	UNITED STATES EPARTMENT OF THE I	NTERIOR	OCD Ho	OMB OMB	M APPROVED • NO. 1004-0135 es: July 31, 2010
BUREAU OF LAND MANAGEMENT SUNDRY NOTICES AND REPORTS ON WELLS			5. Lease Serial No. NMNM27508		
Do not use this form for proposals to drill or to re-enter an abandoned well. Use form 3160-3 (APD) for such proposals.				6. If Indian, Allotte	e or Tribe Name ,
SUBMIT IN TRI	PLICATE - Other instruc	ctions on reverse sid			greement, Name and/or No.
1. Type of Well Oil Well 🗂 Gas Well 🔲 Oth	her		DEC 30	2013 8. Well Name and N WILDER FEDE	To. RAL 28 3H
2. Name of Operator CONOCOPHILLIPS COMPAN	Contact: NY E-Mail: kristina.mic	KRISTINA MICKENS	m RECEN	9. API Well No. 30-025-40501	
3a. Address 600 N DAIRY ASHFORD P-10 HOUSTON, TX 77079	0-4056	3b. Phone No. (include Ph: 281-206-5282	area code)	10. Field and Pool, BONE SPRIN	or Exploratory IGS; UPPER SHALE
4. Location of Well (Footage, Sec., 7)		11. County or Paris	h, and State	
Sec 28 T26S R32E 224FNL 1			LEA COUNTY	(, NM -	
12. CHECK APPI	ROPRIATE BOX(ES) TO) INDICATE NATU	RE OF NOTIC	CE, REPORT, OR OTH	ER DATA
TYPE OF SUBMISSION		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FYPE OF ACTI	ON	
Notice of Intent	C Acidize	Deepen		roduction (Start/Resume)	Water Shut-Off
Subsequent Report	Alter Casing	Fracture Trea New Construction	-	eclamation	U Well Integrity
☐ Final Abandonment Notice	 Casing Repair Change Plans 	Plug and Aba	_	ecomplete emporarily Abandon	Other Change to Original A
	Convert to Injection	Plug Back	_	ater Disposal	PD
ConocoPhillips respectfully su are: 1. An optional DV Tool/Packer 2. The yield of the lead cemer We are making these changes not occur while drilling the 8-3	r at 5300ft it on the 7" string has bee s in anticipation of any pot	n revised to reflect 9.	0	م	FAPPROVAL
14. I hereby certify that the foregoing is	true and correct. Electronic Submission #2	229957 verified by the			VN.
	For CONOCO Committed to AFMSS for	PHILLIPS COMPANY,	sent to the Hob	bs	fre
Name(Printed/Typed) KRISTINA				REPRESENTATIVE	
-				APPRO	VED
Signature (Electronic S	Submission)	Date	12/18/2013		
	THIS SPACE FO	R FEDERAL OR S		EUSE DEC 23	12013
Approved By		Title		aminh	3 No AND
onditions of approval, if any, are attached rtify that the applicant holds legal or equ	subject lease	CARLSBAL IELD UFFICE			
hich would entitle the applicant to condu itle 18 U.S.C. Section 1001 and Title 43	U.S.C. Section 1212, make it a (Office crime for any person know	ingly and willfully	y to make to any department of	or agency of the United
States any false, fictitious or fraudulent s			<u> </u>		
** OPERAT	OR-SUBMITTED ** OI	PERATOR-SUBMI	ITED ** OPE	RATOR-SUBMITTEI	→* C
					V

