| -                                                                                                                                                                                                                                                                                                                      |                                       | ,                                                                                                                                                                 |                                                     | ATS-14-1                                                                        | 28                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|
| Sant 3160-3<br>March 2012)                                                                                                                                                                                                                                                                                             | 20                                    |                                                                                                                                                                   |                                                     | OMB No. 1004-<br>Expires October 3                                              | 0137<br>1, 2014                          |
| UNITED STAT<br>DEPARTMENT OF THE<br>BUREAU OF LAND MA                                                                                                                                                                                                                                                                  | ES<br>INTERIOR<br>NAGEMENT            |                                                                                                                                                                   | )CD                                                 | 5. Lease Serial No.<br>NMLC 029405B                                             |                                          |
| APPLICATION FOR PERMIT TO                                                                                                                                                                                                                                                                                              | D DRILL OF                            | REENTER                                                                                                                                                           | 5 2014                                              | 6. If Indian, Allotee or Tril<br>N/A                                            | be Name                                  |
| la. Type of work: XDRILL REEN                                                                                                                                                                                                                                                                                          | TER                                   | FEB                                                                                                                                                               | - 60                                                | 7 If Unit or CA Agreement,<br>N/A                                               | Name and No.                             |
| lb. Type of Well: X Oil Well Gas Well Other                                                                                                                                                                                                                                                                            | X Si                                  | ngle Zone 🔲 Multip                                                                                                                                                | <b>EIVED</b><br>ole Zone                            | 8. Lease Name and Well No<br>Ruby Federal                                       | 27 27                                    |
| 2. Name of Operator                                                                                                                                                                                                                                                                                                    | -17817                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                           |                                                     | 9. API Well No.                                                                 | 652                                      |
| <sup>3a.</sup> Address 600 N. Dairy Ashford Rd., Off<br>P10-4-4054                                                                                                                                                                                                                                                     | 3b. Phone No<br>(281)2                | (include area code)<br>06-5281                                                                                                                                    |                                                     | 10. Field and Pool, or Explora<br>Maljamar; Yeso Wes                            | tory 449                                 |
| 4. Location of Well (Report location clearly and in accordance with<br>At surface 1480' FNL and 2380' FEL; UL G, Sec.                                                                                                                                                                                                  | any State requirem                    | ents.*)<br>32E                                                                                                                                                    |                                                     | 11. Sec., T. R. M. or Blk.and<br>Sec. 17, T17S, R32E                            | Survey or Area                           |
| At proposed prod. zone 2425' FNL and 2230' FWL; C<br>4. Distance in miles and direction from nearest town or post office*<br>Approximately 3 miles south of Maliamar. New                                                                                                                                              | Mexico                                | /, 11/S, R32E                                                                                                                                                     | <del></del> ,                                       | 12. County or Parish<br>Lea County                                              | 13. State<br>NM                          |
| 5. Distance from proposed* About<br>location to nearest 215' at TD<br>(Also to nearest drig, unit line, if any)                                                                                                                                                                                                        | 16. No. of a<br>1601. <b>7</b>        | cres in lease                                                                                                                                                     | 17. Spacin<br>40                                    | g Unit dedicated to this well                                                   | 1                                        |
| 8. Distance from proposed location* 130'<br>to nearest well, drilling, completed,<br>applied for, on this lease, ft.                                                                                                                                                                                                   | 19. Proposed<br>7030' 7               | 1Depth<br>TVD/7176' MD                                                                                                                                            | 20. BLM/<br>ES008                                   | BIA Bond No. on file<br>5                                                       |                                          |
| <ol> <li>Elevations (Show whether DF, KDB, RT, GL, etc.)</li> <li>4011' GL</li> </ol>                                                                                                                                                                                                                                  | 22. Approxim<br>03/07/                | nate date work will star<br>2014                                                                                                                                  | t*                                                  | 23. Estimated duration<br>8 days                                                |                                          |
|                                                                                                                                                                                                                                                                                                                        | 24. Attac                             | hments                                                                                                                                                            |                                                     | <u> </u>                                                                        |                                          |
| <ul> <li>he following, completed in accordance with the requirements of Onsl</li> <li>Well plat certified by a registered surveyor.</li> <li>A Drilling Plan.</li> <li>A Surface Use Plan (if the location is on National Forest System<br/>SUPO must be filed with the appropriate Forest Service Office).</li> </ul> | nore Oil and Gas<br>m Lands, the      | <ul> <li>Order No.1, must be at</li> <li>4. Bond to cover the later 20 above).</li> <li>5. Operator certification</li> <li>6. Such other site the BLM.</li> </ul> | tached to thing operation<br>ation<br>specific info | is form:<br>ns unless covered by an existing<br>prmation and/or plans as may be | g bond on file (see<br>e required by the |
| 5. Signature<br>Sulan B. Maunder<br>itle                                                                                                                                                                                                                                                                               | Name<br>Susa                          | (Printed/Typed)<br>n B. Maunder                                                                                                                                   |                                                     | Date                                                                            | 29/13                                    |
| Senior Regulatory Specialist                                                                                                                                                                                                                                                                                           | Nome                                  | (Printed/Turned)                                                                                                                                                  |                                                     | Data                                                                            |                                          |
| MARCONCLUSION OF COMEND & CAFFEY                                                                                                                                                                                                                                                                                       |                                       | (I Think I specif                                                                                                                                                 |                                                     | FEB                                                                             | - 4 2014                                 |
| FIELD MANAGER                                                                                                                                                                                                                                                                                                          | UINCe                                 | CARLSBAD                                                                                                                                                          | FIELD OI                                            | FFICE                                                                           |                                          |
| pplication approval does not warrant or certify that the applicant ho nduct operations thereon.<br>onditions of approval, if any, are attached.                                                                                                                                                                        | lds legal or equit                    | able title to those right                                                                                                                                         | s in the subj<br>A                                  | ject lease which would entitle the PPROVAL FOR T                                | e applicant to                           |
| tle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a ates any false, fictitious or fraudulent statements or representations a                                                                                                                                                                        | crime for any pe<br>s to any matter w | rson knowingly and w<br>ithin its jurisdiction.                                                                                                                   | illfully to m                                       | ake to any department or agenc                                                  | y of the United                          |
| (Continued on page 2)                                                                                                                                                                                                                                                                                                  |                                       | Va-                                                                                                                                                               | Ros                                                 | *(Instruction<br>well Controlled W                                              | ater Basin                               |
|                                                                                                                                                                                                                                                                                                                        |                                       | N-1-                                                                                                                                                              | 1 11/                                               |                                                                                 |                                          |

# SEE ATTACHED FOR CONDITIONS OF APPROVAL

ononin

report of the second

Approval Subject to General Requirements & Special Stipulations Attached

da

FEB 1 0 2014

# Drilling Plan ConocoPhillips Company Maljamar; Grayburg-San Andres, Yeso (west)

# Ruby Federal #27

Lea County, New Mexico

# 1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

| Formations                    | Top<br>Depth<br>FT TVD | Top<br>Depths<br>FT MD | Contents                                 |
|-------------------------------|------------------------|------------------------|------------------------------------------|
| Quaternary                    | Surface                | Surface                | Fresh Water                              |
| Rustler                       | 760                    | 760                    | Anhydrite                                |
| Salado (top of salt)          | 938                    | 938                    | Salt                                     |
| Grayburg                      | 3487                   | 1960                   | Gas, Oil and Water                       |
| San Andres                    | 3851                   | 3523                   | Gas, Oil and Water                       |
| Glorieta                      | 5340                   | 3905                   | Gas, Oil and Water                       |
| Paddock                       | 5424                   | 5459                   | Gas, Oil and Water                       |
| Blinebry                      | 6165                   | 5545                   | Gas, Oil and Water                       |
| Tubb                          | 6780                   | 6297                   | Gas, Oil and Water                       |
| Deepest estimated perforation | 6780                   | 6297                   | Deepest estimated perf. is ~ Top of Tubb |
| Total Depth (maximum)         | 7030                   | 7176                   | 200' below deepest estimated perforation |

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

-----

# 2. Proposed casing program:

| 5º           | Hole<br>Size | м    | Interval<br>ID RKB (ft)      | OD       | Wt           | Gr   | Conn         | MIY   | Col   | Jt Str | Calcu       | Safety Fa<br>lated per Cc<br>Corporate 0 | ctors<br>nocoPhillips<br>Criteria     |
|--------------|--------------|------|------------------------------|----------|--------------|------|--------------|-------|-------|--------|-------------|------------------------------------------|---------------------------------------|
| Type         | (in)         | From | То                           | (inches) | (lb/ft)      | G    | Conin        | (psi) | (psi) | (klbs) | Burst<br>DF | Collapse<br>DF                           | Jt Str DF<br>(Tension)<br>Dry/Buoyant |
| Cond         | 20           | 0    | 40' - 85'<br>(30' - 75' BGL) | 16       | 0.5"<br>wali | В    | Line<br>Pipe | N/A   | N/A   | N/A    | NA          | NA                                       | NA                                    |
| Alt.<br>Cond | 20           | 0    | 40' – 85'<br>(30' – 75' BGL) | 13-3/8   | 48#          | H-40 | PE           | 1730  | 740   | N/A    | NA          | NA                                       | NA                                    |
| Surf         | 12-1/4       | 0    | 785 - 838 879                | 8-5/8    | 24#          | J-55 | STC          | 2950  | 1370  | 244    | 1.58        | 3.71                                     | 3.62                                  |
| Prod         | 7-7/8        | 0    | 7121' – 7166'                | 5-1/2    | 17#          | L-80 | LTC          | 7740  | 6290  | 338    | 2.08        | 2.48                                     | 1.96                                  |

The casing will be suitable for  $H_2S$  Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

## Casing Safety Factors - BLM Criteria:

| Туре              | Depth | Wt | MIY . | Col  | Jt Str | <b>Drill Fluid</b> | Burst | Collapse | Tensile-Dry | Tens-Bouy |
|-------------------|-------|----|-------|------|--------|--------------------|-------|----------|-------------|-----------|
| Surface Casing    | 830   | 24 | 2950  | 1370 | 244000 | 8.5                | 8.04  | 3.73     | 12.2        | 14.1      |
| Production Casing | 7166  | 17 | 7.740 | 6290 | 338000 | 10                 | 2.08  | 1.69     | 2.77        | 3.27      |

#### Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

#### ConocoPhillips Corporate Criteria for Minimum Design Factors

|                       | o officient in po o ofportato off | teria ier minimum Deergint detere |       |
|-----------------------|-----------------------------------|-----------------------------------|-------|
|                       | Burst                             | Collapse                          | Axial |
| Casing Design Factors | 1.15                              | 1.05                              | 1.4   |

