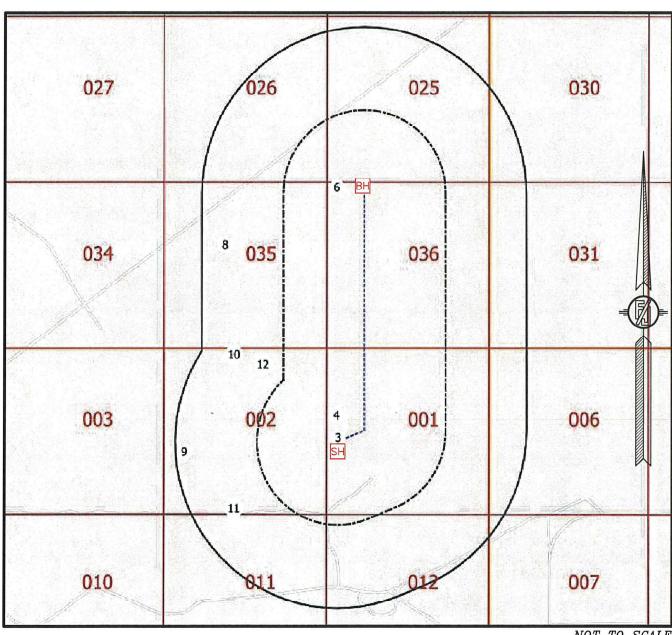
SECTION 1, TOWNSHIP 23 SOUTH, RANGE 33 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO VICINITY MAP

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF STATE HIGHWAY 128 & CR 21 (DELAWARE BASIN ROAD) GO NORTH ON CR 21 8.1 MILES WHERE ROAD TURNS RIGHT (EAST) AT THE END OF CURVE AT THE 2ND LEASE ROAD (KAISER FRANCIS SIGNS) ON LEFT SIDE OF ROAD (NORTH), TURN NORTH AT 2ND LEASE ROAD GO APPROX. 0.4 OF A MILE, ROAD TURNS LEFT (WEST) GO WEST APPROX. 1.9 MILES TO A ROAD LATH RED & WHITE FLAGGING ON LEFT (SOUTH) SIDE OF LEASE ROAD GO SOUTH 141' TO NORTH EDGE OF PAD FOR THIS LOCATION.


KAISER-FRANCIS OIL CO. BELL LAKE UNIT NORTH 420H LOCATED 2388 FT. FROM THE SOUTH LINE AND 380 FT. FROM THE WEST LINE OF SECTION 1, TOWNSHIP 23 SOUTH, RANGE 33 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

