HOBR2000					ATS-13-804	
Form 3160-3 SEP 0 9 2013 (March 2012)		OCD Ho	bb s	FORM OMB No Expires Oc	APPROVED). 1004-0137 tober 31, 2014	
UNITED STAT RECEIVED PARTMENT OF THI	TES E INTERIOR	r		5. Lease Serial No. USA LC 058698A		
APPLICATION FOR PERMIT T	O DRILL O	R REENTER		6. If Indian, Allotee of N/A	or Tribe Name	
la. Type of work: DRILL REE	NTER			7. If Unit or CA Agree 1.0.1.645 NM 70	ment, Name and No. 987 A	
Ib. Type of Well: Oil Well Gas Well Other	V s	ngle Zone 🔲 Mi	ultiple Zone	8. Lease Name and W MCA Unit 488	Vell No. 31422	
2. Name of Operator ConocoPhillips Company	2178	17>		9. API well No. 30-025-	393 '	
^{3a.} Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone N 432-688-6). (include area code) 913		10. Field and Pool, or E Maljamar; Grayburg	xploratory 4333	
 Location of Well (Report location clearly and in accordance with At surface UL M, Sec. 23, T17S, R32E; 70' FSL and 5 At proposed and zone same. 	h any State requirer 510' FWL	nents.*)		11. Sec., T. R. M. or Bll Sec. 23, T17S, R32	k. and Survey or Area PE	
 14. Distance in miles and direction from nearest town or post office* Approximately 5 miles SE of Maljamar, New Mexico 				12. County or Parish Lea County	13. State NM	
 15. Distance from proposed* 70' location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 	16. No. of a	acres in lease	17. Spacin 4	ng Unit dedicated to this w	ell	
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 610' 	19. Propose 4385'	19. Proposed Depth201385'E		LM/BIA Bond No. on file 0085		
 Elevations (Show whether DF, KDB, RT, GL, etc.) 3974' GL 	22 Approxi	mate date work will 3	start*	23. Estimated duration 10 Days		
	24. Atta	chments	<u> </u>			
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office). 	em Lands, the	 Bond to cove Item 20 above Operator cert Such other si BLM, 	er the operation e). ification ite specific inf	ons unless covered by an e ormation and/or plans as r	xisting bond on file (see nay be required by the	
25. Signature Susan B. Maund	Name Susa	<i>(Printed/Typed)</i> n B. Maunder		1	Date 5/14/13	
Senior Regulatory Specialist						
Approved by (Signature) /s/George MacDonell	Name	(Printed/Typed)			^{Dai} SEP - 4 2013	
FIELD MANAGER	Office		CA	RLSBAD FIELD OF	FICE	
Application approval does not warrant or certify that the applicant h conduct operations thereon. Conditions of approval, if any, are attached.	olds legal or equi	table title to those ri	ights in the sub APF	pject lease which would en PROVAL FOR 1	title the applicant to	
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations	a crime for any p as to any matter w	erson knowingly and vithin its jurisdiction.	d willfully to n	nake to any department or	agency of the United	
(Continued on page 2) Roswell Controlled Water Basin	 	K#101	17	*(Instru Approval Subjec & Special S	actions on page 2) t to General Requiren Stipulations Attached	
					· · · · · · · · · · · · · · · · · · ·	
		SEE ATTA CONDITI(ACHED	FOR FAPPROVA	r bu	

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres</u>

MCA Unit #488

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents
Quaternary	Surface	Fresh Water
Rustler	890	Anhydrite
Salado (top of salt)	1073	Salt
Tansill	2095	Gas, Oil and Water
Yates	2234	Gas, Oil and Water
Seven Rivers	2561	Gas, Oil and Water
Queen	3225	Gas, Oil and Water
Grayburg	3613	Gas, Oil and Water
Grayburg-6	3868	Gas, Oil and Water
San Andres-7	4025	Gas, Oil and Water
San Andres-9	4181	Gas, Oil and Water
Total Depth	4385	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #488

(Date: 4/22/2013)

Page 1 of 10

2. Proposed casing program:

Turno	Hole Size	Interval MD RKB (ft)		OD	Wt	Gr	Gr Conn -	MIY	Col	Jt Str	Safety Factors Calculated per ConocoPhillips Corporate Criteria		
Type	(in)	From	То	(inches)	(lb/ft)			(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wali	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	945 - 960'	8-5/8	24#	J-55	STC	2950	1370	244	1.53	3.21	3.48
Prod	7-7/8	0	4330' – 4375'	5-1/2	17#	J-55	LTC	5320	4910	247	2.34	3.74	2.19

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Type	Depth	W. t	MIY	Col	Jt Str	Drill Fluid	Burs t	Collaps e	Tensile-Dry	Tens-Bouy
				137	24400					
Surface Casing	960	24	2950	0	0	8.5	6.95	3.23	10.6	. 12.2
				491	24700					
Production Casing	4375	17	5320	0	0	10	2.34	2.16	3.32	3.92