| $\begin{aligned} & \text{Production Calling (s, ref 2 + 10 + 10 + 10) } \underline{1 + 10} + \frac{1}{100} +$                                                                                                                                | (Type<br>Conductor<br>Surface Casino (8-5/5" 24# J-55 STC)                                                                                                                                                                                                                                                                                                  | Depth W<br>85<br>830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t NIY<br>65 3500<br>24 295                                         | Col<br>20 -                            | Jt Str                                                      | Pipe Yie<br>4329          | 1d MW                 | Burs      |                       | Tên         |                 | ÷     |                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|---------------------------|-----------------------|-----------|-----------------------|-------------|-----------------|-------|------------------|----------------|
| $ \frac{1}{1000} = \frac{1}{1000} (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) = (1 + 0) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Production Casing (5-1/2" 17# L-80 LTC)                                                                                                                                                                                                                                                                                                                     | 7166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 774                                                             | 6290                                   | 338000                                                      | 3970                      | 0 1                   | 0 2.0     | 8 2.                  | 48 1.9      | <u>36</u>       | •     | •                |                |
| The calculated length (best) built is before the constraints of the field of the constraints of the constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Burst - ConocoPhillips Required Load Cases<br>The modmum Internal (burst) load on the Surface Casing occurs wit                                                                                                                                                                                                                                             | in the surface casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is tested to 150                                                   | 00 psi (as pr                          | er BLN Oa                                                   | shore Order               | 2 - IL Requir         | ementš).  |                       |             |                 | · . · |                  | •              |
| $ \begin{array}{l}                                      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The maximum internal (burst) load on the Production Casing occurs o                                                                                                                                                                                                                                                                                         | uring the fracture attim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wintion where i                                                    | ihe maximum                            | i allowable                                                 | e working pro             | asuro                 |           |                       |             | -               |       |                  | ·              |
| $ \begin{array}{c} Intro Short Sh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (MAWP) is the pressure that would fit ConocoPhEps Corporate Crite<br>Surface Casino Test Pressure                                                                                                                                                                                                                                                           | a for Minimum Factors<br>1500 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | si,<br>i .                                                         | Predic                                 | ted Pore F                                                  | ressure at T              |                       | 85        | 5                     |             |                 |       |                  |                |
| Internet to the specific difference in the specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface Rated Working Pressure (BOPE)                                                                                                                                                                                                                                                                                                                       | - <u>3000</u> psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | Predicted                              | d Frac Gra                                                  | dicit at Sho              | (CSFG) =              | 19.2      | 3 bbð                 |             |                 |       |                  |                |
| Index the link link link link link link link link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Field SW                                                                                                                                                                                                                                                                                                                                                    | = <u>10</u> pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                  |                                        | · · · ·                                                     |                           |                       |           |                       |             |                 |       | •                |                |
| Surdex Could plant 2 hard Francis<br>Count 2. MPB/ (Paid SW difference) = 0.00 × 0.00 × 10.21 - 0.22 - 0.20 = 0.00<br>Count 2 hard 2 hard plant 2 hard 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Surface Chaing burst Safety Factor = API Burst Rating<br>Production Casing MAXIP for the Fracture Stimulation :                                                                                                                                                                                                                                             | / Naximum Predicted S<br>API Burst Rating / Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Pressu<br>rporate Minimun                                  | ıre (MPSP) 'C<br>n Bürst Desi;         | gin Factor                                                  | um Alowach                | e Svrface Pr          | easure (i | liasp)                |             |                 |       |                  |                |
| Constant American Constant of the service of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Cosing Burst Safety Factor:<br>Case #1 MPSP (MWbwt next safetio                                                                                                                                                                                                                                                                                     | u) = 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × 0.052                                                            |                                        | . 10                                                        | -                         | 475                   |           |                       |             |                 |       |                  |                |
| Cheve 3. MPSP field Multiple and section Trains<br>Cheve 3. MPSP field Multiple Trains The Star 1 and Star 1 an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case #2. MPSP (Field SW @ Bullheadcsrg + 200 ps                                                                                                                                                                                                                                                                                                             | i) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x 0,052                                                            | 2 x                                    | 19,23                                                       | -                         | 432                   | · +       | 200                   | =,          | 598             |       |                  |                |
| Case 71 & 6 (Laboration 12, Case 12, Section 12, Case 12, Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Case #3. MPSP (Kick Vol.@ next section TT                                                                                                                                                                                                                                                                                                                   | )= 7166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × 0.052                                                            | : x,                                   | 8,55                                                        | •                         | 633,6                 | -         | 367                   | ÷.          | 2786            |       |                  |                |
| MAP PROV_PLATE:         EXE         EXE         EXE         EXE         EXE         EXE         EXE           Production Casing Board Safety Factor         EXE         15.8         10.8         2.25.0         11.05.7         15.5           Production Casing Board Safety Factor         EXE         10.8         2.25.8         10.8         2.25.8           MANP for for frame:         Board Safety Factor (Max. MFS) = 7.76.0         7.16.5         2.05.8         7.16.5         2.06.8           Calington Cases (Law Safety Factor (Max. MFS) = 7.76.0         7.17.0         7.17.8         2.06.8         7.16.5         2.06.8           Calington Cases (Law Safety Factor (Max. MFS) = 7.76.0         7.17.0         7.27.8         2.06.8         7.16.5         2.06.8           Calington Cases (Law Safety Factor Case)         Exector Cases (Law Safety Factor And Case)         10.77.0         7.17.0         7.07.0         10.17.8           Data Safety Factor (Max. MFS) = 7.77.0         7.00.7         17.0         7.07.0         10.00.0         10.00.0         10.00.0           Safety Factor (Max. MFS) = 7.77.0         7.00.7         17.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0         10.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Case #3 & #4 Limited to MPSP (CPFD - GC                                                                                                                                                                                                                                                                                                                     | )= .7166<br>N=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.052                                                            | : X                                    | 8.55                                                        | -                         | 716.6                 |           | 2469                  |             |                 | · · · | ·                |                |
| Durd Seley Factor         Production Caung Durk Seley Textor           Production Caung Durk Seley Textor         Case 34, MPDP (PT): 0.000 (PT): 0.0000 (PT): 0.0000 (PT): 0.000 (PT): 0.000 (PT): 0.0000 (PT): 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MASP (MWhyd + Test Pressur                                                                                                                                                                                                                                                                                                                                  | )= 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x 0.052                                                            | i Al                                   | 8,5                                                         | +                         | 1500                  | )         | 1867                  | ·.          |                 |       |                  |                |
| Production Caching Bank Safety Feature<br>Trade 4. PROS (MANPH TRUE) = 7765 x 0.827 x 0.5<br>East 3.6407 Feature (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>MANPT field frances Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>MANPT field frances Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{275}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.25<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7740 / $\frac{1}{230}$ x 0.55<br>The activation Safety Safety (Marx, MFS) = 7745<br>Marx, Allowed Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Burst Safety Factor (Max. MPSP or MASF                                                                                                                                                                                                                                                                                                                      | ) = 2950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / 1867                                                             | = .                                    | 1.58                                                        |                           |                       |           |                       |             |                 |       |                  | •              |
| $\frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{10000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000$                                                                           | Production Casing Burst Safety Factor:                                                                                                                                                                                                                                                                                                                      | 7460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                        | 10                                                          | · · · · ·                 |                       |           |                       |             |                 |       |                  |                |
| Bure Statey Factor ( $h_{20}$ , $NS^{27}_{10}$ = 7740 / $T_{10}$ / $T_{10}$ = 5730<br>MAVE for the incluss State ( $h_{20}$ , $h_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Case #1. MPSP.(PPTD - GC                                                                                                                                                                                                                                                                                                                                    | j = 7166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 0.052                                                            | x                                      | 8 55                                                        |                           | 3729.32<br>716.6      |           | 2469                  |             |                 | · · · |                  |                |
| MAWP for the Functure Standington (Composite Calcular) = 744 / 1.55 = 930<br>Collision - Consider Hulling Resident Lead Catesh<br>The anothen discuss cost who a combing to antice, 1.0 exclusion to be and cating unity degl, or depend datin of expansing (de exclusion)<br>The anothen discuss cost who a combined is service and the bases on the cost of the cost of the cost of the service of the cost of the cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burst Safety Factor (Max, MPSF                                                                                                                                                                                                                                                                                                                              | )= 7740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 3726                                                             | =                                      | 2.08                                                        |                           | 114.4                 |           |                       |             |                 |       |                  |                |
| $ \begin{array}{l} \label{eq:constraint} \\ \mbox{Constraint} (Constraint) (Constr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAWP for the Fracture Stimulation (Corporate Criteria                                                                                                                                                                                                                                                                                                       | )≓ 7740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / 1.15                                                             | =                                      | 6730                                                        |                           |                       |           |                       |             |                 |       |                  |                |
| $ \frac{Colleges}{Colleges} = C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             |                           |                       |           |                       |             |                 |       |                  |                |
| The norther definition is best of its derivative according to the unique of the product of a sequent days of the product of the sequent days of the product days of the product days of the sequent days of the product days of the sequent days of the product days of the sequent days of the product days of the product days of the sequent days of the product days of the sequent days of the product days of the sequent days of the product days of the product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collapse - ConocoPhillips Réquired Load Cases                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             |                           |                       |           |                       |             |                 |       |                  |                |
| The matrix endpose is an in the field of the program of the internet of the in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The maximum collapse load on the Surface Casing accurs when cer                                                                                                                                                                                                                                                                                             | enting to surface, 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evácuation to th                                                   | he next casir                          | ng setting                                                  | depth, or de              | epeal depin           | of expos  | iure (full e          | (naiteusev  |                 |       |                  |                |
| stuto fang Calego Safety Gard - Art Case Art Case - Mark Case - Art Case - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The maximum collapse load on the Production Casing occurs when o                                                                                                                                                                                                                                                                                            | menting to surface, of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r 1/3 evacuation                                                   | n to the deep                          | pest depth                                                  | of exposure               | ; and                 |           |                       |             |                 |       |                  |                |
| Problembin Carbon Explore Explore Tables of Expl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surface Casing Collapse Safety Factor = API Collapse                                                                                                                                                                                                                                                                                                        | la de equal la die par<br>Inling / Full Evacuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e pressure or i<br>o 'OR' Cement D                                 | he norizons<br>lisplacement            | ca me dui<br>durină Ce                                      | mentina bo S              | asing which<br>ufface | We 655    | umed to pi            | e (Prai).   |                 |       |                  |                |
