Form 3160-3 (March 2012)

OCD Hobbs

FORM APPROVED OMB No. 1004-0137

INITED OTATEO	ı			Expires	October 31,	2014	
RECEIVED UNITED STATES RECEIVED UNITED STATES BUREAU OF LAND MAN	INTERIO			5. Lease Serial No. USA LC 058395			
APPLICATION FOR PERMIT TO				6. If Indian, Allotee N/A	or Tribe	Name	
la. Type of work: DRILL REENTE	ER			7. If Unit or CA Agr 404645 NM7			No.
1b. Type of Well: Oil Well Gas Well Other In	: IJ	Single Zone Multi	ple Zone	8. Lease Name and MCA Unit 507	Well No.	13	122-
Name of Operator ConocoPhillips Company) 21フ	SIT	pre zone	9. API Well No. 30-025-	39	5	1 1
3a. Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone 432-688	No. (include area code) -6913		10. Field and Pool, or Maljamar; Graybur			33
4. Location of Well (Report location clearly and in accordance with an		rements.*)		11. Sec., T. R. M. or E		irvey or	Area
At surface UL O, Sec. 22, T17S, R32E; 1225' FSL and 2	045' FEL			Sec. 22, T17S, R3	32E		
At proposed prod. zone same 14. Distance in miles and direction from nearest town or post office*				12. County or Parish		13. St	ate
Approximately 5 miles SE of Maljamar, New Mexico				Lea County		NM	
15. Distance from proposed* 70' location to nearest	16. No. of	acres in lease	17. Spacin	ing Unit dedicated to this well			
property or lease line, ft. (Also to nearest drig. unit line, if any)	120		40	·			
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Propo 4325'	sed Depth	20. BLM/E ES 0085	BIA Bond No. on file			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3994' GL	22. Appro 11/01/20	ximate date work will star 013	rt*	23. Estimated duration 10 Days	n	,	
	24. Att	achments					
The following, completed in accordance with the requirements of Onshor	e Oil and Ga	as Order No.1, must be at	ttached to thi	s form:			
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System I 	Landa tha	4. Bond to cover the Item 20 above). 5. Operator certification		as unless covered by an	existing	bond on	file (see
SUPO must be filed with the appropriate Forest Service Office).	Lanus, the	1 ** *		rmation and/or plans as	may be i	required	by the
25. Signature Susan B. Munder		e (Printed/Typed) an B. Maunder			Date . 5	-11o	-13
Citle Senior Regulatory Specialist		. ·					
Approved by (Signature) /s/George MacDonei	Nam	ne (Printed/Typed)		!	SEP	- 4	2013
FIELD MANAGER	Offic	ce C	ARLSBA	D FIELD OFFICE			
Application approval does not warrant or certify that the applicant holds conduct operations thereon. Conditions of approval, if any, are attached.	legal or eq	uitable title to those right	ts in the subj	ect lease which would e	ntitle the	applican	t to
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a critates any false, fictitious or fraudulent statements or representations as to			villfully to ma	ake to any department o	r agency	of the U	Inited
(Continued on page 2)			-0No-	*(Inst	ruction	s on pa	age 2)

Roswell Controlled Water Basin

Subject to General Requirements

(VISION Stipulations Attached

SEE ATTACHED FUN CONDITIONS OF APPROVAL

SEP 1 1 2013

Olsposal Until the injection/disposal order has KOVER ONT A CANNOT INFECT OF

Drilling Plan ConocoPhillips Company Maljamar; Grayburg-San Andres

MCA Unit #507

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents
Quaternary	Surface	Fresh Water
Rustler	839	Anhydrite
Salado (top of salt)	1014	Salt
Tansill	2032	Gas, Oil and Water
Yates	2155	Gas, Oil and Water
Seven Rivers	2486	Gas, Oil and Water
Queen	3120	Gas, Oil and Water
Grayburg	3510	Gas, Oil and Water
Grayburg-6	3745	Gas, Oil and Water
San Andres-7	3937	Gas, Oil and Water
San Andres-9	San Andres-9 4122 Gas, Oil and Water	
Total Depth	4325	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the 8-5/8" surface casing 25' – 70' into the Rustler formation and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the _____5-1/2" production casing _____10' off bottom of TD ___ and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #507 (Date: 4/22/2013) Page 1 of 10

