Carlsbad Control	lled Water Basin		K	2/271	10	Approval Subjec & Special	R to Ger Stipulati	eral I ons A	Require Attached
(Continued on page 2		1.		NI 1	1/		ructions	-	
itle 18 U.S.C. Section 1001 at tates any false, fictitious or f	nd Title 43 U.S.C. Section 1212 raudulent statements or repre	, make it a crime for sentations as to any	or any person matter within	knowingly and v its jurisdiction.	villfully to r	nake to any department o	r agency o	the U	nited
conduct operations thereon. Conditions of approval, if an		:				ROVAL FOR	•	•	
1	ot warrant or certify that the a	pplicant holds legal	orequitable			BAD FIELD OFFICE		plicant	t to
N'.1 A			Office	· ·			,	18	2012
Annual law (Gimman)	/George MacDo	nell	Name (Prin	nted/Typed) /s/	Geora	e MacDonell	Dete	1.0	
Title Sr. Regulatory Advi	sor					<u>_</u>			
25. Signature	ut		Name <i>(Prin</i> Donna Wi	•• •			Date 08/13/2)12	
SUPO must be filed with	ne location is on National Fo the appropriate Forest Service	orest System Lands, e Office).	· 6.	BLM.		ormation and/or plans as		uired t	by the
1. Well plat certified by a rea	gistered surveyor.		4.		ne operatio	ns unless covered by an	existing bo	nd on t	file (see
The following, completed in a	eccordance with the requireme				tached to th	is form:			
	· ·		Attachme	ents		Ju udys	·····		
 Elevations (Show wheth 3177 GL 	ner DF, KDB, RT, GL, etc.)		22. Approximate date work will start* 09/01/2012			23. Estimated duration 30 days	1		
 Distance from proposed le to nearest well, drilling, c applied for, on this lease, 	ompleted, 325 ft.	135	40 MD/882	4 TVD	ES0085				
property or lease line, ft. (Also to nearest drig. uni	t line, if any)	· 640	Proposed Depi	·	160	BIA Bond No. on file			
30 miles suth/west of J	al, NM	16. 1	No. of acres in	n lease	17. Spacir	Lea g Unit dedicated to this w		NM	
	330 FSL & 2310 FEL (S		^{-32E} Un	40		12. County or Parish		13. Stat	te
	2659 FEL (NWNE) of 20	-	nit()	a.		Section 20-26S-32E	E (Surface	*)	
· -	location clearly and in accor		· /**			11. Sec., T. R. M. or Bl			
3a. Address P.O. Box 51 Midland, Tx	l810 79710		none No. <i>(inch</i> 688-6943	ude area code)		10 Field and Pool of E Bod Hills; Bone Spr		24 19-10-	783 r Sh
	ocoPhillips Company		<21	1817)		9. API Well No. 30-025-	40	>94	22
		Qther	Single Z	Cone Multip	le Zone	8. Lease Name and V Buck 20 Federal # 6		(39	1058
la. Type of work: 🗹 I	DRILL [REENTER		84		7 If Unit or CA Agree N/A	ement, Nan	e and I	No.
APPL	ICATION FOR PER	MIT TO DRIL		ENTER	VED	N/A			
,	DEPARTMENT (BUREAU OF LA		MENT	DEC 20	LUIL	LC068281-B 6. If Indian, Allotee	or Tribe N		
(Halen 2012)		STATES		HOBBSODS	1	Expires O 5. Lease Serial No.	ctober 31, 20	.4	
March 2012)					14	OMB N	o. 1004-0137		

1

۵

:

CONDITIONS OF APPROVAL JAN 0 8 2013

,

OPERATORS NAME:

<u>,</u> }

LEASE NAME AND WELL NO.: SURFACE LOCATION: CASING POINT: BHL: FIELD NAME: POOL NAME: COUNTY:

ConocoPhillips Company

Buck Federal 20 # 6H	
55 FNL & 2659 FEL (NWNE) of 20-26S-32E	
790.1 FNL & 2321.2 FEL (NWNE) of 20-26S-32E	
330 FSL & 2310 FEL (SWSE) of 20-26S-32E	4.
Red Hills; Bone Spring	
Bone Spring/Avalon	
Lea County, New Mexico	
Federal Surface/Federal Minerals LC068281-B	

The following information is to supplement the Application for Permit to Drill.

DRILLING PLAN

1. Name and estimated tops of all geologic groups, formations, members, or zones.(TVD)

Quaternary	Surface	Water
Rustler	1037	Salt
Castille	2566	Salt
Delaware Top	4353	Oil/gas/water
Ramsey	4383	Oil/gas/water
Ford Shale	4440	Oil/gas/water
Olds	4453	Oil/gas/water
Cherry Canyon Lower Top	6555	Oil/gas/water
Bone Spring	8159	Oil/gas/water
Bone Spring 1 st Carbonate	8304	Oil/gas/water
Base of Bone Spring 1 st Carbonate	8400	Oil/gas/water
KOP (estimate)	8122	
Avalon A Shale Top	8677	Oil/gas/water
Avalon B Zone Top	8920	Oil/gas/water
Avalon C Shale Top	N/A	Oil/gas/water
Avalon Target	N/A	Oil/gas/water

2. Estimated depths and thickness of formations, members or zones potentially containing usable water, oil, gas, or prospectively valuable deposits of other minerals that the operator expects to encounter, and the operator's plans for protecting such resources.

Quanternary	Surface-1037 (water)
Rustler & Castile	1037-4353' (salt)
All of the water bearing formatio	ns identified above will be protected by the intermediate
setting of the 9 5/8" casing and c	irculating of cement to surface

Delaware4353-8159 (oil/gas/water)The prospective formation identified will be protected by the intermediate setting of the 7"casing and tying the cement into the 9 5/8" casingBone Spring8159-8920 (oil/gas/water)The geologic tops identified above from the top of the Bone Spring/Avalon are part of thetarget formation

3. The operator's minimum specifications for blowout prevention equipment and diverter systems to be used, including size, pressure rating, configuration, and the testing procedure and frequency.

A 5000# system will be installed, used, maintained, and tested accordingly. After nippling up, and every 30 days thereafter, preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be recorded on the daily drilling reports. Ram Type preventors will be tested to rated working pressure or 70% of the minimum internal yield of the casing. Annular type preventer(s) shall be tested to 50% of the approved BOP stack working pressure. Pressure shall be maintained at least 10 minutes or until provisions of test are met, whichever is longer. Pursuant to Onshore Oil and Gas Order No. 2, the BOP equipment for a 5M system or greater shall include lower Kelly cock valve with handle available, safety valves and subs to fit all drill string connections in use and inside BOP or float sub shall be available. All choke lines from the drilling spool forward shall meet the requirements of the Onshore Order 2 as specified. **See Attached BOPe Schematic**

4. The proposed casing program including size, grade, weights, type of thread and coupling, and the setting depth of each string and its condition (new or acceptably reconditioned). For exploratory wells, or for wells as otherwise specified by the authorized officer, the operator shall include the minimum design factors for tensions, burst, and collapse that are incorporated into the casing design. In cases where tapered casing strings are utilized, the operator shall also include and/or setting depths of each portion.