| Canada Uniplacement Nate (YP) = 13.5 gray       The of Consolit = 11.5 gray       The Status is a consolitient in the image of the Status is a consolitient in the image of the Status is a consolitient in the image of the Status is a consolitient in the image of the Status is a consolitient in the image of the Status is a consolitient in the image of the Status is a consolitient in the Status is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Production Casing Collapse Safety Factor = API Collaps                                                                                                                                                                                                                                                                                                      | e Rating / Maximum Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | edicted Surface                                                    | e Pressure V                           | OR' Cemer                                                   | nt Displacem              | nit during Ce         | menting   | to Surface            | •           |                 |       |                  |                |
| $\frac{110}{100} \frac{1}{100} $ | Cement Displacement Fluid (FW)                                                                                                                                                                                                                                                                                                                              | 8.34 ppg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                  | Top of Ce                              | ment =                                                      | Cement to S               | urtace                |           |                       | -           |                 |       |                  |                |
| Type of Saturber Tai Canama $1000$ Type of Yest Canama $1000$ Type of Yest Canama $1000$ Type Canama $10000$ Type Canama $100000$ Type Canama $100000$ Type Canama $1000000$ Type Canama $10000000$ Type Canama $1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Surface Cement Lead                                                                                                                                                                                                                                                                                                                                         | 13.6 ppg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ; Pi                                                               | rod Cement I                           | Lead =                                                      | 11.                       | 8 ppg                 |           |                       |             |                 |       |                  |                |
| Surface Casing Colleges Satisty Fietor:<br>Full Execution DIP resures =<br>Colleges Satisty Fietor:<br>Full Execution DIP resures =<br>Colleges Satisty Fietor =<br>Trans Colleges Satisty Fietor =<br>Colleges Satisty Fieto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top of Surface Tail Cement                                                                                                                                                                                                                                                                                                                                  | - 300 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of                                                             | Prod Tail Ce                           | nent =                                                      | 520                       | elbba<br>0 m          |           |                       |             | •               |       |                  |                |
| Sufface Casing Collapse Suffy Factor:<br>Field Expension DP Pressure = 10 $4.30 \times 0.052 \times 0.55 = 369$<br>Canissing DEII Pressure = 11 $7.50 \times 0.052 \times 0.55 = 3.50$<br>Production Casing Collapse Suffy Factor = 1700 $1.360 = 3.11$<br>Calibration DPTIP Pressure = 1 $(1.756 \times 0.052 \times 0.55 ) - (.7565 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.35 ) + (.5765 / .3 \times 0.052 \times 0.05 ) + (.5765 / .3 \times 0.052 \times 0.05 ) + (.5765 / .3 \times 0.052 \times 0.05 ) + (.5765 / .3 \times 0.052 \times 0.05 ) + (.5765 / .3 \times 0.052 \times 0.05 ) + (.5765 / .3 \times$                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             |                           |                       |           |                       |             |                 |       |                  |                |
| $ \begin{array}{rrrrr} \label{eq:constraint} eq:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surface Casing Collapse Safety Factor:                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                        |                                                             |                           | 1                     |           |                       | · .         | •               |       |                  |                |
| Colleges Safity Factors = 1,70 / 363 = 3.71 . 11.3 / 7 ( 3.00 × 0.152 × 14.3 ) - 300 / 1 = 7<br>Production Casing Calleges Safity Factors = 1,70 / 156 × 0.052 × 0.55 ) - ( 7.165 / . 3 × 0.052 × 0.34 )] =<br>Cententing Diff II Pressure = [ [ 1766 × 0.052 × 1.13 ) + ( 5200 × 0.052 × 15.4 ) - 3108 ] =<br>Calleges Safity Factor =<br>Calleges Calleges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Full Evacuation Diff Pressure                                                                                                                                                                                                                                                                                                                               | = 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x 0.052                                                            | Х.<br>С30 0                            | 8,55                                                        | 126                       | 369                   | 200       |                       | 0.020       |                 |       | • •              |                |
| Production Casing Collispas Safety Factor:       If Presure = [[] 1956 x 0.052 x 113 ] + [ 5200 x 0.052 x 15.4 ] - 3108 ] =         Calibrating Diff. If Presure = [[] 1956 x 0.052 x 113 ] + [ 5200 x 0.052 x 15.4 ] - 3108 ] =         Calibrating Diff. If Presure = [[] 1956 x 0.052 x 113 ] + [ 5200 x 0.052 x 15.4 ] - 3108 ] =         Tensial Strongth - Constant and gravier by takes and patiet on is by by 52 tausato.         If a maximum acing (traiting) and excess in the same and patiet on is by by 52 tausato.         The maximum acing (traiting) and excess in the same and patiet on is by by 52 tausato.         The maximum acing (traiting) and excess in the same and patiet on is by by 52 tausato.         The maximum acing the same and patiet on is by be 52 tausato.         Maximum Access the same and patiet on is by be 52 tausato.         The maximum acing the same and patiet on is by be 52 tausato.         Maximum Access the same patiet on is by 15 gat tausato.         The maximum acing the same and patiet on is by 15 gat tausato.         Maximum Access the same patiet on the same and patiet on is by 15 gat tausato.         Maximum Access the same and the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collarse Safety Factor                                                                                                                                                                                                                                                                                                                                      | − (( /5<br>)≑ 1370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / \369                                                             | 0,032<br>=                             | 3.71                                                        | .13,0                     | <u>į</u> + (          | 300       | x                     | 0,052       | x               | 14,8  | ) - 3            | 160 ] = 2      |
| M3 Execution Diff Priorum = [1]       7185       x 0.052       x 1.8       ) + ( 5200       x 0.052       x 1.6 ) - 3108 ] =         Centering Diff II, Pressure = [1]       1365       x 0.052       x 1.8 ) + ( 5200       x 0.052       x 1.6 ) - 3108 ] =         Termital Strength - Conside/hilly=Requirid Load Caasi         Termital Strength - Caasi - Affey Yet Strength Requiries (comparison Requires / the min Acting Strength Requires / the min Acting Strength Requires / the min Acting Strength Requires / the min Acting Requires / the min Acting Strength Requires / the min Acting Strength Requires / the min Acting Req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Production Casing Collapse Safety Factor:                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             | *                         | • •                   |           |                       |             |                 |       | •                |                |
| $ \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/3 Evacuation Diff Pressure                                                                                                                                                                                                                                                                                                                                | = [[ 7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 166 x                                                              | 0.052                                  | x                                                           | 6.55                      | )-(-                  | 7,166     | P.                    | 3           | ×               | 0.052 | <b>X</b> , 1     | 8.34 )] = 7    |
| Tensiel Stringth - Consol/Phillips Regulated Lond Cases         The mixture distribution of tensibility of the parties and aged of a top to get a unsite.         Station Advised Avail Long Top Pay Yett - AP Pay Yett - Station - AP Pay Yett -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cementing Uitt Litt Pressure                                                                                                                                                                                                                                                                                                                                | = [( 19<br>= 6790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166 X                                                              | 0.052                                  | X<br>2 49                                                   | 11.8                      | <b>) +</b> ;(•,       | 5200      | X                     | 0.052       | x               | 16.4  | ) - 3            | 1108   = 7     |
| Thensial Strength - Consid-Phillips Required Lond Consi         The maximin additects in bidle of the way with the addite in the type of a transfer.         Maximin Advised A call Load for per variable facing Rating's Comparison Balance Additects practice         Maximin Advised Advised Advised for factors and the second provide transfer advised factors         Maximin Advised for the AT head Strength Factor         Transid State factors         Maximin Advised Strength State (factors)         Transid State (factors)         Maximin Advised Strength State (factors)         Max Allowable Advised Advised State State Balance (Balance (Factors)         Max Allowable Advised Advised (factors)         Max Allowable Advised Advised (factors)         Max Allowable Advised Advised (factors)         Allowable Advised (factors)         Allowable Advised (factors)         Allowable Advised (factors)         Advised (factors)         Max Allowable Advised (factors)         Allowable Advised (factors)         Advised (factors)         Advised (factors)         Max Allowable Advised (factors)         Advised (factors)         Advised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             | - 0650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2333                                                             | 4                                      | 2.40                                                        | · · .                     |                       |           |                       |             | •               |       |                  |                |
| Install       Stringth       Stringth       Stringth       Stringth         The mixturn and linesh is line stringth       Stringth       Stringth       Stringth         Mixturn Advisite Addit Lash for the AT All soft Stringth Relingt Comparise Mahmun Advisete Addit Lash for the AT All soft Stringth Relingth Comparise Mahmun Advisete Addit Lash       Stringth         Mixturn Advisite Addit Lash for the AT All soft Stringth Relingth Compared Main Stringth Stringth       Stringth Stringth       Stringth         Tentisi Stringth       Stringth Stringth Stringth Stringth       Stringth Stringth       Stringth       Stringth         Mixturn Advisete Advised Lash for the At All soft Stringth       Stringth       Stringth       Stringth       Stringth         Tensisi Stringth       Stringth       Stringth       Stringth       Stringth       Stringth         Max. Allowable Advised Load (Tippe Vinking = Stringth       Stringth       Stringth       Stringth       Stringth         Mix. Allowable Advised Load (Stringth Stringth)       Stringth       Stringth       Stringth       Stringth       Stringth         Mix. Allowable Advised Load (Stringth Stringth)       Stringth       Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             | · .                       |                       |           |                       |             | ,               |       |                  |                |
| <pre>Ide multin and (letter) and accur a Centry work to get Auck and packs on to by to get 4 sustance.<br/>Ide the multine accur and the submet of the submet of the submet of the submet Auch Letter (letter)<br/>Ide the submet of the submet of the submet of the submet of the submet Auch Letter<br/>Ide the submet of the submet of the submet of the submet of the submet Auch Letter Auch Letter<br/>Ide the submet of the submet of the submet of the submet of the submet Auch Letter Auch Letter<br/>Ide the submet of the su</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tensial Strength ConocoPhillips Required Load Ca                                                                                                                                                                                                                                                                                                            | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                        |                                                             |                           | · · ·                 |           |                       |             | ·               |       |                  |                |
| Unstrem Advects Acat Loss for Limit A at Loss Bridge Temperative Limits Acat Loss         Maximum Advects Descript Loss of Balancia Loss Bridge         Tentis Statisty - APR by Yest OV AT Loss Statisty (Second V et al. Second V et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ine maximum axisi (rension) dag occurs it casing were to get stuck a                                                                                                                                                                                                                                                                                        | to pulsed on to try to g<br>Pina Yiald Strength Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | get it unstuck, .<br>ation & Corporati                             | e Minkovim A                           | wist Ôeslér                                                 | Fechar                    |                       |           |                       | ,           |                 |       |                  |                |
| Miximum Advorde Pites Ling Lunci Langi - Lunchimum Advorde A statt Land         Miximum Advorde Vorgel Lange - Specific Langi - Lunchimum Advorde A statt Land         Tentil Statty Factor - AF Pite Viett OV AP Leik Langi (197 Pite) Laku Land Rading / Banyani (Vi of Sting + Vietmin Overgut Requized )         Big Lin Land Candon Do Sergut Requized -         Big Lin Land Candon Do Yang Leik Langi (2000) Ex         Big Lin Langi (2000) Ex         Big Lin Langi (2000) Ex         Big Lin Langi (2000) Ex         Max. Allowable Avaid Load (Pay Yield) =         Max. Allowable Avaid Load (Pay Yield) =         Max. Allowable Avaid Load (1999 Yield) =         Max. Allowable Avaid L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum Allowable Axts Load for Joint - API Joint                                                                                                                                                                                                                                                                                                           | Strength Rating / Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arate Malmum                                                       | Axial Design                           | Factor                                                      |                           | ÷.,                   |           |                       | ۰.          |                 | . •   |                  |                |
| Taxisan Astronate Original Largin = Maximan Advorate Hook Land = Busyand With Ellis Bitigo<br>Taisal Safety Factor = Affe by Sire View AF Alek Stereding View Bitigo (Basisandi Viel Bitigo + Hintomin Derefisal Required )<br>Into many Deregisal Required = $\frac{1}{20000}$ bas<br>Surface Cesting Tensiel Strength Safety Factor;<br>Sir View = 19520 x 0.070 = 17335,<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 272143<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 174265<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 174265<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 174265<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 174265<br>Max. Allowable Avail Load (Dain) = 244000 / $\frac{1}{1.00}$ = 263571<br>Tensial Safety Factor = 244000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Fipe Yind) = 337000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Fipe Yind) = 337000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Fipe Yind) = 325000 - $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Fipe Yind) = 325000 - $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 25500 - $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 25500 - $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 25500 - $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 30000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 30000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 30000 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 300000 / $\frac{1}{1.00}$ = 20157 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = 30000 / $\frac{1}{1.00}$ = 20157 / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load (Join) = $\frac{1}{1.00}$ / $\frac{1}{1.00}$ = 241429<br>Max. Allowable Avail Load Casas = (Join) = 1.96<br>Comparation Simbath factors as a soling that a solication the taxing head and the cindicitir<br>with a support of spale or hadrong high or the Af Avail Po Viet Reduc J Viet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum Allowable Hook Load (Linded to 75% of F                                                                                                                                                                                                                                                                                                             | ig Max Load) = Maxim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | um Alowable A                                                      | Axial Load                             |                                                             |                           |                       |           |                       |             |                 |       |                  | 1.1            |
| How Loss (120,000 b5) x 75x - 1000 max. Loss (1000 max. Loss (10000 max. Loss (1000 max. Loss (1000 max. Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum Allowable Overpull Marcin = Maximum Allowable Overpull Marcin = Maximum Allowable Overpull Marcin = All                                                                                                                                                                                                                                             | wable Hook Load - B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cuyani Wi of In                                                    | e Sking<br>/ Bouward W                 | à at Sima                                                   |                           |                       | in a la b |                       |             |                 |       |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rig Minx Load (300,000 bs) x 75%                                                                                                                                                                                                                                                                                                                            | 225000 bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r naar kansigs (                                                   | ( DODYAIN 14                           | cotonid                                                     |                           | werpus kedu           | inea )    |                       | •           |                 |       |                  |                |