2. Proposed casing program:

Type	Hole Size	М	Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fallated per Co Corporate (nocoPhillips
Туре	(in)	From	То	(inches)	· (lb/ft)	Gi	COIIII	(psi)_	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	=864° – 909'	8-5/8	24#	J-55	STC	2950	1370	244	1.55	3.39	3.54
Prod	7-7/8	0	4270' – 4315'	5-1/2	17#	J-55	LTC	5320	4910	247	2.37	3.79	2.20

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Type	Depth :	W t	MIY	Col	Jt Str	Drill Fluid	Burs t	Collaps e	·Tensile-Dry	Tens-Bouy
				137	24400					
Surface Casing:	909	24	2950	0	0	8.5	7.34	3.41	11.2	12.9
				491	24700					
Production Casing	4315	17	5320	0	0	10	2.37	2.19	3.37	3.97

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

MCA Unit #507 (Date: 4/22/2013) Page 2 of 10

Type Conductor	Depth Wt MIY Col Jt Str	a liberitera inte	3.54	
Surface Casing (8-5/8* 24# J-55 STC) Production Casing (5-1/2* 17# J-55 LTC)	4315 17 5320 4910 247000	273000 10 2.37 3.79	2.20	
Burst - ConocoPhillips Required Load Cases Sthe maximum internal (burst) load on the Surface Casing occur	rs when the surface casing is tested to 1500 psl (as per BLM Or	shore Order 2 - III. Requirements).		
The maximum internal (burst) load on the Production Casing occ (MAWP) is the pressure that would fit ConocoPhilips Corporate Surface Casing Test Pre	e Craeria for Minimum Factors. Security of the Craeria for Minimum Factors. Predicted Pore F	ressure et TD (PPTD) =		
ADI Buret	aid SW.= 10 ppg Reting (Maximum Predicted Surface Pressure (MPSP) 'OR' Maximum Predicted Surface Predicted Surface Pressure (MPSP) 'OR' Maximum Predicted Surface	um Allowable Surface Pressure (MASP)		
Production Casing MAWP, for the Fracture Stimul	ktion – API Burst Reiling / Corporate Minimum Burst Design Factor,			
Surface Casing Burst Safety Factor: Case #1 MPSP (MWwyd next s Case #2 MPSP (Field SW @ Bullheadcsro + 2	200 psi) = \$10.052 x \$10.052 x \$19.23	473 + 200 340.6 402	= 636 %// = 17176	
Case #3: MPSP (Kick Vol @ next sect Case #4: MPSP (PPTI Case #3 & #4 Limited to MPSP (CSFG +0	D_GG) = 4315 x / 0.052 x 8.55 1.2 ppg = 909 x 0.052 x (19.23	431.5 = 1487		
MASP (MWhyd + Test Pri Burst Safety Factor (Max MPSP or Production Casing Burst Safety Factor:	essure) = 41.55	= 2243.8		
Case #1 MPSP (MM Case #4 MPSP (PPTI Durst Salety Factor (Max	D_GG) = 4315	431.5		
MAVVP for the Fracture Stimulation (Corporate	Criteria) = 5320			
Collapse — ConocoPhillips Required Load Case The maximum collapse load on the Surface Casing occurs with	hen cementing to surface, 1/3 evacuation to the deepest det	g depth, or deepest depth of exposure (full evac	ustion)	
therefore, the external pressure profile for the evacuation ca	when centering to surface, or resecutive of the horizons on the coses should be equal to the porce pressure of the horizons on the colleges Rating / Full Evacuation OR Cement Displacement during in Colleges Rating / Maximum Predicted Surface Pressure OR Cement Displacement during in Colleges Rating / Maximum Predicted Surface Pressure OR Cement	Cementing to Surface	PTO	
Cement Displacement Flu	and (FW) = 8.34 ppg = 50 or Cement Lead = 13.6 ppg = Prod Cement Lead = 1	Cement to Surface		
Surface Cen		3200 n		
Surface Casing Collapse Safety Factor: Full Evacuation Diff.P. Cementing Diff Lift P	ressure = [(609 x U.U52 x	= 404 13.6) + f (1 300 - x	0.052 (\$\frac{1}{2} \text{\$\frac{1}{2} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \text{\$\frac{1} \$	4] = 267
Collapse Safety Production Casing Collapse Safety Factor: (/3 Evacuation Diff P	ressure = {(4315 x 0.052 c.x	8 55 () - ((4315)) . (1	A STATE OF THE PARTY OF THE PAR	34)) = 1295 71 1 = 1226
