Form 3160 - 3	000	Amended	10-22-	13 FOR	M APPROV	FD
(March 2012)		HOBBS O	CD CD	I OMB	3 No. 1004-01 October 31, 1	37
UNITED		_		5. Lease Serial No.		2017
DEPARTMENT O BUREAU OF LAI			2013	NMLC 0294		
				6. If Indian, Allote N/A	e or Tribe	Name
		RECEN	IED	7. If Unit or CA Ag	maamant N	ma and Na
la. Type of work: X DRILL	REENTER	ų x—		N/A		ame and ino.
lb. Type of Well: X Oil Well Gas Well C	Other	Single Zone X Multi	ple Zone	8. Lease Name and Ruby Federal		3865
2. Name of Operator	171781	->		9. API Well No.		•
ConocoPhillips Company	21781			30-025- 4	-150	2
3a. Address 600 N. Dairy Ashford Rd., Off P10-4-4054		No. (include area code))206-5281		10. Field and Pool, or Maljamar; Ye	-	· //: .
4. Location of Well (Report location clearly and in accorded)	ance with any State requir	ements.*)		11. Sec., T. R. M. or	Blk. and Su	rvey or Area
At surface UL E; Sec 17, T17S, R32E; 185	, ,			Sec. 17, T17S		·
At proposed prod. zone UL E; Sec 17, T17S, R						
4. Distance in miles and direction from nearest town or post	-			12. County or Parish		13. State
Approximately 3 miles south of Maljaman				Lea County		NM
15. Distance from proposed* About 330'	16. No. of	acres in lease	17. Spacin	g Unit dedicated to this	s well	
location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	1601	.9	40 acro	es		
18. Distance from proposed location* Approx.	19. Propos	sed Depth	20. BLM/	BIA Bond No. on file		
to nearest well, drilling, completed, applied for, on this lease, ft. 650'	6952'	TVD/6986' MD	ES 008	35		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 4009' GL		ximate date work will sta 1/2014	rt*	23. Estimated duration 7 days	on	
		achments		<u> </u>		
he following, completed in accordance with the requirement			ttached to thi	s form:		
1. Well plat certified by a registered surveyor.				s unless covered by ar	n existing b	ond on file (see
 A Drilling Plan. A Surface Use Plan (if the location is on National Fore 	et System I ande the	5. Operator certific	ation			
SUPO must be filed with the appropriate Forest Service C				rmation and/or plans a	is may be re	equired by the
25. Signature Signal Pomaura		e <i>(Printed/Typed)</i> san B. Maunder			Date 10	22/13
Title				·····	· · · /	
Senior Regulatory Specialist						
pproved by (Signature) /S/ STEPHEN J.		e (Printed/Typed)			Date	
itle EIELD MANAGER	Offic	e			LNOV-	1 5 2013
IIIe FIELD MANAGER		CARLSBA	D FIELD (OFFICE		
pplication approval does not warrant or certify that the app	licant holds legalorequ	uitable title to those right	-		-	· •
onduct operations thereon. Conditions of approval, if any, are attached.			AP	PROVAL FOF	R TWO	YEARS
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m tates any false, fictitious or fraudulent statements or represen	hake it a crime for any natter	person knowingly and w within its jurisdiction.	villfully to ma	ke to any department of	or agency o	f the United
(Continued on page 2)				*(Inst	ructions	on page 2)
	nl		Rosv	vell Controlle	d Wat	er Basin
	06-KD 11/22					
	, 1/11/2	113				
· · · · · · · · · · · · · · · · · · ·	611 score	T (~
EE ATTACHED FOR		•				05
						/

CONDITIONS OF APPROVAL

÷.

ê

Ĵ

Approval Subject to General Requirements & Special Stipulations Attached

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres, Yeso (west)</u>

Ruby Federal #29

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Top Depths FT MD	Contents
Quaternary	Surface	Surface	Fresh Water
Rustler	738	738	Anhydrite
Salado (top of salt)	917	917	Salt
Tansill (base of salt)	1922	1922	Gas, Oil and Water
Yates	2103	2103	Gas, Oil and Water
Seven Rivers	2390	2391	Gas, Oil and Water
Queen	3033	3042	Gas, Oil and Water
Grayburg	3466	3481	Gas, Oil and Water
San Andres	3821	3840	Gas, Oil and Water
Glorieta	5304	5338	Gas, Oil and Water
Paddock	5385	5419	Gas, Oil and Water
Blinebry	5781	5815	Gas, Oil and Water
Tubb	6752	6786	Gas, Oil and Water
Deepest estimated perforation	6752	6786	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	6952	6986	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

Ruby Federal #29

(Date: 10/22/2013)

2. Proposed casing program:

Tur	Hole Size	M	Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str	Calcu	Safety Fa lated per Co Corporate 0	onocoPhillips
Тур	(in)	From	То	(inches)	(lb/ft)		COM	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Con	1 20	0	40' - 85' (30' - 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Con	20	0	40' - 85' (30' - 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Sur	12-1/4	0	~705 '808'BH	8-5/8	24#	J-55	STC	2950	1370	244	1.59	3.81	3.65
Proc	7-7/8	0	6931' – 6976'	5-1/2	17#	L-80	LTC	7740	6290	338	2.13	2.52	1.99

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	808	24	2950	1370	244000	8.5	8.26	3.84	12.6	14.5
Production Casing	6976	17	7740	6290	338000	10	2.13	1.73	2.85	3.36