| surface Cosing Tensiel Strength Safety Factor;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Overput Required                                                                                                                                                                                                                                                                                                                                    | 50000 lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                                        |                                                             |                           | ٩.                    |           |                       | -           |                 |       |                  |                |
| Autrace Casing Tensiel Strength Salety Factor:<br>Air Wi = 19920 x 0.870 = 17335<br>Max Allowable Axial Load (Pipe Yield) = 381000 / $1400$ = 272443<br>Max Allowable Axial Load (Dinit) = 244000 / $1400$ = 174286<br>Max Allowable Axial Load (Linit) = 244000 / $17335$ + $50000$ ) = 158951<br>Tensial Salety Factor:<br>Air Wi = 121822 x 0.847 = 103223<br>Max Allowable Axial Load (Pipe Yield) = 337000 / $1400$ = 241429<br>Max Allowable Axial Load (Pipe Yield) = 337000 / $1400$ = 241429<br>Max Allowable Axial Load (Pipe Yield) = 337000 / $1400$ = 241429<br>Max Allowable Axial Load (Dinit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Dinit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Linit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Linit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Linit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Linit) = 225000 / $1400$ = 241429<br>Max Allowable Axial Load (Linit) = 225000 / $1400$ = 25000 / $1400$ = 1.95<br>Compression StrahgthConacePhillips Required Load Cases -<br>The maximi axial Compression State Aria Axial Factor = 300000 / (121822 x 0.847 ) = 121777.<br>Iterial Saity Factor = 300000 / (121822 x 0.847 ) = 1.95<br>Compression StrahgthConacePhillips Required Load Cases -<br>The maximi axial axia aniabas a insubas a insubas a insubas a insubas a insubas a insubas of the insuface casing is anded an the cindiciteir<br>wha accompression State Aria Axial Hoad Cases -<br>The maximi axial Axia Insuface Casing is an exclusion based to the cindiciteir<br>Wether Load = 3000]bs<br>anductor & Surface Compression State Y Factor = 3000 bas<br>Maximi Fredical Load Cases -<br>Theng Thin Find W Hay Trife x 6.5 = 45579 x 0.7854 x 2.411 v2 = 11422<br>Load on Cindicitor = 3000 + 17335 t 103223 + 46579 + 11422 = 181559<br>Load on Cindicitor = 3000 + 17335 t 103223 + 46579 + 11422 = 181559<br>Surface Casing Compression State Y Factor = 324000 / 108555 x 60% = 108336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | المراجع والمتحد والمراجع                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                        |                                                             |                           |                       |           |                       |             |                 |       |                  |                |
| $\begin{array}{rcl} Beingrant Wit & 19920 & x & 0.870 & = 17335 \\ Beingrant Wit & 19920 & x & 0.870 & = 272443 \\ Max. Allowable Axial Load (Drip Yiled) = 381000 / 1.40 & = 272443 \\ Max. Allowable Axial Load (Laini) 244000 / 1.40 & = 174286 \\ Max. Allowable Axial Load (Laini) = 174286 & (19920 & x & 0.870 & ) = 155951 \\ Tensial Safety Factor & 244000 / (17335 + 50000 & ) = 3.62 \\ roducition Casing Tensial Strength Safety Factor = 244000 / (17335 + 50000 & ) = 3.62 \\ Max. Allowable Axial Load (Pipe Yield) = 337000 / 1.40 & = 283571 \\ Max. Allowable Axial Load (Pipe Yield) = 337000 / 1.40 & = 241429 \\ Max. Allowable Axial Load (Pipe Yield) = 337000 / 1.40 & = 241429 \\ Max. Allowable Axial Load (Drini) = 337000 / 1.40 & = 241429 \\ Max. Allowable Axial Load (Drini) = 339000 / 1.40 & = 241429 \\ Max. Allowable Korpuil Margin = 225000 \\ Max. Allowable Comput Margin = 225000 - (121822 x 0.047 & ) = 121777. \\ Tensial Safety Factor = 300000 , / (101223 + 50000 & ) = 1.96 \\ \hline Compression Strength - ConnorPhillips Regularia Load Cases \\ The maximum total (congression) beat for the wells where the surface casing is also calculated to there for surface casing is also calculated to there for a surface casing is also calculated to the for the well is where the surface casing is also calculated to the for the well is where the surface casing is also calculated to the for the well is where the surface casing is also calculated to the for the well is where the surface casing is also calculated to the to the surface casing is also calculated to the for the well is where the surface casing is also calculated to the for the well is where the surface casing is also calculated to the for the well is where the surface casing is also calculated to the form the surface casing is also calculated to the form the surface casing is also calculated to the form the surface casing is also calculated to the form the surface casing is also calculated to the form the surface casing is also calculated to the form the surface casing is also calculated to the fo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surface Casing Tensial Strength Safety Factor;                                                                                                                                                                                                                                                                                                              | - 10020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                        |                                                             |                           |                       |           |                       | *           |                 |       | •.               | · . ·          |
| Max. Allowable Axial Load (Claim) = $361000$ / $140$ = $172243$<br>Max. Allowable Axial Load (Claim) = $244000$ / $1400$ = $172286$<br>Max. Allowable Axial Load (Claim) = $174286$<br>Max. Allowable Computed Nation = $174286$<br>Max. Allowable State Factor:<br>Air W = $121822$<br>Bolyant W = $121822$<br>Bolyant W = $121822$<br>Bolyant W = $121822$<br>Max. Allowable Axial Load (Gripe Yield) = $397000$ / $1400$ = $223371$<br>Max. Allowable Axial Load (Gripe Yield) = $337000$ / $1400$ = $223371$<br>Max. Allowable Axial Load (Gripe Yield) = $325000$ / $1400$ = $223371$<br>Max. Allowable Axial Load (Gripe Yield) = $325000$ / $1400$ = $241429$<br>Max. Allowable Axial Load (Complex Load) = $225000$<br>Max. Allowable Axial Load (Load) = $225000$<br>Max. Allowable Axial Pactor = $30000$ ba<br>The maximum axial (Compression Safety Factor<br>Surf Casing Wi (Bouyant) = ( $12122 \times 0.847$ ) = $103223$<br>Tubing Fluid Wt = $7166 \times 0.952 \times 0.657$ ) = $17336$<br>Prod Casing Wi (Bouyant) = ( $12122 \times 0.847$ ) = $103223$<br>Tubing Fluid Wt = $7166 \times 0.952 \times 0.657$ ) = $103223$<br>Load on Conductor = $3000$ ba<br>Load on Conductor = $3000$ ba<br>Load on Conductor = $32000$ ba<br>Load on Conductor = $32500 \times 0.657 \times 0.655 \times 0.7854 \times 2.441$<br>Load on Conductor = $32500 + 1.7335 + 1003223 + 46579 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bouvant Wit                                                                                                                                                                                                                                                                                                                                                 | = 19920 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.870                                                            | ÷ 4                                    | 17335                                                       |                           |                       |           | · .                   |             |                 |       |                  |                |
| Max. Allowable Axial Load (Ginit) = 244000 / $\left[ 1.40 \right]$ = 174286<br>Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = 174286<br>Max. Allowable Computed Margin = 174286 - (19920 x 0.870) = 155951<br>Tensial Salety Factor:<br>Air Wi = 121822<br>Boyosin Wi = 121822 x 0.847. = 103223<br>Max. Allowable Axial Load (Fips Yield) = 397000 / $\left[ \frac{1.40}{1.40} \right]$ = 283571<br>Max. Allowable Axial Load (Ginit) = 338000 / $\left[ \frac{1.40}{1.40} \right]$ = 241429<br>Max. Allowable Axial Load (Ginit) = 338000 / $\left[ \frac{1.40}{1.40} \right]$ = 241429<br>Max. Allowable Axial Load (Ginit) = 338000 / $\left[ \frac{1.40}{1.40} \right]$ = 241429<br>Max. Allowable Axial Load (Ginit) = 338000 / $\left[ \frac{1.40}{1.40} \right]$ = 241429<br>Max. Allowable Axial Load (Ginit) = 338000 / $\left[ \frac{1.40}{1.40} \right]$ = 241429<br>Max. Allowable Axial Load (Load) = 225000 - (121822 x 0.847) = 121777.<br>Ifensial Safety Factor = 300000 / (10323 + 50000) = 1.96<br>Compression Strength - ConcorPhillips Required Load Cases<br>The maximum bidl (compressing) bid for the wells where the surface casing is and casing is an antibuly for the first is a surface for and surface casing is and casing is an antibule is an antibule is and is an antibule is an antibule is an antibule is an antibule is and is a surface casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max. Allowable Axial Load (Pipe Yield)                                                                                                                                                                                                                                                                                                                      | = 381000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / 1.40                                                             | ] = 1                                  | 272143                                                      |                           | 1.14                  |           |                       |             |                 |       |                  | •              |
| Max. Allowable Prook Loba (Limited to Psych What Loba) = 1/4246<br>Max Allowable Overpull Margin = 1/4246<br>Tensial Safety Factor = 244000 / ( 17335 + 50000 ) = 156951<br>Tensial Safety Factor = 244000 / ( 17335 + 50000 ) = 3.62<br>Toduction Cesling Tensial 'Steringth Safety Factor = 121022 x 0.847 = 103223<br>Max. Allowable Axial Lobal (Dirp) Telsion 2 ( 1.40 = 283571<br>Max. Allowable Axial Lobal (Dirp) 1 ( 1.40 = 241429<br>Max. Allowable Overpull Margin = 225000 - ( 121022 x 0.847 ) = 121777.<br>Tensial Safety Factor = 300000 ./ ( 103223 + 50000 ) = 1.96<br>Compression Safety Factor = 300000 ./ ( 103223 + 50000 ) = 1.96<br>Compression Safety Factor = 300000 ./ ( 103223 + 50000 ) = 1.96<br>Compression Safety Factor = 300000 be order to be canded to be canded to be added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max. Allowable Axial Load (Jeint)                                                                                                                                                                                                                                                                                                                           | = 244000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1.40                                                             | = 1                                    | 174286                                                      |                           |                       | ъ. 1      |                       | ÷.,         | ·               |       | · · .            |                |
| Terissial Sálaty Factor =       244000 / (17335 + 50000) =       3.62         roducitor Cesing Tensial Sálaty Factor =       Ai Wi =       121822       3.62         Boüyant Wi =       121822       0.847. =       103223         Max. Allowable Axial Load (Diny File)       397000 / [1.40]       203571         Max. Allowable Axial Load (Cloint) =       336000 / [1.40]       =       241429         Max. Allowable Overpil Mark Dail       225000 / [1.40]       =       21777.         Max. Allowable Overpil Margin =       225000 / [1.40]       =       121822 × 0.847 / ] =       1221777.         Terisial Safaty Factor =       300000 / [ 1.40]       =       21429       1.66         Compression Strahgth - ConnecoPhillips Reightrist casing is landed on the confidential within axial (Compression) bind for the wells where the safatic casing is landed on the confidential within axial (Compression) bind for the wells where the safatic casing is landed on the confidential within axial (Compression Safety Factor =       30000 / [ 121822 × 0.870 / ] =       17335         Start Interd Trade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max. Allowable hook Load (Limited to 75% of Rig Max Load)<br>Max. Allowable Overnull Matrin                                                                                                                                                                                                                                                                 | = 1/4286<br>= 174286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 10000                                                            |                                        | 0.970                                                       | 4 -                       | 160061                |           |                       |             | ۰.              |       |                  | - 1.           |
| roduction Casing Tensial Strength: Safety Factor:<br>Air Wi = 121822<br>Boily with Wi = 121822 x 0.847. = 103223<br>Max. Allowable Axial Load (Gripe Yield) = 397000 / $\overline{1.40}$ = 283571<br>Max. Allowable Axial Load (Joint) = 33600 / $\overline{1.40}$ = 241429<br>Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = .25500<br>Max. Allowable Fook Load (Limited to 75% of Rig Max Load) = .25500<br>Max. Allowable Fook Load (Campression Safety Factor = 300000 / (103223 + .50000) = 1.96<br>Compression Strength - <u>ConcorePhillips Required Load Campa</u><br>The maximum todal (Compression Joint of the well is where the surface casing is and early Haximum Predicted Load<br>Velnest I for the well is where the surface casing is and early Haximum Predicted Load<br>Weinest Load = <u>30000</u> bas<br>anductor & Surface Compression Safety Factor<br>Surf Casing Wi (Bouyant) = { 19920 x 0.870 } = 17335<br>'Pred Casing Wi (Bouyant) = { 121822 x 0.847 } = 103223<br>Tubing Wi (Air Wi) = 7166 x <u>0.65</u> = 46579<br>Tubing Wi (Air Wi) = 7166 x <u>0.65</u> = 46579<br>Tubing Wi (Air Wi) = 7166 x <u>0.65</u> = 46579<br>Tubing Wi (Air Wi) = 7166 x <u>0.55</u> + 103223<br>Load on Conductor = 3000 + 181559 = 2.38<br>Load on Suffactor = .432966 / 181559 = 2.38<br>Load on Suffactor = .432966 / 181559 = 2.38<br>Load on Suffactor = .24400 / 18559 = 2.38<br>Sufface Casing Son Safety Factor = .24400 / 18559 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tensial Safety Factor                                                                                                                                                                                                                                                                                                                                       | = 244000 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17335                                                              | ÷                                      | 50000                                                       | ) =                       | 3.62                  |           | •                     | •           |                 |       |                  |                |
| Ar Wi = 121822<br>Boyyani Wi = 121822 x 0.847 = 103223<br>Max. Allowable Axial Load (Fipe Yield) = 397000 f $1.40$ = 283571<br>Max. Allowable Axial Load (Loint) = 338000 / $1.40$ = 241429<br>Max. Allowable Axial Load (Loint) = 338000 / $1.40$ = 241429<br>Max. Allowable Hock Load (Loint) = 338000 / $1.40$ = 241429<br>Max. Allowable Hock Load (Loint) = 338000 / $1.40$ = 241429<br>Max. Allowable Overpuil Margin = 225000<br>Max. Allowable Overpuil Margin = 225000 - ( .121822 x 0.847 ) = 121777.<br>Iferisial Safety Factor = 300000 / ( 103223 + .50000 ) = 1.96<br>Compression Strahgth - ConcorePhillips Required Load Cases<br>The maximum total (compression) bed for the well to where the surface casing is kinded on the conductor<br>with a support of a paile or landing reg. The surface casing is kinded on the conductor<br>buil not thread. Any other exist has a sububhing with or ther would need to be a soft the bind<br>buil not thread. Any other exist has a sububhing with a rather would need to be a soft to be added to be a<br>Surf Casing Wi (Bouyant) = ( 19920 x 0.870 ) = 17335<br>'Prod Casing Wi (Bouyant) = ( 19920 x 0.870 ) = 103223<br>Tubing Wi (Air Wi) = 7166 x 0.062 x 0.655 x 0.78651 x 2.441 *2 = 11422<br>- Load on Condicitor = 30000 bas<br>Conductor Compression Safety Factor = 432866 / 181559 = 2.38<br>Load on Condicitor = 432866 / 181559 = 2.38<br>Load on Condicitor = 432866 / 181559 = 2.38<br>Load on Condicitor = 432866 / 181559 = 2.36<br>Load on Condicitor = 10555 x 6075 = 103223<br>Tubing Compression Safety Factor = 432866 / 181559 = 2.36<br>Load on Condicitor = 10555 x 6075 = 103236<br>Conductor Compression Safety Factor = 432866 / 181559 = 2.36<br>Load on Condicitor = 10555 x 6075 = 103236<br>Load on Condicitor = 10555 x 6075 = 103236<br>Load on Condicitor = 103256 / 181559 = 2.36<br>Load on Condicitor = 103555 x 6075 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | roduction Casing Tensial Strength Salety Factor                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        | ÷.                                                          | .'                        |                       |           |                       |             |                 | · ,   |                  | •              |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Air Wt                                                                                                                                                                                                                                                                                                                                                      | = 121822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                        | -                                                           |                           |                       |           |                       |             |                 |       |                  |                |
| Max. Allowable Advie Load (Juint) = 338000 / $1400$ = 24429<br>Max. Allowable Advie Load (Linited to 75% of Rig Max Load) = 225000<br>Max. Allowable Overpul Margin = 225000 - (. 121822 $\times$ 0.847 ) = 121777.<br>Tensial Safety Factor = 30000 , / ( 101223 + .50000 ) = 1.56<br>Compression StrangthConocoPhillips Regulred Load Cases<br>The maximum total (confirensity) bad for the wells where the surface casing is tanded on the conductor<br>with a support of a patie or fairing it, The surface casing is tanded on the conductor<br>with a support of a patie or fairing it, The surface casing is tanded on the conductor<br>with a support of a patie or fairing it, The surface casing is tanded to beer 50% of the bad<br>congression Safety Factor = 30000 ba<br>and congression Safety Factor = 30000 ba<br>and with a support of a patie or fairing it Raing 'Naxim Predicted Load<br>Congression Safety Factor = API Axial Jobi Strength Raing 'Naxim Predicted Load<br>Wethered Load = $19200 \times 0.870$ ) = 17335<br>'Prod Casing Wi (Bouyant) = ( 1920 $\times 0.870$ ) = 17335<br>'Prod Casing Wi (Bouyant) = ( 121822 $\times 0.847$ ) = 103223<br>Tubing Wi (Air Wi) = 7166 $\times 6.5$ = 46579<br>Tubing Fluid Wi = 7166 $\times 6.5$ = 46579<br>Tubing Fluid Wi = 7166 $\times 105223 + 46579 + 11422 = 181559$<br>Conductor compression Safety Factor = 422956 / 181859 = 2.38<br>Load on Conductor = 3000 + 17335 × 103323 + 46579 + 11422 = 181559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max Allowable Axial Load (Pine Yield)                                                                                                                                                                                                                                                                                                                       | = 121822 )<br>= 397000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x <u>0.847</u>                                                     | 1 2 1                                  | 283571                                                      |                           | , - <u>.</u>          |           |                       |             |                 |       |                  | •              |