					PLAN				
PROSPECT/FIELD	Bonespring/Red Hills					COUNTY/STAT	re	Lea Co	unty, NM
ØWNERS WELL NO.	ConocoPhillips Wilder Federal AC COM 28 #3H			FNL	LEASE FSL	FEL	FWL		
LOCATION	Wilder Federal AC COM 28 #3H		Surface Location:	224			1544		
COANON			Bottom Hole Location:	2,2.4	330	+	1544		
ST. T.D.	Leg #1 16,190' MD			1	1	GROUND ELE			.168' (est)
								RKB 3,	193' (est)
PROGNOSIS:			Based on 3,193' KB(est)		LOGS:	I)	/pe		Interval
			-		1	Open Hole:			
Marker	TVD	S.S. Depth				GR-MWD	· 1	6190-8,710	
luatemary	Surface	0.000			1		•		
Rustler	928	2,265			DEVIATION				
alado	2,670	523			DEVIATION	Surf:	3º max :	wy every 500'	
elaware Top	4,426	-1,233	3			Int1/2:		vy every 90'	
ord Shale	4.513	-1,320			1	Prod:			
)lds	4,550	-1,357	7						
Cherry Top	5,378	-2,185	5						
Ione Spring	8,240	-5,047	r						
one Spring 1st Carbonate Top	8,500	-5,307			DST'S:				
one Spring 1st Carbonate Base	8,550	5,357			1	None		•	
valon A Shale Top	8,738	-5,545	2						
valon A Shale Base	8,952	-5,759			1				
valon B Zone Top	8,952	-5,759							
valon B Zone Base	9,146	-5,953			CORES:				
valon C Shale Top	9,146	-5,953			1	No core.			
valon C Shale Base (Should not penetra	ite 9,384	-6,191	1						
					SAMPLES:			·····	
					SAMPLES:				
					1	Mudlogging:	Start	End	
					4	Two-Man;		950 TD	Vertical and Horizontal sections
					1				
								·	··· <u></u>
					BOP:	<u></u>			· · · · · · · · · · · · · · · · · · ·
							, COP Ca	llegory 3 Well (Control Requirements
					HnP486 BOI		13-5/8°-5N	lpsi Annular	
		ı	-013				13-5/8-5N 13-3/8-5N 13-3/8-5N	lpsi Annular Ipsi Blind Ram Ipsi Cross / Ch	oka & Kill Lines
		nal	2013		HnP486 BOI		13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross / Ch Ipsi Pipe Ram	oke & Kill Lines
Ye Bala	Slader Dawa Din	118	2013		HnP486 BOI		13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	lpsi Annular Ipsi Blind Ram Ipsi Cross / Ch	oke & Kill Lines
	Slight Down Dip	218)	2013		HnP486 BOI (With Rotating	i Hoad)	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross / Ch Ipsi Pipe Ram	oke & Kill Lines
Max. Anticipated BHP:		2112) ACX 0.85 pei/1			HnP486 BOI (With Roteting Surface Fo	Head) Imation:	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross / Ch I psi Pipe Ram Ipsi Spacer Sp	oke & Kill Lines ool
Dip Rate: Max. Anticipated BHP: MUD: Nufface:	Interval	21181	Түре		HnP486 BOI (With Roteting Surface Fo Max, MW	(Head) (mation: <u>Vis</u>	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross / Chi I psi Pipe Ram Ipsi Spacer Sp WL	oke & Kill Lines
Max. Anticipated BHP:		2113)			HnP486 BOI (With Roteting Surface Fo	Head) Imation:	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross / Ch I psi Pipe Ram Ipsi Spacer Sp	oke & Kill Lines ool
Aax. Anticipated BHP: UD: Juface: nermediate 1: Jermediate 2:	Interval 0.956 544 4 980-4350 4560-0673	21.3 1 200 0.85 pai/fr	<u>Type</u> Aquagel - Spud Mud Brine Cut Brine		HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	(mation: <u>Vis</u> 32-36 28-30 30-39	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Blind Ram Ipsi Cross/ Chi Ipsi Pipe Ram Ipsi Spacer Sp <u>WL</u> NC 5-8 5-8	oke & Kili Lines ool <u>Remarks</u>