Cementing Diff Lift P Collapse Safety	ressure = 11115 x U.U52 x	11.8 (3200 X X	OUDZ A STATE OF THE STATE OF TH	
Tensial Strength — Conoco Phillips Required L. The maximum axiel (lension) load occurs it casing were to g	oad Cases			
Meximum Allowable Axial Load for Pipe Y	FAPI Joint Strength Reting / Corporate Minimum Axial Design Factor	sign Fector, or 2012		
Maximum Allowable Overpull Margin = Ma Tensial Safety Factor = API Pipe Yield 'OR	75% of Rig Max Load) = Maximum Allowable Axial Load xmum Abowable Hook Load - Bouyant W. of the String XAP Joint Strength OR Rig Max Load Rating / (Bouyant W. of St	ing + Minimum Overpull Required)		
Rig Max Load (300,000 lbs Minimum Overpuil I				
Surface Casing Tensial Strength Safety Factor:	Air W1 = 21816 yant W1 = 21816			
Max. Allowable Axial:Load (Pin Max. 'Allowable Axial:Loa Max. 'Allowable Hook:Load (Limited to 75% of Rig Mi	ad (Joint) = 244000 = 7 1.40 = 2742 ax Load) = 174286	86		
Max Allowable Overpu Tensial Safet Production Casing Tensial Strength Safety Factor	II Margin = 174266 (121616 + 500 ty Factor = 244000 1/4 (18985 + 500	70) = 155301 000) = 3.54		
	Alf W1 = 73355 x 0.847 = 6215 pe Yield = 273000 / 1.40 = 1950			
Max Allowable Axial Loc Max Allowable Hook Load (Limited to 75% of Rig M Max Allowable Overpu	ad (Joint) = 247000	47) = 114273		
Tensial Safet	The same of the sa	(00) (a) = 2.20	The second secon	
Compression Strength — ConocoPhillips Requ The maximum extel (compression) load for the well is when	e the surface casing is landed bit the collection			
with a support of a piete or landing ring. The surface casin but not limited. Any other exial loads such as a snubbing un Compression Safety Factor API Axial Joint Strength Rating	nit or other would need to be edded to the load. g OR' API Axial Pipe Yield Rating / Maximum Predicted Load			
Conductor & Surface Compression Safety Factor	read Load = JUU NS / July			
Surf. Casing Wt (Prod Casing Wt) Tubing W	(Bouyant) = (21816 x 0.670 m) (Bouyant) = (73355 x 0.847 m)	048		
Tubing	Fluid Wt = 3 4315 x 0.052 x 0.052 conductor = 3000 x + 18985 + 52	55 x 0.7854 x 2.441 2156 + 28047.5 + 6878 3.64		
Conductor Compression Safe Load on Surface Surface Casing Compression Safe	ce Casing = 11190bb X 00 % Tagain	3.42		Page 3 от 1
CA Unit #50/	(Date: TILE)	; - ,		

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	Class C	Surface	564' – 609'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess = 200% based on	1.70
							gauge hole volume 1% CaCl2	
Tail	Class C	564' – 609'	864' – 909'	14.8	200	268	Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program - Single Stage Cementing Option:

The intention for the cementing program for the Production Casing - Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft I	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	50:50 Poz/C	Surface	3200'	11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4270' – 4315'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #507 (Date: 4/22/2013) Page 4 of 10

5-1/2" Production Casing Cementing Program - Two-Stage Cementing Option: Sec COA

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,

• Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Sta	ge 1 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	Poz/C CO2 Resistant Cement	3200'	4270' ~ 4315'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Stag	ge 2 - Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 120% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