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Concert imperedente en	terra fer finninnann Deeligin Factore	
	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Surface Casing (8-5/8" 24# J-55 STC)	65	i I	MIY 65 35000	Col -	Jt Str	Pipe Yie 4329			Col	Ten -					
Production Casing (5-1/2" 17# L-80 LTC)	808 6976		24 2950 17 7740		0 244000 0 338000	3810 3970									
Burst – ConocoPhillips Required Load Cases															
The maximum internal (burst) load on the Surface Casing occurs when th	e surface ca	sing is te	ested to 1500) psi (as p	er BLM Ons	hore Order	2 - U. Require	ements).							
The maximum internal (burst) load on the Production Casing occurs during (MAWP) is the pressure that would fit ConocoPhillips Corporate Criteria for			ion where th	e maximu	m allowable	working pr	essure								
Surface Casing Test Pressure =	1500	psi			cted Pore Pr				5 ppg						
Surface Rated Working Pressure (80PE) ≈ Field SW =	3000	psi ppg		Predicte	d Frac Grad	ient at Sho	e (CSFG) =	19.2	Заррд						
Surface Casing Burst Safety Factor = API Burst Rating / Ma Production Casing MAWP for the Fracture Stimulation = API	ximum Predic	ted Surf				n Allowabi	e Surface Pre	asure (i	MASP)						
Surface Casing Burst Safety Factor:															
Case #1. MPSP (MWhyd next section) =	808 808		0.052 0.052	x	10 19.23	=	420 420		200	=	680				
Case #2. MPSP (Field SW @ Bullhead _{CSFG} + 200 psi) = Case #3. MPSP (Kick Vol @ next section TD) =	6976		0.052	x x	8.55	_	420 616.8	+	200 357	=	588 2128				
Case #4. MPSP (PPTD - GG) =	6976		0.052	x	8.55	-	697.6	=	2404						
Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) = MASP (MWhyd + Test Pressure) =	808 808		0.052 0.052	x (x	19.23 8.5	+ +	0.2 1500)=	816 1857						
Burst Safety Factor (Max. MPSP or MASP) =	2950		1857	=	1.5 9										
Production Casing Burst Safety Factor: Case #1, MPSP (MWhvd TD) =	6976	x	0.052	x	10	=	3627.52								
Case #4. MPSP (PPTD - GG) =	6976	x	0.052	х	8.55	-	697.6	=	2404						
Burst Safety Factor (Max. MPSP) = MAWP for the Fracture Stimulation (Corporate Criteria) =	7740 7740	1	3628	= ≃	2.13 6730										
Collapse – ConocoPhillips Required Load Cases															
The maximum collapse load on the Surface Casing occurs when cementin The maximum collapse load on the Production Casing occurs when cemen								of expos	ure (full er	acuation).					
therefore, the external pressure profile for the evacuation cases should b	e equal to the	pore pr	essure of the	e horizon:	on the outs	ide of the o	asing which	we ass	umed to be	PPTD.					
Surface Casing Collapse Safety Factor ≕ API Collapse Ratin Production Casing Collapse Safety Factor ≕ API Collapse Ra	-				-	-		mention	to Surface						
Cement Displacement Fluid (FW) =	8.34	ppg		Top of C	ement =	Cement to S	Surface	mentary	10 20 1020						
Surface Cement Lead = Surface Cement Tail =	13.6			nd Cernent rod Cerne	F	11.	8 ppg 4 ppg								
Top of Surface Tail Cement =	300			rod Tail C	F	520								*	
Surface Casing Collapse Safety Factor:															
Full Evacuation Diff Pressure =	808	x	0.052	x	8.55	=	359								
Cementing Diff Lift Pressure = Collapse Safety Factor =	[(1370	508 /	x 359	0.052	x 3.81	13.6) + (300	x	0.052	x	14.8) -	350]	= 24(
Production Casing Collapse Safety Factor:															
1/3 Evacuation Diff Pressure = Cementing Diff Lift Pressure =	1([(6976 1776		0.052 0.052	x x	8.55 1 1.8) - () + (6976 5200	/ x	3 0.052	x x	0.052 16.4	x)-	8.34)] 3025]	
Collapse Safety Factor =	6290	1	2499		2.52		<i>,</i> · (0200	~	0.0DL	~	10.4	,	3023]	24.
<u>Tensial Strength – ConocoPhillips Required Load Cases</u>	.														
The maximum axial (tension) load occurs if casing were to get stuck and p	-	-		Minimum A	xial Design	Factor									
The maximum axial (tension) bad bccurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Strey	Yield Strengt ngth Rating / (h Rating Corporat	/ Corporate I e Minimum A:	xial Desig	-	Factor									
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Pipe Yield = API Pipe Maximum Altowable Axial Load for Joint = API Joint Stre Maximum Altowable Hook Load (Limited to 75% of Rig M	Yield Strengt ngth Rating / (ax Load) = Mi	h Rating Corporat Eximum /	/ Corporate I e Minimum A: Allowable Ás	xial Desig cial Load	-	Factor									
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hoek Load (Limited to 75% of Rig M Maximum Allowable Overput Margin = Maximum Allowab Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre	Yield Strengt ngth Rating / (ax Load) = Ma ble Hook Load ngth 'OR' Rig	h Rating Corporat Eximum / - Bouye Max Loe	/ Corporate I e Minimum A: Allowable Ax ant Wt of the	xial Desig cial Load String	n Factor)verpul Requi	ired)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altwabile Axial Load for Pipe Yield = API Pipe Maximum Altwabile Axial Load for Joint - API Joint Stre Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Tensial) Safety Factor - API Pipe Yield 'OR' API Joint Stre Rig Max Load (2000,000 bs) x 75% =	Yield Strengt ngth Rating / (ax Load) = Mi ole Hook Load ngth 'OR' Rig 225000	h Rating Corporat Eximum / - Bouye Max Los Ibs	/ Corporate I e Minimum A: Allowable Ax ant Wt of the	xial Desig cial Load String	n Factor		Iverpul Requi	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Overpoil Margin = Maximum Allowal Maximum Allowable Overpoil Margin = Maximum Allowal Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300,000 bs) x 75% = Minimum Overpuil Required =	Yield Strengt ngth Rating / (ax Load) = Ma ble Hook Load ngth 'OR' Rig	h Rating Corporat Eximum / - Bouye Max Los Ibs	/ Corporate I e Minimum A: Allowable Ax ant Wt of the	xial Desig cial Load String	n Factor		Iverpul Requi	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altwabile Axial Load for Pipe Yield = API Pipe Maximum Altwabile Axial Load for Joint - API Joint Stre Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Tensial) Safety Factor - API Pipe Yield 'OR' API Joint Stre Rig Max Load (2000,000 bs) x 75% =	Yield Strengt ngth Rating / (ax Load) = Mi ole Hook Load ngth 'OR' Rig 225000	h Rating Corporat Eximum / - Bouye Max Los Ibs	/ Corporate I e Minimum A: Allowable Ax ant Wt of the	xial Desig cial Load String	n Factor		Iverpul Requi	ired)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Overpul Margin = Maximum Allowabl Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	Yieki Strengt ngth Rating / 6 ax Load) = M Ne Mook Load ngth 'OR' Rig 225000 50000 19392 19392	h Rating Corporat aximum / - Bouys Max Los bs bs bs	/ Corporate I e Minimum A: Allowable Ax ant Wt of the ad Rating / (E 0.870	xial Desig kial Load String Jouyant V	n Factor /t of String → 16875		Iverpul Requi	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (2000 00 bs)x 75% = Rig Max Load (300 00 bs)x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dirth =	Yieki Strengt ngth Rating / d ax Load) = M ble Mook Load ngth 'OR' Rig 225000 50000	h Rating Corporat aximum / - Bouys Max Los Ibs Ibs	/ Corporate e Minimum A: Allowable Ab ant Wi of the ad Rating / (E	xial Desig cial Load String Bouyant V = = =	n Factor /t of String →		iverpul Requi	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Overpul Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant 'Wt = Max. Allowable Axia! Load (Pipe Yield) = Max. Allowable Axia! Load (Daint) = Max. Allowable Axia! Load (Joint) =	Yieki Strengt ngth Rating / 4 ax Load) = Mi je Hook Load ngth 'OR' Rig 225000 50000 19392 19392 381000 244000 174286	h Rating Corporat aximum / - Bouye Max Los bs bs bs x / / /	/ Corporate I e Minimum A: Allowable Ax and Wt of the ad Rating / (E 0.870 1.40 1.40	xial Desig cial Load String Jouyant V = = = =	n Factor /t of String → 16875 272143 174286	Minimum C		ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (2000 bs)x 75% = Nig Max Load (3000 bs)x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor =	Yieki Strengt ngth Rating / 4 ax Load) = Mi je Hook Load ngth 'OR' Rig 225000 50000 19392 19392 19392 381000 244000 174286	h Rating Corporat eximum / - Bouys Max Los bs bs bs /	/ Corporate I e Minimum A: Allowable Ax ant Wt of the ad Rating / (E 0.870 1.40	xial Desig cial Load String Bouyant V = = =	n Factor /t of String → 16875 272143		iverpul Requi 157410 3.65	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Overpul Margin = Maximum Allowabl Tensial Safety Factor = API Pipe Yield 'O'R API Joint Stree Rig Max Load (300 (200 lbs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (200 (201 tint) = Max. Allowable Axial Load (201 cint) = Max. Allowable Axial Load (201 cint) = Max. Allowable Axial Load (201 cint) = Max. Allowable Overpull Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor:	Yiekl Strengt ngth Rating / / ax Load) = M le Hook Load 2250001 50000 19392 19392 381000 244000 174286 244000	h Rating Corporat aximum / - Bouys Max Los bs bs bs - X / / /	/ Corporate e Minimum A: Allowable Aca Int W1 of the ad Rating / (f 0.870 1.40 1.40 1.9392	xial Desig cial Load String Bouyant V E = = = x	n Factor At of String + 16875 272143 174286 0.870	Minimum C	157410	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (2000 bs)x 75% = Nig Max Load (3000 bs)x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor =	Yield Strengt ngth Rating // d ax Load) = Mile Hook Load ngth 'OR' Rig 225000 50000 19392 381000 244000 174286 174286	h Rating Corporat aximum / - Bouys Max Los bs bs bs - X / / /	/ Corporate e Minimum A: Allowable Aca Int W1 of the ad Rating / (f 0.870 1.40 1.40 1.9392	xial Desig cial Load String Bouyant V = = = x +	n Factor At of String + 16875 272143 174286 0.870	Minimum C	157410	ired)							