ax. Anticipated BHP: UD: unface: itermediate 1: itermediate 2:		2112 2.65 pei/ft	<u>Type</u> Aquagei - Spud Mud Brine		HnP486 BOJ (With Rotating Surface Fo Max. MW 9.3 10.5	(mation: <u>Vis</u> 32-36 28-30	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Annular Ipsi Cross / Chi Ipsi Pipe Ram Ipsi Spacer Sp <u>WL</u> NC 5-8	oke & Kili Lines ool <u>Remarks</u>
Aax. Anticipated BHP: AUD: Surface: nermediate 1: nermediate 2: yoduction:	Intervai 0:950 Sel C 980-4350' 4560:6873' 0673-15888'	<u></u>	<u>Type</u> Aquagel - Spud Mud Brine Cut Brine Cut Brine		HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	rmation: <u>Vis</u> 32-36 28-30 30-39 30-40	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Annular Ipsi Cross ⁷ / Chi Ipsi Pipe Ram Ipsi Spacer Sp <u>WL</u> NC 5-8 <=4 <=5	oke & Kiii Lines ool <u>Remarks</u>
Aax. Anticipated BHP: AUD: urface: ntermediate 1: nermediate 2: Yoduction: ASING:	Interval 0'-950 Set ge0'-4550' 4550'-9673' 9673'-15688' Size	Wtppf	<u>Type</u> Aquagel - Spud Mud Brine Cut Brine Cut Brine Holo	Depth	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	rmation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u>	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Ipsi Annular Ipsi Annular Ipsi Cross/Chh Ipsi Spacer Sp WL NC 5-8 <=4 <=5 WOC	oke & Kill Lines ool <u>Remarks</u> Bemarks
Ax. Anticipated BHP: JUD: JUD: Itermediate 1: Itermediate 2: Joduction: ASING: Juface:	Interval 0.9567 Sal C 980-4350' 4560'-8679' 9873-15888' 9873-15888' <u>Size</u> 13-378'	<u>Wt ppf</u> 54,5	<u>Type</u> Aquagel - Spud Mud Brine Cut Brine Ut Brine <u>Holo</u> 17-1/2	950'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface	13-5/8-5N 13-3/8-5N 13-3/8-5N 13-3/8-5N	Apsi Annular Apsi Blind Ram Ipoi Cross, Chi Ipoi Pipa Pipa Ram Ipsi Spacer Sp WL NC 5-8 4 <=5 WOC 18hrs 18hrs	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u>
lax. Anticipated BHP: IUD: urface: lermediate 1: reduction: voduction: ASING: urface: lermediate 1:	Interval 0'-950 Set ge0'-4550' 4550'-9673' 9673'-15688' Size	Wtppf	<u>Type</u> Aquagel - Spud Mud Brine Cut Brine Cut Brine Holo	950' 4,560'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 22-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	Apsi Annular Apsi Blind Ram Apsi Blind Ram Ipsi Cross' Ch Ipsi Pipe Ram Apsi Spacer Sp WL NC 5-8 5-8 <=4 <=5 WOC 19hrs 18hrs 18hrs	oko & Kili Lines ool <u>Romarks</u> <u>Remarks</u>
Ax. Anticipated BHP: JUD: Juface: Intermediate 1: Intermediate 2:		<u>Wt ppf</u> 54,5 36	Type Aquagel - Spud Mud Brine Cut Brine Cut Brine <u>Holo</u> 17-1/2 12-1/4*	950'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	Apsi Annular Apsi Blind Ram Ipoi Cross, Chi Ipoi Pipa Pipa Ram Ipsi Spacer Sp WL NC 5-8 4 <=5 WOC 18hrs 18hrs	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u>
Jax, Anticipated BHP: JUD: JUD: Intermediate 1: Intermediate 2: Volucion: ASING: Jurradiate 1: Jermediate 1: Jermediate 2:	Intervai 0:950 960:4350 4560:9673 0073:15888 <u>Size</u> 13:378: 0:588 7'	<u>Wt ppf</u> 54.5 36 29	<u>Type</u> Aquagel - Spud Mud Bine Cut Bine Cut Bine <u>Holo</u> 17-1/2 12-1/4* B-3/4*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	Apsi Annular Apsi Blind Ram Ipsi Cross'/ Ch Ipsi Pipe Ram Ipsi Spacer Sp WL Sca Sca Sca C 18hina 18hina 18hina 18hina	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u> 40-42 Stages Sleeves & Packers
