HOBBSOCD	· .					-
Form 3160-3 (March 2012)	•		. •	FC O! Expires	AT:	S-13-806
SET UNITED STATES DEPARTMENT OF THE RECEIVED BUREAU OF LAND MAN	INTERIOR	OCD Hobbs		5. Lease Serial No. NM LC 058		
APPLICATION FOR PERMIT TO	DRILL OF	REENTER		6. If Indian, Alloted N/A	e or inde Na	ne
la. Type of work: X DRILL REENT	ER			7. If Unit or CA Agr 1 01615 N		
lb. Type of Well: X Oil Well Gas Well Other	X Si	ngle Zone 🔲 Multip	ole Zone	8. Lease Name and MCA Unit		511 22
2. Name of Operator ConocoPhillips Company	69.	nain		9. API Well No. 30-025-	41	397
^{3a.} Address P.O. Box 51810 Midland, TX 79710-1810		(include area code) 88-6913		10. Field and Pool, or Maljamar; Gra	æ .	43329 1 Andres
4. Location of Well (Report location clearly and in accordance with an	y State requirem	ents.*)		11. Sec., T. R. M. or I		y or Area
At surface UL P, Sec. 22, T17S, R32E; 660' FSL &	1310' FEI			Sec. 22, T17S,	K32E	
At proposed prod. zone same as above 14. Distance in miles and direction from nearest town or post office*				12. County or Parish		State
approximately 5 miles SE of Maljamar, New Mex	ico	n		Lea County		JM
15. Distance from proposed* 660' location to nearest	16. No. of a	cres in lease	17. Spacin	g Unit dedicated to this	well	
property or lease line, ft. (Also to nearest drig, unit line, if any)	120		40 acro	es		
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. Approximately 500' 	19. Proposed 4300' 7	l Depth VD/MD	20. BLM/I ES 008	BIA Bond No. on file 85		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3987' GL	22. Approxim 11/15/	nate date work will star 2013	t*	23. Estimated duration 10 days	n -	
	24. Attac	hments				
The following, completed in accordance with the requirements of Onshor	e Oil and Gas	Order No.1, must be at	tached to thi	is form:	·····	
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System I SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	Item 20 above). 5. Operator certific	ation	ns unless covered by an prmation and/or plans as	_	·
25. Signature Susan B. Maunder		(Printed/Typed) in B. Maunder			Date 5-11	p-13
Title Senior Regulatory Specialist						
Approved by (Signature) /S/George MacDonell	Name	(Printed/Typed)			Date SEP -	4 2013
Title FIELD MANAGER	Office	CARLSBAD FI	ELD OFF			
Application approval does not warrant or certify that the applicant holds conduct operations thereon. Conditions of approval, if any, are attached.	legal or equit	able title to those right	-	ject lease which would e		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cri States any false, fictitious or fraudulent statements or representations as to	me for any pe any matter w	rson knowingly and w ithin its jurisdiction.	illfully to m	ake to any department o	or agency of th	e United
(Continued on page 2)				*(Inst	ructions of	n page 2)
· ·	ł			ell Controlled	Water E	Basin
SEE ATTACHED FOR		ogliol	/			

CONDITIONS OF APPROVAL

Approval Subject to General Requirements. & Special Stipulations Attached

SEP 1 2 2013 PM

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres</u>

MCA Unit #511

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth Contents FT TVD			
Quaternary	Surface	Fresh Water		
Rustler	849	Anhydrite		
Salado (top of salt)	1021	Salt		
Tansill	2048	Gas, Oil and Water		
Yates	2123	Gas, Oil and Water		
Seven Rivers	2455	Gas, Oil and Water		
Queen	3091	Gas, Oil and Water		
Grayburg	3531	Gas, Oil and Water		
Grayburg-6	3769	Gas, Oil and Water		
San Andres-7	3952	Gas, Oil and Water		
San Andres-9	4100	Gas, Oil and Water		
Total Depth	4300	200' below deepest estimated perforation		

All of the water bearing formations identified above will be protected by setting of the <u> $8-5/8^{\circ}$ </u> surface casing <u> $25^{\circ} - 70^{\circ}$ into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #511

(Date: 4/22/2013)

Page 1 of 10

2. Proposed casing program:

Туре	Hole Size		Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fa lated per Co Corporate (onocoPhillips
туре	(in)	From	То	(inches)	(lb/ft)	Gi	Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75 <u>'</u> BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	874' - 919'	8-5/8	24#	J-55	STC	2950	1370	244	1.55	3.35	3.53
Prod	7-7/8	0	4245' – 4290'	5-1/2	17#	J-55	LTC	5320	4910	247	2.38	3.81	2.21