MCA Unit #507

(Date: 4/22/2013)

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- Annular BOP, 11" 3M
- Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	300 – 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 ~ 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 500

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #507 (Date: 4/22/2013) Page 6 of 10

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - · Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

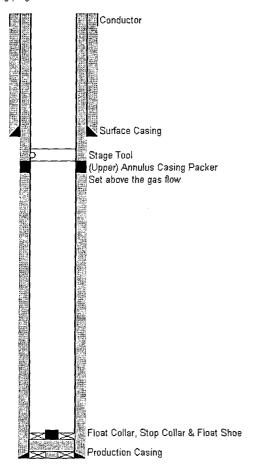
ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

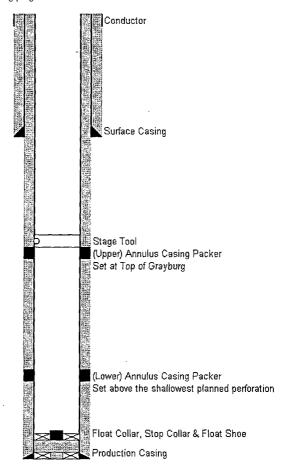
Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is in late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2......BOP and Choke Manifold Schematic 3M System
- Attachment # 3...... Diagram of Choke Manifold Equipment

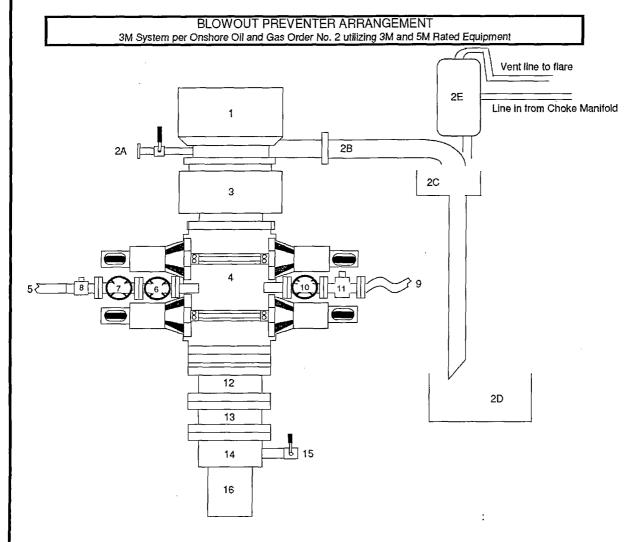

Contact Information:

Proposed 22 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647


MCA Unit #507 (Date: 4/22/2013) Page 7 of 10

Attachment # 1

Two-Stage Cementing (Alternative for Shallow Gas)
Provide contingency plan for using two-stage cementing for the production casing cement job if gas flow occurs during the drilling operations. See APD Drill Plan Section 3. Proposed cementing program.



Two-Stage Cementing (Alternative for Oil / Water / Gas & Water Flow)
Provide contingency plan for using two-stage cementing for the
production casing cement job if oil or water flow occurs during
the drilling operations. See APD Drill Plan Section 3. Proposed
cementing program.

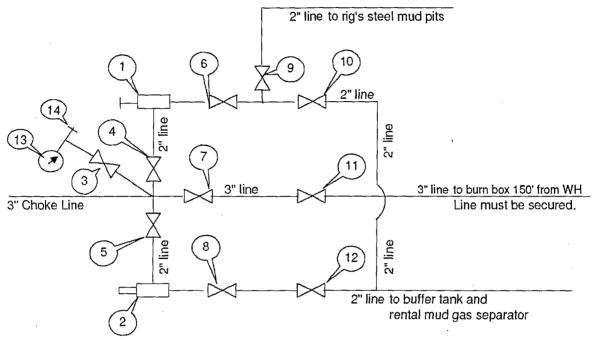
MCA Unit #507 (Date: 4/22/2013) Page 8 of 10