iax. Anticipated BHP: IUD: Iurface: Itermediate 1: Itermediate 2: Foduction: ASING: Iurface: Iurface: Iurface: Iurface 2: Iurface 2:	Intervai 0:950 960:4350 4560:9673 0073:15888 <u>Size</u> 13:378: 0:588 7'	<u>Wt ppf</u> 54.5 36 29	<u>Type</u> Aquagel - Spud Mud Bine Cut Bine Cut Bine <u>Holo</u> 17-1/2 12-1/4* B-3/4*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	Apsi Annular Apsi Blind Ram Ipsi Cross'/ Ch Ipsi Pipe Ram Ipsi Spacer Sp WL Sca Sca Sca C 18hina 18hina 18hina 18hina	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	Intervai 0:950 960:4350 4560:9673 0073:15888 <u>Size</u> 13:378: 0:588 7'	<u>Wt ppf</u> 54.5 36 29	<u>Type</u> Aquagel - Spud Mud Bine Cut Bine Cut Bine <u>Holo</u> 17-1/2 12-1/4* B-3/4*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	Apsi Annular Apsi Blind Ram Ipsi Cross'/ Ch Ipsi Pipe Ram Ipsi Spacer Sp WL Sca Sca Sca C 18hina 18hina 18hina 18hina	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u> 40-42 Stages Sleeves & Packers
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	Intervai 0:950 960:4350 4560:9673 0073:15888 <u>Size</u> 13:378: 0:588 7'	<u>Wt ppf</u> 54.5 36 29	<u>Type</u> Aquagel - Spud Mud Bine Cut Bine Cut Bine <u>Holo</u> 17-1/2 12-1/4* B-3/4*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6"-55 13-3/8"-55 13-3/8"-55 13-3/8"-55 13-3/8"-55 13-3/8"-55	Apsi Annular Apsi Blind Ram Ipsi Cross'/ Ch Ipsi Pipe Ram Ipsi Spacer Sp WL Sca Sca Sca C 18hina 18hina 18hina 18hina	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	Intervai 0:950 980-4350 4560-0673 0073-15688 <u>Size</u> 13-3/8: 0-5/8: 7' 4-1/2' Surface:	<u>Wt ppf</u> 54.5 29 11.6 <u>MD</u> N/A	Type Aquaget - Spud Mud Brine Cut Brine Cut Brine Holo 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N 13-3/8*-5N	tpaiAnnuar tpaiBind Roma tpaiBind Cross/Ch tpaiFipaiSpacerSp. NC S+8 <q4 <c5 ₩OC 18hm 18hm 18hm 0</c5 </q4 	oke & Kill Lines ool <u>Remarks</u> <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec
iax. Anticipated BHP: IUD: Iurface: Itermediate 1: Itermediate 2: roduction: ASING: Iurface: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:		<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710'	Type Aqueor - Spud Mud Brine Cut Brine Cut Brine Holo 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8.607*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-5A 13-2/8-5A 13-2/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 13-3/8-5A 180 180	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
iax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2: roduction Liner:	Intervai 0:959 960-4550 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vericel KOP: End Build :	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606'	Type Aquagel - Spuci Muci Brine Cut Brine Cut Brine Hole 17-1/2 12-1/4* B'3/4* 6 1/8* TVD N/A 8,607* 9,270*	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6/-55 13-2/6/-55	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or (Ball System: Completion Selec will depend on production result mal Company: DDC or Weatherfor
iax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2: roduction Liner:	Intervai 0:950 960:4350 4560:9673 0873:15888 5326 13:378* 0:58* 7* 4:1/2* Surface: Vartical KOP : End Guild: Tangent:	<u>Wt ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,608' N/A	Type Aquaget - Spud Mud Brine Cut Brine Cut Brine Holo 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-2/8-55 13-2/8-55 13-2/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