| Max Allowable Hook Load (Limited to 75% of Rig Max Load) = 225000<br>Max Allowable Overpull Margin = 225000 - {. 121822 x .0.847 } = 121777.<br>Tensial Safety Factor = 300000 ./ { 103223 + 50000 } = 1.96<br><u>Compression Strangth - ConocoPhillips Required Load Cases</u><br>The fractifium axial (congressice) bad for the well is where the surface casing is landed on the conductor<br>with a support of a pale or landeng frig. The surface casing is landed on the conductor<br>with a support of a pale or landing frig. The surface casing is landed on the conductor<br>with a support of a pale or landing frig. The surface casing is land calculated to be a 60% of the bad.<br>Congression Safety Factor = APA xisi Jobi Strength Reling OP XAP Akin Pie Yest Raning / Haxtimum Fredkied Load<br>weined Load - 30000 bit<br>anductor & Surface Compression Safety Factor<br>Surf Casing Wt (Bouyant) = { 19920 x 0.870 } = 17335<br>'Prod Casing Wt (Bouyant) = { 1920 x 0.870 } = 17335<br>'Prod Casing Wt (Bouyant) = { 1920 x 0.870 } = 103223<br>Tubing Wt (Air Wt) = 7166 x 6.5. = 46579<br>Tubing Wt (Air Wt) = 7166 x 0.052 x 6.55<br>Conductor Compression Safety Factor = 3000 + 17335 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 432965 / 181659 = 2.38<br>Load on Conductor = 3000 + 17335 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 22400 / 108936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max, Allowable Axial Load (Joint)                                                                                                                                                                                                                                                                                                                           | ≐ <u>338000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1.40                                                             |                                        | 241429                                                      |                           | · · ·                 |           | •                     | • •         |                 |       | •                | •              |
| Max. Allowable Overpull Margin = 225000 - ( . 121822 x . 0.847 ) = 121777.<br>Terisial Safety Factor = 300000 / ( 103223 + .50000 ) = 1.96<br>Compression Strahigth ConocoPhillips Reiguired Load Cases<br>The maximum axial (compression) biad for the well is where the surface casing is land calculated to bear 60% of the biad<br>bid not traded. Any other suitable of the ther would need to be added to the bad.<br>Compression Safety Factor = APIAxial John Strang M (Bouyant) = ( .19920 x .0.870 ) = 17335<br>Prod Casing W (Bouyant) = ( .19920 x .0.870 ) = 17335<br>Prod Casing W (Bouyant) = ( .121822 x .0.847 ) = .103223<br>Tubing Wi (Bouyant) = ( .121822 x .0.847 ) = .103223<br>Tubing Wi (Bouyant) = ( .121822 x .0.847 ) = .103223<br>Tubing Wi (Bouyant) = ( .121822 x .0.847 ) = .103223<br>Tubing Wi (Bouyant) = ( .121822 x .0.847 ) = .103223<br>Tubing Wi (Air W) = .7166 x .6.5 = .48579<br>Tubing Fluid W = .7166 x .0.052 x .0.850 x .0.7854 x .2.441 .42 = .11422<br>Load on Conductor = .3000 + .17335 + .003223 + .46579 + .11422 = .181559<br>Conductor Compression Safety Factor = .432965 / .181659 = .2.38<br>Load on Conductor = .3000 + .17335 = .2.38<br>Load on Surface Casing Compression Safety Factor = .2.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max. Allowable Hook Load (Limited to 75% of Rig Max Load)                                                                                                                                                                                                                                                                                                   | = 225000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    | •                                      |                                                             |                           | • <u> </u>            |           |                       |             |                 |       | 4.14             | ,              |
| $\begin{aligned} \begin{array}{rcl} Compression Strangth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Required Load Cases \\ \hline \end{tabular} The final fighth ConnecePhillips Results as a single same case of the bad soft the bad \\ \hline \end{tabular} The final fighth ConnecePhillips Results as a single same case of the field of the soft the bad \\ \hline \end{tabular} The final fighth ConnecePhillips Results as a single same case of the field of the soft the bad \\ \hline \end{tabular} The final fighth ConnecePhillips Results as a single same case of the field of the soft the soft the soft the soft the bad \\ \hline \end{tabular} The final fighth ConnecePhillips Results as a single same case of the field of the soft the sof$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max, Allowable Overpull Margin                                                                                                                                                                                                                                                                                                                              | = 225000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( 121822                                                           | X                                      | 0.847                                                       | ·)=                       | 121777                |           |                       |             |                 |       |                  | 1              |
| Compression Strahöth ConocoPhillips Regulred Load Cases<br>The finatifium buli (compression) biat for the well is where the surface casing is land on the conductor<br>with a support of a plate of landing ring. The surface casing is land calculated to be added on the conductor<br>but not trated. Any other well is where ther would need to be added to the bad<br>but not trated. Any other axis is an abubbing with or after would need to be added to be added to the bad.<br>Compression Safety Factor - APIAxis John Strength Ráling 'OR'APIAxul P <u>io Yind Rating / Maximum Predicted Load</u><br>Wenter at a single to the surface casing is and carculated to be added to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be<br>wenter at a single to the surface casing is and carculated to be added to be added to be<br>added to the surface casing is an addition of the surface casing is an additis to be addition of the surface casing is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                             | - 200000 .1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l intern                                                           | · .                                    | .20000                                                      | <b>, -</b> ,              | 1.90                  |           |                       | · .         |                 |       |                  |                |
| Compression SigningthCondendPhillips Regultred Load Cases         The maximum solid (Compression) bind for the well is where the surface casing is lande calculated to bear 60% of the bind         but not bridd. Any other avial bands such as a sinubbing unit or other violal need to be added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             |                           | ,                     | ÷         |                       |             |                 |       |                  |                |
| The maximum axial (compression) bad for the well is where the surface casing is is a calculated on the conditication<br>with a support of a plate or landing ing. The surface casing is also calculated to bear 60% of the bad<br>bit not traded. Any other axial bads such with a reat revision here for a subport of a plate or landing ing. The surface casing is also calculated to bear 60% of the bad<br>Compression Safety Factor = AFI Axial John Safety Factor<br>Surf Casing Wt (Bouyant) = { 19920 x 0.670 } = 17335<br>'Prod Casing Wt (Bouyant) = { 1920 x 0.670 } = 17335<br>'Prod Casing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Wt (Bouyant) = { 1920 x 0.670 } = 103223<br>Tubing Build Wt = 7166 x 0.55 = 46579<br>Tubing Fluid Wt = 7166 x 0.55 = 46579<br>Tubing Fluid Wt = 7166 x 0.55 = 46579<br>Tubing Fluid Wt = 117336 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 32000 + 117336 + 103223 + 46579 + 11422 = 181559<br>Sufface Casing Compression Safety Factor = 422965 / 181659 = 2.38<br>Load on Conductor = 3000 / 106936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compression Strength ConocoPhillips Regulted Los                                                                                                                                                                                                                                                                                                            | d Cāsēs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                  | •                                      |                                                             |                           |                       | •         |                       |             |                 |       |                  |                |
| Julia of British Britis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The maximum axial (compression) bad for the well is where the surfa-                                                                                                                                                                                                                                                                                        | e casing is landed on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the conductor                                                      |                                        |                                                             |                           | · · ·                 | ÷.,       |                       |             |                 |       | -                |                |
| Compression Safety Factor - APIAxibi Johl Strength Réling 'OP API Axistry Predicted Load         Weinead Load         Onductor & Surface Compression Safety Factor         121822       0.847         Frod Casing Wi (Bouyant) =         (121822         Tubing Wi (Bouyant) =         (121822         Tubing Fluid Wt =         7166         Surface Compression Safety Factor =         17335         Conductor =         3000         17335         Conductor =         3000         17335         103223         43579         Load on Conductor =         3000         181559         Load on Surface Casing =         181559         Surface Casing Compression Safety Factor =         244000       108936         Surface Casing Compression Safety Factor =     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | but not Linded. Any other axial bada such as a shubbling unit or other                                                                                                                                                                                                                                                                                      | cuated to bear euve o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of the load                                                        | ·.                                     |                                                             | 1                         |                       |           | •                     |             |                 |       |                  | 1 . The second |
| .weinedu Long =       3000 bit         onductor & Surface Compression Safety Factor       Surface Compression Safety Factor         Surf Casing Wt (Bouyant) =       (19920 x 0.670 ) =         Prod Casing Wt (Bouyant) =       (121822 x 0.847 ) =         Tubing Wt (Bouyant) =       (121822 x 0.847 ) =         Tubing Wt (Air Wt) =       7166 x 6.55 =         Tubing Fluid Wt =       7166 x 0.652 x 6.55 =         Load on Conductor =       3000 +         Conductor =       3000 +         Conductor =       3000 +         Conductor =       3000 +         Load on Conductor =       3000 +         Conductor =       32236 /         Load on Surface Casing =       181559 =         Conductor Compression Safety Factor =       422965 /         Surface Casing Compression Safety Factor =       224000 /         Surface Casing Compression Safety Factor =       224000 /         Surface Casing Compression Safety Factor =       22400 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             | xial Pipe Yield Rating /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / Maximum Pred                                                     | licted Load                            |                                                             |                           | 1.1                   |           |                       |             | •               | •     |                  |                |
| ondučtor & Surface Compression Safety Factor<br>Surf Časing Wt (Bouyant) = (19920 x 0.870) = 17335<br>'Prod Časing Wt (Bouyant) = (121822 x 0.847) = 103223<br>Tubing Wt (Air Wt) = 7166 x 6.5 = 46579<br>Tubing Fluid Wt = 7166 x 0.0652 x 6.55 x 0.7854 x 2.441 *2 = 11422<br>Load on Conductor = 3000 + 17335 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 432965 / 181559 = 2.38<br>Load on Surface Casing = 181559 x 60% = 108936<br>Surface Casing Compression Surface Testing = 244000 / 108936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compression Safety Factor - API Axial Joint Strength Railing 'OR' API A                                                                                                                                                                                                                                                                                     | 3000 bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                        |                                                             |                           | ,                     | •         | · * *                 |             |                 |       |                  |                |
| Surf Casing Wr (Bouyant) = { 19920 x 0.870 } = 17335<br>Prod Casing Wr (Bouyant) = { 121822 x 0.847 } = 103223<br>Tubing Wi (Air W) = 7166 x 6.5 = 46579<br>Tubing Fluid Wr = 7166 x 0.052 x 6.55 x 0.7854 x 2.441 *2 = 11422<br>Load on Conductor = 3000 + 17335 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 432965 / 181559 = 2.38<br>Load on Surface Casing = 181559 x 60% = 108936<br>Surface Casing Compression Safety Factor = 244000 / 108936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compression Salety Factor - API Axial Joint Strength Railing OR API /<br>Weinead Long -                                                                                                                                                                                                                                                                     | Provide and a second se |                                                                    |                                        |                                                             | ,                         | · ·                   |           |                       |             |                 |       | • •              |                |
| Prod Casing Wi (Bouyani) =       (121822 x. 0.847 ) =       103223         Tubing Wi (Ar Wi) =       7166 x       6.5 =       46579         Tubing Fluid Wi =       7166 x       0.052 x       6.56 x       0.7854 x       2.441 + 2 =         Load on Conductor =       3000 ÷       17335 ÷       103223 +       46579 ÷       11422 =       11422 =         Conductor Compression Safety Factor =       432966 /       181559 =       2.38       2.38         Load on Suface Casing Compression Safety Factor =       124000 /       108936 =       2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compression Safety Factor - API Axibi John Strength Ráling 'OR API /<br>Weinead Load -<br>Weinead Load -                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                             |                           |                       |           |                       |             |                 |       |                  |                |
| Tubing Wt (Ar Wt) =       7166       x       6.5       =       46579         Tubing Fluid Wt =       7166       x       0.052       x       6.55       x       0.7654       x       2.441       +2       =       11422         Load on Conductor =       3000       +       17335       +       103223       +       46579       +       11422       =       181559         Conductor Compression Safety Factor =       432966       /       181559       =       2.38         Load on Sufface Casing Compression Safety Factor =       124000       /       108936       =       2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compression Safety Factor - APIAxibi John Strength Ráling 'OR API/<br>Weihead Load -<br>Weihead Load -<br>Onductor & Surface Compression Safety Factor<br>Surf Cheinn Wh (Rousen)                                                                                                                                                                           | - , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 🗸                                                              | 0 870                                  | ۱E                                                          | 17216                     |                       |           |                       |             |                 |       |                  |                |
| Tubing Fluid Wt =       7166       x       0.052       x       6.55       x       0.7854       x       2.441       *2       =       11422         Load on Conductor =       3000       +       17335       +       103223       +       46579       +       11422       =       181559         Conductor Compression Suface Casing =       181555       x       60%       =       108936         Sufface Casing Compression Suface Casing =       244000       /       108936       =       2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compression Safety Factor - APIAxibi John Strength Ráling 'OR API/<br>Weihead Load -<br>Onductor & Surface Compression Safety Factor<br>Surf Casing Wi (Bouyant)<br>'Prod Casino Wi (Bouyant)                                                                                                                                                               | = ( 199<br>= ( 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120 x<br>1822 x                                                    | 0.870                                  | )=<br>)≒                                                    | 17335                     | ۰.                    |           |                       |             |                 |       |                  |                |
| Load on Longuitor = 3000 + 117335 + 103223 + 46579 + 11422 = 181559<br>Conductor Compression Safety Factor = 432966 / 181559 = 2.38<br>Load on Surface Casing = 181555 x 60% = 108936<br>Surface Casing Compression Safety Factor = 244000 / 108936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compression Safety Factor - APIAxibi John Strength Rolling 'OR' API /<br>Weinead Loag -<br>onductor & Surface Compression Safety Factor<br>Surf Casing Wt (Bouyant)<br>(Prod Casing Wt (Bouyant)<br>Tubing Wt (Air Wt)                                                                                                                                      | = ( 195<br>= ( 121<br>= 7166 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 320 x<br>822 x<br>( 6.5                                            | 0.870<br>0.847<br>] ≑                  | ) =<br>) =<br><u>46579</u>                                  | 17335<br>103223           | •                     |           |                       |             |                 |       |                  | •              |
| Load on Surface Casing = 181559 x 60% = 108336<br>Surface Casing Compression Safety Factor =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compression Safety Factor - APIAxibi John Strength Ráting 'OR' API/<br>Weinead Loag -<br>Conductor & Surface Compression Safety Factor<br>Surf Casing Wt (Bouyant)<br>'Prod Casing Wt (Bouyant)<br>Tubing Wt (Air Wt)<br>Tubing Piud Wt                                                                                                                     | = ( 195<br>= ( 121<br>= 7166 x<br>= 7166 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 x<br>822 x<br>c 6.5<br>t 0.052                                  | 0.870<br>0.847<br>] =<br>× [           | ) =<br>) =<br><u>46579</u><br><u>6.55</u>                   | 17335<br>103223<br>x      | 0.7854                |           | 2.441                 | ]_^2,=      | 11422           |       | . <sup>.</sup> . |                |
| Surface Casing Compression Safety Factor = 244000 / 108936 = 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compression Safety Factor - APIAxibi John Strength Rolling 'OR API/<br>Welhead Loag -<br>conductor & Surface Compression Safety Factor<br>Surf Casing Wt (Bouyant)<br>'Prod Casing Wt (Bouyant)<br>'Prod Casing Wt (Bouyant)<br>Tubing Wt (Air Wt)<br>Tubing Fluid Wt<br>Load on Conduitor Compression Safety Factor<br>Conduitor Compression Safety Factor | = ( 199<br>= ( 121<br>= 7166 x<br>= 7166 x<br>= 3000 ±<br>= 43966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 320 x<br>822 x<br>c 6.5<br>c 0.052<br>i 17335<br>t 181650          | 0.870<br>0.847<br>] ≓<br>× [<br>+      | ) =<br>) =<br><u>46579</u><br><u>6.55</u><br>103223<br>2.39 | 17335<br>103223<br>×<br>+ | 0.7854<br>46579       | × 1       | 2.441<br>11422        | ]_^2,=<br>= | 11422<br>181559 |       |                  |                |
| 1 The first sector was a supervised by the Control of the sector se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Compression Safety Factor - APIAxisi John Strength Rolling 'OR API/<br>Wellneid Loog -<br>Conductor & Surface Compression Safety Factor<br>Surf Casing Wi (Bouyant)<br>'Prod Casing Wi (Bouyant)<br>'Prod Casing Wi (Bouyant)<br>Tubing Wi (Air Wi)<br>Tubing Fluid Wi<br>Load on Conductor Compression Safety Factor<br>Load on Surface Casino             | = ( 195<br>= ( 121<br>= 7166 x<br>= 7166 x<br>= 3000 <del>;</del><br>= 422966 <i>J</i><br>= 181555 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 320 x<br>822 x<br>k 6.5<br>c 0.052<br>i 17335<br>f 181559<br>c 60% | 0.870<br>0.847<br>] ≑<br>× [<br>+<br>= | ) =<br>46579<br>6.65<br>103223<br>2.38<br>108936            | 17335<br>103223<br>x<br>+ | 0.7854<br>46579       | ×  <br>+  | <u>2.441</u><br>11422 | ]_^2 =<br>= | 11422<br>181559 |       | • •              |                |