The maximum axial (tension) load bocurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Overput Margin = Maximum Allowable Tensial Sefety Factor = API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 hs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Coerput Margin = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Bouyant Wt =	Yieki Strengt ngth Rating // asc Load) = Mu bie Hook Load ngth Orr Rig 225000 50000 19392 381000 244000 174286 244000 174286 244000 114592 118592 397000	h Rating Corporat aximum / - Bouys Max Los bs bs bs / / / / / / / / / / / / / / /	/ Corporate te Minimum A: Allowable As and Rating / (fr 0.870 1.40 19392 16875 0.847 1.40	xial Desig cial Load String Bouyant V = = = x + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571	Minimum C	157410	red }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Pipe Yield = API Pipe Maximum Altowable Axial Load for John Strei Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Overput Margin = Maximum Altowable Tensial Safety Factor = API Pipe Yield 'OR' API John Stre Rig Max Load (30000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	Yield Strengt ngth Rating / / ax Load) = Mi be Hook Load ngth 'OR' Rig 225000] 50000 19392 19392 381000 244000 174286 244000 174286 244000	h Rating Corporat aximum / - Bouya Max Loa Ibs Ibs X / / / / (/ (X	/ Corporate I e Minimum A: Allowable Ax allowable Ax and Rating / (E 0.870 1.40 1.40 1.40 1.40 1.392 16875 	xial Desig cial Load String Bouyant V = = = x + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486	Minimum C	157410	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Stologo bs)x 75% = Nig Max Load (300,000 bs)x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor : Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Dint) =	Yieki Strengt ngth Rating // ax Load) = Mu hile Hook Load ngth Orr Rig 225000 50000 19392 19392 381000 244000 174286 244000 174286 244000 174286 244000 174286 244000 38000 225000	h Rating Corporat extinum J - Bouye Max Loo bbs bbs - (/ (/ / / / / / / / / / / / / / /	/ Corporate I e Minimum A: Allowable A: and W of the sd Rating / (f 0.870 1.40 1.40 1.40 19392 16875 0.847 1.40 1.40 1.40 1.40 1.40	xial Desig cial Load String Bouyant V = = x + + = x x x	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Pipe Yield = API Pipe Maximum Altowable Axial Load for Joint = API Joint Stee Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Overput Margin = Maximum Altowable Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Strengt ngth Rating // ax Load) = Mil be Hook Load 19392 19392 19392 19392 19392 381000 244000 174286 244000 118592 118592 337000 338000 225000	h Rating Corporat aximum / - Bouye Max Loz bbs bbs / / / / / / / / / / / / / / / /	/ Corporate I e Minimum A: Allowable As and Rating / (E 0.870 1.40 1.40 1.40 19392 16875 0.847 1.40 1.40	xial Desig cial Load String Bouyant V = = = x + + = =	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429	Minimum C) =) =	157410 3.65	ired }							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Overpul Margin = Maximum Allowable Rig Max Lead (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max Allowable Axial Load (Dipe Yield) =	Yieki Strengt ngth Rating // ax Load) = Mi Ne Hook Load 19392 1940 1	h Rating Corporat extinum J - Bouye Max Loo bbs bbs - (/ (/ / / / / / / / / / / / / / / /	/ Corporate I e Minimum A: Allowable A: and W of the sd Rating / (f 0.870 1.40 1.40 1.40 19392 16875 0.847 1.40 1.40 1.40 1.40 1.40	xial Desig cial Load String Bouyant V = = x + + = x x x	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	ired)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Stologo bs)x 75% = Nig Max Load (300,000 bs)x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor : Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Dint) = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Dint) =	Yieki Strengt ngth Rating // ax Load) = Mil bie Hook Load ngth Or Rig 225000 50000 19392 381000 244000 174286 174286 244000 118592 118592 337000 338000 225000 300000 8265	h Rating Corporat L- Bouye Max Loe bbs - (/ (/ , / / / / / / / / / /	/ Corporate e Minimum A: Allowable A: and W of the od Rating / (E 0.870 1.40	xial Desig cial Load String Bouyant V = = x + + = x x x	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Dipe Yield – API Pipe Maximum Altowable Axial Load for John Strei Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Overput Margin = Maximum Altowable Rig Max Lead (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength — ConocoPhillips Required Load CC The maximum axial (compression) load for the well is where the surface ca with a support of a plate or landing ring. The surface casing is also calcula	Yield Strengt right Rating // ax right Rating // ax right Retaing // ax right Retaing // ax right Retaing // ax 19392 19392 19392 19392 19392 225000 225000 19392 19392 24000 174286 174286 244000 18592 37000 38000 225000 300000 225000 300000 225000 300000	h Rating Corporat aximum / - Bouye Max Loe bbs bbs / / / / / / / / / / / / / / / /	/ Corporate I e Minimum A: Allowable A: Allowable A: allowable A: allowable A: allowable A: allowable A: 1:40 1:40 1:40 1:40 1:40 1:40 1:40 1:4	xial Desig cial Load String Bouyant V = = x + + = x x x	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altwabile Axial Load for Pipe Yield = API Pipe Maximum Altwabile Axial Load for Joint = API Joint Stre Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Axial Load (200,000 bs) x 75% - Rig Max Load (200,000 bs) x 75% - Minimum Overpuß Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diorty) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Cipit) = Max. Allowable Axial Load (Diort) = Max. Allowable Axial Load	Yieki Strengt ngth Rating // ax Load) = Mill hile Hook Load ngth Orr Rig 225000 50000 19392 19392 381000 244000 174286 174286 244000 174286 244000 174286 174286 244000 174286 244000 174286 244000 244000 174286 244000 245000 307000 338000 225000 300000 8000 8000 8000 8000 8000 800	h Rating Corporat aximum / - Bouye Max Los bs bs X / - / / / / / / / / / / / / / / / / / /	/ Corporate e Minimum A: Allowable A: ani W of the sd Rating / (E 0.870 1.40	xial Desig dial Load Bouyant V = = = + + + + + + + + + + + + + + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Dipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Dirolo bas) x75% = Nig Max Load (300,000 bas) x75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dirit) = Max. Allowable Axial Load (Joint) = Max. Allo	Yieki Strengt ngth Rating // ax Load) = Mill hile Hook Load ngth Orr Rig 225000 50000 19392 19392 381000 244000 174286 174286 244000 174286 244000 174286 174286 244000 174286 244000 174286 244000 244000 174286 244000 245000 307000 338000 225000 300000 8000 8000 8000 8000 8000 800	h Rating Corporat aximum / - Bouye Max Loz bas bas bas / / / / / / / / / / / / / / / / / / /	/ Corporate e Minimum A: Allowable A: ani W of the sd Rating / (E 0.870 1.40	xial Desig dial Load Bouyant V = = = + + + + + + + + + + + + + + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847	Minimum C) =) =	157410 3.65 124514	red)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altwabile Axial Load for Pipe Yield - API Pipe Maximum Altwabile Axial Load for John Stre Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Hook Load (Limited to 75% of Rig M Maximum Altwabile Axial Load (200,000 bs) x 75% - Minimum Overpuß Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowabile Axial Load (20int) = Max. Allowabile	Yieki Strengt ngth Rating // ax Load) = Multi- lie Hook Load ngth Ork Rig 225000 50000 19392 19392 381000 244000 174286 174286 174286 244000 174286 174286 244000 338000 255000 338000 338000 338000 300000 38000 3000000 30000000 300000000	h Rating Corporal eximum / - Bouye Max Los bas bas x / (/ (x / (x / / / (x / (/ (1 on the 1% of this added to ing / Maxs	/ Corporate I e Minimum A: Allowable A: anil Wi of the so Rating / (E 0.870 1.4	xial Desig dial Load String = = = - - - + + + + - - - - - - - - - -	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847 50000	Minimum C) =) =) =	157410 3.65 124514)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Pipe Yield - API Pipe Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Overput Margin = Maximum Altowable Rig Max Load (300,000 bs) x 75% - Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Dippe Yield) = Max. Allowable Axial Load (Dippe Yield) = Max. Allowable Axial Load (Dippe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dippe Yield) = Max. Allowable Axial Load (Joint) = Max	Yieki Strengt ngth Rating // ax Load) = Mois lake Hook Load ngth OR Rig 225000 19392 19392 19392 381000 244000 174286 174286 174286 244000 118592 118592 397000 338000 225000 300000 225000 300000 225000 300000 225000 300000 1000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 225000 300000 225000 300000 225000 300000 225000 225000 300000 225000 300000 225000 225000 300000 225000 225000 300000 225000 20000	h Reting Corporal - Bouyt Max Loc bs bs x / / / / / / / / / / / / / / / / / / /	/ Corporate I e Minimum A: Allowable A: and Win of the ad Rating / (E 0.870 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	xial Desig iai Load String Souyant V = = = + + + + + + + + + + + + + + + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847 50000 0.847 50000	Minimum C) =) =) =) = 16875	157410 3.65 124514)							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Dipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Pactor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300 00 bs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Dipipe Yield) = Max. Allowable Axial Load (Di	Yieki Strengt ngth Rating // ax Load) = Multi- lie Hook Load ngth Ork Rig 225000 50000 19392 19392 381000 244000 174286 174286 174286 244000 118592 118592 338000 225000 300000 asces sing is landed ted to bear 60 d need to be here for d need to be here for d need to bear 60 d need to bear	h Rating Corporal eximum / - Bouye Max Los bas bas x / (/ (x / (x / / / (x / (/ (1 on the 1% of this added to ing / Maxs	/ Corporate I e Minimum A: Allowable A: anil Wi of the so Rating / (E 0.870 1.4	xial Desig dial Load String Story = = = + + + + + + + + + + + + + + + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847 50000 0.847 50000) =) =	Minimum C) =) =) =	157410 3.65 124514	,							
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Altowable Axial Load for Pipe Yield – API Pipe Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Hook Load (Limited to 75% of Rig M Maximum Altowable Overput Margin = Maximum Altowable Tensial Safety Factor = API Pipe Yield 'OF' API Joint Stre Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial	Yieki Strengt ngth Rating // ax Load) = Mai be Hook Load 19392 19392 19392 381000 244000 114286 174286 174286 174286 174286 244000 338000 225000 338000 225000 300000 asces sing is landed ted to be at a dired to be at a di a dired to be at	h Rating Corporal aximum / - Bouye Max Los bs bs x / / / / (x / / / / / / / / / / / / / / / / / / /	/ Corporate I E Minimum A: Allowable A: ani Wo of the sd Rating / (E 0.870 1.40 1.40 19392 16875 0.847 1.40 1.655 0.0552	xial Desig iai Load String Souyant V = = = + + + + + + + + + + + + + + + +	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847 50000 0.847 50000) =) = 45344 6.55	Minimum C) =) =) =) = 16875 100486 ×	157410 3.65 124514 1.99	× [<u>2.441</u>		11119				
The maximum axial (tension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Dipe Yield = API Pipe Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Hook Load (Limited to 75% of Rig M Maximum Allowable Pactor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300 00 bs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Dipipe Yield) = Max. Allowable Axial Load (Di	Yieki Strengt ngth Rating // ax Load) = Multi- lie Hook Load ngth Ork Rig 225000 50000 19392 19392 381000 244000 174286 174286 174286 244000 118592 118592 338000 225000 300000 asces sing is landed ted to bear 60 d need to be here for d need to be here for d need to bear 60 d need to bear	h Retring Corporal eximum / - Bouye Max Loc bus bus x / / / / / (x / (x / / / - ((/ (x / / / (/ (/ (/ (/ (/ (/ (/ (/ (/ Corporate I e Minimum A: Allowable A: anil Wi of the so Rating / (E 0.870 1.4	xial Desig iai Load String Story = = - - - - - - - - - - - - - - - - -	n Factor At of String + 16875 272143 174286 0.870 50000 100486 283571 241429 0.847 50000 0.847 50000) =) =	Minimum C) =) =) =) =) = 16875 100486	157410 3.65 124514 1.99		<u>2.441</u> 11119		1111 9 176825				

