Form 3160-3 (March 2012) SEP 0 9 2013					ATS-13-807
Hor					• .
Emm2140.2 CEP 09 LOW	•			FORM	APPROVED
Form 3160-3 SEF (March 2012)		OCD Ho	bbs	OMB No	b. 1004-0137 stober 31, 2014
(March 2012) RECEIVED UNITED STATI DEPARTMENT OF THE				5. Lease Serial No.	
DEPARTMENT OF THE BUREAU OF LAND MA				USA LC 058698A	
APPLICATION FOR PERMIT TO				6. If Indian, Allotee	or Tribe Name
				N/A	
a. Type of work: 🔽 DRILL 🗌 REEN	ITER			7 If Unit or CA Agree	
				8. Lease Name and W	20987X
b. Type of Well: Oil Well Gas Well 🖌 Other I	nj 🔽 Sir	ngle Zone 🔲 Multi	ple Zone	MCA Unit 456	31422
2. Name of Operator ConocoPhillips Company	P O	1		9. API Well No.	0
. 4	2178	17>		30-025- 41	342
3a. Address P.O. Box 51810	3b. Phone No. 432-688-69	. (include area code)		10. Field and Pool, or E	· · · · · · · · · · · · · · · · · · ·
Midland, Texas 79710-1810		····		Maljamar; Grayburg 11. Sec., T. R. M. or Bl	
 Location of Well (Report location clearly and in accordance with At surface UL E, Sec. 26, T17S, R32E; 1780' FNL and 		erus. 7		Sec. 26, T17S, R32	-
At proposed prod. zone same	200 1 996				
 Distance in miles and direction from nearest town or post office* 			<u>.</u>	12. County or Parish	13. State
Approximately 5 miles SE of Maljamar, New Mexico				Lea County	NM
5. Distance from proposed* 280' location to nearest	16. No. of a	cres in lease	17. Spacir	g Unit dedicated to this we	ell
property or lease line, ft.	280			40	
(Also to nearest drig. unit line, if any)	19. Proposed	Denth	20 BLM/	BLA Bond No. on file	
 B. Distance from proposed location* to nearest well, drilling, completed, 	4400'	Серш	ES 008		
applied for, on this lease, ft. 300 '				•	
Elevations (Show whether DF, KDB, RT, GL, etc.)		nate date work will sta	rt*	23. Estimated duration	
3963' GL	11/01/201			10 Days	
	24. Attac				
he following, completed in accordance with the requirements of Onsi	nore Oil and Gas	Jider No.1, must be a		is iom:	
. Well plat certified by a registered surveyor.		4. Bond to cover t Item 20 above).	he operatio	ns unless covered by an e	xisting bond on file (see
. A Drilling Plan. . A Surface Use Plan (if the location is on National Forest System	m Lands, the	5. Operator certific	ation		
SUPO must be filed with the appropriate Forest Service Office).	- 1	6. Such other site BLM.	specific inf	ormation and/or plans as r	nay be required by the
5. Signature	Name	(Printed/Typed)			Date
AISAND, Maunder		B. Maunder			5-14-13
Senior Regulatory Specialist					0.0010
pproved by (Signature) /s/George MacDonell	Name	(Printed/Typed)			©€EP - 4 2013
tle	Office		CAP		
FIELD MANAGER				LSBAD FIELD OFFI	
pplication approval does not warrant or certify that the applicant ho nduct operations thereon.	lds legal or equita	able title to those righ	-		
onditions of approval, if any, are attached.			APP	ROVAL FOR T	WU YEARS
e 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a tes any false, fictitious or fraudulent statements or representations a	crime for any pe s to any matter wi	rson knowingly and v thin its jurisdiction.	villfully to n	ake to any department or	agency of the United
Continued on page 2)		/		*(Instru	actions on page 2)
	\mathcal{V}	9/10/17	∆r		
Roswell Controlled Water Basin		1.2/2	יייµ זייי ל	& Special Stinut	Seneral Requiremen ations Attached
	n	91001			anous Allached
L CONSERVATION DIVISION	V				· . ·
ONDITION OF APPROVAL - Approval for		S	SEE A	TTACHED	FOR
rilling (workeyer ONLY CANNOT IN FOT OD					

,

CONDITION OF APPROVAL - Approval for drilling / workover ONLY - CANNOT INJECT OR DISPOSAL until the injection/disposal order has been approved by the OCD Santa Fe office.