ı

.

## 3. Proposed cementing program:

#### 16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

## 8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

|      | Slurry  | Inter<br>Ft | vals<br>MD  | Weight<br>ppg | Sx  | Vol<br>Cuft | Additives                                                                                                                      | Yield<br>ft <sup>3</sup> /sx |
|------|---------|-------------|-------------|---------------|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Lead | Class C | Surface     | 485' – 530' | 13.6          | 300 | 510         | 2% Extender<br>2% CaCl <sub>2</sub><br>0.125 lb/sx LCM if needed<br>0.2% Defoamer<br>Excess =75% based on gauge<br>hole volume | 1.70                         |
| Tail | Class C | 485' – 530' | 785' – 830' | 14.8          | 200 | 268         | 1% CaCl2<br>Excess = 100% based on<br>gauge hole volume                                                                        | 1.34                         |

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

#### 5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

#### Spacer: 20 bbls Fresh Water

|      | Slurry      | Inter<br>Ft I | vals<br>MD    | Weight<br>ppg | Sx  | Vol<br>Cuft | Additives                                                                                                                                                                                                  | Yield<br>ft <sup>3</sup> /sx |
|------|-------------|---------------|---------------|---------------|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Lead | 50:50 Poz/C | Surface       | 5200'         | 11.8          | 700 | 1820        | 10% Bentonite<br>5% Salt<br>0.2%-0.4% Fluid loss additive<br>0.125 lb/sx LCM if needed<br>Excess = 220% or more if<br>needed based on gauge hole<br>volume                                                 | 2.6                          |
| Tail | Class H     | 5200'         | 7121' – 7166' | 16.4          | 400 | 428         | <ul> <li>0.2% Fluid loss additive</li> <li>0.3% Dispersant</li> <li>0.15% Retarder</li> <li>0.2% Antifoam</li> <li>Excess = 100% or more if</li> <li>needed based on gauge hole</li> <li>volume</li> </ul> | 1.07                         |

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Ruby Federal #27

(Date: 10/28/2013)

## Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

#### 4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

#### 5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

| DEPTH                      | TYPE                                                      | Density<br>ppg | FV<br>sec/qt | API Fluid<br>Loss<br>cc/30 min | рН      | Vol<br>bbl |
|----------------------------|-----------------------------------------------------------|----------------|--------------|--------------------------------|---------|------------|
| 0 – Surface Casing Point   | Fresh Water or<br>Fresh Water Native<br>Mud in Steel Pits | 8.5 - 9.0      | 28 - 40      | N.C.                           | N.C.    | 120 – 160  |
| Surface Casing Point to TD | Brine (Saturated<br>NaCl <sub>2</sub> ) in Steel Pits     | 10             | 29           | N.C.                           | 10 – 11 | 500 – 1000 |
| Conversion to Mud at TD    | Brine Based Mud<br>(NaCl <sub>2</sub> ) in Steel Pits     | 10             | 33 – 40      | 5 – 10                         | 10 – 11 | 0 – 750    |

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

## Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

# 6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
  - Total Depth to 2500': Resistivity, Density, and Gamma Ray
  - Total Depth to surface Casing Shoe: Caliper
  - Total Depth to surface, Gamma Ray and Neutron
  - Formation pressure data (XPT) on electric line if needed (optional)
  - Rotary Sidewall Cores on electric line if needed (optional)
  - BHC or Dipole Sonic if needed (optional)
  - Spectral Gamma Ray if needed (optional)

#### 7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
  - The bottom hole pressure is expected to be 8.55 ppg gradient.
  - The expected Bottom Hole Temperature is 115 degrees F.

The estimated H<sub>2</sub>S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

| FORMATION / ZONE                 | H2S<br>(PPM) | Gas Rate<br>(MCFD) | ROE<br>100 PPM | ROE<br>500 PPM |
|----------------------------------|--------------|--------------------|----------------|----------------|
| Grayburg / San Andres (from MCA) | 14000        | 38                 | 59             | 27             |
| Yeso Group                       | 400          | 433                | 34             | 15             |

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

#### 8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

# Attachments:

- Attachment # 1 ...... BOP and Choke Manifold Schematic 3M System
- Attachment # 2..... Diagram of Choke Manifold Equipment

# **Contact Information:**

Proposed 28 October 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

# **ConocoPhillips MCBU**

Buckeye Ruby Federal Ruby Federal 27

**Ruby Federal 27** 

Plan: Slant Plan

# **Standard Planning Report - Geographic**

30 September, 2013

# Planning Report - Geographic

| Database:<br>Company:<br>Project:<br>Site:<br>Well:<br>Wellbore:<br>Design:<br>Project<br>Map System:<br>Geo Datum:<br>Map Zone: | EDM Cc<br>Conoco<br>Buckey<br>Ruby Fu<br>Ruby Fu<br>Slant Pl<br>Euckeye<br>US State I<br>NAD 1927<br>New Mexi | entral Plannir<br>Phillips MCB<br>e<br>ederal<br>ederal 27<br>ederal 27<br>an<br><u>Lea County</u><br>Plane 1927 (I<br>U (NADCON C<br>co East 3001 | 9<br>U<br>, <u>NM</u><br>Exact solution)<br>CONUS)                      |                               | Local Co-<br>TVD Refer<br>MD Refer<br>North Ref<br>Survey Ca<br>System Da | ordinate Refei<br>rence:<br>erence:<br>alculation Meti | rence:                                                         | Well Ruby Fede<br>RKB @ 4024.0u<br>RKB @ 4024.0u<br>Grid<br>Minimum Curva | ral 27<br>Isft (PD 822)<br>Isft (PD 822)<br>ture |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Site                                                                                                                             | Ruby Fe                                                                                                       | deral, New M                                                                                                                                       | exico, Southea                                                          | st                            |                                                                           | ······                                                 |                                                                |                                                                           |                                                  | +                                               |
| Site Position:<br>From:<br>Position Uncertain                                                                                    | Lat/Lo                                                                                                        | ong<br>3.                                                                                                                                          | Northi<br>Eastin<br>5 usft Slot Ra                                      | ng:<br>g:<br>adius:           | 666<br>666                                                                | ,097.48 usft<br>,763.63 usft<br>8 "                    | Latitude:<br>Longitude:<br>Grid Converg                        | ence:                                                                     |                                                  | 32° 49' 48.040 N<br>103° 47' 25.559 W<br>0.29 ° |
| Well                                                                                                                             | Ruby Fed                                                                                                      | teral 27, Devi                                                                                                                                     | ated Well                                                               |                               |                                                                           |                                                        |                                                                |                                                                           |                                                  |                                                 |
| Well Position                                                                                                                    | +N/-S<br>+E/-W                                                                                                | (                                                                                                                                                  | 0.0 usft No<br>0.0 usft Ea                                              | rthing:<br>sting:             |                                                                           | 668,910.92<br>667,714.91                               | usft Lati<br>usft Lon                                          | tude:<br>gitude:                                                          |                                                  | 32° 50' 15.830 N<br>103° 47' 14.240 W           |
| Position Uncertaint                                                                                                              | У                                                                                                             | (                                                                                                                                                  | 0.0 usft We                                                             | llhead Elevatic               | on:                                                                       |                                                        | Gro                                                            | und Level:                                                                |                                                  | 4,011.0 usft                                    |
| Wellbore<br>Magnetics                                                                                                            | Ruby Fe                                                                                                       | ederal 27<br>el Name                                                                                                                               | Sample                                                                  | Date                          | -<br>Declina<br>(°)                                                       | tion                                                   | Dip A<br>(°                                                    | ngle<br>)                                                                 | Field (                                          | Strength<br>(nT)                                |
|                                                                                                                                  |                                                                                                               | BGGM2012                                                                                                                                           |                                                                         | 8/6/2013                      | n                                                                         | 7.57                                                   |                                                                | 60.60                                                                     |                                                  | 48,715                                          |
| Design                                                                                                                           | Slant Pla                                                                                                     | n                                                                                                                                                  |                                                                         |                               |                                                                           |                                                        |                                                                |                                                                           |                                                  |                                                 |
| Version:<br>Vertical Section:                                                                                                    | 1                                                                                                             | Ē                                                                                                                                                  | Phase<br>Pepth From (TV<br>(usft)<br>0.0                                | : PF<br>D)                    | ROTOTYPE<br>+N/-S<br>(usft)<br>0.0                                        | Tie<br>+E<br>(u:                                       | On Depth:<br>/-W<br>sft)<br>.0                                 | Dire<br>21                                                                | 0.0<br>ection<br>(°)<br>4.82                     |                                                 |
| Version:<br>Vertical Section:                                                                                                    | 1                                                                                                             | Ē                                                                                                                                                  | Phase<br>Pepth From (TV<br>(usft)<br>0.0                                | : PF<br>D)                    | ROTOTYPE<br>+N/-S<br>(usft)<br>0.0                                        | Tie<br>+E<br>(u<br>0                                   | On Depth:<br>/W<br>sft)<br>.0                                  | Dira<br>21                                                                | 0.0<br>ection<br>(°),<br>4.82                    |                                                 |
| Version:<br>Vertical Section:<br>Plan Sections.<br>Measured<br>Depth Inc<br>(usft)                                               | lination (°)                                                                                                  | Azimuth<br>(°)                                                                                                                                     | Phase<br>Pepth From (TV<br>(usft)<br>0.0<br>Vertical<br>Depth<br>(usft) | : PF<br>D)<br>+N/-S<br>(usft) | ROTOTYPE<br>+N/-S<br>(usft)<br>0.0<br>+E/-W<br>(usft)                     | Tie<br>+E<br>(u:<br>0<br>Dogleg<br>Rate<br>(°/100usft) | On Depth:<br>/-W<br>sft)<br>.0<br>Build<br>Rate<br>(°/100usft) | Dira<br>21<br>Turn<br>Rate<br>(°/100usft)                                 | 0.0<br>ection<br>(°)<br>4.82<br>TFO<br>(°)       | Target                                          |

, **,** , , , , ,

# Planning Report - Geographic

| Planned Survey |                      |                              |                             |   |
|----------------|----------------------|------------------------------|-----------------------------|---|
| Design:        | Slant Plan           |                              |                             |   |
| Wellbore:      | Ruby Federal 27      |                              |                             |   |
| Well:          | Ruby Federal 27      | Survey Calculation Method:   | Minimum Curvature           | , |
| Site:          | Ruby Federal         | North Reference:             | Grid                        |   |
| Project:       | Buckeye              | MD Reference:                | RKB @ 4024.0usft (PD 822)   | 2 |
| Company:       | ConocoPhillips MCBU  | TVD Reference:               | , RKB @ 4024.0usft (PD 822) | 1 |
| Database:      | EDM Central Planning | Local Co-ordinate Reference: | Well Ruby Federal 27        |   |