•

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	463' – 508'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	463' 508'	763' – 808'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	6931' – 6976'	16.4	400	428	 0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam . Excess = 100% or more if needed based on gauge hole volume 	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Ruby Federal #29

5-1/2" Production Casing & Cementing Program – TXI/LW Cementing Option for Grayburg-San Andres:

ConocoPhillips Company respectfully requests the options to our cementing program. This option will only be implemented in the cementing operation of wells requesting for co-mingling after approval and authorization by all agencies have been obtained. The intention for the alternative option to the cementing program for the Production Casing is to:

- Accommodate the additional frac'ing and stimulation of the Grayburg-San Andres by placement of the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300 .	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6931' – 6976'	13.2	800	1120	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Spacer: 20 bbls Fresh Water

.

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. <u>Proposed Mud System:</u>

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 — 11	500 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 750

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

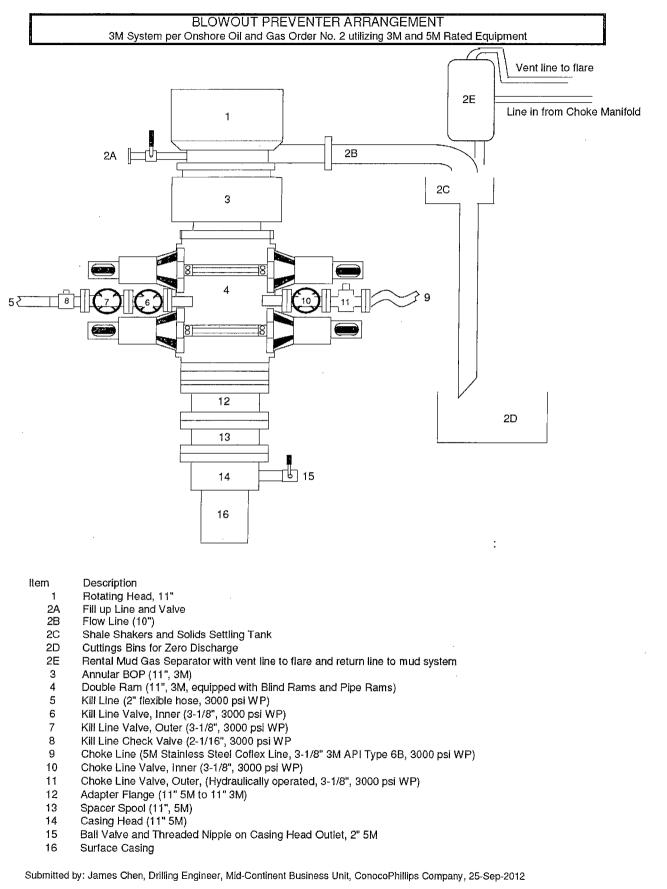
- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - o The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