MARCH 26, 2019

SURVEY NO. 7073,

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

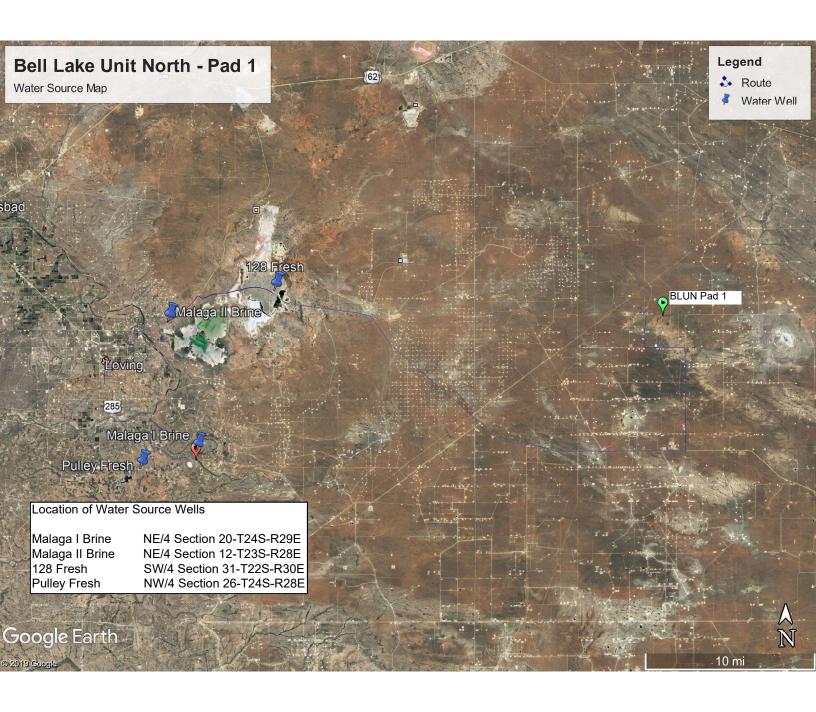
1-MILE MAP

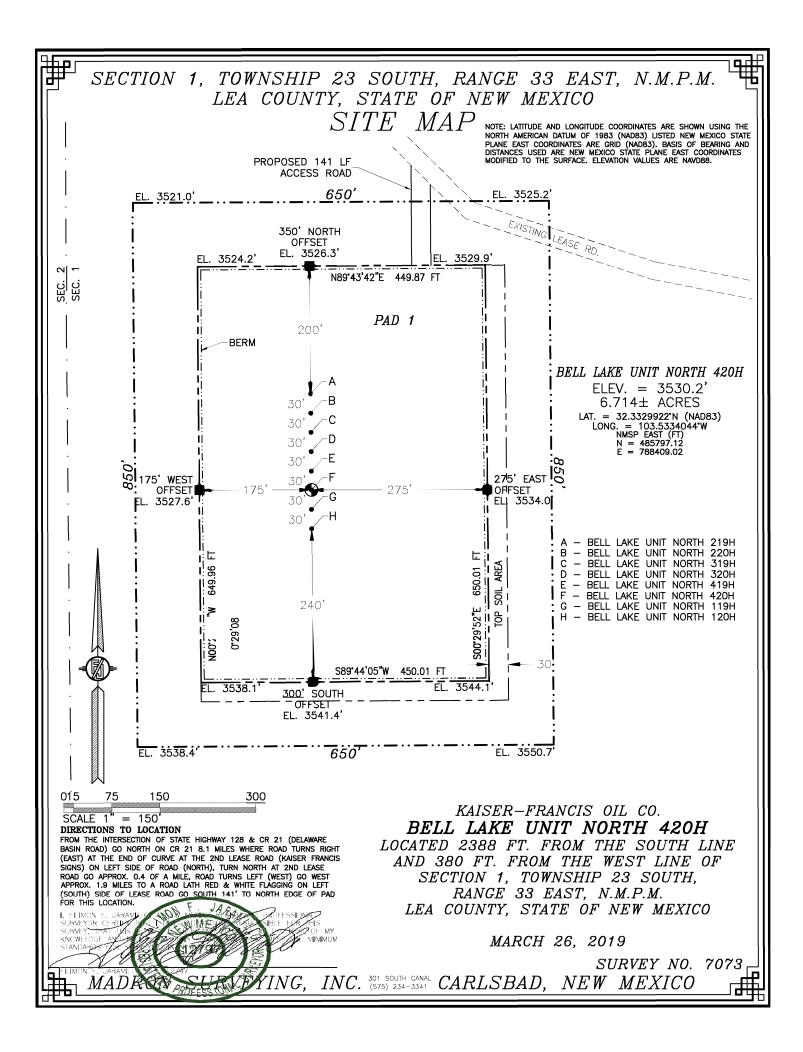