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Surface Casing 919 24 2950 0 0 8.5 7.26 3.37 11.1 12.7 Surface Casing 919 24 2950 0 0 8.5 7.26 3.37 11.1 12.7	Туре	Depth	w t	MIY	Col	Jt Str	Drill Fluid.	Burs, t	Collaps e	Tensile-Dry	Tens-Bouy
	Surface Casing	919	24	2950	137 0	24400 0	8.5	7.26	3.37	11.1	12.7
	Production Casing	4290	17	5320	491	24700	10	2.38	2.20	3.39	4.00

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

ς

Type Conductor		35 65 35000	Jt Str Pipe Yield 432966 1370 244000 381000	AW Burst Col Ten - 8.5 1.55 - 3.35 - 4.5		
Surface Casing (8-5/8, 24# J-55 STC) Production Casing (5-1/2, 17# J-55 LTC)	3 429		1370 244000 381000 4910 247000 273000	0.5 1.35 3.33 1.35 10 2.38 1.3381 22		
Burst ConocoPhillips Required Loan The maximum internal (burst) load on the Surface	Casing occurs when the surface (n an	
The maximum internal (burst) load on the Product (MAVVP) is the pressure that would fit ConocoPh Surface C	lips Corporate Criteria for Minimum	Factors.	ximum allowable working pressu Predicted Pore Pressure at TD (P			
	ng Pressure (BOPE) = 300 Field SW = 5)Opsl IOppg	dicted Frac Gradient at Shoe (C			
Production Casing MAWP, for the F					n an	
Surface Casing Burst Safety Factor: Case #1 MPSP (M Case #2 MPSP (Field SW @ Bullhe		19 x 0.052 19 19 x 0.052	x 10 = = x 12.23	478 478 + 200 =	641 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	na servez († Generalista estervez († 1930) Generalista estervez († 1930)
Case #3 MPSP (IGck Vol C Case #4 M Case #3 & #4 Limited to MPSP	PSP (PPTD - GG) = 42		x 8.55 x 8.55 x 19.23	337.1 406 = '429'7 = 1478 - 0.2) = 929	1164	
MASP (MWhy Burst Safety Factor (Max	+ Test Pressure) = 14 9	19 x x 0.052	x 8.5 + 1 = 1.55	1500 = 1906		
Case #4 M	MPSP (MWhyd TD) = 42 PSP (PPTD - GG) = 42	20 🚬 x 📄 0.052 👘		2230.8 429 = 1478		
MAWP for the Fracture Stimulation (ctor (Max_MPSP) = 53 Corporate Criteria) = 53		= 2.38 ; = 4626 ;			
Collapse - ConocoPhillips Required I The maximum collapse load on the Surface Casim		e 1/3 evecuation to the nex	All and a setting depth, or decor	st depth of exposure (full evacuation		
The maximum collapse load on the Production Ca	sing occurs when cementing to sur acuation cases should be equal to	face, or 1/3 evacuation to th the pore pressure of the ho	e deepest depth of exposure; a rizons on the outside of the cas	nd ng which we assumed to be PPTD		
Production Casing Collapse Safety	acement Fluid (FW) = 8.	num Predicted Surface Pres	sure 'OR' Cement Displacement of Cement =Cement to Sur	during Cementing to Surface		
	Surface Cement Tail = 14		ement Lead = 11.8 Cement Tail = 14.5 Tail Cement = 3200	pg for the second second		
Surface Casing Collapse Safety Factor: Full Evacuation		n x :0.052	x, 4, 18.55	09		
		619 x 0.0 70 / 409	52. x 13.6) + (300 x 0.05	2 x 14.8)	399] = 270
1/3 Evacua Cementing	tion Diff Pressure = * + [(. Diff Lift Pressure = * ; [(.	PAGES	52 x 8.55 52 x 11.8 = 3.81) - (4290 / / 3) + (3200 x 0.05	x 0.052 x 2 x 14.5)	8.34)] = 1287 1860]] = 1221
	in 1919 Martin Constant				tina and a state of the state o	
Tensial Strength - ConocoPhillips Re The meximum exiel (tension) loed occurs if cash Meximum Atowable Axial Load						
Maximum Allowable Hook Load	I for Joint = API Joint Strength Ratin I (Limited to 75% of Rig Max Load) largin = Maximum Allowable Hook L	Maximum Allowable Axial I	oad Carl And And And			
Tensial Safety Factor = API Pir	e Yield 'OR' API Joint Strength 'OR' 300,000 lbs) x 75% = 4 22500	Rig Max Load Rating / (Bou		rpull Required)		
Surface Casing Tensial Strength Safety F	actor:					
Max. Allowable Axial	Bouyant Wi = 22050 Load (Pipe Yield) = 22050	x 0.870 0 /: 1.40	=19194 =272143			
Max: Allowable Max: Allowable Hook Load (Limited to 75%) Max: Allowable Hook Load (Limited to 75%)	of,Rig Max Load) = 55,17428 e Overpull Margin = 54,17428	16 16 - (4, 22056		155092		
Tens Production Casing Tensial Strength Safet	y Factor:	10 - / . (. · 19194	+ • • • • • • • • • • • • • • • • • • •	3.53		
Max. Allowable Axial Max. 'Allowable'		0.00	= 61796 = 195000 = 176429			
Max: Allowable Hook Load (Limited to 75%) Max: Allowable Tang	e Overpull Margin =17642			114633 2.21		
				和特殊多复		
Compression Strength - ConocoPhilli The maximum axial (compression) load for the we with a support of a plate or landing ring. The sur	I is where the surface casing is lai ace casing is also calculated to be	r 60% of the load				
but not limited "Any other exiel loads such as a si Compression Safety Factor – API Axial Joint Stree	igth Rating 'OR' API Axia! Pipe Yield		Load			
Conductor & Surface Compression Safety Surf Cas	Factor ng Wt (Bouvant) =	22056 × 0.0				
Prod Cas	ng Wt (Bouyant) = 429 bing Wt (Air Wt) = 429 Tubing Fluid Wt = 429	72930 x 0.8				
Conductor Compressi	ad on Conductor = 300 on Safety Factor = 43296	0 ⁻²⁴⁵ +3-19194 6 / 118712	+ 61796 + = 3.65		- 118712	
Loadion Surface Casing Compressi	NSurface Casing =, 11871 on Safety Factor = 24400	0 / 71227				د ۲age ک