iax. Anticipated BHP: IUD: urface: termediate 1: termediate 2: roduction: ASING: urface: termediate 1: termediate 1: termediate 2: roduction Liner:	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
iax. Anticipated BHP: IUD: Iurface: Itermediate 1: Itermediate 2: roduction: ASING: Iurface: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	Intervai 0:950 960:4350 4560:9673 0873:15888 5326 13:378* 0:58* 7* 4:1/2* Surface: Vartical KOP : End Guild: Tangent:	Wt ppf 54.5 36 29 11.6 N/A 8,710' 9,608' N/A	Type Aquaget - Spud Mud Brine Cut Brine Cut Brine Holo 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-2/8-55 13-2/8-55 13-2/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
Jax, Anticipated BHP: JUD: JUD: Intermediate 1: Intermediate 2: Volucion: ASING: Jurradiate 1: Jermediate 1: Jermediate 2:	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
Aax. Anticipated BHP: AUD: AUD: Itermediate 1: Itermediate 2: Itermediate 2: Itermediate 1: Itermediate 1: Itermediate 1: Itermediate 2: roduction Liner:	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
iax. Anticipated BHP: IUD: IUTace: Istranediate 1: Istranediate 2: roduction: ASING: Istranediate 2: roduction 1: Istranediate 2: roduction Liner: IRECTIONAL PLAN	<u>Intervai</u> 0:959 ул. (4 960-4550) 9673-15688' <u>Size</u> 13-398' 9-58' 7' 4-1/2' Surface: Vartical KOP : End Build : Tangent: Turn:	<u>W1 ppf</u> 54.5 36 29 11.6 <u>MD</u> N/A 8,710' 9,606' N/A N/A	Type Aquagot - Spud Mud Brine Cut Brine Cut Brine 17-1/2 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A	950' 4,560' 9,606'	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
ax. Anticipated BHP: IVD: IVD: IVTace: termediate 1: termediate 2: roduction: ASING: Itermediate 1: termediate 1: termediate 2: roduction Liner: RECTIONAL PLAN	Intervai 0:959 450:0673 450:0673 0673-15888 5ize 13-3/8* 0-5/8* 7* 4-1/2* Surface: Vortical KOP : End Build : Tangent: Turn: TD:	Wt ppf 54.5 36 29 11.6 N/A 8,710' 9,606' N/A 16,190'	Type Aquaget - Spud Mud Brine Cut Brine Cut Brine 12-1/4* 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A 9,316*	950° 4,560° 9,806° 16,190°	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'
ax. Anticipated BHP: UD: Urface: termediate 1: termediate 2: coduction: ASING: urface: termediate 1: termediate 1: termediate 2: oduction Liner: RECTIONAL PLAN	Intervai 0:959 450:0673 450:0673 0673-15888 5ize 13-3/8* 0-5/8* 7* 4-1/2* Surface: Vortical KOP : End Build : Tangent: Turn: TD:	Wt ppf 54.5 36 29 11.6 N/A 8,710' 9,606' N/A 16,190'	Type Aquaget - Spud Mud Brine Cut Brine Cut Brine 12-1/4* 12-1/4* 8-3/4* 6 1/8* TVD N/A 8,697* 9,270* N/A 9,316*	950° 4,560° 9,806° 16,190°	HnP486 BOA (With Rotating Surface Fo. <u>Max, MW</u> 9.3 10.5 9.5	mation: <u>Vis</u> 32-36 28-30 30-39 30-40 <u>Coment</u> To Surface To Surface 500' into intermed	13-5/6-55 13-3/8-56 13-3/8-56 13-3/8-55 13-3/8	topi Annuiar topi Blind Flam Ipai Blind Flam Ipai Spacer Sp. WL NC S-8 S-8 C WDC UBIN 18hra 18hra 0 Direction Vertical	oke & Kill Lines ool <u>Remarks</u> 40-42 Stages Sleeves & Packers or iBall System. Completion Selec will depend on production result nal Company: DDC or Weatherfor. Build Pate: 10.0 //100'