NOT TO SCALE

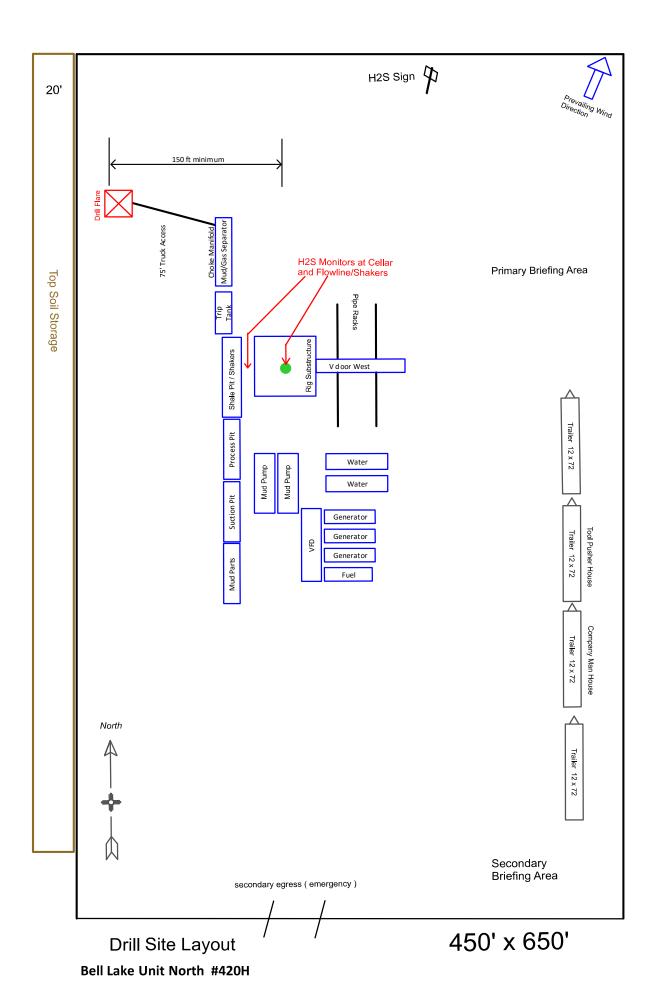
SH SURFACE LOCATION	
BH BOTTOM OF HOLE	
XX WELLS WITHIN 1 MILE	Ξ.
V	ELL PATH
1	/4 MILE BOUNDARY
	-MILE BOUNDARY