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

•	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	574' – 619'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	574' – 619'	874' – 919'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		ervals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lea d	50:50 Poz/C	Surface	3200'	.11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4245' – 4290'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #511

(Date: 4/22/2013)

Page 4 of 10

5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option:

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

1

Sta	ge 1 - Slurry		tervals Ft MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	Poz/C CO2 Resistant Cement	3200'	4245' – 4290'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Stag	ge 2 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lea d	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 120% or more if needed based on gauge hole volume	2.29
Tail	Poz/C C02 Resistant Cement	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	pН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	300 - 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 - 11	0 – 500

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #511

(Date: 4/22/2013)

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - o The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

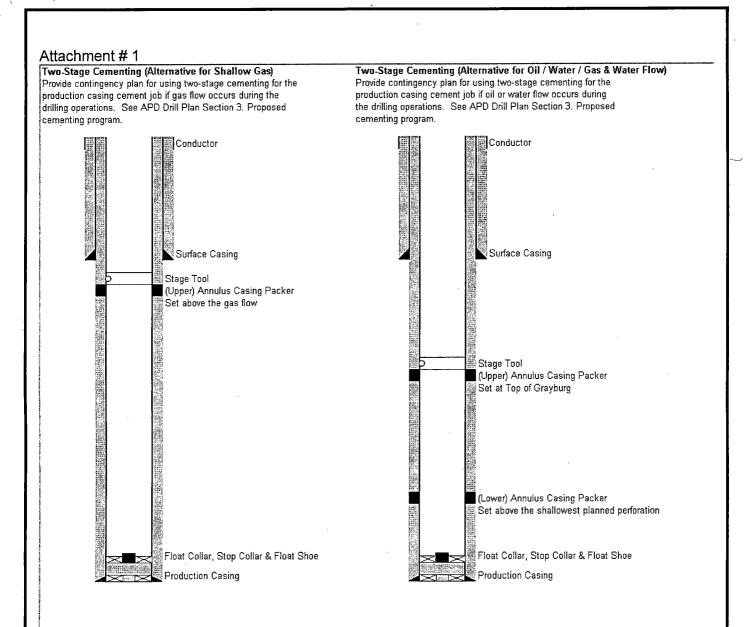
ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is in late 2013 after receiving approval of the APD.