٩

· – ·

. . .

P SEP 1 1 2013

CONDITIONS OF APPROVAL

Drilling Plan ConocoPhillips Company Maljamar; Grayburg-San Andres

MCA Unit #456

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents		
Quaternary	Surface	Fresh Water		
Rustler	852	Anhydrite		
Salado (top of salt)	1030	Salt		
Tansill	2130	Gas, Oil and Water		
Yates	2268 Gas, Oil and Water			
Seven Rivers	2623	Gas, Oil and Water		
Queen	3258	Gas, Oil and Water		
Grayburg	3562	Gas, Oil and Water		
Grayburg-6	3797	Gas, Oil and Water		
San Andres-7	3966	Gas, Oil and Water		
San Andres-9	es-9 4197 Gas, Oil and Water			
Total Depth	4400	200' below deepest estimated perforation		

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' - 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #456

(Date: 4/22/2013)

2. Proposed casing program:

	Hole Size	м	Interval D RKB (ft)	OD	Wt	Gr	Comp	міт	Col	Jt Str		Safety Fa lated per Co Corporate (nocoPhillips
Туре	(in)	From	То	(inches)	(lb/ft)	Gr	Conn	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' 85' (30' 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	877' 922 100	8-5/8	24#	J-55	STC	2950	1370	244	1.55	3.34	3.52
Prod	7-7/8	0	4345' – 4390'	5-1/2	17#	J-55	LTC	5320	4910	247	2.33	3.73	2.18

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	W t	MIY	Col	Jt Str	Drill Fluid	Burs t	Collaps e Te	nsile-Dry	Tens-Bouy
Surface Casing	-922-	24	2950	137 0	24400 0	8.5	7.24	3.36	11.0	12.7
Production Casing	4390	17	5320	491 0	24700 0	. 10	2.33	2.15	3.31	3.91