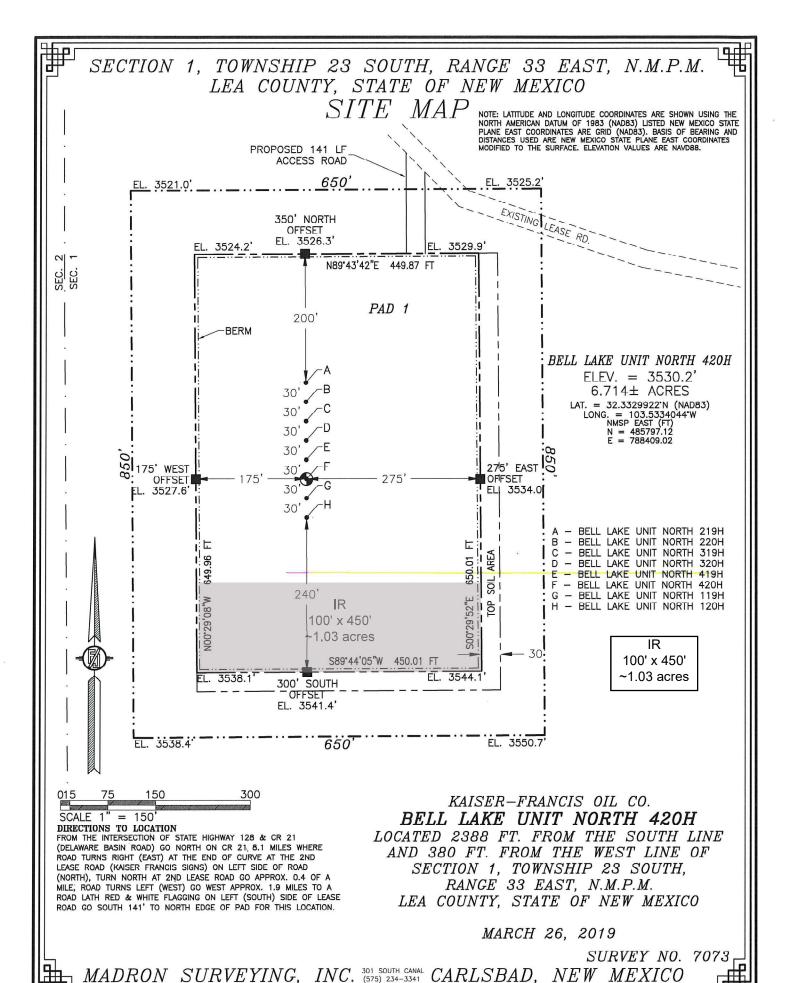
WELL DATA FROM NMOCD GIS - 4/1/19

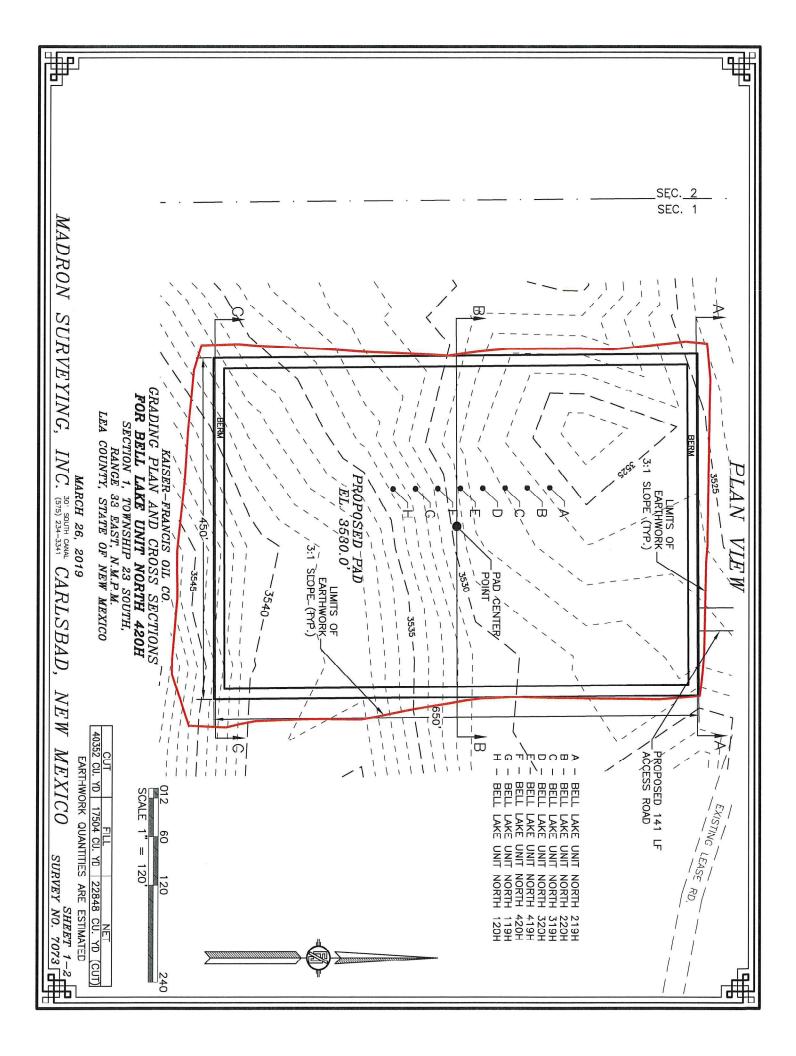
KAISER-FRANCIS OIL CO. BELL LAKE UNIT NORTH 420H LOCATED 2388 FT. FROM THE SOUTH LINE AND 380 FT. FROM THE WEST LINE OF SECTION 1, TOWNSHIP 23 SOUTH, RANGE 33 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO

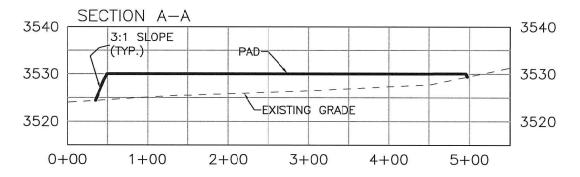

MARCH 26, 2019

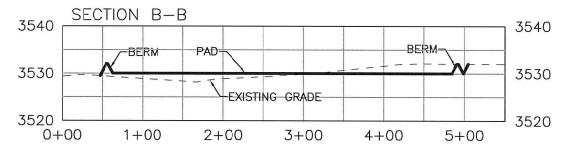

SURVEY NO. 7073

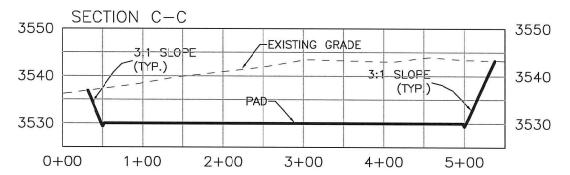

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

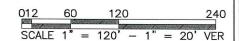

Kaiser-Francis Oil Company Bell Lake Unit North 420H One Mile Radius Data


			well				dir						Pool
ID	API	wellname	type	ulstr	ogrid	status	status	elevation	MD	TVD	latitude	longitude	ID
3	30-025-45510	BELL LAKE UNIT NORTH #211H	0	L-01-23S-33E	12361	N	Н	3528	0	0	32.333267	-103.533385	[98259]
3	30-025-45509	BELL LAKE UNIT NORTH #119H	0	L-01-23S-33E	12361	N	Н	3528	0	0	32.333185	-103.533385	[98259]
4	30-025-45153	BELL LAKE UNIT NORTH #202H	0	E-01-23S-33E	12361	N	Н	3516	0	0	32.3353289	-103.5335599	[98259]
4	30-025-44691	BELL LAKE UNIT NORTH #301H	0	E-01-23S-33E	12361	N	Н	3518	0	0	32.335109	-103.533561	[5150] B
4	30-025-45079	BELL LAKE UNIT NORTH #101H	0	E-01-23S-33E	12361	N	Н	3516	0	0	32.3352464	-103.5335601	[98259]
4	30-025-44693	BELL LAKE UNIT NORTH #401H	0	E-01-23S-33E	12361	N	Н	3518	0	0	32.335164	-103.53356	[5150] B
6	30-025-44690	BELL LAKE UNIT NORTH #201H	0	E-01-23S-33E	12361	N	Н	3517	0	0	32.355054	-103.533561	[5150] B
8	30-025-26902	PRE-ONGARD WELL #001	0	F-35-22S-33E	214263	Р	0	0	0	15700	32.3500481	-103.5453186	
9	30-025-26492	STATE HL #001	0	L-02-23S-33E	217955	Р	V	3596	15640	15640	32.3319473	-103.5495605	[7320] B
10	30-025-42811	SOPAPILLA STATE #003H	0	3-02-23S-33E	217955	N	Н	3460	0	0	32.34043665	-103.544385	[7320] B
11	30-025-40858	SOPAPILLA STATE #002H	0	N-02-23S-33E	217955	Α	Н	3549	15532	10930	32.3270111	-103.5443649	[7320] B
12	30-025-42831	NORTH THISTLE 2 35 FEDERAL #001H	0	2-02-23S-33E	6137	Α	Н	3515	16285	10959	32.3395618	-103.5413391	[7320] B
12	30-025-42821	NORTH THISTLE 2 STATE #002H	0	2-02-23S-33E	6137	Α	Н	3515	16285	10998	32.3395611	-103.5410153	[7320] B
12	30-025-42533	NORTH THISTLE 2 STATE #001H	0	2-02-23S-33E	6137	Α	Н	3514	13879	9576	32.3395612	-103.5411774	[7320] B









KAISER-FRANCIS OIL CO.
GRADING PLAN AND CROSS SECTIONS
FOR BELL LAKE UNIT NORTH 420H
SECTION 1, TOWNSHIP 23 SOUTH,
RANGE 33 EAST, N.M.P.M.
LEA COUNTY, STATE OF NEW MEXICO