NEW CASING:

۰,

1030 Surface: 17 1/2" hole, 13 3/8" 54.5# J55 STC csg, set @ 1065". Drill out with 12 ¼" bit and perform shoe test to 11.0 ppg MWE. Burst: 2.37/Collapse: 4.92/Tension: 2.57 Intermediate 1: 12 1/4" hole, 9 5/8" 36# J55 LTC csg, set @ 4380 Burst: 2.88/Collapse: 2.62/Tension: 4.74 (This string of casing would not be subject of the production collapse load case of being pumped off to zero pressure on the inside by beam pump or ESP production pumping the fluid level down. The 9 5/8" casing would be isolated

2

from the beam pumping production collapse load case by the production casing that would be run. If loss of circulation occurs during the drilling phase while drilling below the 9 5/8" intermediate casing, we would expect the fluid level would fall no further than 2200' below the surface of ground before reaching hydrostatic balance with the pressure of the loss zone. Our anticipated maximum mud weight for drilling below the 9 5/8" intermediate casing is 9.3 ppg and our experience has been that we have not had severe See. losses with this mud weight in our previous wells in this area. The 9 $5/8^{\circ}$ casing will be filled with mud while running it by filling it at least once each. 30 joints)

Intermediate 2: 8 3/4" hole, 7" 29# P110 BTC csg set @ 9302 Burst: 2.29/Collapse: 1.74/Tension: 2.81/3.31

۶.

Production Liner (Uncemented): 6" hole, 4 ¹/₂" 11.6# P110 BTC liner set @ 9202-13540 MD Burst: 3.25/Collapse: 3.36/Tension: 5.78/6.80 (Packers and Sleeves)

The plan is to set casing and drill open hole in a southern direction to a proposed bottomhole location of 330 FSL & 2310 FEL (SWSE) of Section 20-26S-32E

ConocoPhillips will utilize casing friendly hardbanded drill pipe in a manner that is consistent with current company policy and standards with respect to minimizing or mitigating internal casing wear. The responsibility to ensure all parties are acting according to their roles and responsibilities rest with the Company. Any damage or impacts from use of casing friendly hardbanded drill pipe rest with ConocoPhillips Company.

5. The amount and type(s) of cement, including anticipated additives to be used in setting each casing string, shall be described. If stage cementing techniques are to be employed, the setting depth of the stage collars and amount and type of cement, including additives, and preflush amounts to be used in each stage, shall be given. The expected linear fill-up of each cemented string, or each stage when utilizing stage-cementing techniques, shall also be given.

> 13 3/8 casing: Lead w/800 sxs Class C cmt + HalCem-C (Yield 1.33 cft) Tail w/230 sxs Class C cmt + 1 lbm/sk EconoChem HRLTRRC (Yield 1.85 Cuft/sk). Circulated to surface based on $17 \frac{1}{2}$ " hole with 100% excess

> 9 5/8" casing: Lead w/990 sxs 50/50 Class C Poz + 2.5 gal/bbl WG-19 + 1 lbm/sk EconoCem-C (Yield 2.48 cft/sk), Tail w/140 sxs H + HalCem C (Yield 1.33 cft/sk) Circulatd to surface based on 12 ¹/₄" hole w/120% excess

> 7" casing: Lead w/560 sxs HLH + .3% Halad9 + 5 lbs/sk silicalite + .3% HR-800 (Yield 2.0 cft/sk), Tail w/232 sxs Class H + .4% Halad-9 + .1%WG-17 + 3.0% KCl + .3% HR800 (Yield 1.2 cft/sk). Circulate cement 500' into the 9 5/8" casing based on 8 3/4" hole w/100% excess

4 ¹/₂" Liner: Uncemented

3

COF

6. The anticipated type and characteristics of the proposed circulating medium or mediums proposed for the drilling of each wellbore section, the quantities and types of mud and weighting material to be maintained, and the monitoring equipment to be used on the circulating system.

Mud Program:					
, 30 0-1065	Aquagel-Spud Mud	8.9	Wt/Gl	32-36 Vis.	NC
10 ³⁰ 0-1065 1065-4380	Brine	10	Wt/Gl	28-30 Vis.	5-8
4380-9278	Brine	9.3	Wt/Gl	28-30 Vis	5-8
9278-13539	Cut Brine	9.3	Wt/Gl	30-40 Vis	<=5

Gas detection equipment and pit level flow monitoring equipment will be on location. ConocoPhillips Company will maintain sufficient mud and weighted material on location at all times.

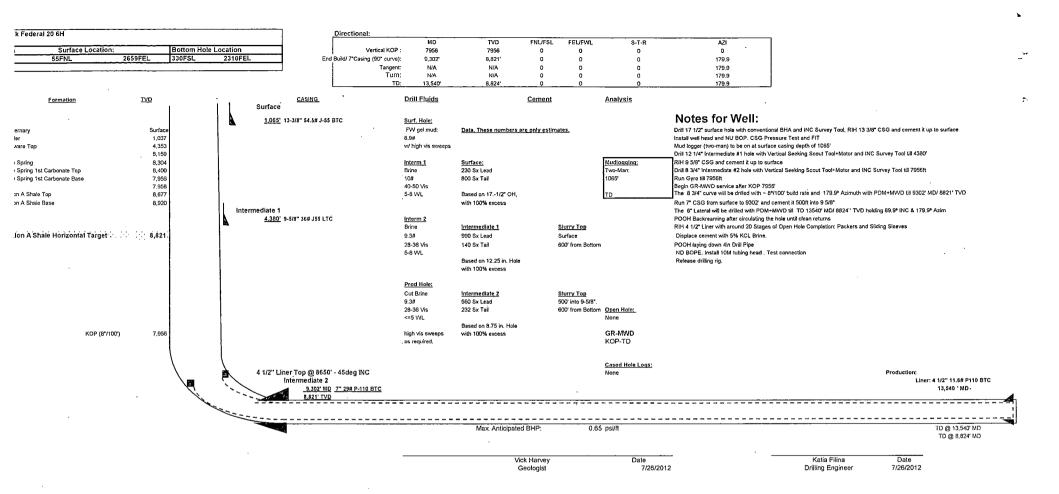
7. The anticipated testing, logging, and coring procedures to be used, including drill stem testing procedures, equipment, and safety measures.

- a. DST Program: None
- b. Mud Logging: Two-Man 1065-TD See COP Logs to be run: GR/MWD

8. List the expected bottom-hole pressure and any anticipated abnormal pressures, temperatures or potential hazards that are expected to be encountered, such as lost circulation zones and hydrogen sulfide. The operator's plans for mitigating such hazards shall be discussed. Should the potential to encounter hydrogen sulfide exist, the mitigation procedures shall comply with the provisions of the BLM.

The expected pressure gradient is 0.433 psi/ft or 9-9.1 ppg equivalent .The average anticipated bottom hole pressure ranges on average is .65 psi/ft No hydrogen sulfide is expected during drilling operations; however, the potential does exist for H2S. Please see attached H2S contingency plan to be used in the event of occurrence.

Any other facets of the proposed operation which the operator wishes to be considered in reviewing the application.


Anticipated construction date is September 1, 2012 with anticipated spud date of October 1, 2012. Construction of well pad and road will begin as soon as all agency approvals are obtained.

9. Address the proposed directional design, plan view, and vertical section in true vertical and measured depth for directional, horizontal, or coil tubing operations.

The proposed directional/horizontal documents are attached.