, **x** , **x** 

|   | Depth<br>(usff) | Inclination | Azimuth | Vertical<br>Depth<br>(usft): | +N/-S  | +E/-W<br>(usft) | Map<br>Northing<br>(usft) | Map<br>Easting<br>(usft) | Latituda         | Longitudo           |
|---|-----------------|-------------|---------|------------------------------|--------|-----------------|---------------------------|--------------------------|------------------|---------------------|
| · | (usit)          |             |         | (usit):                      | (usir) | (usit)          |                           |                          | Lautuue          | Longitude           |
|   | 0.0             | 0.00        | 0.00    | 0.0                          | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50' 15.830 N | 103° 47' 14.240 W   |
|   | 85.0            | 0.00        | 0.00    | 85.0                         | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50' 15.830 N | 103° 47′ 14.240 W   |
|   | Conduct         | or          |         |                              |        |                 |                           |                          |                  |                     |
|   | 100.0           | 0.00        | 0.00    | 100.0                        | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50' 15.830 N | 103° 47' 14.240 W   |
|   | 200.0           | 0.00        | 0.00    | 200.0                        | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50' 15.830 N | 103° 47' 14.240 W   |
|   | 300.0           | 0.00        | 0.00    | 300.0                        | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50' 15.830 N | 103° 47' 14.240 W   |
|   | 400.0           | 0.00        | 0.00    | 400.0                        | 0,0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50° 15,830 N | 103° 47° 14.240 W   |
|   | 500.0           | 0.00        | 0.00    | 500.0                        | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32 30 13.830 N   | 103° 47° 14.240 W   |
|   | 700.0           | 0.00        | 0.00    | 700.0                        | 0.0    | 0.0             | 668 010 02                | 667 714.91               | 32 30 13.030 N   | 103 47 14.240 W     |
|   | 700.0           | 0.00        | 0.00    | 700.0                        | 0.0    | 0.0             | 668 010 02                | 667 714.91               | 32 30 13.030 N   | 103° 47° 14.240 W   |
|   | 760.0           | 0.00        | 0.00    | 760.0                        | 0.0    | 0.0             | 000,910.92                | 007,714.91               | 32 50 15.630 N   | 103 47 14.240 00    |
|   | Rustler         | 0.00        | 0.00    | 860.0                        | 0.0    | 0.0             | 668.040.00                | 007 744 04               | 208 EOL 4E 200 N | 1008 471 44 040 144 |
|   | 800.0           | 0.00        | 0.00    | 800.0                        | 0.0    | 0.0             | 668,010.92                | 667 714.91               | 32 50 15.630 N   | 103 47 14.240 W     |
|   | 830.0           | 0.00        | 0.00    | 630.0                        | 0.0    | 0.0             | 000,910.92                | 007,714.91               | 32 30 15.630 N   | 103 47 14.240 00    |
|   | Surface         | 0.00        | 0.00    | 000.0                        | 0.0    | 0.0             | 668 040 00                | 007 744 04               | 008 EDI 4E 000 N | 4008 47 44 040 14   |
|   | 900.0           | 0.00        | 0.00    | 900.0                        | 0.0    | 0.0             | 668,910.92                | 667 714.91               | 32° 50° 15.830 N | 103° 47° 14,240 W   |
|   | 938.0           | 0.00        | 0.00    | 938.0                        | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32° 50° 15,830 N | 103 47 14.240 99    |
|   | Salado          | 0.00        | 0.00    | 4 000 0                      |        |                 | 000 040 00                | 007 744 04               | 008 501 45 000 N |                     |
|   | 1,000.0         | 0.00        | 0.00    | 1,000.0                      | 0.0    | 0.0             | 668,910.92                | 667 714.91               | 32 50 15.830 N   | 103° 47° 14.240 W   |
|   | 1,100.0         | 0.00        | 0.00    | 1,100.0                      | 0.0    | 0.0             | 668,910.92                | 667,714.91               | 32 30 15.830 N   | 103° 47° 14.240 VV  |
|   | 1,200.0         | 0.00        | 0.00    | 1,200.0                      | 0.0    | 0.0             | 669 010 02                | 667 714.91               | 32 30 13.030 N   | 103 47 14.240 VV    |
|   | 1,300.0         | 0.00        | 0.00    | 1,300.0                      | 0.0    | 0.0             | 668 010.92                | 667,714.91               | 32 30 13.030 N   | 103 47 14.240 VV    |
|   | 1,400.0         | 0.00        | 0.00    | 1,400.0                      | 0.0    | 0.0             | 668 010 02                | 667 714 01               | 32 50 15.650 N   | 103 47 14.240 4     |
|   | 1,500.0         | 0.00        | 0.00    | 1,500.0                      | 0.0    | 0.0             | 669 010 02                | 667,714.91               | 32 30 13.030 N   | 103 47 14.240 VV    |
|   | 1,000.0         | 0.00        | 0.00    | 1,000.0                      | 0.0    | 0.0             | 668 010 02                | 667 714.91               | 32 50 15.030 N   | 103 47 14.240 W     |
|   | 1,700.0         | 0.00        | 0.00    | 1,700.0                      | 0.0    | 0.0             | 668 010 02                | 667 714 01               | 32° 50' 15 830 N | 103° 47' 14.240 W   |
|   | 1 000.0         | 0.00        | 0.00    | 1,000.0                      | 0.0    | 0.0             | 668 910 92                | 667 714 91               | 32° 50' 15 830 N | 103° 47' 14.240 W   |
|   | 1,000.0         | 0.00        | 0.00    | 1,500.0                      | 0.0    | 0.0             | 668 910 92                | 667 714 91               | 32° 50' 15,830 N | 103° 47' 14.240 W   |
|   | Tancill         | 0.00        | 0.00    | 1,000.0                      | 0.0    | 0.0             | 000,010.02                | 001,711.01               | 02 00 10.00011   | 100 47 14.240 00    |
|   | 2 000 0         | 0.60        | 214 82  | 2 000 0                      | -0.2   | -0.1            | 668 910 75                | 667 714 79               | 32° 50' 15 828 N | 103" 47' 14 241 14/ |
|   | 2,000.0         | 2 10        | 214.02  | 2,000.0                      | -2.1   | -1.5            | 668 908 82                | 667 713 44               | 32° 50' 15 809 N | 103° 47' 14 257 W   |
|   | 2,100.0         | 3 60        | 214.82  | 2,100.0                      | -6.2   | -4.3            | 668 904 74                | 667 710 61               | 32° 50' 15 769 N | 103° 47' 14.291 W/  |
|   | 2,200.0         | 5.10        | 214.82  | 2,299.6                      | -12.4  | -8.6            | 668.898.51                | 667,706,27               | 32° 50' 15 708 N | 103° 47' 14 342 W   |
|   | 2.400.0         | 6.60        | 214.82  | 2,399.0                      | -20.8  | -14.5           | 668,890,14                | 667,700,46               | 32° 50' 15.625 N | 103° 47' 14.411 W   |
|   | 2.500.0         | 8.10        | 214.82  | 2,498.2                      | -31.3  | -21.8           | 668.879.64                | 667.693.15               | 32° 50' 15.522 N | 103° 47' 14,497 W   |
|   | 2,600.0         | 9.60        | 214.82  | 2,597.0                      | -43.9  | -30.5           | 668,867.01                | 667,684.37               | 32° 50' 15.397 N | 103° 47' 14.601 W   |
|   | 2,700.0         | 11.10       | 214.82  | 2,695.4                      | -58.7  | -40.8           | 668,852.26                | 667,674.11               | 32° 50' 15.252 N | 103° 47' 14.722 W   |
|   | 2,800.0         | 12.60       | 214.82  | 2,793.2                      | -75.5  | -52.5           | 668,835.41                | 667,662.38               | 32° 50' 15.085 N | 103° 47' 14.860 W   |
|   | 2,900.0         | 14.10       | 214.82  | 2,890.5                      | -94.5  | -65.7           | 668,816.45                | 667,649.20               | 32° 50' 14.899 N | 103° 47' 15.016 W   |
|   | 3,000.0         | 15.60       | 214.82  | 2,987.2                      | -115.5 | -80.3           | 668,795.42                | 667,634.57               | 32° 50' 14.691 N | 103° 47' 15.189 W   |
|   | 3,100.0         | 17.10       | 214.82  | 3,083.2                      | -138.6 | -96.4           | 668,772.31                | 667,618.49               | 32° 50' 14.463 N | 103° 47' 15.378 W   |
|   | 3,121.5         | 17.42       | 214.82  | 3,103.7                      | -143.9 | -100.1          | 668,767.06                | 667,614.85               | 32° 50' 14.412 N | 103° 47' 15.421 W   |
|   | 3,200.0         | 17.42       | 214.82  | 3,178.6                      | -163.2 | -113.5          | 668,747.78                | 667,601.43               | 32° 50' 14.221 N | 103° 47' 15.580 W   |
|   | 3,300.0         | 17.42       | 214.82  | 3,274.0                      | -187.7 | -130.6          | 668,723.20                | 667,584.33               | 32° 50' 13.979 N | 103° 47' 15.782 W   |
|   | 3,400.0         | 17.42       | 214.82  | 3,369.4                      | -212.3 | -147.7          | 668,698.62                | 667,567.24               | 32° 50' 13.737 N | 103° 47' 15.984 W   |
|   | 3,500.0         | 17.42       | 214.82  | 3,464.8                      | -236.9 | -164.8          | 668,674.04                | 667,550.14               | 32° 50' 13.494 N | 103° 47' 16.185 W   |
|   | 3,523.2         | 17.42       | 214.82  | 3,487.0                      | -242.6 | -168.8          | 668,668.32                | 667,546.17               | 32° 50' 13.438 N | 103° 47' 16.232 W   |
|   | Grayburg        |             |         |                              |        |                 |                           |                          |                  |                     |
|   | 3,600.0         | 17.42       | 214.82  | 3,560.2                      | -261.5 | -181.9          | 668,649.46                | 667,533.04               | 32° 50' 13.252 N | 103° 47' 16.387 W   |
|   | 3,700.0         | 17.42       | 214.82  | 3,655.6                      | -286.1 | -199.0          | 668,624.88                | 667,515.95               | 32° 50' 13.010 N | 103° 47' 16.589 W   |
|   | 3,800.0         | 17.42       | 214.82  | 3,751.1                      | -310.6 | -216.1          | 668,600.30                | 667,498.85               | 32° 50' 12.767 N | 103° 47' 16.791 W   |
|   | 3,900.0         | 17.42       | 214.82  | 3,846.5                      | -335.2 | -233.2          | 668,575.72                | 667,481.75               | 32° 50' 12.525 N | 103° 47' 16.993 W   |

# Planning Report - Geographic

| 1         | يستجاف الافتان المارين الماد المتعط بساليين | and and a second s | د به است این از است به مهم و به می این به این از معنوب می ازد.<br>این از مارین است است است میشونی ماری میشود است. | · · · · · · · · · · · · · · · · · · · |
|-----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Database: | EDM Central Planning                        | Local Co-ordinate Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Well Ruby Federal 27                                                                                              |                                       |
| Company:  | ConocoPhillips MCBU                         | TVD Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RKB @ 4024.0usft (PD 822)                                                                                         | i                                     |
| Project:  | Buckeye                                     | MD Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RKB @ 4024.0usft (PD 822)                                                                                         |                                       |
| Site:     | Ruby Federal                                | North Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grid                                                                                                              | 1.                                    |
| Well:     | Ruby Federal 27                             | Survey Calculation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum Curvature                                                                                                 |                                       |
| Wellbore: | ' Ruby Federal 27                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                 |                                       |
| Design:   | Slant Plan                                  | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                 |                                       |