Attachment # 2

- Item Description
 - 1 Rotating Head, 11"
 - 2A Fill up Line and Valve
 - 2B Flow Line (10")
 - 2C Shale Shakers and Solids Settling Tank
 - 2D Cuttings Bins for Zero Discharge
 - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
 - 3 Annular BOP (11", 3M)
 - 4 Double Ram (11", 3M, equipped with Blind Rams and Pipe Rams)
 - 5 Kill Line (2" flexible hose, 3000 psi WP)
 - 6 Kill Line Valve, Inner (3-1/8", 3000 psi WP)
 - 7 Kill Line Valve, Outer (3-1/8", 3000 psi WP)
 - 8 Kill Line Check Valve (2-1/16", 3000 psi WP
 - 9 Choke Line (5M Stainless Steel Coflex Line, 3-1/8" 3M API Type 6B, 3000 psi WP)
 - 10 Choke Line Valve, Inner (3-1/8", 3000 psi WP)
 - 11 Choke Line Valve, Outer, (Hydraulically operated, 3-1/8", 3000 psi WP)
 - 12 Adapter Flange (11" 5M to 11" 3M)
 - 13 Spacer Spool (11", 5M)
 - 14 Casing Head (11" 5M)
 - 15 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
 - 16 Surface Casing

Submitted by: James Chen, Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company, 25-Sep-2012

MCA Unit #507


(Date: 4/22/2013)

Page 9 of 10

Attachment #3

CHOKE MANIFOLD ARRANGEMENT

3M System per Onshore Oil and Gas Order No. 2 utilizing 3M and 5M Equipment

All Tees must be targeted

Item Description

- 1 Manual Adjustable Choke, 2-1/16", 3M
- 2 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by:

James Chen

Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company

Date: 21-March-2013

MCA Unit #507

(Date: 4/22/2013)

Page 10 of 10

Request for Variance

ConocoPhillips Company

Lease Number: USA LC 058395B

Well: MCA Unit #507

Location: Sec. 22, T17S, R32E

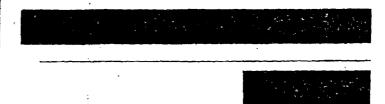
Date: 04-21-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.


Attachments:

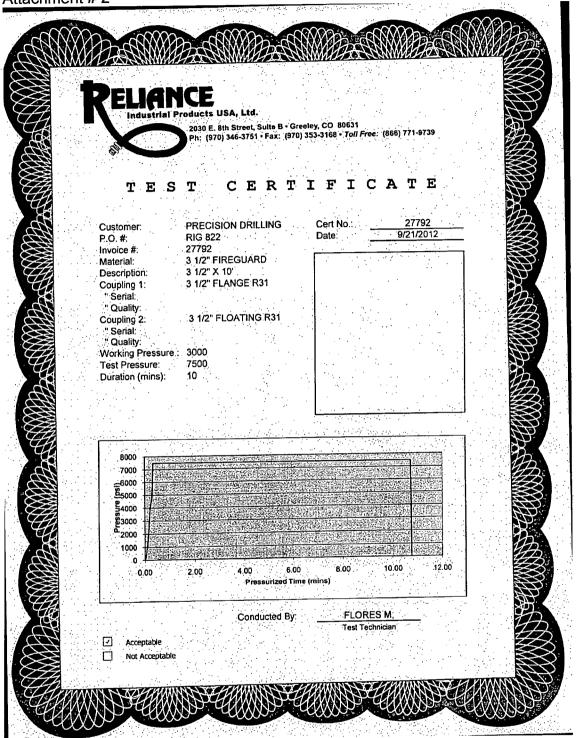
- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Reliance Eliminator Choke & Kill

This hase can be used as a choke hase which connects the BOP stack to the bleed-off manifold or a kill hase which connects the mud stand pipe to the BOP kill valve.


The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 mlnutes).

Non	n. ID	Non	n OD	We	ight	Min Be	nd Radius	Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
3	76.2	5.11	129.79	14.5	21.46	48	1219.2	5000	34.47
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.47

Fittings RC4X5055 RC3X5055 RC4X5575	Flanges R35 - 3-1/8 5000# API Type 6B R31 - 3-1/8 3000# API Type 6B	Hammer Unions All Union Configurations	Other LP Threaded Connectio Graylock Custom Ends