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

MCA Unit #456

Type Conductor	Depth Wt MIY Côl Jt S B5 65 35000 -	432966 entrait	and the same with		
Surface Casing (8-5/8" 24# U-55 STC) Production Casing (5-1/2" 17# U-55 LTC)	922 24 2950 1370 244 4390 17 5320 4910 247		3.34 99 3.52 3.73 99 2.18		
Burst – ConocoPhillips Required Load Cases					
The maximum internal (ourst) load on the Surface Casing occurs w The maximum internal (ourst) load on the Production Casing occurs w					
(MAWP) is the pressure that would fit ConocoPhilips Corporate Cri Surface Casing Test Pressur	eria for Minimum Factors	are Pressure at TD (PPTD) = 8.55	ppg · C	花台	
Surface Reled Working Pressure (BOP)	3000 psi Predicted Frac N = 10 ppg	Gredient at Shoe (CSFG) = 19.23			
	ng / Maximum Predicted Surface Pressure (MPSP) 'OR' M = API Burst Rating / Corporate Minimum Burst Design Fa		IASP)		
Surface Casing Burst Safety Factor:					
Case #1 MPSP (MWhyd next section of the section of	osi) = 922 x 0.052 x 19	0 = 479 .23 479 +	200 = 643		
Case #3: MPSP (Kick Vol @inext section difference and Case #4: MPSP (PPTD - C	G) = 4390 ix 0.052 ix 8.	55 439	408, *** = 1197 1513 932		
Case #3.& #4 Limited to MPSP (CSFG +0.2 p MASP (MWhyd + Test Press Burst Safety Factor (Max MPSP or MAS	ire) = 922 ; x	23 + + 0.2)= 5 + 1500 + =	952 1908		
Production Casing Burst Safety Factor. Case #1.MPSP (MWhyd		0 = 2282.8			
Case #4 MPSP (PPTD C Burst Safety Factor (Max: MPS	G) = 4390 x 0.052 x 8.	55, 🛱 👔 439 🐼 🗮	1513		
MAWP for the Fracture Stimulation (Corporate Crite		261 ()			
Collapse - ConocoPhillips Required Load Cases					
The maximum collapse load on the Surface Cesing occurs when of the surface could be surface to the surface of the surface could be surface of the surface of	cementing to surface, or 1/3 evecuation to the deepest	tepth of exposure; and the state of the stat			
	hould be equal to the pore pressure of the horizons on the e Rating / Full Evacuation 'OR' Cement Displacement durin pse Rating / Maximum Predicted Surface Pressure 'OR' C	g Cementing to Surface	北京市 公司法律部		
Cement Displacement Fuld (FV	0 - 8.34 ppg Top of Cement	- Cement to Surface			
Surface Cemerit Tr	all = 14.8 ppg	 14.5 ppg 			
Surface Casing Collapse Safety Factor,					
Full Evacuation Diff. Pressu Cementing Diff. Lift Pressu	ire = [(= 622 / x = 0.052	(13.6) + (300	x 0.052	x. : 14.8) - 400	= 271
Production Casing Collapse Safety Factor					
1/3 Evacuation Diff Pressu Cementing Diff Lift Pressu Collapse Safety Fact	ire = [(1190 · x 0.052 ·)	(* 4390 - 11.8 (* 43200) - 11.8 (* 10.1000)	x 0.052	x 0.052 x 8.34 x 14!5) 1904 -] = 1317 = 1239
<u>Tensial Strength — ConocoPhillips Required Load C</u> The maximum axial (tension) load occurs if cesing were to get stud					
Maximum Allowable Axial Load for Joint = API Jo	PI Pipe Yield Strength Rating / Corporate Minimum Axial D int Strength Rating / Corporate Minimum Axial Design Fac				
Máximum Allowable Overpull Margin = Maximum	n' Rìg Max Load) = Maximum Allowable Asial Load Allowable Hoök Load = Bouyant Wi of the String Ant Strength 'OR' Rig Max Load Railing / (Bouyant Wi of S	1747, 1941			
Rig Max Load (300,000 lbs) x 755 Minimum Overpul Require	6 - 225000 bs				
Surface Casing Tensial Strength Safety Factor: 2					
Bouyant V					
Max Allowable Axial Load (Pipe Yiel Max Allowable Axial Load (Join	nt) = 244000 / 1.40 = 1742				
Max Allowable Hook Load (Limited to 75%) of Rig Max Loa Max Allowable Overpull Marg Tensial Safety Fact	in = 174286 (
Production Casing Tensial Strength Safety Factor:	· 在这一部间,这些问题是这些				
Pouyant V Max, Allowable Axial Load (Pipe Yiel	d) = , 273000 / 1.40 = 1950	00			16.54
Max. Allowable Axial Load (Joir Max. Allowable Hook, Load (Limited To 75% of Rig Max Loa	d) = 176429				
Max: Allowable Overpull Marg		47;;;;) = 113192; 000 _) = 2:18			
<u>Compression Strength - ConocoPhillips Required L</u>	nad Cases				
The maximum axial (compression) load for the well is where the su with a support of a plate or landing ring. The surface casing is also	face casing is landed on the conductor				
but not limited. Any other axial loads such as a snubbing unit or oth Compression Safety Factor - API Axial Joint Strength Rating 'OR' AV	er, would need to be edded to the load -				
Wellhead Los					
Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyar		= 19256			
Prod Casing Wi (Bouyar Tubing Wi (Air W	1) = 4390 x 6.5 = 28	63236 535			
Tubing Fluid Y Load on Conduct Conductor Compression Safety Fact	or = 3000+19256+63	5x0.7854 x 236 + 28535 + 158	2.441 • 2 = 6997 6997 = 1210	25	
Load on Surface Casir		615			P. 2

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	577' – 622'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	577' – 622'	877' – 922'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		ervals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lea d	50:50 Poz/C	Surface	3200'	11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4345' – 4390'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #456

(Date: 4/22/2013)

5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option: See COA

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Sta	ge 1 - Slurry		tervals Ft MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	Poz/C CO2 Resistant Cement	3200'	4345' – 4390'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Stag	ge 2 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lea d	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 120% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

MCA Unit #456

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. <u>Proposed Mud System:</u>

The mud systems that are proposed for use are as follows:	The mud s	systems ti	hat are	proposed	for use -	are as follows:
---	-----------	------------	---------	----------	-----------	-----------------

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 - 40	N.C.	N.C.	300 - 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 - 500

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

<u>Proposal for Option to Not Mud Up at TD:</u>

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #456

(Date: 4/22/2013)