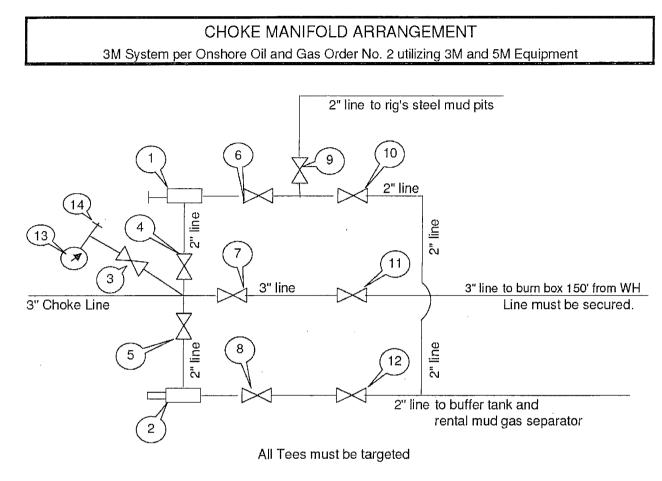
Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.


Attachments:

- Attachment # 1...... BOP and Choke Manifold Schematic 3M System
- Attachment # 2...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 22 October 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647



Ruby Federal #29

Attachment # 2

<u>ب</u> ک

Item Description


- 1 Manual Adjustable Choke, 2-1/16", 3M
- 2 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Proposed Directional Well Plan

ConocoPhillips MCBU

Buckeye Ruby Federal Ruby Federal 29

Ruby Federal 29

Plan: Plan Design

Standard Planning Report - Geographic

30 September, 2013

Planning Report - Geographic

Database:		Central Plannir	0		Local Co	-ordinate Refe	rence:	Well Ruby Fede	ral 29	
Company:		phillips MCB	U		TVD Refe	erence:	•	RKB @ 4022.0u	isft (PD 822)	
^p rojèct:	Bucke	-			MD Refe	rence:		RKB @ 4022.0u	isft (PD 822)	
Site:	Ruby	Federal			North Re	ference:	:	Grid		
Vell:		Federal 29			Survey C	alculation Met	thod:	Minimum Curva	ture	
Nellbore:	Ruby	Federal 29								
Design:	Plan D	Design	ana mining and a second of	un ta ca -t chear c con a da	1		······	an Francisco a compositivo de la compos		an aig a thail a sharen an adhaidh a
Project	Buckey	e, Lea County	. <u>NM</u>						······································	
Map System:	US State	e Plane 1927 (I	Exact solution)		System Da	atum:	M	ean Sea Level		
Geo Datum:	NAD 192	7 (NADCON C	CONUS)							
Map Zone:	New Me	kico East 3001					U:	sing geodetic sca	ale factor	
Site	Ruby F	ederal, New M	exico, Southea	ast						
Site Position:			North	ing:	666	6,097.48 usft	Latitude:			32° 49' 48.040
From:	Lat/	Long	Eastir	-	666	5,763.63 usft	Longitude:			103° 47' 25.559
Position Uncerta		-		ladius:		. 8 "	Grid Converg	jence:		0.29
Well	Ruby Fe	ederal 29, Devi	ated						·····	
Well Position	+N/-S			orthing:	- `'	668,536,32	⊥i⊥ti ⊥i ⊥ Pusft Lat	itude:		32° 50' 12.220
Went Osition	+E/-W			isting:		665,813.30		igitude:		103° 47' 36.550 '
Position Uncerta				ellhead Elevatio	0.0.1	000,010.00		ound Level:		4,009.0 us
	нцу			enneau Lievani	011.		010	una Level.		4,000.0 45
Wellbore	-	ederal 29					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Wellbore	Ruby F		Sampl	ê Date	Declina	ation			Field S	in an
	Ruby F	ederal 29 del Name	Sample	ê Date	Declina (°)		Dip A	-		Strength 1T)
Wellbore	Ruby F	del Name	Sampl		Declini (°)		Dip A (')		ıT)
Wellbore	Ruby F		Sampl	ë Date 9/30/2013				-		
Wellbore Magnetics	Ruby F	del Name BGGM2012	Sampl)		ıT)
Wellbore Magnetics Design	Ruby F Mo	del Name BGGM2012	Sampl)		ıT)
Wellbore	Ruby F Mo	del Name BGGM2012	Sampl	9/30/2013		7.56		60.59		ıT)
Wellbore Magnetics Design Audit Notes: Version:	Ruby F Mo	del Name BGGM2012 sign		9/30/2013 •	(°)	7.56	() 60.59	(1	ıT)
Wellbore Magnetics Design Audit Notes: Version:	Ruby F Mo	del Name BGGM2012 sign	Phase	9/30/2013 •	(°)	7.56 Tie +E	(* On Depth:) 60.59	(r 	ıT)
Wellbore Magnetics Design Audit Notes: Version:	Ruby F Mo	del Name BGGM2012 sign	Phase Phase	9/30/2013 •	(°) ROTOTYPE +N/-S	7.56 Tie +E (u;	(* On Depth: /-W) 60,59 Dire	(1 	ıT)
Wellbore Magnetics Design Audit Notes:	Ruby F Mo	del Name BGGM2012 sign	Phase Phase lepth From (TV (usft)	9/30/2013 •	(°) ROTOTYPE +N/-S (usft)	7.56 Tie +E (u;	(* On Depth: /-W sft)) 60,59 Dire	(1 0.0 ction *)	י ד ו די
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	Ruby F Mo	del Name BGGM2012 sign	Phase Phase lepth From (TV (usft)	9/30/2013 •	(°) ROTOTYPE +N/-S (usft)	7.56 Tie +E (u	(* On Depth: /-W sft)) 60,59 Dire	(1 0.0 ction *)	י ד ו (דו
Wellbore Magnetics Design Audit Notes: Vertical Section: Plan Sections Measured	Ruby F Mo	del Name BGGM2012 sign	Phase lepth From (TV (usft) 0.0 Vertical	9/30/2013 •	(°) ROTOTYPE +N/-S (usft)	7.56 Tie +E (u;	(* On Depth: /-W sft) .0) 60.59 Dire (17	(1 0.0 ction *)	י ד ו די
Wellbore Magnetics Design Audit Notes: Vertical Section: Plan Sections Measured	Ruby F Mo Plan De	del Name BGGM2012 ssign D	Phase lepth From (TV (usft) 0.0	9/30/2013 e: PF /D)	(°) ROTOTYPE +N/-S (usft) 0.0	7.56 Tie +E (u 0 Dogleg	On Depth: /-W sft) .0 Build) 60.59 Dire <u>(</u> 17) Turn	(1 0.0 ction °) 9.60	י ד ו די
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft)	Ruby F Mo Plan De 1	del Name BGGM2012 sign D Azimuth (°)	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft)	9/30/2013 e: PF /D) +N/-S (usft)	(°) ROTOTYPE +Ń/-S (usft) 0.0 +E/-W (usft)	7.56 Tie +E (u 0 Dogleg Rate (*/100usft)	On Depth: /-W sft) .0 Build Rate (°/100usft)) 60.59 Dire (17t Turn Rate (°/100usft)	(1 0.0 ction ") 9.60 TFO (°)	1 1) 48,695
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft) 0.0	Ruby F Mo Plan De 1	del Name BGGM2012 sign D Azimuth (°) 0.00	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0	9/30/2013 e: PF /D) +N/-S (usft) 0.0	(°) ROTOTYPE +Ŵ/-\$ (usft) 0.0 +E/-W (usft) 0.0	7.56 Tie +E (u 0 Dogleg Rate (*/100usft)	Con Depth: /-W sft) .0 Build Rate (*/100usft) 0.00) 60.59 Dire (174 Turn Rate (°/100usft) 0.00	(t 0.0 ction ") 9.60 TFO (°) 0.00	1 1) 48,695
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft) 0.0 1,922.0	Ruby F Mo Plan De 1 1 	del Name BGGM2012 esign D Azimuth (°) 0.00 0.00	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 1,922.0	9/30/2013 e: PF /D) +N/-S (usft) 0.0 0.0	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0	7.56 Tie +E (u 0 Dogleg Rate (*/100usft) 0.00 0.00	Con Depth: /-W sft) .0 Build Rate (°/100usft) 0.00 0.00	60.59 60.59 Dire (17 Turn Rate (°/100usft) 0.00 0.00	(t 0.0 ction ") 9.60 TFO (°) 0.00 0.00 0.00	11) 48,695
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft) 0.0 1,922.0 2,532.9	Ruby F Mo Plan De 1 1 	del Name BGGM2012 esign D Azimuth (°) 0.00 0.00 179.60	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 1,922.0 2,530.3	9/30/2013 e: PF /D) +N/-S (usft) 0.0 0.0 -48.7	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.3	7.56 Tie +E (u 0 Dogleg Rate (*/100usft) 0.00 0.00 1.50	Con Depth: /-W sft) .0 Build Rate (*/100usft) 0,00 0,00 1.50	60.59 60.59 Dire (17 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	(t 0.0 ction °) 9.60 TFO (°) 0.00 0.00 179.60	11) 48,695
Weilbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft) 0.0 1,922.0 2,532.9 4,808.4	Ruby F Mo Plan De 1 1 	del Name BGGM2012 esign D Azimuth (°) 0.00 0.00 179.60 179.60	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 1,922.0 2,530.3 4,776.7	9/30/2013 e: PF /D) +N/-S (usft) 0.0 0.0 -48.7 -411.1	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.3 2.9	7.56 Tie +E (u 0 Dogleg Rate (*/100usft) 0.00 1.50 0.00	Con Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00) 60.59 Dire (17 Turn Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00	(t 0.0 ction °) 9.60 TFO (°) 0.00 0.00 179.60 0.00	11) 48,695
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth I (usft) 0.0 1,922.0 2,532.9	Ruby F Mo Plan De 1 1 	del Name BGGM2012 esign D Azimuth (°) 0.00 0.00 179.60	Phase lepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 1,922.0 2,530.3	9/30/2013 e: PF /D) +N/-S (usft) 0.0 0.0 -48.7	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.3	7.56 Tie +E (u 0 Dogleg Rate (*/100usft) 0.00 0.00 1.50	Con Depth: /-W sft) .0 Build Rate (*/100usft) 0,00 0,00 1.50	60.59 60.59 Dire (17 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	(t 0.0 ction °) 9.60 TFO (°) 0.00 0.00 179.60 0.00	1T) 48,695