Attachments:

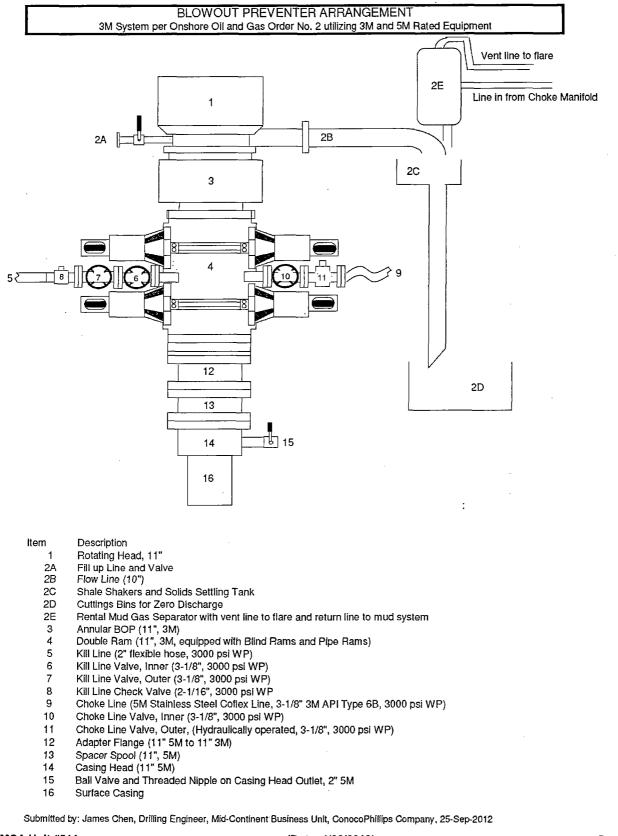
- Attachment # 1Two-stage Cementing Schematic
- Attachment # 2......BOP and Choke Manifold Schematic 3M System
- Attachment # 3...... Diagram of Choke Manifold Equipment


Contact Information:

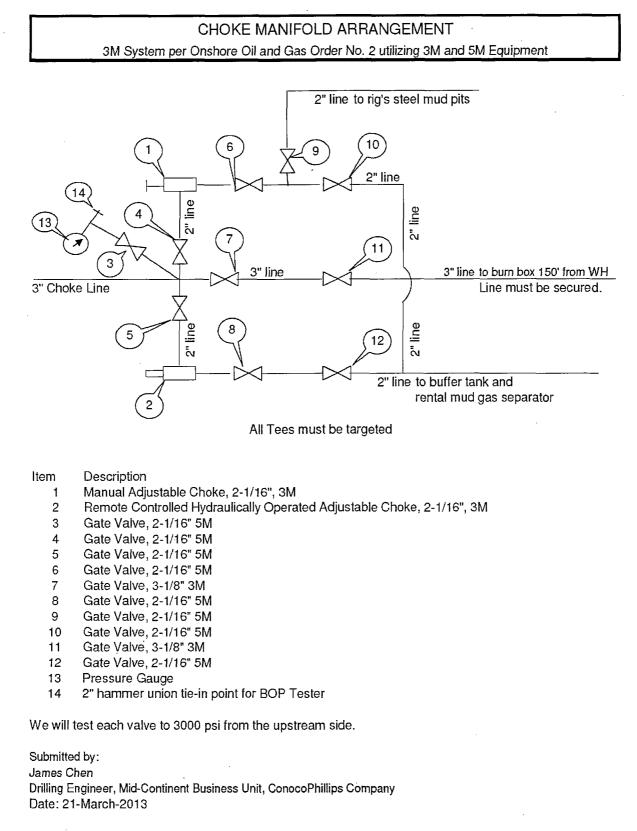
Proposed 22 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

MCA Unit #511

(Date: 4/22/2013)


Page 7 of 10

MCA Unit #511


(Date: 4/22/2013)

Page 8 of 10

MCA Unit #511

(Date: 4/22/2013)

Page 10 of 10

Request for Variance

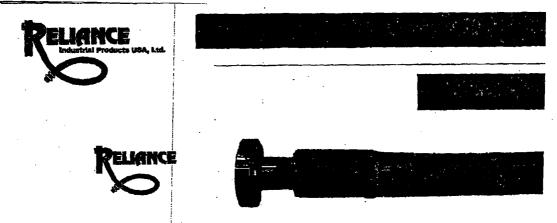
ConocoPhillips Company

Lease Number: USA LC 058395B Well: MCA Unit #511 Location: Sec. 22, T17S, R32E Date: 04-21-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:


The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

	in.	mm.		1		Weight		Min Bend Radius			Max WP	
	3 -1/2	76.2 88.9	5.	n. 11 79	mm 129.79 147.06	ib/ft 14.5 20.14	kg/m 21.46 29.80	in. 48 54	mm. 1219.2 1371.6	psi 5000 5000	Мра 34.4 34.4	
2 - 2 - 2 - 2 		5				:				· · ·		
Fittings				langes			nmer Uni		Othe			
RC4X5055 RC3X5055 RC4X5575				5000# API 3000# API		All Un	lon Configur	ations L.	P Threaded C Grayloc Custom E	ж		