,

•

¥

,

AZI 180.0 180.0 180.0 180.0 180.0 GVT 0728 MIN 9098 59 1 0.010 0 16,100 MC or and RIC Surv D. PDH 13 307 CSG and co FELFW With PDM+MWD or RSS to TD 16190 MD/ 8316, TVD w-MWDh or Div 1000 13, 3...... Secting Scout Tool 1970 have and 180° Arm the Mit 1012 Gree aptioned Combletion: Cpen hole Silding Sleeves & Packers 40-42 stages or iBall A SOOD INCO D SAF Pro 1700 9.270 9.270 NIA NIA wer in tradition of the second 1 4 MD Verticel KOP: 8710 End Bublic: 9,666 Tengent: NUA Turn: NUA TO: 16,190 head. Test co ROP CSGP Notes for Well: neual 10M tubing 8 di Bright i fon fots Toothind TH 9 5/8 MD 8 344 8710 TD @ 16,190'MD Cased Hols Logs; None. Mudlogging. Two-Man: On @ 950 GR-MWD 0.65 (ps/m Analysis Coen Hole: ł Sturry Teo 500' area 9-548'. REF REF REF sta ero onty estimates. Cement Permit: API # Fed # AFE® Max. Anticipated BHP: Based on 17.-1/2⁻0H, with 100% excess Based on 0.00 in. Hole with 120% extense Based on B.75 in, Hole with 200% excess Data There numb hitemediata 1,290 Sr Lead 250 Sr Tel Surfacer 320 Sv Lead 520 Sv Tel Production 250 Sx Lead 130 Sx Tai RREF RREF RREF Prod Hole: Cut Brine 9.8# 28-36 Vis 28-36 Vis <=5 WL high vis sweeps as required. Surf. Holo: FW gel muct: 9.34 w high vis sweeps hiternoi 10.54 40-50 Vis 5-8 WL 1-11 -11-Drill Fluids SAP Network: Inv. Handler (D: Driting: Completion/Facility. Totat 2000 7 200 P10 BTC TOL 45° INC PROF MD9062 TVD Intermediate 2 950-13-30" SALER J. 455 STC Surface CASING intermediate - <u>4.560</u> 369 JS6 LTC . <u>5.300</u> Optional DV Toot/ACP Packer 1.4.1 Bottom Hole Location 330 DI LO 2,285 2,170 2,170 2,170 2,1759 4,17594,1759 4,1759 4,1759 4,1759 4,1759 4,1759 9,606 11 MD 8.710 • g 0 KOP (10*/100') Landing Point @ weinn A Shale Top weinn A Shale Top wainn A Shale Base wainn B Zone Base wainn B Zone Base wainn C Shale Top wainn C Shale Top Formation Wider Federal AC COM 28 83H 1st Carbonate Top 1st Carbonate Bas Surface Location: Delaware Top ord Shale rrv Top astile

Date 1/29/2013

Katia Filina Drilling Engineer

Date 1/29/2013

Vick Harvey Geologist

Bonespring/Red Hills ConocoPhillips Wilder Federal AC COM 28 #3H

Surface Casing:

Sundoo Sabing.	
Surface Casing Depth (Ft)	950
Surface Casing O.D. (In.)	13.375
Surface Casing ID (In)	12.715
Hole O.D. (In)	17.5
Excess (%)	100%
Volume Tail (Sx)	320
Yield Tail (Cu. Ft./Sx)	1.33
Yield Lead (Cu. Ft./Sx)	1.75
Shoe Joint (Ft)	40
Shoe Volume (Cu. Ft)	35.3
Tail feet of cement	300
Calculated Total Volume (Cu. Ft.)	1,355
Calc. Tail Volume (Cu, Ft.)	417
Calc. Lead Volume (Cu. Ft.)	903
Calc. Lead Volume (Sx)	520

0

Intermediate #1 Casing (Lead):
Intermediate Casing O.D. (In.)
Intermediate Casing ID (In)
Hole O.D. (In)
Excess (%)
cap 12-1/4 - 9-5/8"
Calculated fill:
Yield Lead (Cu. Ft./Sx)
Calculated Total Lead (Cu. Ft.)
.
Calc. Lead Volume (Sx)

Intermediate #1 Casing (Tail):	
Intermediate Casing O.D. (In.)	9-5/8"
Production Casing ID (In)	8.921
Hole O.D. (In)	12.25
Excess (%)	200%
cap 12-1/4 - 9-5/8"	0.0558
Calculated fill:	500'
Yield Tail (Cu. Ft./Sx)	1.33
Shoe Joint (Ft)	40
Shoe Volume (Cu. Ft)	17.4
Calc. Tail Volume (Cu. Ft.)	331
Required Tail Volume (Sx)	250

~

1

.

i.

1

1

1

Intermediate #2 Casing (Lead): Intermediate Casing O.D. (In.)

Intermediate Casing O.D. (In.)	7.000	Intermedi
Intermediate Casing ID (In)	6.184	Intermedi
Hole O.D. (In)	8.75	Hole O.D.
Excess (%)	115%	Excess (%
cap 5-1/2" - 8-3/4" bis/ft	0.0268	cap 5-1/2
cap 5-1/2 - 9-5/8" bls/ft	0.02823	cap 7 - 9-
Calculated fill: (500' into 9-5/8")	4,546'	Calculate
Yield Lead (Cu. Ft./Sx)	3.2	Yield Lea
Calculated Total Lead (Cu. Ft.)	786	Calculate
Calc. Lead Volume (Sx)	250 8,606 4060	Required