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Desig	an Factors
---	------------

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

ξĮ[

Tub Tub Laad Conductor Compression Conductor Compression Surface Casing Compression S	ng Fluid W1 = 4375 x n Conductor = 3000 + + afety Factor = 432966 / 1 1 face Casing = 121481 x afety Factor = 244000 /	0.052 x 6.55 x) 20050 + 63020 + 4 21481 ≡ 3.56 160% = 72089 72889 = 3.35	0.7654 x 2.441 28437.5 + 6373	22 = 6973 = 121481	
ductor & Surface Compression Safety Fac Surface Compression Safety Fac Surf Casing V Priod Casing V	Yelheed Lood = 3000 b5 tor Vi (Bouyent) = (22040 Vi (Bouyent) = (74375 - Vi (Air Wh) = 4775 -	x 0.870 () = 200 <u>x 0.870 () =</u> 630 <u>55 28438</u>			
Compression Strength - ConcoOPhillips R The naximum axial (compression) load for the well is v with a support of a plate or landing iting. The surface but not limited. Any other axial loads such as a strubble Compression Seriety Factor a - ArX suit) limit Strength F	equired Load Cases where the surface casing is landed on the con asing is dist caculated to beer 60% of the lo grunt or other would need to be added to the sign of NAPI Asia Place View Partino / Marvin aligna OR API Asia Place View Partino / Marvin	auctor ad Koad m Predicted Load			
Max: Allowable Axia ax: Allowable Hook Load (Limitet ic, 75% of R Max: Allowable OX Tensial S Tensial S	Load (Joint) = 247000 / . g Māx Load) = 176429 arpull Mārgin = 176429 / (= 7 arlety Fjactor = 247000 = / (= 7	1.40 = 176429 4375 x 0.847 () = 3020 + 50000 () =	113409 2.19		
Max, Allowable Cy Tensial S duction, Casing Tensial Strength, Safety Fa Max, Allowable Axial Loac	erpull Margin = 174286 (2 safety Factor = 244000 / (2 ctor: Air W = 74375 Bouyani W = 74375 x ((Pipe Yield) = 273000 / /	.0470 x 0.870) = 0050 + 50000) = 1.847 = 63020 1.40 = 195000	(134/36) 3,48		
Max: Allowable Axial Load Max: Allowable Axial Load Max: Allowable Axia ax: Allowable Hook Load (Limited to 75% of Ri	Air WI = 23040 Bouyant Wi = 23040 x (Pipe Yield) = 381000, // Load (Joint) = 244000 / g Max Load) = 174286	1870 = 20050 1.40 = 272143 1.40 = 174286			
Macinum Allowable Overnull Margin Tonsial Safety / Factor = API Pipe Viv R Pig Mar Coold (300) Minimum Over Tage Casting Tagetel Strategic Sciences	= Maxmum Alowable Hook Load = Bouyant V a' OR' API Johi Strength OR' Reg Max Load R D0 bis) x 75% - 225000 bis mpUl Required - 50000 bis	A of the String sting / (Bouyant VX of String + Minimum and the string of the string s	Overpul Required)		
Tensial Strength – ConocaPhillips Requir Tre maximum add (tension) load occurs il costrig ver Maximum Alovadie Astal Load for Maximum Alovadie Astal Load for Maximum Alovadie Hook Load fum	ed Load Cases e to get stuck and puted on to try to get t uns ige Yied "API Pice Vied Strength Rating / Co oint - API Johni Strength Rating / Corporate M led to 75% of Rig Max Load - Maximum Allov	uck nporete Minimum Axial Design Factor Imum Axial Design Factor Vable Axial Load	rate das Ethnologie de		
oduction Casing Collapse Safety Factor 1/3 Evacuation Cementing Diff 11 Collapse S	Diff Pressure = [(' 4375 Lift Pressure = [(' 1175 lafety Factor = 4910 /	x 0.052 x 8.55 x 0.052 x .11.8 1313 = 3.74), (4375, / ma), i (3200 x 1	3 x 0.052 0.052 x 14/5	x 8:34)) = 1313) - 1897] = 1236 ;
Top of Surfa face Casing Collapse Safety Factor: Full Evacuation Collanse: Collanse:	z Tal Cement **	op of Prod Tall Cement * 1 32 052 (x) 8.55 = 1 x 0.052 (x) 136 427 = 3.21	427 ↓ ↓) ++ ((300) x)	0.052 x 14.8	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
umerore, ine exerna pressure profile for the evolution Surface Casing Collapse Safety Factor Production Casing Collapse Safety Factor Commit Displacem Surface Surface	API Collepse Rating / Full Evecuelion OR' Cer - API Collepse Rating / Full Evecuelion OR' Cer - API Collepse Rating / Maximum Predicted S and Fuld (FW) - 8.34 [pog Cement Lead - 13.6 [pog a Gement Tell - 14.8 [pog]	e or me naricons on me outside of the nent Displacement during Cementing to unface Pressure VPR Cement Displacem Top of Cement = Cement to Prod Cement Lead = 11 Prod Cement Tail = 14	and a visual we assumed to be P writece and during Comenting to Surface) Surface ; 5 prog 5 prog		
Collapse - ConocoPhillips Required Load The maximum collapse load on the Surface Cosing doc The maximum collapse load on the Production Cestro	Cases urs when cementing to surface; 1/3 evecuation cours when cementing to surface; or 1/3 evecuation	n to the next casing setting depth, or di sualion to the deepest depth of exposu	epest depth of exposure (full even a and	suetion).	
Burst Safety, Factor, (Max' MP iduction Casing Burst Safety, Factor: Case #1 MPS Case #1 MPSP Burst Safety Factor MAWP, for the Fracture Stimulation (Com	SPior MASP) = 2950 (MWiyet to) = 4375 [x y] = ((PPTD - GG) = 4375 [x y] = (Max MPSP) = 5320 [/ / / -] orate Criteria) = 5320 / / [1924 = 1.53 1.052 x 10 = 1.052 x 8.55 1.275 = 2.34 1.15 = 4626	22751 437.5 (= ++ 1508,		
Case #21MPSP (Field SW @ Bullheador Case #31MPSP (Kick Vol@ine Case #34MPSP Case #3 & #41MPSP Case #3 & #4 Limited to MSSP (CS) MASP (MVHver + T	ro + 200 ps) = 960 x 1 i section TD) = 4375 x 1 (PPTD - GG) = 4375 x 1 G + 0.2 ppg) = 960 x 1 est Pressure) = 960 x 1	0.052 x) 19.23 0.052 x 8.55 0.052 x 8.55 0.052 x 19.23 0.052 x 19.23 0.052 x 19.23 0.052 x 19.5 19.55 +	499 + 200 341'5 - 424 437'5 = 1508 0.2)= 970 1500 = 1924	= 661 =11 7779, 	
Surface Casing Burst Safety Factor - A Production Casing MAWP for the Fractur face Casing Burst'Safety Factor: Case #1 MPSP [NWmd	Pield SW = Uppg =	ressure (MPSP) OR Maximum Allowabi nimum Burat Design Päctor 1052 X 10	Surface Pressure (MASP)	h line an _b rai	
The maximum Internal (burst) load on the Surface Cash The maximum Internal (ourst) load on the Probabilito Ca (MAWP) is the pressure thet would if ConcorPhillee (MAWP) is the pressure thet would if ConcorPhillee Surface Relied Working Pre- Surface Relied Working Pre-	g occurs when the surface casing is tested sing occurs during the fracture stimulation w orporate Orterie for Minimum Factors Test Pressure = 1500 pst source (BOPD = 3000 pst source (BOPD = 3000 pst	o 1500 psi (as per BLM Onshore Order ere the maximum allowable working pr # Predicted Pare Pressure at T Predicted Frac Gradent at Sho	2 II. Requirements) ssure 0 (PPTD) = 8.55 ppg 1 (CSFQ) = 19.23 ppg		
Burge ConcernBhilling Required Load Ca					PORTERIO 25.

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Intervals Ft MD		Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	Class C	Surface	615' – 660'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	615' – 660'	915' – 960'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	50:50 Poz/C	Surface	3200'	11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LOM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4330' 4375'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #488

5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option: See COP

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow
 if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

ſ	Stage 1 - Slurry		urry Intervals Ft MD		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
	Lea d	Poz/C CO2 Resistant Cement	3200'	4330' – 4375'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Stag	je 2 - Slurry	Inter Ft I	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 120% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

MCA Unit #488

Page 5 of 10

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 - Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	300 – 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 500

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #488

(Date: 4/22/2013)

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is in late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2......BOP and Choke Manifold Schematic 3M System
- Attachment # 3...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 22 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

MCA Unit #488

(Date: 4/22/2013)

Page 7 of 10

Page 8 of 10

Page 9 of 10

(Date: 4/22/2013)

Page 10 of 10

Request for Variance

ConocoPhillips Company

Lease Number: USA LC 058698A Well: MCA Unit #488 Location: Sec. 23, T17S, R32E Date: 04-21-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

<u>Attachments:</u>

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom. ID		No	Nom OD Weig		ght	Min Be	Min Bend Radius		Max WP	
in.	mm.	iņ.	mm	ib/ft	kg/m	in.	mm.	psi	Mpa	
3	76.2	5.11	129.79	14.5	21.46	48	1219.2	2 5000	34.4	
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.4	
	<u>.</u>			:						
			, • 					·		
							_			
Fittings		1	Flanges		Han	nmer Un	ions	· Othe	r	
RC4)/5055	R	35 - 3-	1/8 5000# A	PI Type 6B	All Un	ion Configu	Irations	LP Threaded C	onnect	
RC3X5055	R	31 - 3-'	1/8 3000# A	PI Type 6B				Graylor	sk 👘	
RC4X5575		i.		:				Custom E	nds	
		1					•			
				•						
		-								

Variance Request