4

								•	
PROSPECT/FIELD	Bonespring/Red Hills			DRILLING P	LAN	COUNTY/STATE		Lea County, NM	
OWNERS	ConocoPhillips				LEASE				
WELL NO.	Buck Federal 20 6H			FNL	FSL_	FEL	FWL		
LOCATION			Surface Location: Bottom Hole Location:	55	330	2659 2310			
EST. T.D.	Leg #1 13,540' MD		South The Education			GROUND ELEV.		3,171' (est)	
	······						RKI		
PROGNOSIS:	Based	on 3,187' KB(est)			LOGS:		<u>e</u>	Interva	<u>1</u>
MARKER		S.S. DEPTH		TVD	1	Open Hole: GR-MWD		KOP-TD	
Quaternary				Surface]				
Rustler		2,150		1,037	DEVIATION			_	
Delaware Top		-1,166 -8,159		4,353			3° max, svy e	verv 500'	
one Spring 1st Carbonate Top		-5,117		8,304		Int #1/2:	3° max, svy ev	ery 90'	
one Spring 1st Carbonate Base		-5,213		8,400			90°., svy every		
KOP	2			7,956		Prod Lateral :	90°., svy every	30'	
Avalon A Shale Top		-5,490 -5,733		8,677 8,920					
				0,320	DST'S:	- 1			
]				
				l					
Avalon A Shale Horizontal Target	t i	-5,634		8,821	1				
	1				1			•	
					CORES:				
						No core.			
					SAMPLES:				
							.		
							Start	End	
						'Two-Man:	1065'	TD Vertical	and Horizontal sections
					BOP:		···		
					BOP:		COP Calorion		
								3 VVeli Control Reduit	ements
						Precision 827 BOP	5:	3 Well Control Requir 13-5/8*-5Mpsi Annul	ar
						Precision 827 BOP (With Rotating Head	5:	13-5/8*-5Mpsi Annul 13-3/8*-5Mpsi Blind	ar Ram
							5:	13-5/8*-5Mpsi Annu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross	ar Ram / Choke & Kill Lines
							5:	13-5/8*-5Mpsi Annul 13-3/8*-5Mpsi Blind	ar Ram / Choke & Kill Lines Ram
ip Rate:	(See inclination prediction)					(With Rotating Head	5:	13-5/8"-5Mpsi Annul 13-3/8"-5Mpsi Blind 13-3/8"-5Mpsi Cross 13-3/8"-5M psi Pipe	ar Ram / Choke & Kill Lines Ram
lax. Anticipated BHP:		0.65 psi/ft			Surface For	(With Rotating Head	5:	13-5/8"-5Mpsi Annul 13-3/8"-5Mpsi Blind 13-3/8"-5Mpsi Cross 13-3/8"-5M psi Pipe 13-3/8"-5Mpsi Space	ar Ram / Choke & Kill Lines Ram rr Spool
Max. Anticipated BHP:	Interval	0.65 psi/ft	<u>Type</u> Aggred Saud Mud		Max. MW	(With Rotating Head mation: <u>Vis</u>	5:	13-5/8*-5Mpsi Annul 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space	ar Ram / Choke & Kill Lines Ram
Max. Anticipated BHP: MUD: Surface:		0.65 psi/ft	<u>Type</u> Aquagel - Spud Mud Brine			(With Rotating Head	5:	13-5/8"-5Mpsi Annul 13-3/8"-5Mpsi Blind 13-3/8"-5Mpsi Cross 13-3/8"-5M psi Pipe 13-3/8"-5Mpsi Space	ar Ram / Choke & Kill Lines Ram rr Spool
Iax. Anticipated BHP: IUD: iurface: Itermediate 1: itermediate 2:	<u>Interval</u> 0°-1065' 1065'-4380' 4380'-9302'	0.65 psi/ît	Aquagel - Spud Mud Brine Brine		<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30	5:	13-5/8 ⁻ -5Mpsi Annul 13-3/8 ⁻ 5Mpsi Bind 13-3/8 ⁻ 5Mpsi Cross 13-3/8 ⁻ 5Mpsi Pipe 13-3/8 ⁻ 5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8	ar Ram / Choke & Kill Lines Ram rr Spool
Max. Anticipated BHP: MUD: Surface: ntermediate 1: ntermediate 2:	<u>Interval</u> 0'-1065' 1065'-4380'	0.65 psi/ît	Aquagel - Spud Mud Brine		<u>Max. MW</u> 8.9 10	(With Rotating Head mation: <u>Vis</u> 32-36 28-30	5:	13-5/8*-5Mpsi Annul 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Spaci 13-3/8*-5Mpsi Spaci <u>WL</u> NC 5-8	ar Ram / Choke & Kill Lines Ram rr Spool
Max. Anticipated BHP: MUD: Surface: Itermediate 1: ntermediate 2: Production:	<u>Interval</u> 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540'		Aquagel - Spud Mud Brine Brine Cut Brine	Denth	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40	5:	13-587-5Mpsi Anul 13-378*-5Mpsi Bilind 13-378*-5Mpsi Cross 13-378*-5Mpsi Cross 13-378*-5Mpsi Space 13-378*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 5-8 5-8 5-8	ar Ram / Choke & Kill Lines Ram r Spool <u>Remarks</u>
Aax. Anticipated BHP: AUD: Surface: Intermediate 1: Intermediate 2: Production: CASING:	<u>Interval</u> 0°-1065' 1065'-4380' 4380'-9302'	0.65 psi/ft <u>Wt ppf</u> 54.5	Aquagel - Spud Mud Brine Brine	<u>Depth</u> 1,065'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30	5:	13-5/8 ⁻ -5Mpsi Annul 13-3/8 ⁻ 5Mpsi Bind 13-3/8 ⁻ 5Mpsi Cross 13-3/8 ⁻ 5Mpsi Pipe 13-3/8 ⁻ 5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8	ar Ram / Choke & Kill Lines Ram rr Spool
Aax. Anticipated BHP:	<u>Interval</u> 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8"	<u>Wt ppf</u> 54.5 - 36	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2 12-1/4"	1,065 4,380	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cernent</u> To Surface To Surface	5:	13-58*-5Mpsi Anuu 13-38*-5Mpsi Bilind 13-38*-5Mpsi Cross 13-38*-5Mpsi Cross 13-38*-5Mpsi Space 13-38*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> 18hrs 18hrs 18hrs	ar Ram / Choke & Kill Lines Ram r Spool <u>Remarks</u>
Aax. Anticipated BHP:	Interval 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7"	<u>Wt ppf</u> 54,5 36 29	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2 12-1/4" 8 3/4"	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	<u></u>	13-58*-5Mpsi Anuu 13-38*-5Mpsi Blind 13-38*-5Mpsi Cross 13-38*-5Mpsi Cross 13-38*-5Mpsi Spac 13-38*-5Mpsi Spac WL NC 5-8 5-8 5-8 <=5 WOC 18hrs 18hrs 18hrs	ar Ram / Choke & Kill Lines Ram <u>Remarks</u> <u>Remarks</u>
Iax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2:	<u>Interval</u> 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8"	<u>Wt ppf</u> 54.5 - 36	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2 12-1/4"	1,065 4,380	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cernent</u> To Surface To Surface	<u></u>	13-58*-5Mpsi Anuu 13-38*-5Mpsi Bilind 13-38*-5Mpsi Cross 13-38*-5Mpsi Cross 13-38*-5Mpsi Space 13-38*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> 18hrs 18hrs 18hrs	ar Ram / Choke & Kill Lines Ram r Spool <u>Remarks</u>