•

.

ς.

•

Planning Report - Geographic

Database:	EDM Central Planning	Local Co-ordinate Reference:	Well Ruby Federal 29	,
Company:	ConocoPhillips MCBU	TVD Reference:	RKB @ 4022.0usft (PD 822)	1
Project:	Buckeye	MD Reference:	RKB @ 4022.0usft (PD 822)	
Site:	Ruby Federal	North Reference:	Grid	t
Well:	Ruby Federal 29	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Ruby Federal 29		х. 1	
Design:	Plan Design		:	1

Planned Survey	ĺ	Planned	Survèy	
----------------	---	---------	--------	--

٠

۰. ·

/leasured Depth (usft)	nclination (°)	Ažimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
(usit)	. ()			(usic)	(usit)	(usit)	(usit)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
85.0	0.00	0.00	85.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
Conductor			•				•		
100.0	0.00	0.00	100.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
200.0	0.00	0.00	200.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
300.0	0.00	0.00	300.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
400.0	0.00	0.00	400.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
500.0	0.00	0.00	500.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
600.0	0.00	0.00	600.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	.103° 47' 36.5
700.0	0.00	0.00	700.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
738.0	0.00	0.00	738.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
Rustler									
800.0	0.00	0.00	800.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
808.0	0.00	0.00	808.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
Surface								000 501 40 000 1	
900.0	0.00	0.00	900.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
917.0	0.00	0.00	917.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
Salado							005 040 00	001 501 40 000 11	1008 (7) 00 5
1,000.0	0.00	0.00	1,000.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,100.0	0.00	0.00	1,100.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,200.0	0.00	0.00	1,200.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,300.0	0.00	0.00	1,300.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,400.0	0.00	0.00	1,400.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,500.0	0.00	0.00	1,500.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,600.0	0.00	0.00	1,600.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,700.0	0.00	0.00	1,700.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,800.0	0.00	0.00	1,800.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,900.0	0.00	0.00	1,900.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
1,922.0	0.00	0.00	1,922.0	0.0	0.0	668,536.32	665,813.30	32° 50' 12.220 N	103° 47' 36.5
Tansill	4 47	170.00	2 000 0	0.8	0.0	660 E2E E2	CCE 913 31	20° 50' 40 040 N	4029 471 20 51
2,000.0	1.17	179.60	2,000.0	-0.8	0.0	668,535.52	665,813.31	32° 50' 12.212 N	103° 47' 36.5
2,100.0	2.67	179.60	2,099.9	-4.1 -4.3	0.0 0.0	668,532.17 668,532.03	665,813.33 665,813.33	32° 50' 12,179 N	103° 47' 36.5
2,103.1	2.72	179.60	2,103.0	-4.5	0.0	000,002.00	003,013.33	32° 50' 12.178 N	103° 47' 36.5
Yates 2,200.0	4.17	179.60	2,199.8	-10.1	0.1	668,526.21	665,813.37	32° 50' 12.120 N	103° 47' 36.55
2,200.0	5.67	179.60	2,199.8	-18.7	0.1	668,517.63	665,813.43	32° 50' 12.035 N	103° 47' 36.55
2,300.0	7.04	179.60	2,299.4	-28.8	0.1	668,507.54	665,813.50	32° 50' 11.935 N	103° 47' 36.54
Seven Rive			2,000.0	20.0	0.2	000,001.04	000,010.00	SE 00 11.000 H	100 77 00.0-
2,400.0	7,17	179.60	2,398.8	-29.9	0.2	668,506.45	665,813.51	32° 50' 11.924 N	103° 47' 36.54
2,500.0	8.67	179.60	2,497.8	-43.6	0.2	668,492.67	665,813.61	32° 50' 11.788 N	103° 47' 36.54
2,532.9	9.16	179.60	2,530.3	-48.7	0.3	668,487.58	665,813.64	32° 50' 11.738 N	103° 47' 36.54
2,600.0	9,16	179.60	2,596.5	-59.4	0.4	668,476.89	665,813.72	32° 50' 11.632 N	103° 47' 36.54
2,700.0	9.16	179.60	2,695.3	-75.4	0.5	668,460.97	665,813.83	32° 50' 11.474 N	103° 47' 36.54
2,800.0	9.16	179.60	2,794.0	-91.3	0.6	668,445.04	665,813.94	32° 50' 11.317 N	103° 47' 36.54
2,900.0	9.16	179.60	2,892.7	-107.2	0.7	668,429.12	665,814.05	32° 50' 11.159 N	103° 47' 36.54
3,000.0	9.16	179.60	2,991.4	-123.1	0.9	668,413.20	665,814.16	32° 50' 11.002 N	103° 47' 36.54
3,042.1	9.16	179.60	3,033.0	-129.8	0.9	668,406,49	665,814.21	32° 50' 10.935 N	103° 47' 36.54
Queen			,			,	. ,		
3,100.0	9.16	179.60	3,090.2	-139.1	1.0	668,397.27	665,814.27	32° 50' 10,844 N	103° 47' 36.54
3,200.0	9.16	179.60	3,188.9	-155.0	1.1	668,381.35	665,814.38	32° 50' 10.687 N	103° 47' 36.54
3,300.0	9.16	179.60	3,287.6	-170.9	1.2	668,365.43	665,814.49	32° 50' 10.529 N	103° 47' 36.54
3,400.0	9.16	179.60	3,386.3	-186.8	1.3	668,349.50	665,814.60	32° 50' 10.371 N	103° 47' 36.54