Page 6 of 10

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

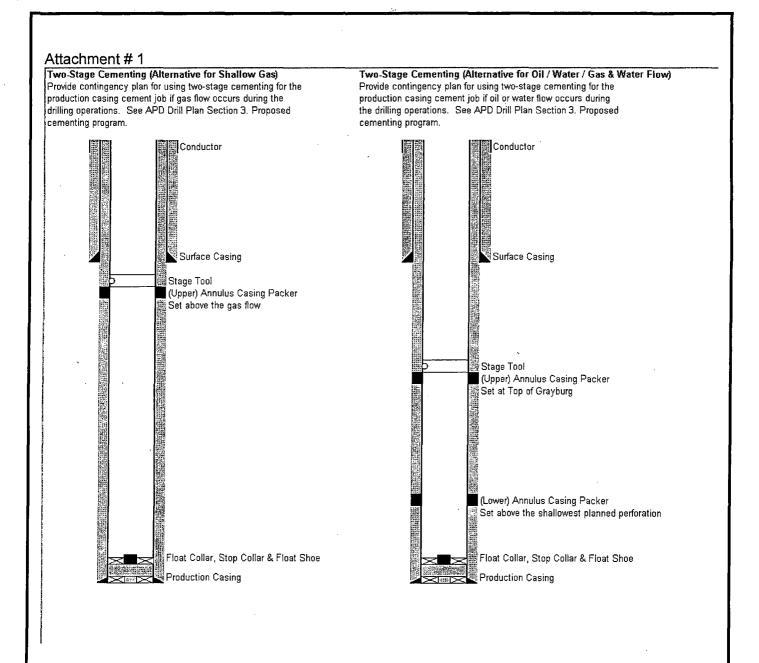
ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is late 2013 after receiving approval of the APD.

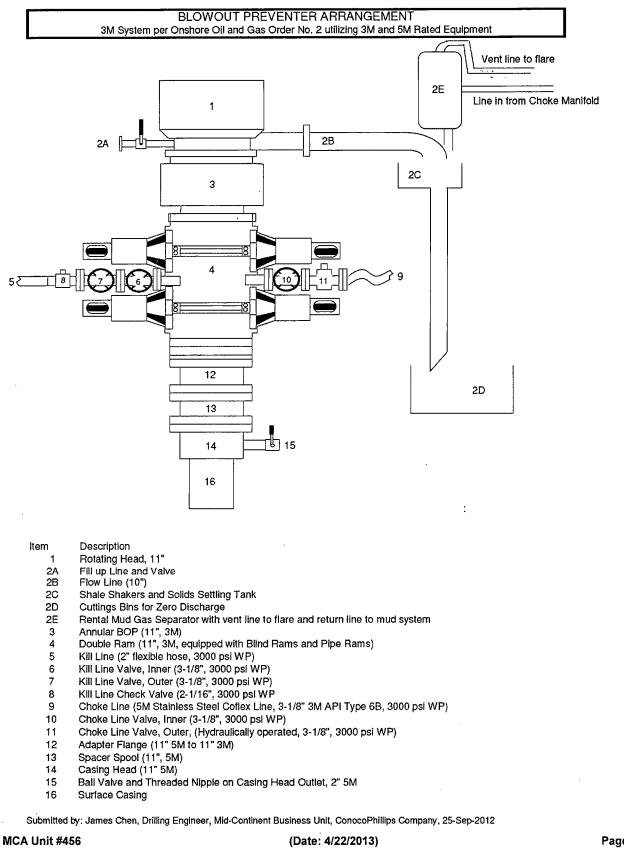
Attachments:

- Attachment # 1Two-stage Cementing Schematic
- Attachment # 2......BOP and Choke Manifold Schematic 3M System
- Attachment # 3......Diagram of Choke Manifold Equipment