Aax. Anticipated BHP: AUD: JUTace: Intermediate 1: Intermediate 2: Production: CASING: Surface: Intermediate 1: Intermediate 2: Production Lat #1:	Interval 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7"	<u>Wt ppf</u> 54,5 36 29	Aquagel - Spud Mud Brine Cut Brine Ut Brine 17-1/2 12-1/4" 8 3/4" 6"	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	Ξ.	13-58*-5Mpsi Anuu 13-38*-5Mpsi Blind 13-38*-5Mpsi Cross 13-38*-5Mpsi Cross 13-38*-5Mpsi Spac 13-38*-5Mpsi Spac WL NC 5-8 5-8 5-8 <=5 WOC 18hrs 18hrs 18hrs	ar Ram / Choke & Kill Lines Ram <u>Remarks</u> <u>Remarks</u>
Aax. Anticipated BHP: AUD: JUTace: Intermediate 1: Intermediate 2: Production: CASING: Surface: Intermediate 1: Intermediate 2: Production Lat #1:	<u>Interval</u> 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2"	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u>	Aquagel - Spud Mud Brine Brine Cut Brine <u>Hole</u> 17-1/2 12-1/4" 8 3/4" 6" <u>TVD</u>	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	<u>ε</u> . 	13-58*-5Mpsi Anul 13-38*-5Mpsi Bilind 13-38*-5Mpsi Cross 13-38*-5Mpsi Cross 13-38*-5Mpsi Spac 13-38*-5Mpsi Spac WL NC 5-8 5-8 5-8 5-8 5-8 <=5 WOC 18hrs 18hrs 18hrs N/A	ar Ram / Choke & Kill Lines Ram pr Spool <u>Remarks</u> <u>Remarks</u> Liner
Aax. Anticipated BHP:	Interval 0°-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A	Aquagel - Spud Mud Brine Cut Brine 	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0	13-5/8/-5Mpsi Anuu 13-3/8'-5Mpsi Blind 13-3/8'-5Mpsi Cross 13-3/8'-5Mpsi Cross 13-3/8'-5Mpsi Space 13-3/8'-5Mpsi Space WL NC 5-8 5-8 5-8 <=5 WOC 18hrs 18hrs 18hrs 18hrs 18hrs 18hrs 0//A	ar Ram / Choke & Kill Lines Ram <u>Remarks</u> <u>Remarks</u> Liner
fax. Anticipated BHP: IVD: surface: itermediate 1: itermediate 2: roduction: SNING: surface: itermediate 1: itermediate 2: roduction Lat #1: DIRECTIONAL PLAN	Interval 0'-1065' 1065'-380' 4380'-9302' 9302'-13540' Size 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP :	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956'	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>TVD</u> N/A 7,956'	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	5. <u>ΑΖ</u> 0.0	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
lax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: roduction Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A	Aquagel - Spud Mud Brine Cut Brine 	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0	13-5/8/-5Mpsi Anuu 13-3/8'-5Mpsi Blind 13-3/8'-5Mpsi Cross 13-3/8'-5Mpsi Cross 13-3/8'-5Mpsi Space 13-3/8'-5Mpsi Space WL NC 5-8 5-8 5-8 <=5 WOC 18hrs 18hrs 18hrs 18hrs 18hrs 18hrs 0//A	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
lax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: roduction Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
lax. Anticipated BHP: UD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2: roduction Lat #1: IRECTIONAL PLAN	Interval 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/ 7"Casing (90* curve): Tangent:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956 9,302' N/A	Aquagel - Spud Mud Brine Cut Brine 17-1/2 12-1/4" 8 3/4" 6" <u>TVD</u> N/A 7,956' 8,821' N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s AZ 0,0 179,9 179,9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
Max. Anticipated BHP: MUD: Surface: ntermediate 1: ntermediate 2: Production: CASING: Surface: ntermediate 1: ntermediate 2: Production Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
Dip Rate: Max. Anticipated BHP: WID: Surface: ntermediate 1: ntermediate 2: Production: CASING: Surface: Intermediate 1: Intermediate 1: Intermediate 2: Production Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
Max. Anticipated BHP: MUD: Surface: ntermediate 1: ntermediate 2: Production: CASING: Surface: ntermediate 1: ntermediate 2: Production Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
Aax. Anticipated BHP: //UD: Surface: Intermediate 1: ntermediate 2: Production: CASING: Surface: Intermediate 1: Intermediate 2: Production Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
Aax. Anticipated BHP: NDC: NDC: Surface: Intermediate 1: ntermediate 2: Production: Production Lat #1: DIRECTIONAL PLAN	Interval 0°-1065' 1065'-330' 4380'-9302' 9302'-13540' <u>Size</u> 13-3/8" 9-5/8" 7" 4 1/2" Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A N/A	Aquagel - Spud Mud Brine Cut Brine (17-1/2 12-1/4" 8 3/4" 6" <u>IVD</u> N/A 7,956' 8,821' N/A N/A	1,065' 4,380' 9,302'	<u>Max. MW</u> 8.9 10 9.3	(With Rotating Head mation: <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface 500' into the 9-5/8"	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner
lax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2: roduction Lat #1: IRECTIONAL PLAN	Interval 0'-1065' 1065'-4380' 4380'-9302' 9302'-13540' Size 13-3/8' 9-5/8' 7' 4 12' Surface: Vertical KOP : End Build/7"Casing (90* curve): Tangent: Turn: TD:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 7,956' 9,302' N/A 13,540'	Aquagel - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4" 8 3/4" 6" <u>TVD</u> N/A 7,956' 8,821' N/A N/A 8,824'	1,065 4,380 9,302 13,540	<u>Max. MW</u> 8.9 10 9.3 9.3	(With Rotating Head <u>Vis</u> 32-36 28-30 28-30 30-40 <u>Cement</u> To Surface To Surface 500° into the 9-5/8" Packers and Sleeve	s <u>AZ</u> 0 0.0 179.9 179.9	13-5/8*-5Mpsi Anuu 13-3/8*-5Mpsi Blind 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Cross 13-3/8*-5Mpsi Space 13-3/8*-5Mpsi Space <u>WL</u> NC 5-8 5-8 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> <u>18hrs</u> <u>N/A</u> Directional Comppe Vertical Build Rate	ar Ram / Choke & Kill Lines Ram rr Spool Remarks Remarks Liner Liner