CUT FILL NET

40352 CU. YD 17504 CU. YD 22848 CU. YD (CUT)

EARTHWORK QUANTITIES ARE ESTIMATED

MARCH 26, 2019

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SHEET 2-2 SURVEY NO. 7073 District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

¹API Nurse - 025-47767

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

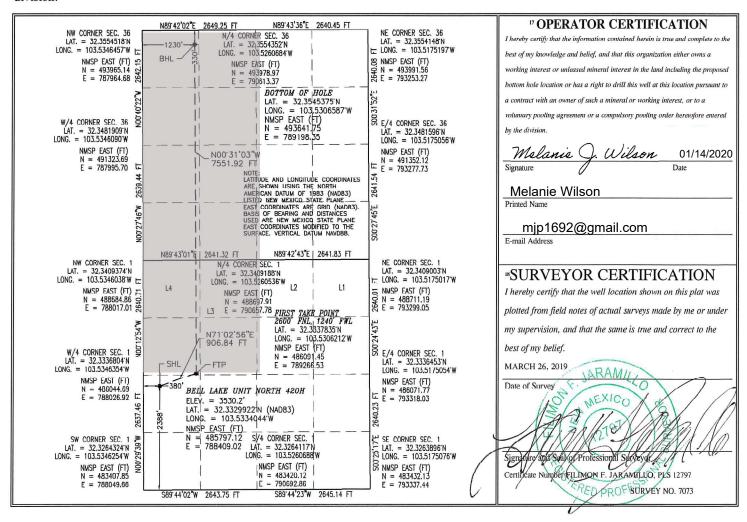
1220 South St. Francis Dr. Santa Fe, NM 87505

OCD - HOBBS 09/14/2020 RECEIVED

3 Pool Name

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

² Pool Code

30-0		98265 Ojo Chiso; Wolfcamp, Southwest										
⁴ Property	⁴ Property Code ⁵ Property Name							⁶ Well Number				
31670	7		BELL LAKE UNIT NORTH 42							420H		
OGRID 1	No.		* Operator Name * Elevation									
12361	L	KAISER-FRANCIS OIL CO.					R-FRANCIS OIL CO. 3530.2					
	[™] Surface Location											
UL or lot no.	Section	Township	Kange	Lot Idn	Feet from the	North/South line	Feet from the	East/West line Cour		County		
L	1	23 S	33 E		2388	SOUTH	380	WE	ST	LEA		
" Bottom Hole Location If Different From Surface												

UL or lot no. Section Range Lot Idn Feet from the North/South line Feet from the East/West line Township County **NORTH** WEST D 36 22 S 33 E 330 1230 LEA 12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No. 480 R-14602A

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Date: 01/26/2018

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 OCD - HOBBS 09|14|2020 PECEIVED

GAS CAPTURE PLAN

Dute	
⊠ Original	Operator & OGRID No.: Kaiser-Francis Oil Company, 12361
☐ Amended - Reason for Amendment:	

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Bell Lake Unit North 219H		1-23S-33E		2000	0	
Bell Lake Unit North 220H		1-23S-33E	2508' FSL/380' FWL	2000	0	
Bell Lake Unit North 319H		1-23S-33E		2000	0	
Bell Lake Unit North 320H		1-23S-33E		2000	0	
Bell Lake Unit North 419H		1-23S-33E	2418' FSL/380' FWL	2000	0	
Bell Lake Unit North 420H	-025-4776	1-23S-33E	2388' FSL/380' FWL	2000	0	

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to <u>Targa</u> and will be connected to <u>Targa</u> low/high pressure gathering system located in <u>Lea</u> County, New Mexico. It will require <u>11,000</u>' of pipeline to connect the facility to low/high pressure gathering system. <u>Kaiser-Francis Oil Company</u> provides (periodically) to <u>Targa</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Kaiser-Francis Oil Company</u> and <u>Targa</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Targa</u> Processing Plant located in Sec. <u>36</u>, Twn. <u>198</u>, Rng. <u>36E</u>, <u>Lea</u> County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Targa</u> system at that time. Based on current information, it is <u>Kaiser-Francis Oil Company's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines