Form 3160-3 (March 2012)

OCD Hobbs

FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014

6. If Indian, Allotee or Tribe Name

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

Lease Serial No. MN LC 057210

N/A

APPLICATION FOR PERMIT	TO DRILL	OR REENTER
------------------------	----------	------------

la	. Type of work:	REENT	ER		7 If Unit or CA Agreement, 1 101615	Name and No.
lb	o. Type of Well: 🗸 Oil Well	Gas Well Other	✓ Single Zone Multi	ple Zone	8. Lease Name and Well No. MCA UNIT #514	(31422
2.	Name of Operator ConocoPt	nillips Company	217817>		9. API Well No. 30-025-	0.
3a	P.O. Box 51810 Midland, TX 7971	0-1810	3b. Phone No. (include area code) 432-688-6913		10. Field and Pool, or Explorat Maljamar; Grayburg/San	へつびり
4.	At surface 810' FSL & 1300	on clearly and in accordance with an D' FEL; UL P, Section 27, T17	'S, R32E		11. Sec., T. R. M. or Blk. and S Section 27, T17S, R32E	urvey or Area
	Distance in miles and direction frapprox. 4.5 miles SE from Ma	•	on 21, 1175, R32E		12. County or Parish LEA	13. State NM
15.	Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if		16. No. of acres in lease 1200	17. Spacin 40	g Unit dedicated to this well	
18.	Distance from proposed location* to nearest well, drilling, complete applied for, on this lease, ft.	487' (MCA 185)	19. Proposed Depth 4550' TVD	20. BLM/I ES0085	BIA Bond No. on file	
21.	Elevations (Show whether DF,	KDB, RT, GL, etc.)	22. Approximate date work will sta	ırt*	23. Estimated duration	

24. Attachments

10/06/2013

The following, completed in accordance with the requirements of Onshore Oil and Gas Order No.1, must be attached to this form:

- 1. Well plat certified by a registered surveyor.
- 2. A Drilling Plan.

3961' GL

- 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office).
- Bond to cover the operations unless covered by an existing bond on file (see Item 20 above).

10 Days

- Operator certification
- Such other site specific information and/or plans as may be required by the

25. Signature SUSA	n B. Maunder	Name (Printed/Typed) Susan B. Maunder	Date 5/21/13
l'itle			
Senior Regulatory	Specialist		
Approved by (Signature)	/s/George MacDonell	Name (Printed/Typed)	Date SEP - 4 2010

Title FIELD MANAGER

SEP - 4 2013

Office CAPLSBAD FIELD OFFICE

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to APPROVAL FOR TWO YEARS conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Continued on page 2)

Roswell Controlled Water Basin

SEE ATTACHED FOR CONDITIONS OF APPROVAL

Approval Subject to General Requirements & Special Stipulations Attached

SEP 12

Drilling Plan ConocoPhillips Company Maljamar; Grayburg-San Andres

MCA Unit #514

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents				
Quaternary	Surface	Fresh Water				
Rustler	1000	Anhydrite				
Salado (top of salt)	1183	Salt				
Tansill	2222	Gas, Oil and Water				
Yates	2373	Gas, Oil and Water				
Seven Rivers	2739	Gas, Oil and Water				
Queen	3376	Gas, Oil and Water				
Grayburg	3769	Gas, Oil and Water				
Grayburg-6	4032	Gas, Oil and Water				
San Andres-7	4189	Gas, Oil and Water				
San Andres-9	4350	Gas, Oil and Water				
Total Depth	4550	200' below deepest estimated perforation				

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the ______5-1/2" production casing ______10' off bottom of TD ____ and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #514 (Date: 5/1/2013) Page 1 of 10

2. Proposed casing program:

Type	Hole Size	M	Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str	3	Safety Fac lated per Co Corporate C	nocoPhillips
Туре	(in)	From	То	(inches)	(lb/ft)	Gi	Collii	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	1025' – 1070'	8-5/8	24#	J-55	STC	2950	1370	244	1.50	4.40	3.37
Prod	7-7/8	0	4495' – 4540'	5-1/2	17#	J-55	LTC	5320	4910	247	2.25	3.16	2.14

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	1070	24	2950	1370	244000	8.5	6.24	2.90	9.5	10.9
Production Casing	4540	17	5320	4910	247000	10	2.25	2.08	3.20	3.78

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

MCA Unit #514 (Date: 5/1/2013) Page 2 of 10

Туре	Depth Wt MIY Col Jt Str Pipe Yield MW Burst Col Ten
Conductor .	85 65 35000 - 432966 432966
Surface Casing (8-5/8" 24# J-55 STC) Production Casing (5-1/2" 17# J-55 LTC)	1070 24 2950 1370 244000 381000 8.5 1.50 4.40 3.37 4540 17 5320 4910 247000 273000 10 2.25 3.16 2.14
Traduction desing (5-1/2 Tradiscretion)	4540 11 5520 4510 241000 215000 10 2.55 5.10 2.15
Safety Factors - ConocoPhillips Criteria	
	the surface casing is tested to 1500 psi (as per BLM Onshore Order 2 - 0. Requirements). ring the fracture stimulation where the maximum allowable working pressure
(MAWP) is the pressure that would fit ConocoPhillips Corporate Criteria for	
Surface Casing Test Pressure =	
Surface Rated Working Pressure (BOPE) =	
Field SVV =	
	Maximum Predicted Surface Pressure (MPSP) 'OR Maximum Allowable Surface Pressure (MASP) 10 Brust Butter (Consorted Uniform Design Endows Desi
Production Casing MAWP for the Fracture Stimulation ≈ API	24 Durist Rating / Corporate Minimum Burist Design Factor
Surface Casing Burst Safety Factor:	
Case #1: MPSP (MWhyd next section) =	
Case #2. MPSP (Field SW @ BullheadcsFG + 200 psi) =	
Case #3. MPSP (Kick Vol @ next section TD) =	
Case #4. MPSP (PPTD - GG) = Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	
MASP (MWhyd + Test Pressure) =	
Burst Safety Factor (Max. MPSP or MASP) =	
Production Casing Burst Safety Factor:	
Case #1. MPSP (MWhyd TD) =	= 4540 x 0.052 x 10 $=$ 2360.8
Case #4. MPSP (PPTD - GG) =	
Burst Safety Factor (Max. MPSP) =	
MAWP for the Fracture Stimulation (Corporate Criteria) =	= 5320 / <u>1.15</u> ≈ 4626
Collapse Safety Factors - ConocoPhillips Criteria	
The maximum collapse load on the Surface Casing occurs when the pres	
job. The maximum collapse load on the production casing occurs with the	
casing to surface, and therefore the external pressure profile on the production of the casing which we estimate to be 8.5 ppg gradient.	roduction casing should be equal to the pore pressure of the horizons on the
Surface Casing Collapse Safety Factor = API Collapse Ratin	ating / Cement Displacement during Cementing to Surface
	Rating / Maximum Predicted Surface Pressure 'OR' Cement Displacement during Cementing to Surface
Cement Displacement Fluid (FW) =	8.34 ppg
Surface Casing Collapse Safety Factor: Maximum Diff Lift Pressure =	= ((770 x 0.052 x 13.6) + (300) x 0.052 x 14.8) - 464 (= 311
Collapse Safety Factor =	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Production Casing Collapse Safety Factor:	
Maximum Diff Lift Pressure =	= [(1340 x 0.052 x 11.8) + (3200 x 0.052 x 14.5) - 1969] = 1266
Case #4. MPSP (PPTD-GG) =	= 4540 x 0.052 x 8.5 - 454 = 1553
Collapse Safety Factor =	= 4910 / 1553 = 3.16
Maximum Allowable Axial Load for Joint = API Joint Str Maximum Allowable Hook Load (Limited to 75% of 18g) i Maximum Allowable Overpull Margin - Maximum Allow Tensial Safety Factor = API Pipe Yiled 'OR' API Joint St	wable Hook Load - Bouyart Wt of the String Strength 'OR' Rig Max Load Rating / (Bouyant Wt of String + Minimum Overputi Required)
Rig Max Load (300,000 lbs) x 75% = Minimum Overpull Required =	225000 lbs
, intrinsical control of the form of the	
Surface Casing Tensial Strength Safety Factor:	
Air Wt =	
Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) =	
Max, Allowable Axial Load (Pipe Yield) =	
Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	
	17 4200
Max. Allowable Overpull Margin =	= 174286 - (25680 x 0.870)≈ 151938
Tensial Safety Factor =	= 174286 - (25680 x 0.970)≈ 151938
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor:	= 174266 - (25680 x 0.870) ≈ 151938 = 244000 / (22347 + 50000) ≈ 3.37
Tensial Safety Factor =	= 174286 - (25680 x 0.870) ≈ 151938 = 244000 / (22347 + 50000) ≈ 3.37 = 77180
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! =	= 174286 - (25680 x 0.870) ≈ 151938 = 244000 / (22347 + 50000) ≈ 3.37 = 77180 = 77180 x 0.847 = 65397
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	= 174286 - (25680 x 0.870) ≈ 151938 = 244000 / (22347 + 50000) ≈ 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 247000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Safet) = Max. Allowable Overpull Margin =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors = ConocoPhillips C	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Tensial Safety Factor = Compression Strength Safety Factors - ConocoPhillips C The maximum axial (compression) load for the well is where the surface of	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated.	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 ECriteria e casing is landed on the conductor coulsted to beer 60% of the load
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpuli Margin = Tensial Safety Factor = Compression Strength Safety Factors - ConocoPhillips (The maximum axial (compression) load for the well is where the surface with a support of a plate or landing ring. The surface casing is also calcubat not limited. Any other axial loads such as a snubbing unit or other wo	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 176429 - (66337 + 50000) = 2.14
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Orerpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated.	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 ECriteria e casing is funded on the conductor located to bee 60% of the load vould need to be added to the load.
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface with a support of a plate or landing ring. The surface casing is also calculated in the surface of the su	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 176429 - (66337 + 50000) = 2.14
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated to the surface of th	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (66337 + 50000) = 2.14 ECriteria e casing is landed on the conductor coulded to be added to the load vould need to be added to the load. kist Pipe Yield Reting / Maximum Predicted Load 3000 lbs
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum exial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface cising is also calculated in the compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial Vellhead Load = Compression Safety Factor Surf Casing Wt (Bouyant) ≈	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 Ecriteria e casing is tended on the conductor custed to beer 60% of the load vould need to be added to the load. kint Pipe Ylett Reting / Maximum Predicted Load 3000 bs
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface of within a support of a plate or landing ring. The surface desiring is also calculated to the surface of the sur	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 • Criteria • casing is funded on the conductor cudated to the load. voil direct to be added to the load.
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips C The maximum axial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface desing is also calculated in the deal. Any other axial loads such as a snubbing unit or other wo Compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial Wellhead Load = Compression Safety Factor Surf Casing Wt (Bouyant) ≈	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 ECriteria e casing is landed on the conductor cutsted to be added to the load vould need to be added to the load. ixial Pipe Yield Reting / Maximum Predicted Load 3000 lbs = (25680 x 0.870) = 22347 = (77180 x 0.847) = 65397 = 4540 x 6.5 = 29510
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors = ConocoPhillips (The maximum axial (compression) load for the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated in the surface of the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated in the surface of the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated in the surface of the well is where the surface of with a support of a plate or landing ring. The surface casing is also calculated to the well is where the surface of the well is where the s	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14 ECIteria e casing is funded on the conductor cutsted to beer 60% of the load vould need to be added to the load. voild need to be added to the load.
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Vield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors = ConocoPhillips (The maximum axial (compression) load for the well is where the surface with a support of a plate or landing ring. The surface desirg is also calcuted to the surface of the surfa	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 247000 / 1.40 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (66397 + 50000) = 2.14 ECriteria e casing is landed on the conductor cutsted to bear 50% of the load vould need to be added to the load. ktall Piper Yielt Reting / Maximum Predicted Load 3000] bs = (25680 x 0.870) = 22347 = (77180 x 0.847) = 65397 = 4540 x 6.5 = 29510 = 4540 x 0.052 x 6.55 x 0.7854 x 2.441 ^2 = 7236 = 3000 + 22347 + 65397 + 29510 + 7236 = 127491 = 432966 / 127491 = 3.40
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W = Max. Allowable Axial Load (Pipe Vield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpuil Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConocoPhillips (The maximum axial (compression) load for the well is where the surface with a support of a plate or landing ring. The surface casing is also calcubut not limited. Any other axial loads such as a snubbing unit or other wo Compression Safety Factor = API Axial Joint Strength Rating OR API Axia Wellhead Load = Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Mt (Air Wt) = Tubing Fluid Wt = Load on Conductor = Conductor Compression Safety Factor = Load on Surface Casing =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 176429 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14
Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air W! = Bouyant W! = Max. Allowable Axial Load (Pipe Vield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors = ConocoPhillips (The maximum axial (compression) load for the well is where the surface with a support of a plate or landing ring. The surface desirg is also calcubat not limited. Any other axial loads such as a snubbing unit or other wo Compression Safety Factor = API Axial Joint Strength Rating OPR API Axial Wellhead Load = Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Mix (Air Wt) = Tubing Will Wt = Load on Conductor = Conductor Compression Safety Factor =	= 174286 - (25680 x 0.870) = 151938 = 244000 / (22347 + 50000) = 3.37 = 77180 = 77180 x 0.847 = 65397 = 273000 / 1.40 = 195000 = 176429 = 176429 = 176429 - (77180 x 0.847) = 111032 = 247000 / (65397 + 50000) = 2.14

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

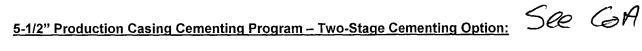
	Slurry	Inter Ft I	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	725' – 770'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	725' – 770'	1025' – 1070'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

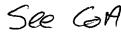
Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program - Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:


- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.


Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	50:50 Poz/C	Surface	3200'	11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4495' – 4540'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #514 (Date: 5/1/2013) Page 4 of 10

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing - Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,@3200

Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Sta	ge 1 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	Poz/C Co2 Resistant Cement	3200'	4495' – 4540'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Staç	ge 2 - Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss	2.29
							Excess = 120% or more if needed based on gauge hole volume	
Tail	Poz/C CO2 Resistant Cement	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole yolume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

MCA Unit #514 (Date: 5/1/2013) Page 5 of 10

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	pН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	300 – 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 500

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #514 (Date: 5/1/2013) Page 6 of 10

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

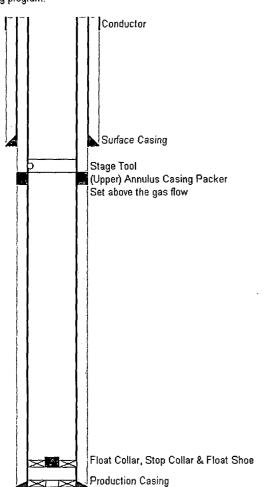
ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

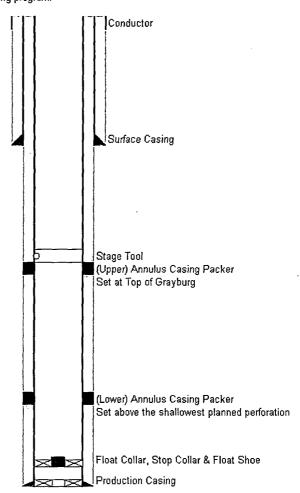
Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells begin in late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2 BOP and Choke Manifold Schematic 3M System
- Attachment # 3 Diagram of Choke Manifold Equipment

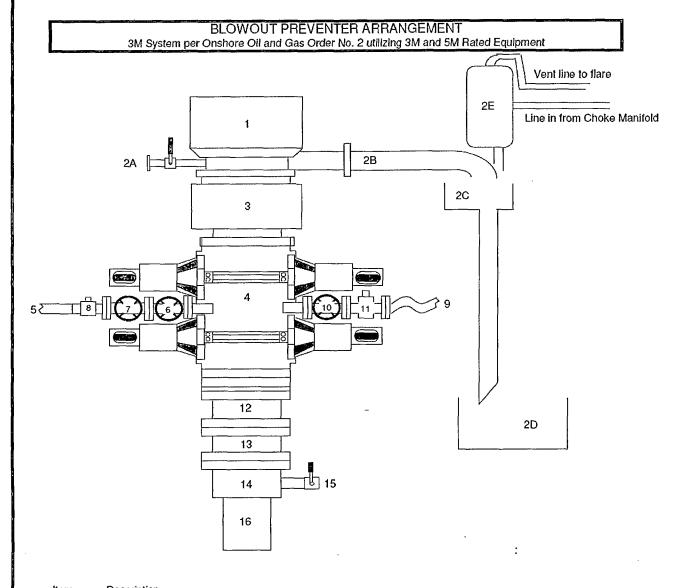

Contact Information:

Proposed 1 May 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647


MCA Unit #514 (Date: 5/1/2013) Page 7 of 10

Attachment # 1

Two-Stage Cementing (Alternative for Shallow Gas)
Provide contingency plan for using two-stage cementing for the production casing cement job if gas flow occurs during the drilling operations. See APD Drill Plan Section 3. Proposed cementing program.



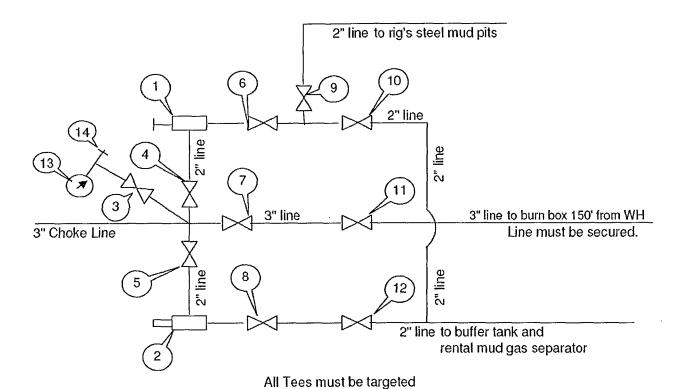
Two-Stage Cementing (Alternative for Oil / Water / Gas & Water Flow)
Provide contingency plan for using two-stage cementing for the
production casing cement job if oil or water flow occurs during
the drilling operations. See APD Drill Plan Section 3. Proposed
cementing program.

MCA Unit #514 (Date: 5/1/2013) Page 8 of 10

Attachment # 2

Description Item Rotating Head, 11" 1 2A Fill up Line and Valve 2B Flow Line (10") 2C Shale Shakers and Solids Settling Tank 2D Cuttings Bins for Zero Discharge 2E Rental Mud Gas Separator with vent line to flare and return line to mud system Annular BOP (11", 3M)
Double Ram (11", 3M, equipped with Blind Rams and Pipe Rams)
Kill Line (2" flexible hose, 3000 psi WP) 3 4 5 6 Kill Line Valve, Inner (3-1/8", 3000 psi WP) 7 Kill Line Valve, Outer (3-1/8", 3000 psi WP) 8 Kill Line Check Valve (2-1/16", 3000 psi WP 9 Choke Line (5M Stainless Steel Coflex Line, 3-1/8" 3M API Type 6B, 3000 psi WP) 10 Choke Line Valve, Inner (3-1/8", 3000 psi WP) Choke Line Valve, Outer, (Hydraulically operated, 3-1/8", 3000 psi WP) 11 12 Adapter Flange (11" 5M to 11" 3M) Spacer Spool (11", 5M) 13 14 Casing Head (11" 5M)

Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M


Submitted by: James Chen, Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company, 25-Sep-2012

15

Surface Casing

CHOKE MANIFOLD ARRANGEMENT

3M System per Onshore Oil and Gas Order No. 2 utilizing 3M and 5M Equipment

Item Description

- 1 Manual Adjustable Choke, 2-1/16", 3M
- 2 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by:

James Chen

Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company

Date: 21-March-2013

MCA Unit #514 (Date: 5/1/2013) Page 10 of 10

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 057210

Well: MCA Unit #514

Location: Sec. 27, T17S, R32E

Date: 05-01-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen

Drilling Engineer, ConocoPhillips Company

Phone (832) 486-2184 Cell (832) 768-1647

Date: 26 September 2012

Reliance Eliminator Choke & Kill

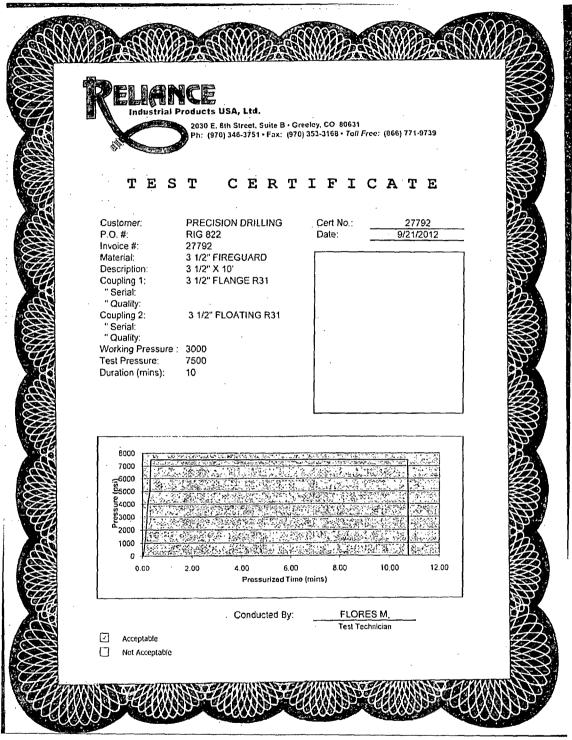
This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Non	n. ID	Nor	n OD	We	ight	Min Be	nd Radius	Max	WP
in.	mm.	ìņ.	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
.3	76.2	5.11	129.79	14.5	21.46	48	1219.2	5000	34.47
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.47

Fittings	•
RC4X5055	
RC3X5055	
DOAVEETE	


Flanges

R35 - 3-1/8 5000# API Type 6B R31 - 3-1/8 3000# API Type 6B **Hammer Unions**

All Union Configurations LP Threaded Connectio

Other

Graylock **Custom Ends**