COMPASS 5000.1 Build 61

Planning Report - Geographic

Database:	EDM Central Planning	Local Co-ordinate Reference:	Well Ruby Federal 29	î
Company:	ConocoPhillips MCBU	TVD Reference:	RKB @ 4022.0usft (PD 822)	1
Project:	Buckeye	MD Reference:	RKB @ 4022.0usft (PD 822)	11
Site:	Ruby Federal	North Reference:	Grid	
Well:	Ruby Federal 29	Survey Calculation Method:	Minimum Curvature	1.
Wellbore:	Ruby Federal 29	. <i>1</i>	1	¢
Design:	Plan Design		,	:
· · · ·	and the second	na n	աստանական մինչպես նախագահը։ Հայաստանական ուրերապեսը ուրերացրությունները կանտուներությունները։ Հայաստանական ուրերապեսը ուրերացրությունները կանտուներությունները։	
Planned Survey	and a second and a s	and a second a second A second a s		

easured Depth (úsft)	Inclination (°)	Azimuth (°)	Vérticál Depth (ušft)	+N/-Š (usft)	+Ė/-W (usft)	Map Northing (usft)	Màp Éasting (usft)	Latitude	Longitude
3,480.7	9,16	179.60	3,466.0	-199.7	1.4	668,336.65	665,814.69	32° 50' 10,244 N	103° 47' 36.54
		179.00	3,400.0	-199.7	1.4	000,000.00	000,014.09	JZ JU 10,244 N	105 47 50.5
Grayburg	9,16	179.60	3,485.1	-202.8	1.4	668,333.58	665,814.71	32° 50' 10.214 N	103° 47' 36.5
3,500.0	9.16	179.60	3,583.8	-202.8 -218.7	1.4	668,317.66	665,814.83	32° 50' 10.056 N	103° 47' 36.5
3,600.0 3,700.0	9.16	179.60	3,585.5	-234.6	1.5	668,301.73	665,814.94	32° 50' 9.899 N	103° 47' 36.5
3,700.0	9.16	179.60	3,882.5	-234.0	1.0	668,285.81	665,815.05	32° 50' 9.741 N	103° 47' 36.5
3,800.0 3,840.3	9.16	179.60	3,821.0	-256.9	1.7	668,279.40	665,815.09	32° 50' 9.678 N	103° 47' 36.5
		175.00	3,021.0	-200.0	1.0	000,270.40	000,010.00	02 00 0.070 1	100 47 00.0
San Andr 3,900.0	es 9.16	179.60	3,880.0	-266.4	1.9	668,269.89	665,815.16	32° 50' 9.584 N	103° 47' 36.5
3,900.0 4,000.0	9.16 9.16	179.60	3,880.0	-288.4	2.0	668,253.96	665,815.27	32° 50' 9.426 N	103° 47' 36.5
4,000.0		179.60	4,077.4	-202.4 -298.3	2.0	668,238.04	665,815.38	32° 50' 9.268 N	103° 47' 36.5
	9.16	179.60	4,077.4	-290.3	2.1	668,222.12	665,815.49	32° 50' 9.111 N	103° 47' 36.5
4,200.0	9.16			-314.2	2.2	668,206.19	665,815.60	32° 50' 8.953 N	103° 47' 36.5
4,300.0	9.16	179.60 179.60	4,274.8	-330.1	· 2.3	668,190.27	665,815.71	32° 50' 8.796 N	103° 47' 36.5
4,400.0	9.16		4,373.6						103 47 36.5 103° 47' 36.5
4,500.0	9.16	179.60 179.60	4,472.3 4,571.0	-362.0 -377.9	2.5 2.6	668,174.35 668,158.42	665,815.82 665,815.93	32° 50' 8.638 N 32° 50' 8.481 N	103° 47' 36.5 103° 47' 36.5
4,600.0	9.16			-377.9 -393.8	2.8			32° 50' 8.323 N	103 47 36.5 103° 47' 36.5
4,700.0	9.16	179.60 1 79.60	4,669.7	-393.0 -409.8	2.7	668,142.50 668,126.58	665,816.05 665,816.16	32° 50' 8.165 N	103 47 36.5 103° 47' 36.5
4,800.0	9.16		4,768.5	-409.8 -411.1	2.9	668,125.25	665,816,17	32° 50' 8.152 N	103° 47' 36.5
4,808.4	9.16	179.60	4,776.7	-411.1	3.0	668,111.74		32° 50' 8.019 N	103 47 36.5 103° 47' 36.5
4,900.0	7.79	179.60	4,867.4		3.0		665,816.26		
5,000.0	6.29	179.60	4,966.6	-436.9 -446.5		668,099.49	665,816.35 665,816.41	32° 50' 7.897 N 32° 50' 7.802 N	103° 47' 36.5 103° 47' 36.5
5,100.0	4.79	179.60	5,066.1	-446.5 -453.6	3.1 3.2	668,089.84 668,082.80	665,816.46	32° 50' 7.802 N 32° 50' 7.732 N	103 47 36.5 103° 47' 36.5
5,200.0	3.29	179.60	5,165.9 5,265.8			•	•	32° 50' 7.688 N	103 47 36.5 103° 47' 36.5
5,300.0	1.79	179.60	,	-458.0 -459.0	3.2 3.2	668,078.37	665,816.49	32° 50' 7.678 N	103 47 36.5 103° 47' 36.5
5,338.2	1.22	179.60	5,304.0	-459.0	3.2	668,077.36	665,816.50	32 30 7.070 N	103 47 36.54
Glorieta									
5,400.0	0.29	179.60	5,365.8	-459.8	3.2	668,076.55	665,816.50	32° 50' 7.670 N	103° 47' 36.5
5,419.2	0.00	0.00	5,385.0	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
Paddock									
5,500.0	0.00	0.00	5,465.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.5
5,600.0	0.00	0.00	5,565.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
5,700.0	0.00	0.00	5,665.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
5,800.0	0.00	0.00	5,765.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
5,815.2	0.00	0,00	5,781.0	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
Blinebry									
5,900.0	0.00	0.00	5,865.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,000.0	0.00	0.00	5,965.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,100.0	0.00	0.00	6,065.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,200.0	0.00	0.00	6,165.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,300.0	0.00	0.00	6,265.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,400.0	0.00	0.00	6,365.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,500.0	0.00	0.00	6,465.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,600.0	0.00	0.00	6,565.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,700.0	0.00	0.00	6,665.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,786.2	0.00	0.00	6,752.0	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
Tubb									
6,800.0	0.00	0.00	6,765.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,900.0	0.00	0.00	6,865.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
6,976.0	0.00	0.00	6,941.8	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
Production 6,986.2	n 0.00	0.00	6,952.0	-459.8	3.2	668,076.51	665,816.51	32° 50' 7.670 N	103° 47' 36.54
TD									