9.625 8.921

12.25

150%

0.0558 4,060' 2.47

3,179

1290

Intermediate #2 Casing (Tail):

Intermediate Casing O.D. (In.)	7.000
Intermediate Casing ID (In)	6.184
Hole O.D. (In)	8.75
Excess (%)	120%
cap 5-1/2" - 8-3/4" bls/ft	0.0268
cap 7 - 9-5/8" bls/ft	
Calculated fill:	1,000'
Yield Lead (Cu. Ft./Sx)	1.39
Calculated Total Tail (Cu. Ft.)	180
Required Tail Volume (Sx)	130

12/23/13

Wilder Federal AC Com 28-3H Sundry

Levinson, Jason A <Jason.A.Levinson@conocophillips.com> To: "jamason@blm.gov' <jamason@blm.gov> Mon, Dec 23, 2013 at 10:24 AM

e al de la companya d

Jennifer,

It was nice to meet you last week! I wanted to follow up from our conversation last week regarding the cement job on the 7" casing on the Wilder Federal AC Com 28-3H. The job proposes the following:

Stage 1

300sx lead @ 3.19 ft^3/sx

146sx tail @ 1.39 ft^3/sx

Both volumes are proposed with 35% excess

Top of cement to 500ft, inside the previous casing shoe at 4560ft.

9606' - 4060'

Optional DV tool at 5300ft.

Stage 2

90sx lead @ 3.19 ft^3/sx

Volume is proposed with 35% excess

Top of cement to 500ft. inside the previous casing shoe at 4560ft.

5300' - 4060'

We will determine the need for the stage tool while drilling the 8-3/4" section if any losses are encountered. Please let me know if you have any questions or concerns.

Happy Holidays!

Jason Levinson | Senior Drilling Engineer ConocoPhillips Company 600 N Dairy Ashford Rd, P10-05-5006 Houston, TX 77079

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CONOCOPHILLIPS
LEASE NO.:	NM27508
WELL NAME & NO.:	3H WILDER FEDERAL 28
SURFACE HOLE FOOTAGE:	0224' FNL & 1544' FWL
BOTTOM HOLE FOOTAGE	0355' FSL & 1714' FWL Sec. 33, T.26 S., R.32 E.
LOCATION:	Section 28, T.26 S., R.32 E., NMPM
COUNTY:	Eddy County, New Mexico
API:	30-025-40501

I. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. A Hydrogen Sulfide (H2S) Drilling Plan should be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation. This will also be applicable if an un-cemented completion liner is run and a liner top seal, or equivalent, has not been established before the rig move.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

4. The record of the drilling rate along with the GR/N well log run from TD of the vertical portion of hole to surface shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.).

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) time prior to drilling out for a primary cement job will be a minimum 18 hours for a water basin, 24 hours in the potash area, or 500 pounds compressive strength, whichever is greater for all casing strings. DURING THIS WOC TIME, NO DRILL PIPE, ETC. SHALL BE RUN IN THE HOLE. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. IF OPERATOR DOES NOT HAVE THE WELL SPECIFIC CEMENT DETAILS ONSITE PRIOR TO PUMPING THE CEMENT FOR EACH CASING STRING, THE WOC WILL BE 30 HOURS. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Possible lost circulation in the Red Beds, Delaware, and Bone Spring formations. Possible brine and fresh water flows in the Salado, Castile, Delaware and Bone Spring.

- 1. The **13-3/8** inch surface casing shall be set at approximately **850** feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- **b.** Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial action will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Cement to surface. If cement does not circulate see B.1.a, c-d above.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

3. The minimum required fill of cement behind the 7 inch 2^{nd} intermediate casing is:

<u>Cement Option #1:</u>

Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification. Excess calculates to 14% - Additional cement may be required.

Cement Option #2:

Operator has proposed DV tool at depth of 5300'. Operator is to submit sundry if DV tool depth varies by more than 100' from approved depth.

- a. First stage to DV tool:
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve approved top of cement on the next stage.
- b. Second stage above DV tool:

Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification.

- 4. Cement not required on the 4-1/2" casing. Packer system being used.
- 5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The results of the test shall be reported to the appropriate BLM office.
 - d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 122313