Bonespring/Red Hills ConocoPhillips Buck Federal 20 6H

Surface Casing:

Surface Casing Depth (Ft)	1,065
Surface Casing O.D. (In.)	13.375
Surface Casing ID (In)	12.715
Hole O.D. (In)	17.5
Excess (%)	100%
Volume Tail (Sx)	230
Yield Tail (Cu. Ft./Sx)	1.85
Yield Lead (Cu. Ft./Sx)	1.33
Shoe Joint (Ft)	40
Shoe Volume (Cu. Ft)	35.3
Tail feet of cement	300
Calculated Total Volume (Cu. Ft.)	1,515
Calc. Tail Volume (Cu. Ft.)	417
Calc. Lead Volume (Cu. Ft.)	1,063
Calc. Lead Volume (Sx)	800

Intermediate1 Casing (Lead):

Intermediate Casing O.D. (In.) Intermediate Casing ID (In) Hole O.D. (In) Excess (%) cap 12-1/4 - 9-5/8" Calculated fill: Yield Lead (Cu. Ft./Sx) Calculated Total Lead (Cu. Ft.) Calc. Lead Volume (Sx)

Intermediate2 Casing (Lead): Intermediate Casing O.D. (In.)

Intermediate Casing ID (In) Hole O.D. (In) Excess (%) cap 7" - 8-3/4" bls/ft cap 7 - 9-5/8" bls/ft Calculated fill: (500' into 9-5/8") Yield Lead (Cu. Ft./Sx)

Calculated Total Lead (Cu. Ft.)

Calc. Lead Volume (Sx)

	Intermediate1 Casing (Tail):	
9.625	Intermediate Casing O.D. (In.)	9.625
8.921	Production Casing ID (In)	8.835
12.25	Hole O.D. (In)	12.25
100%	Excess (%)	100%
0.0558	cap 12-1/4 - 9-5/8"	0.0558
3,880'	Calculated fill:	500
	Yield Tail (Cu. Ft./Sx)	1.33
2.48	Shoe Joint (Ft)	40
	Shoe Volume (Cu. Ft)	17.0
2,430		
	Calc. Tail Volume (Cu. Ft.)	174
990		
	Required Tail Volume (Sx)	140

Intermediate2 Casing (Tail):

7.000

6.184

135%

0.0268

4,122'

1,118

560

3880 8,002'

2.0

0.02823

8.75

Intermediate Casing O.D. (In.)	7:000
Intermediate Casing ID (In)	6.184
Hole O.D. (In)	8.75
Excess (%)	135%
cap 7" - 8-3/4" bls/ft	0.0268
cap 7 - 9-5/8" bls/ft	0.02823
Calculated fill:	1;300'
Yield Lead (Cu. Ft./Sx)	1.2
Calculated Total Tail (Cu. Ft.)	278

Required Tail Volume (Sx)

232

Buck Federal 20 6H Proposed Top		GL 3,171	KB 16' (via survey plat)	3,187			
Notes:	surface loction v south in order to	vill require the place the lat	at the well be dri	illed "3D", with the	borehole drilled ini	Avalon A Shale Zone. The tially SE and then curved acre spacing window. The	
Surface	Location	Sec 20	T26S	R	32E	Lea Co. NM, Surface Location: 120' FNL & 2,520' FEL	
Bottom Hole	Location	Sec 20	T26S	R32E		Lea Co. NM, Terminus Location: 330' FSL & 2,310' FEL	
Formation Name	Formation Top (TVD)	Subsea Depth	Gross Thickness	Gross Thickness	Gross Thickness	Comments	
Quaternary	Surface						
Rustler	1,037	2,150					
Salado Top	1,414	1,773					
Castile Top	2,566	621					
Деlаwаге Тор	4,353	-1,166					
Ramsey	4,383	-1,196					
ord Sh	4,440	-1,253					
Dids Cherry Canyon Lower Top	4,453 6,555	-1,266 -3,368					
(OP (est)	8.12						
Bone Spring Top	8,159	-4,972					
Bone Spring 1st Carbonate Top	8.304	-5,117					
Sone Spring 1st Carbonate Base	8,400	-5,213	96				
walon A Shale Top	8.677	-5,490					
LANDING: Avalon A Shale Horizontal Upper Target Limit	8,796	-5,609				Not a formation top	
ANDING: Avalon A Shale Horizontal Target Center	8,821	-5,634	50			Not a formation top	
LANDING: Avalon A Shale Horizontal Lower Target Limit	8.846	-5,659				Not a formation top	
TERMINUS: Avalon A Shale Horizontal Upper Target Limit	8,799	-5,612			243	Not a formation top	
ERMINUS: Avalon A Shale Horizontal Target Center	8,824	-5,637	50			Not a formation top	
TERMINUS: Avalon A Shale Horizontal Lower Target Limit	8,849	· · · · · · · · · · · · · · · · · · ·				Not a formation top	
Avalon A Shale Base (Should not penetrate)	8,920			I			

P:\My Documents\Permain Documents\Red Hills Wells\COP_Buck Fed 20 6H\Buck Federal 20 6H_Proposed tops_6-13-12.xls

.

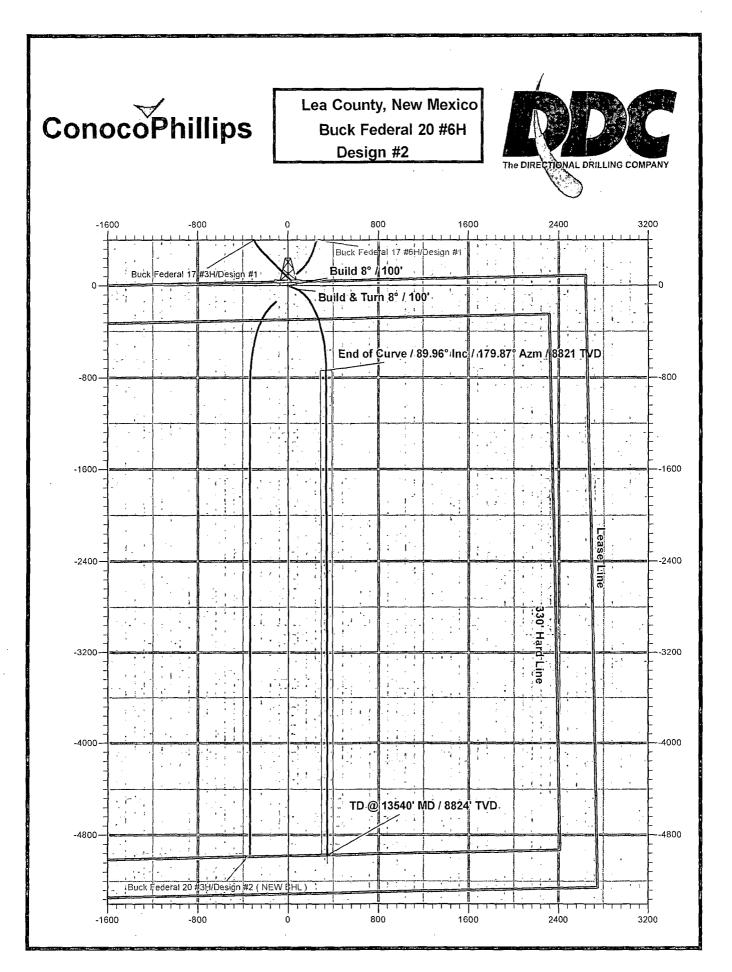
by H. Vick, 6/13/2012

.

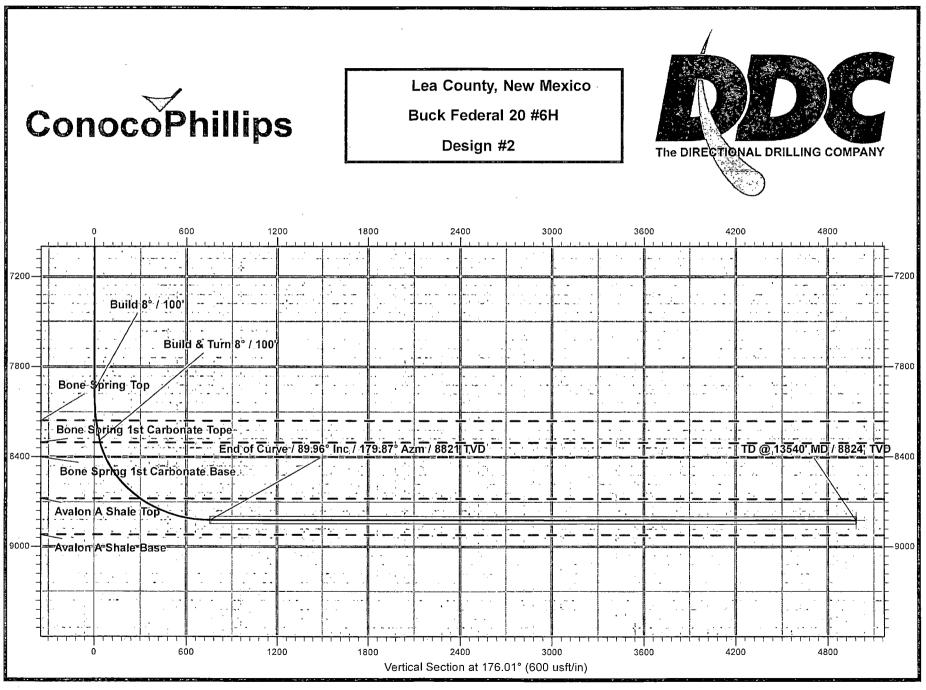
ConocoPhillips

Conoco Phillips

Lea County, New Mexico Sec 20, T26S, 32E Buck Federal 20 #6H


Wellbore #1

Plan: Design #2


DDC Well Planning Report

17 June, 2012

١,

DDC Well Planning Report

Database: Company: Project:	EDM 5000.1 Conoco Phill Lea County	ips		TVD	al Co-ordinate Reference: Reference:	Reference	WELL @	k Federal 20 #6H 3187.0usft (Precis 3187.0usft (Precis	
Site:	Sec 20, T265				h Reference:		Grid	0107.0000 (11000	
Vell:	Buck Federa	1 20 #6H		Surv	vey Calculation	Method:	Minimum	Curvature	
Wellbore:	Wellbore #1			1	-		-1		
Design:	Design #2		والاردار والمساورة		··· ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		с. 1944 — Положине 1944 — Положине
Project	Lea County, N	lew Mexico				r in the t	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Map System: Geo Datum: Map Zone:	US State Plane NAD 1927 (NA New Mexico Ea	DCON CON		Syste	m Datum:		Mean Sea	Level	
Site	Sec 20, T26S	, 32E		·····; ····	un nun mung i Nun un n	۰ ، ۰ سنړیو، - _۰۰ ، ۰۰ _			
Site Position: From: Position Uncertair	Map Ity:	0.0 usft	Northing: Easting: Slot Radius:		376,829.70 usft 698,257.30 usft 13-3/16 "	Longit			32° 2' 3.859 N 103° 41' 36.778 W 0.34 '
Well	Buck Federal	20 #6H			····· ··· ···	n i v	- 19 <u>89</u> - 1997		
Well Position	+N/-S +E/-W	303.8 usft -966.3 usft	Northing: Easting:		377,133.4	48 usft	Latitude: Longitude:		32° 2' 6.922 N 103° 41' 47.983 M
Position Uncertair	ity	0.0 usft	Wellhead E	levation:			Ground Lev	vel:	3,171.0 usf
Wellbore	Wellbore #1	· · · · ·	•	·······	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u></u>	• • • • • • •	2011 2012 1
Magnetics	Model Na	ne	Sample Date	De	clination (°)		Dip Angle (°)		Strength nT)
.	IGR	2010	6/15/2012		7.51		59.	97	48,390
Design	Design #2	21. 1	 	 		 	1997 - 1997 -		n an
Audit Notes:									
Version:			Phase:	PLAN		Tie On De	pth:	0.0	
Vertical Section:			rom (TVD) Isft)	+N/ (us		+E/-W (usft)		Direction (°)	
•• •• •• •			0.0	··· 0.		0.0	• •	176.01	. ,

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	• •
7,956.5	0.00	0.00	7,956.5	0.0	0.0	0.00	0.00	0.00	0.00	
8,304.6	27.85	112.00	8,291.1	-31.1	76. 9	8.00	8.00	0.00	· 112.00	
9,302.5	89.96	179.87	8,821.2	-735.1	337.8	8.00	6.22	6.80	70.24	
13,540.3	89.96	179.87	8,824.0	-4,972.9	347.0	0.00	0.00	0.00	0.00 F	PBHL Buck Federa

DDC Well Planning Report

Company:Conoco PhillipsTVD Reference:WELL @ 3187.0usft (PrecisionProject:Lea County, New MexicoMD Reference:WELL @ 3187.0usft (PrecisionSite:Sec 20, T26S, 32ENorth Reference:Grid	,
Site: Sec 20, T26S, 32E North Reference: Grid	1 #827)
	1 # 4 2 1 }
	,
Well: Buck Federal 20 #6H Survey Calculation Method: Minimum Curvature	
Wellbore: Wellbore #1	
Design: Design #2	

Aeasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
Build 8° / 1	100'						·		
7,956.5 8,000.0	0.00 3.48	0.00 112.00	7,956.5 8,000.0	0.0 -0.5	0.0 1.2	0.0 0.6	0.00 8.00	0.00 8.00	0.00 0.00
8,100.0	11.48	112.00	8,099.0	-5.4	13.3	6.3	8.00	8.00	0.00
Bone Sprin	ng Top								
8,161.8	16.42	112.00	8,159.0	-10.9	27.1	12.8	8.00	8.00	0.00
8,200.0 8,300.0	19.48 27.48	112.00 112.00	8,195.3 8,287.0	-15.4 -30.3	38.0 74.9	18.0 35.4	8.00 8.00	8.00 8.00	0.00 0.00
	ırn 8° / 100'	112.00	0,207.0	-30.3	74.5	55.4	0.00	0.00	0.00
8,304.6	27.85	112.00	8,291.1	-31.1	76.9	36.4	8.00	8.00	0.00
Bone Sprie	ng 1st Carbon	ato Tono							
8,319.3	28.27	114.33	8,304.0	-33.8	83.2	39.5	8.00	2.84	15.90
8,400.0	31.20	125.96	8,374.2	-54.0	117.6	62.0	8.00	3.63	14.41
Bone Sprin	ng 1st Carbon								
8,430.4	32.54	129.80	8,400.0	-63.8	130.3	72.7	8.00	4.42	12.63
8,500.0	36.01	137.55	8,457.5	-90.9	158.5	101.7	8.00	4.98	11.14
8,600.0	41.69	146.55	8,535.4	-140.4	196.7	153.8	8.00	5.68	9.00
8,700.0	47.93	153.67	8,606.4	-201.6	231.6	217.2	8.00	6.24	7.12
8,800.0 Avalon A S	54.53	159.48	8,669.0	-273.1	262.4	290.7	8.00	6.60	5.81
Avaion A 3 8,814.0	55.47	160.21	8,677.0	-283.8	266.3	301.7	8.00	6.75	5.24
8,900.0	61.37	164.39	8,722.0	-353.6	288.5	372.8	8.00	6.85	4.86
9,000.0	68.36	168.69	8,764.5	-441.6	309.4	462.1	8.00	6.99	4.30
9,100.0	75.45	172.59	8,795.6	-535.3	324.8	556.6	8.00	7.09	3.90
9,200.0	82.60	176.25	8,814.6	-632.9	334.3	654.7	8.00	7.15	3.65
9,300.0	89.78	179.79	8,821.2	-732.6	337.7	754.3	8.00	7.18	3.54
	rve / 89.96° Inc			705 4	007.0	750 0	0.00		0.50
9,302.5 9,400.0	89.96 89.96	179.87 179.87	8,821.2 8,821.3	-735.1 -832.6	337.8 338.0	756.8 854.1	8.00 0.00	7.19 0.00	3.52 0.00
9,500.0 9,600.0	89.96 89.96	179.87 179.87	8,821.4 8,821.4	-932.6 -1,032.6	338.2 338.4	953.9 1,053.6	0.00 0.00	0.00 0.00	0.00 0.00
9,700.0	89.96	179.87	8,821.5	-1,132.6	338.6	1,153.4	0.00	0.00	0.00
9,800.0	89.96	179.87	8,821.6	-1,232.6	338.8	1,253.2	0.00	0.00	0.00
9,900.0	89.96	179.87	8,821.6	-1,332.6	339.1	1,352.9	0.00	0.00	0.00
10,000.0	89.96	179.87	8,821.7	-1,432.6	339.3	1,452.7	0.00	0.00	0.00
10,100.0 10,200.0	89.96 89.96	179.87 179.87	8,821.8 8,821.8	-1,532.6 -1,632.6	339.5 339.7	1,552.5 1,652.3	0.00 0.00	0.00	0.00 0.00
10,200.0	89.96	179.87	8,821.9	-1,032.6	339.7 339.9	1,052.3	0.00	0.00 0.00	0.00
10,400.0	89.96	179.87	8,822.0	-1,832.6	340.2	1,851.8	0.00	0.00	0.00
10,500.0	89.96	179.87	8,822.0	-1,932.6	340.4	1,951.6	0.00	0.00	0.00
10,600.0	89.96	179.87	8,822.1	-2,032.6	340.6	2,051.4	0.00	0.00	0.00
10,700.0	89.96	179.87	8,822.2	-2,132.6	340.8	2,151.1	0.00	0.00	0.00
10,800.0	89.96	179.87	8,822.2	-2,232.6	341.0	2,250.9	0.00	0.00	0.00
10 000 0	89.96	179.87	8,822.3	-2,332.6	341.2	2,350.7	0.00	0.00	0.00
10,900.0		179.87	8,822.4	-2,432.6 -2,532.6	341.5	2,450.4	0.00	0.00	0.00
11,000.0	89.96 80.06		0 0 0 0 1		341.7	2,550.2	0.00	0.00	0.00
11,000.0 11,100.0	89.96	179.87	8,822.4 8,822.5		341 9	2 650 0	0.00	0.00	0.00
11,000.0 11,100.0 11,200.0	89.96 89.96	179.87 179.87	8,822.5	-2,632.6	341.9 342.1	2,650.0 2.749.8	0.00 0.00	0.00 0.00	0.00 0.00
11,000.0 11,100.0	89.96	179.87			341.9 342.1 342.3	2,650.0 2,749.8 2,849.5	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
11,000.0 11,100.0 11,200.0 11,300.0	89.96 89.96 89.96	179.87 179.87 179.87	8,822.5 8,822.5 8,822.6	-2,632.6 -2,732.6 -2,832.6	342.1 342.3	2,749.8 2,849.5	0.00 0.00	0.00 0.00	0.00
11,000.0 11,100.0 11,200.0 11,300.0 11,400.0	89.96 89.96 89.96 89.96 89.96 89.96	179.87 179.87 179.87 179.87 179.87 179.87 179.87	8,822.5 8,822.5 8,822.6 8,822.7 8,822.7	-2,632.6 -2,732.6 -2,832.6 -2,932.6 -3,032.6	342.1	2,749.8	0.00	0.00	0.00
11,000.0 11,100.0 11,200.0 11,300.0 11,400.0 11,500.0	89.96 89.96 89.96 89.96 89.96	179.87 179.87 179.87 179.87 179.87	8,822.5 8,822.5 8,822.6 8,822.7	-2,632.6 -2,732.6 -2,832.6 -2,932.6	342.1 342.3 342.6	2,749.8 2,849.5 2,949.3	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

COMPASS 5000.1 Build 39

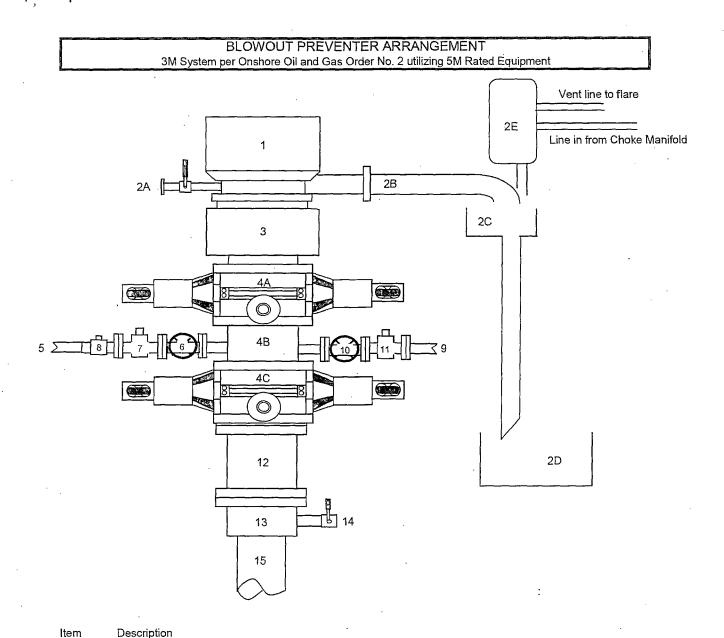
DDC Well Planning Report

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Buck Federal 20 #6H
Company:	Conoco Phillips	TVD Reference:	WELL @ 3187.0usft (Precision #827)
Project:	Lea County, New Mexico	MD Reference:	¹ WELL @ 3187.0usft (Precision #827
Site:	Sec 20, T26S, 32E	North Reference:	Grid
Well:	Buck Federal 20 #6H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	•	
Design:	Design #2		

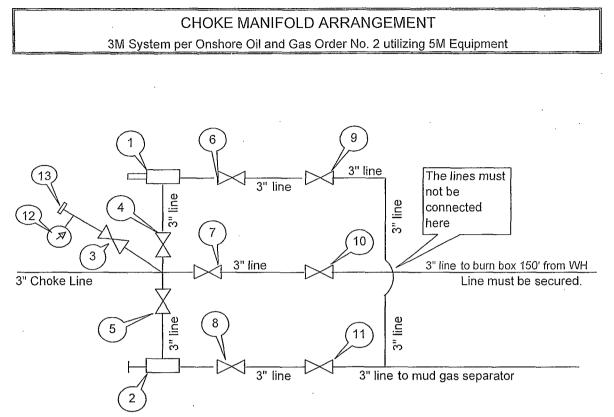
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
11,900.0	89.96	179.87	8,822.9	-3,332.6	343.4	3,348.4	0.00	0.00	0.00
12,000.0	89.96	179.87	8,823.0	-3,432.6	343.7	3,448.2	0.00	0.00	0.00
12,100.0	89.96	179.87	8,823.1	-3,532.6	343.9	3,547.9	0.00	0.00	0.00
12,200.0	89.96	179.87	8,823.1	-3,632.6	344.1	3,647.7	0.00	0.00	0.00
12,300.0	89.96	179.87	8,823.2	-3,732.6	344.3	3,747.5	0.00	0.00	0.00
12,400.0	89.96	179.87	8,823.3	-3,832.6	344.5	3,847.3	0.00	0.00	0.00
12,500.0	89.96	179.87	8,823.3	-3,932.6	344.7	3,947.0	0.00	0.00	0.00
12,600.0	89.96	179.87	8,823.4	-4,032.6	345.0	4,046.8	0.00	0.00	0.00
12,700.0	89.96	179.87	8,823.5	-4,132.6	345.2	4,146.6	0.00	0.00	0.00
12,800.0	89.96	179.87	8,823.5	-4,232.6	345.4	4,246.3	0.00	0.00	0.00
12,900.0	89.96	179.87	8,823.6	-4,332.6	345.6	4,346.1	0.00	0.00	0.00
13,000.0	89.96	179.87	8,823.6	-4,432.6	345.8	4,445.9	0.00	0.00	0.00
13,100.0	89.96	179.87	8,823.7	-4,532.6	346.1	4,545.7	0.00	0.00	0.00
13,200.0	89.96	179.87	8,823.8	-4,632.6	346.3	4,645.4	0.00	0.00	0.00
13,300.0	. 89.96	179.87	8,823.8	-4,732.6	346.5	4,745.2	0.00	0.00	0.00
13,400.0	89.96	179.87	8,823.9	-4,832.6	346.7	4,845.0	0.00	0.00	0.00
13,500.0	89.96	179.87	8,824.0	-4,932.6	346.9	4,944.8	0.00	0.00	0.00
TD @ 1354	0' MD / 8824' 7	rvd							
13,540.3	89.96	179.87	8,824.0	-4,972.9	347.0	4,985.0	0.00	0.00	0.00
Targets									•
Name		,			-				

- Shape (°)	(°) (ι	usft) (usft)	(usft)	(usft)	(usft)	Latitude	Longitude
PBHL Buck Federal 2 90.04 - plan hits target center - Rectangle (sides W100.0 H5	179.87 8	3,824.0 -4,97	2.9 347.0	372,160.59	697,637.97	32° 1' 17.689 N	103° 41' 44.293 W

Formations	-						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)	
•	1,037.0	1,037.0	Rustler		0.04	175.01	
	1,414.0	1,414.0	Salado Top		0.04	175.01	
	2,566.0	2,566.0	Castile Top		0.04	175.01	
	4,353.0	4,353.0	Delaware Top		0.04	175.01	
	4,383.0	4,383.0	Ramsey		0.04	175.01	
	4,440.0	4,440.0	Ford Sh		0.04	175.01	
	4,453.0	4,453.0	Olds		0.04	175.01	
	6,555.0	6,555.0	Cherry Canyon Lower Top		0.04	175.01	
	8,161.8	8,159.0	Bone Spring Top		0.04	175.01	
	8,319.3	8,304.0	Bone Spring 1st Carbonate Tope		0.04	175.01	
	8,430.4	8,400.0	Bone Spring 1st Carbonate Base		0.04	175.01	
	8,814.0	8,677.0	Avalon A Shale Top		0.04	175.01	



•••


- 1968 1 E - 1971, fill for a start of the s	n an	د در در در بر بر بر بر بر در مدرو بدار روه او . د است ما منا میراند میران ماند برخه مسیحو در در مواد از در	ای داد. دسته و به این وهمهمی و مدامند یه از میرسد او ایاد در دارد. مسلح مدینه اماد اساله مسلح مدست مصلح دمیر مرامی مسلح مدینه مسلحین از داد. این و در مانی از مانی مراجع مدینه مدینه مسلح دمیر مدینه مسلحین از داد.
Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Buck Federal 20 #6H
Company:	Conoco Phillips	TVD Reference:	WELL @ 3187.0usft (Precision #827)
Project:	Lea County, New Mexico	MD Reference:	WELL @ 3187.0usft (Precision #827)
Site:	Sec 20, T26S, 32E	North Reference:	Grid
Well:	Buck Federal 20 #6H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #2		in an ann an a

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
7,956.5	7,956.5	0.0	0.0	Build 8° / 100'
8,304.6	8,291.1	-31.1	76.9	Build & Turn 8° / 100'
9,302.5	8,821.2	-735.1	337.8	End of Curve / 89.96° Inc / 179.87° Azm / 8821 TVD
13,540.3	8,824.0	-4,972.9	347.0	TD @ 13540' MD / 8824' TVD

- Item
 - Rotating Head, 13-5/8" 1
 - Fill up Line and Valve 2A
 - 2B Flow Line (10")
 - 2C Shale Shakers and Solids Settling Tank
 - 2D Cuttings Bins for Zero Discharge
 - 2E Mud Gas Separator with vent line to flare and return line to mud system
 - 3 Annular BOP (13-5/8", 5M)
 - 4A Single Ram (13-3/8", 5M, equipped with Blind Rams)
 - 4B Drilling Spool (13-3/8" 5M)
 - 4C Single Ram (13-3/8", 5M, equipped with Pipe Rams)
 - 5 Kill Line (3", 5000 psi WP, steel line) (not a flexible line)
 - Kill Line Valve, Inner (3-1/8", 5000 psi WP) 6
 - 7 Kill Line Valve, Outer (3-1/8", 5000 psi WP, Hydraulically Operated)
 - Kill Line Check Valve (3-1/8", 5000 psi WP) 8
 - Choke Line (3", 5000 psi WP, steel line) (not a flexible line) 9
 - Choke Line Valve, Inner (3-1/8", 5000 psi WP) 10
 - Choke Line Valve, Outer, (Hydraulically operated, 3-1/8", 5000 psi WP) 11
 - 12 Spacer Spool (13-3/8", 5M, with rotating bottom flange)
 - 13 Casing Head (11", 5M)
 - 14 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
 - 15 Surface Casing

All Tees must be targeted

- Item Description
 - 1 Remote Controlled Hydraulic Adjustable Choke, 3-1/8", 5M
 - 2 Manual Adjustable Choke, 3-1/8", 5M
 - 3 Gate Valve, 2-1/16" 5M
 - 4 Gate Valve, 3-1/8" 5M
 - 5 Gate Valve, 3-1/8" 5M
 - 6 Gate Valve, 3-1/8",5M
 - 7 Gate Valve, 3-1/8" 5M
 - 8 Gate Valve, 3-1/8" 5M
 - 9 Gate Valve, 3-1/8" 5M
 - 10 Gate Valve, 3-1/8" 5M
 - 11 Gate Valve, 3-1/8" 5M
 - 12 Pressure Gauge
 - 13 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 25-Sept-2012