Planning Report - Geographic

Database:		entral Planning			1 · · · ·	rdinate Reference:		uby Federa		
Company:		Phillips MCBU			TVD Refere		, -) 4022.0usf		
Project:	Buckey				MD Referen) 4022.0usf	t (PD 822)	
Site:	Ruby F				North Refe		Grid		_	
Well:		ederal 29			Survey Cal	culation Method:	i Minimi	um Curvatur	e	
Wellbore:		ederal 29			1					
Design:	Plan De	esign			<u></u>				Silan Silation and State State	الباد والاثناء وذير والألاب سيكاليكان سات مذاع
Design Targets	and a second				·····					
Target Name								•		
- hit/miss tar - Shape	rget Dip Ai (°)		. TVD (usft)	+N/-S (usft)	+E/-Ŵ (usft)	Northing (usft)	Easting (usft)	Lati	tude	Longitude
Ruby Federal 29 - plan hits ta - Circle (rac	arget center	0.00 0.0	00 5,385.0	-459.8	3.2	668,076.51	665,816.5	1 32°	50' 7.670 N	103° 47' 36.540
Casing Points	· · · · · · · · ·					nanan lanuatakana na adamatakana san 1	••••••••••••••••••••••••••••••••••••••	· · · · · ·		
	Measured Depth (usft)	Vertical Depth (usft)			Name			Casing Diameter ('')	Hole Diàméter (")	
··· ···· ·	85.0	the second second second	5.0 Conductor		Name				2	
								. 8-5/8	12-1/	
	808.0									
	6,976.0) 6,941	.8 Production					5-1/2	7-7/	D
Formations		•				•• •• •				· · · · · · · · · · · · · · · · · · ·
	Measured Depth (usft)	Vertical Depth (usft)		Nàme		Litholog	iy.	Dip (°)	Dip Direction (°)	
	738.0	738.0	Rustler			·	<u> </u>	0.00		
	917.0	917.0	Salado					0.00		
	1,922.0		Tansill					0.00		
	2,103.1	2,103.0	Yates					0.00		
	2,391.2	2,390.0	Seven Rivers					0.00		
	3,042.1	3,033.0	Queen					0.00		
	3,480.7	3,466.0	Grayburg				•	0.00		
	3,840.3	3,821.0	San Andres					0.00		
	5,338.2		Glorieta					0.00		
	5,419.2		Paddock					0.00		
	5,815.2		Blinebry					0.00		
			Tubb					0.00		
	6,786.2	6,752.0								
	6,986.2	6,952.0	U					0.00		

-

Request for Variance

ConocoPhillips Company

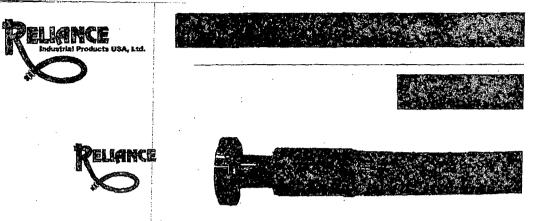
Lease Number: NM LC 029405B Well: Ruby Federal #29 Location: Sec. 17, T17S, R32E Date: 8/4/2013

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

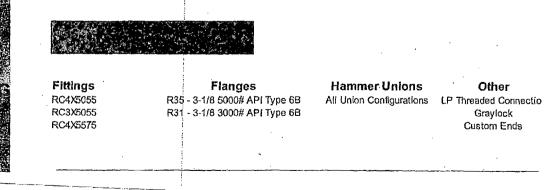

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

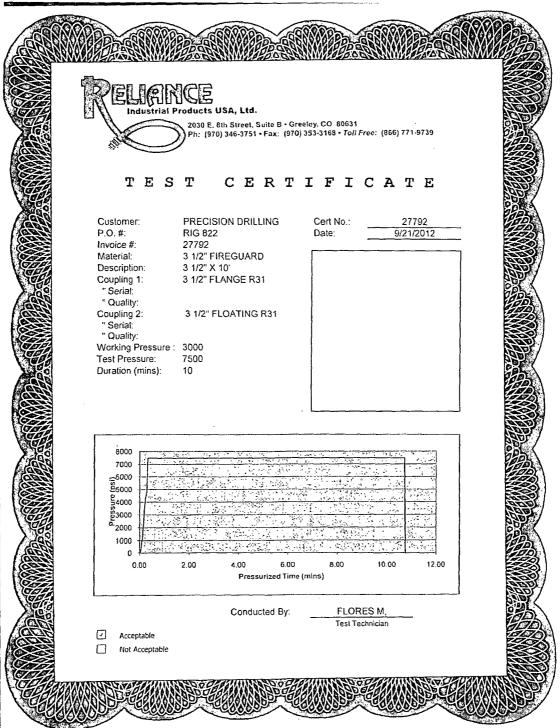
Contact Information:

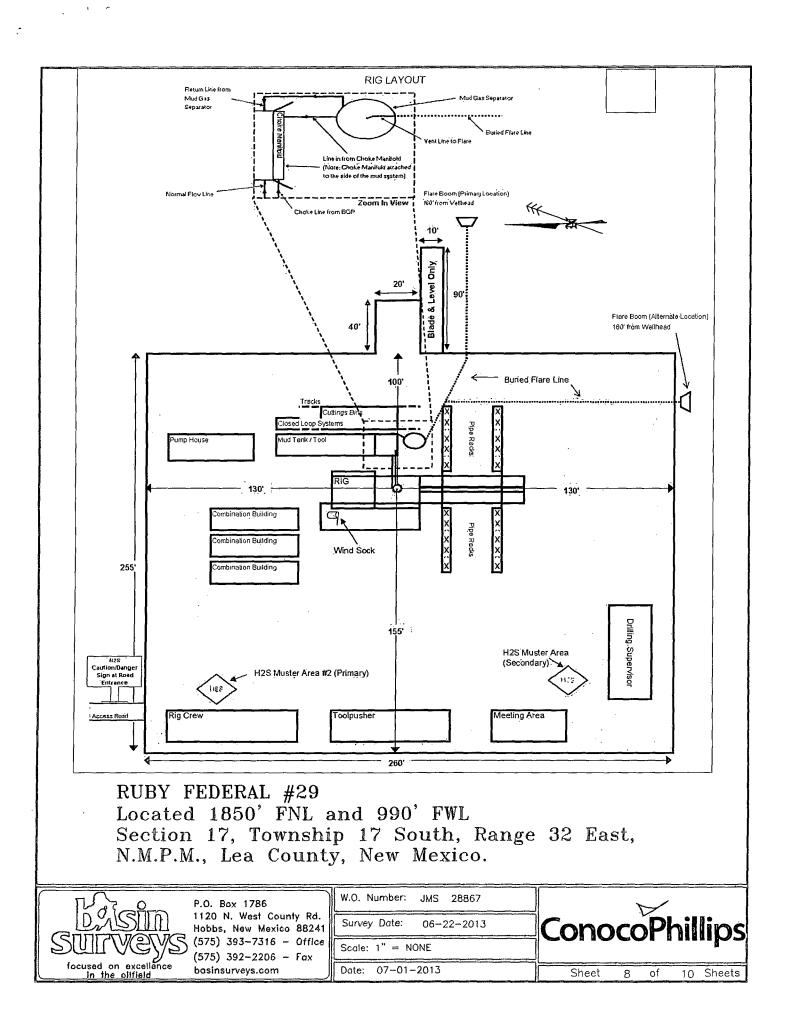
Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 1


Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.


The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.


The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Non	n. ID	Nor	n OD	We	ight	Min Be	nd Radius	Max	WP
in.	mm.	iŋ.	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
3	76.2	5.11	129.79	14.5	21.46	48	1219.2	5000	34.47
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.47

Attachment # 2