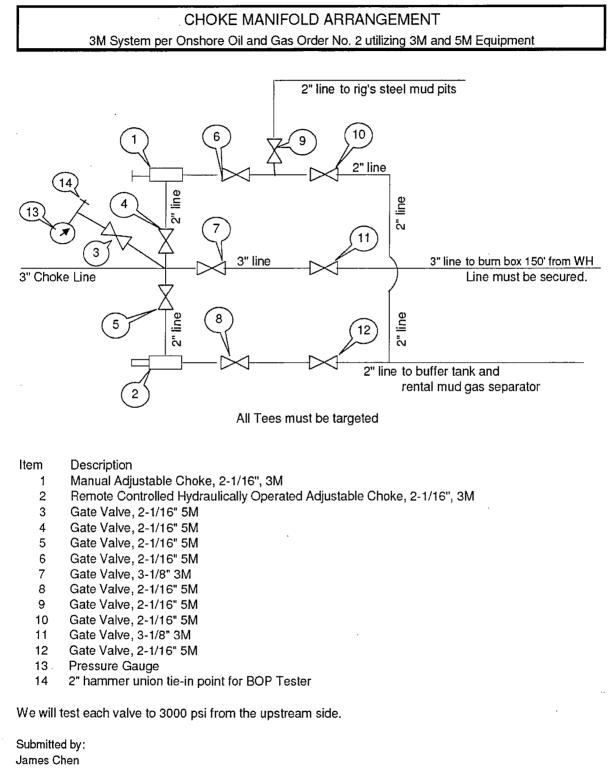

Contact Information:

Proposed 22 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

MCA Unit #456


(Date: 4/22/2013)

Page 7 of 10


Page 8 of 10

Attachment # 2

Page 9 of 10

Attachment # 3

Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

MCA Unit #456

(Date: 4/22/2013)

Page 10 of 10

Request for Variance

ConocoPhillips Company

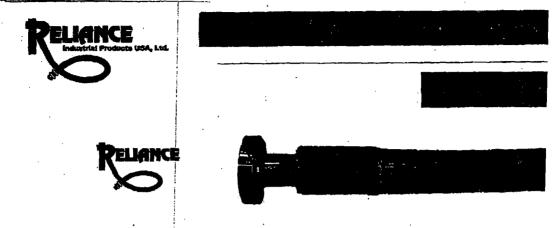
Lease Number: USA LC 058698A Well: MCA Unit #456 Location: Sec. 26, T17S, R32E Date: 04-21-13

<u>Request:</u>

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

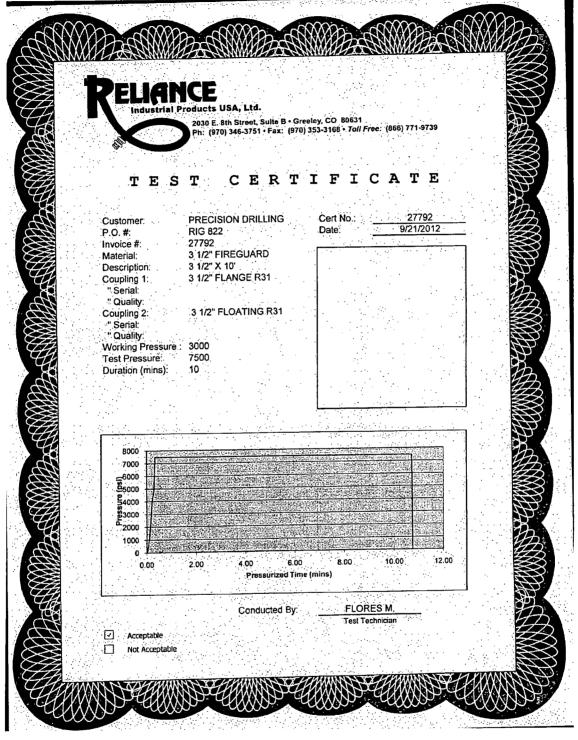

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Reliance Eliminator Choke & Kill


This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom. I	D N	om OD	Wel	-		nd Radius		WP
	mm. in.	mm	lb/ft	kg/m	in.	mm.	psi	Mp
	76.2 5.11	129.79	14.5	21.46	48	1219.2	5000	34.4
3-1/2	88.9 5.79	147.06	20.14	29.80	54	1371.6	5000	34.4
			:					
*			•				· ·	
Fittings		Flanges	. .	Han	nmer Un	lons	· Othe	r
RC4X5055	R35 - 3	-1/8 5000# A			ion Configu		Threaded C	
RC3)(5055	1	-1/8 3000# A			•		Grayloc	
RC4X5575							Custom E	
	ļ							
			•					
			•					

Attachment # 2

Variance Request