Planned Survey

-----

· · ·

| Planned Survey    |             | -       |                   |                |        |                 |                | • •••••          |                   |
|-------------------|-------------|---------|-------------------|----------------|--------|-----------------|----------------|------------------|-------------------|
| Measured<br>Depth | Inclination | Azimúth | Vertical<br>Depth | +N/-S          | +E/-W  | Map<br>Northing | Map<br>Easting |                  |                   |
| (usft)            | (°)         | (°)     | (usft)            | (usft)         | (usft) | (usft)          | (usft)         | Latitude         | Longitude         |
| 3,904.8           | 17.42       | 214.82  | 3,851.0           | -336.4         | -234.0 | 668,574.55      | 667,480.94     | 32° 50' 12.514 N | 103° 47' 17.003 W |
| San And           | res         |         |                   |                |        |                 |                |                  |                   |
| 4,000.0           | 17.42       | 214.82  | 3,941.9           | -359.8         | -250.3 | 668,551.14      | 667,464.66     | 32° 50' 12.283 N | 103° 47' 17.195 W |
| 4,100.0           | 17.42       | 214.82  | 4,037.3           | -384.4         | -267.4 | 668,526.56      | 667,447.56     | 32° 50' 12.040 N | 103° 47' 17.397 W |
| 4,200.0           | 17.42       | 214.82  | 4,132.7           | -409.0         | -284.5 | 668,501.98      | 667,430.46     | 32° 50' 11.798 N | 103° 47' 17.599 W |
| 4,300.0           | 17.42       | 214.82  | 4,228.1           | -433.5         | -301.6 | 668,477.40      | 667,413.37     | 32° 50' 11,556 N | 103° 47' 17.800 W |
| 4,400.0           | 17.42       | 214,82  | 4,323.5           | -458.1         | -318.7 | 668,452.82      | 667,396.27     | 32° 50' 11.313 N | 103° 47' 18.002 W |
| 4,500.0           | 17.42       | 214.82  | 4,418.9           | -482.7         | -335.8 | 668,428.24      | 667,379.18     | 32° 50' 11.071 N | 103° 47' 18.204 W |
| 4,600.0           | 17.42       | 214.82  | 4,514.3           | -507.3         | -352.9 | 668,403.66      | 667,362.08     | 32° 50' 10.829 N | 103° 47' 18.406 W |
| 4,700.0           | 17.42       | 214.82  | 4,609.8           | -531.9         | -369.9 | 668,379.08      | 667,344.98     | 32° 50' 10.586 N | 103° 47' 18.608 W |
| 4,800.0           | 17.42       | 214.82  | 4,705.2           | -556.5         | -387.0 | 668,354.50      | 667,327.89     | 32° 50' 10.344 N | 103° 47' 18.810 W |
| 4,900.0           | 17.42       | 214.82  | 4,800.6           | -581.0         | -404.1 | 668,329.92      | 667,310.79     | 32° 50' 10.102 N | 103° 47' 19.012 W |
| 5,000.0           | 17.42       | 214.82  | 4,896.0           | -605.6         | -421.2 | 668,305.34      | 667,293.69     | 32° 50' 9.859 N  | 103° 47' 19.213 W |
| 5,049.9           | 17.42       | 214.82  | 4,943.6           | -617.9         | -429.8 | 668,293.09      | 667,285.17     | 32° 50' 9.739 N  | 103° 47' 19.314 W |
| 5,100.0           | 16.67       | 214.82  | 4,991.5           | -629.9         | -438.2 | 668,281.02      | 667,276.78     | 32° 50' 9.620 N  | 103° 47' 19.413 W |
| 5,200.0           | 15.17       | 214.82  | 5,087.7           | -652.5         | -453.8 | 668,258.51      | 667,261.11     | 32° 50' 9.398 N  | 103° 47' 19.598 W |
| 5,300.0           | 13.67       | 214.82  | 5,184.5           | -672.9         | -468.0 | 668,238.06      | 667,246.89     | 32° 50' 9.196 N  | 103° 47' 19.766 W |
| 5,400.0           | 12.17       | 214.82  | 5,282.0           | -691.3         | -480.8 | 668,219.71      | 667,234.13     | 32° 50' 9.015 N  | 103° 47' 19.917 W |
| 5,459.3           | 11.28       | 214.82  | 5,340.0           | -701.1         | -487.7 | 668,209.82      | 667,227.25     | 32° 50' 8.918 N  | 103° 47' 19.998 W |
| Glorieta          |             |         |                   |                |        |                 |                |                  |                   |
| 5,500.0           | 10.67       | 214.82  | 5,380.0           | -707.5         | -492.1 | 668,203.45      | 667,222.82     | 32° 50' 8.855 N  | 103° 47' 20.050 W |
| 5,544.7           | 10.00       | 214.82  | 5,424.0           | <b>-</b> 714.1 | -496.7 | 668,196.86      | 667,218.24     | 32° 50' 8.790 N  | 103° 47' 20.104 W |
| Paddock           |             |         |                   |                |        |                 |                |                  |                   |
| 5,600.0           | 10.00       | 214.82  | 5,478.4           | -722.0         | -502.2 | 668,188.99      | 667,212.76     | 32° 50' 8.712 N  | 103° 47' 20.169 W |
| 5,700.0           | 10.00       | 214.82  | 5,576.9           | -736.2         | -512.1 | 668,174.73      | 667,202.84     | 32° 50' 8.572 N  | 103° 47' 20.286 W |
| 5,800.0           | 10.00       | 214.82  | 5,675.4           | -750.5         | -522.0 | 668,160.48      | 667,192.93     | 32° 50' 8.431 N  | 103° 47' 20.403 W |
| 5,900.0           | 10.00       | 214.82  | 5,773.9           | -764.7         | -531.9 | 668,146.22      | 667,183.01     | 32° 50' 8.290 N  | 103° 47' 20.520 W |
| 6,000.0           | 10.00       | 214.82  | 5,872.4           | -779.0         | -541.8 | 668,131.97      | 667,173.10     | 32° 50' 8.150 N  | 103° 47' 20.637 W |
| 6,100.0           | 10.00       | 214.82  | 5,970.8           | -793.3         | -551.8 | 668,117.71      | 667,163.18     | 32° 50' 8.009 N  | 103° 47' 20.754 W |
| 6,200.0           | 10.00       | 214.82  | 6,069.3           | -807.5         | -561.7 | 668,103.46      | 667,153.27     | 32° 50' 7.869 N  | 103° 47' 20.871 W |
| 6,297.2           | 10.00       | 214.82  | 6,165.0           | -821.4         | -571.3 | 668,089.61      | 667,143.63     | 32° 50' 7.732 N  | 103° 47' 20.985 W |
| Blinebry          |             |         |                   |                |        |                 |                |                  |                   |
| 6,300.0           | 10.00       | 214.82  | 6,167.8           | -821.8         | -571.6 | 668,089.20      | 667,143.35     | 32° 50' 7.728 N  | 103° 47' 20.988 W |
| 6,400.0           | 10.00       | 214.82  | 6,266.3           | -836.0         | -581.5 | 668,074.95      | 667,133.44     | 32° 50' 7.588 N  | 103° 47' 21.106 W |
| 6,500.0           | 10.00       | 214.82  | 6,364.8           | -850.3         | -591.4 | 668,060.69      | 667,123.52     | 32° 50' 7.447 N  | 103° 47' 21.223 W |
| 6,600.0           | 10.00       | 214.82  | 6,463.2           | -864.5         | -601.3 | 668,046.44      | 667,113.61     | 32° 50' 7,307 N  | 103° 47' 21.340 W |
| 6,700.0           | 10.00       | 214.82  | 6,561.7           | -878.8         | -611.3 | 668,032.19      | 667,103.69     | 32° 50' 7.166 N  | 103° 47' 21.457 W |
| 6,800.0           | 10.00       | 214.82  | 6,660.2           | -893.0         | -621.2 | 668,017.93      | 667,093.78     | 32° 50' 7.026 N  | 103° 47' 21.574 W |
| 6,900.0           | 10.00       | 214.82  | 6,758.7           | -907.3         | -631.1 | 668,003.68      | 667,083.86     | 32° 50' 6.885 N  | 103° 47' 21.691 W |
| 6,921.6           | 10.00       | 214.82  | 6,780.0           | -910.4         | -633.2 | 668,000.59      | 667,081.72     | 32° 50' 6.855 N  | 103° 47' 21.716 W |
| Tubb              |             |         |                   |                |        |                 |                |                  |                   |
| 7,000.0           | 10.00       | 214.82  | 6,857.2           | -921.6         | -641.0 | 667,989.42      | 667,073.95     | 32° 50' 6.744 N  | 103° 47' 21.808 W |
| 7,100.0           | 10.00       | 214.82  | 6,955.6           | -935.8         | -650.9 | 667,975.17      | 667,064.03     | 32° 50' 6.604 N  | 103° 47' 21.925 W |
| 7,166.0           | 10.00       | 214.82  | 7,020.6           | -945.2         | -657.5 | 667,965.76      | 667,057.49     | 32° 50' 6.511 N  | 103° 47' 22.002 W |
| Productio         | n           |         |                   |                |        |                 |                |                  |                   |
| 7,175.5           | 10.00       | 214.82  | 7,030.0           | -946.6         | -658.4 | 667,964.40      | 667,056.55     | 32° 50' 6.498 N  | 103° 47' 22.013 W |

## Planning Report - Geographic

| Database:         ED/N Central Planning<br>Company:         Local Co-ordinate Reference::         Well Ruby Federal 27           Project:         Buckeye         MD Reference::         RK @ 4024.0usf (PD 822)           Site:         Ruby Federal         X         MD Reference::         RK @ 4024.0usf (PD 822)           Well:         Ruby Federal 27         Survey Calculation Method:         Minimum Curveture           Wellscore:         RUby Federal 27         Survey Calculation Method:         Minimum Curveture           Target Name        hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S           - hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           - bit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           - bit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           - bit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           - corder (radius 150.0)         0.00         0.01         5.42.0         -59.7         7.16.0                                                                                                                                                                                                                  | حصيفية العبيا                                                                     | <u>,</u>                                      | ·                            | •• -•                      | • • •                 | **                       | · · ·                                  |            | · ·                                     | •••••<br>••••••          | e e e e e e e e e e e e e e e e e e e |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|----------------------------|-----------------------|--------------------------|----------------------------------------|------------|-----------------------------------------|--------------------------|---------------------------------------|
| Company:         ConcodPhillips MCBU         TVD Reference:         RKB @ 4024 duaft (PD 822)           Site:         Ruby Federal 27         North Reference:         Grid @ 4024 duaft (PD 822)           Well:         Ruby Federal 27         Survey Catculation Method:         Minimum Curvature           Wells:         Ruby Federal 27         Survey Catculation Method:         Minimum Curvature           Design Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Database:                                                                         | EDM Cen                                       | tral Planning                |                            |                       | Local Co-or              | dinate Reference:                      | Well Ru    | iby Federal                             | 27                       |                                       |
| Project:         Buckeye         MD Reference:         RKB @ A024 0.usft (PD 822)           Site:         Ruby Federal 27         Survey Calculation Method:         Minimum Curvature           Well:         Ruby Federal 27         Survey Calculation Method:         Minimum Curvature           Design:         Start Plan         North Reference:         Grid           Design:         Start Plan         Image: Calculation Method:         Minimum Curvature           Design:         Start Plan         Image: Calculation Method:         Minimum Curvature           Design:         Start Plan         Image: Calculation Method:         Minimum Curvature           Design:         Start Plan         Image: Calculation Method:         Minimum Curvature         Longitude           Start Plan         Image: Calculation Method:         Minimum Curvature         Longitude         Longitude           Start Plan         Image: Calculation Start Plan         Start Plan         Start Plan         Longitude         Longitude           Casing Points         Image: Calculation Start Plan         Start Plan         Start Plan         Longitude                                                                                                                                                                    | Company:                                                                          | ' ConocoPi                                    | hillips MCBU                 |                            | TVD Refere            | nce:                     | RKB @ 4024.0usft (PD 822)              |            |                                         |                          |                                       |
| Meta:         Ruby Federal Z         Survey Calculation Method:         Minimum Curvature           Well:         Ruby Federal Z7         Survey Calculation Method:         Minimum Curvature           Design:         Slant Plan         Sint Plan         Latitude         Longitude           Design:         Slant Plan         Latitude         Longitude         Longitude           Design:         Slant Plan         Latitude         Longitude         Longitude           - hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         North Reference:         Gaing           - hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         North Reference:         Latitude         Longitude           - hit/miss target benter by 141. Lust at 5569 Sust MD (5448.5 TVD, -717.6 N, -499.2 E)         - Crice (refulue 150.0)         32* 50* 7.830 N         103* 47* 21.0           - Graing (refulue 150.0)         Biso         Biso         Site         Diameter         Diameter           UsetN         Casing         Hole         Diameter         Diameter         Diameter           10x1         tust 5569         Conductor         5-1/2         7-7/8         Dip           Formations         Sitet                                                                                                                                                                                                                    | Project:     Buckeye       Site:     Ruby Federal       Well:     Ruby Federal 27 |                                               |                              |                            |                       | MD Referen               | ce:                                    | RKB @      | 4024.0usft                              | (PD 822)                 |                                       |
| Wells:         Ruby Federal 27         Survey Calculation Method:         Minimum Curvature           Velibore:         Ruby Federal 27         Siant Plan         Image: Siant Plan |                                                                                   |                                               |                              |                            |                       | North Refer              | ence:                                  | Grid       |                                         |                          |                                       |
| Mellore:         Ruby Federal 27           Design:         Silent Plan           Design:         Silent Plan           Targets         Target Name         Northing         Easting           -hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           -hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           -hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           -hit/miss target         0.00         0.01         5,424.0         +831.7         -578.5         668,079.23         667,138.45         32° 50' 7.630 N         103° 47' 21.0           - clare insest arget cancer by 141.1 ust at 5569.6 ust MD (5448.5 TVD, -717.6 N, -499.2 E)         -Circle (radius 150.0)         103° 47' 21.0           Casing Points         Messured         Vertical         Mame         Casing         Hole         Diameter                                                                                                                                                                                                                               |                                                                                   |                                               |                              |                            |                       | Survey Calo              | ulation Method:                        | Minimu     | m Curvature                             | Э                        |                                       |
| Design :         Slant Plan           Design Targets           - hit/miss target         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting           - Shape         (*)         (*)         (usft)         (usft)         (usft)         (usft)         Latitude         Longitude           Shape         (*)         (*)         (usft)         (usft)         (usft)         (usft)         Latitude         Longitude           Plan misses target center by 141.1 usft at 5569.6 usft MD (5448.5 TVD, -717.6 N, -499.2 E)         - Cricle (radius 150.0)         103* 47* 21.0           Casing Points         Depth         Depth         Diameter         Diameter         Diameter         0         103* 47* 21.0           85.0         85.0         Conductor         16         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                 | Wellbore: Ruby Federal 27                                                         |                                               |                              |                            | }                     |                          |                                        |            |                                         |                          |                                       |
| Design Targets         Target Name         Dip Angle         Dip Dir.         TVD         +N/-S         +E/-W         Northing         Easting         Latitude         Longitude           -Shape         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)                                                                                                                                                                                                                                                                                                                           | Design: Slant Plan                                                                |                                               |                              |                            |                       |                          |                                        | <b>.</b>   | . • • • • • • • • • • • • • • • • • • • |                          |                                       |
| Target Name<br>- Shape         Dip Angle<br>(*)         Dip Dir.<br>(*)         TVD<br>(*)         +H/-S<br>(usft)         tel/-W<br>(usft)         Northing<br>(usft)         Easting<br>(usft)         Latitude         Longitude           Ruby Federal 27 (Plat Bl<br>- plan misses target conter by 141. Lusft at 5599. Busft MD (5448. 5 TVD, -717.8 N, -499.2 E)<br>- Circle (radius 150.0)         0.01         5,424.0         -831.7         -578.5         668,079.23         667,136.45         32* 50* 7.830 N         103* 47' 21.0           - plan misses target conter by 141. Lusft at 5599. Busft MD (5448.5 TVD, -717.8 N, -499.2 E)         -         Casing         Hole         103* 47' 21.0           - Circle (radius 150.0)         0.01         5,424.0         -831.7         Name         C         7           Casing Points         Vertical         Depth         Depth         Depth         Dip         Diameter         Diameter         Diameter         0         0         103* 47' 21.0           80.0         85.0         Conductor         Name         (')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         '')         ''                                                                                                                                                | Design Targets                                                                    | · · · ·                                       |                              |                            |                       |                          | · · · · · · · ·                        |            |                                         |                          | ·····                                 |
| Burge         (r)         (ush)         103* 47' 21.0         0           Casing Points         Casing Hole         Diameter         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Target Name<br>- hit/miss targ                                                    | get Dip Ang                                   | le Dip Dir.                  | TVD                        | +N/-S                 | +E/-W<br>/usft)          | Northing                               | Easting    |                                         |                          |                                       |
| Ruby Federal 27 (Plat Bl         0.00         0.01         5,424.0         -831.7         -578.5         666,079.23         667,136.45         32* 50' 7.630 N         103* 47' 21.0           - plan misses target center by 141.1usft at 5569.8usft MD (5448.5 TVD, -717.6 N, -499.2 E)         -         Casing         Hole         Diameter                                                                                                                                              |                                                                                   |                                               |                              | (usit)                     |                       | (dair)                   | (uait)                                 |            | Lati                                    | tude                     | Longitude                             |
| Measured<br>Uestin<br>(usft)         Vertical<br>Depth<br>(usft)         Name         Casing<br>Diameter<br>(")         Hole<br>Diameter<br>(")           85,0         85.0         Conductor         16         20           830.0         830.0         Surface         8-5/8         12-1/4           7,166.0         7,020.6         Production         5-1/2         7-7/8           Formations         Measured<br>Depth         Vertical<br>Depth         Dip<br>Direction         Dip<br>(")         Dip<br>(")         Dip<br>(")           760.0         760.0         Rustler         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                             | Ruby Federal 27<br>- plan misse<br>- Circle (radi                                 | (Plat Bl C<br>s target center by<br>us 150.0) | ).00 0.01<br>141.1usft at 55 | 5,424.0<br>669.6usft MD (5 | -831.7<br>5448.5 TVD, | -578.5<br>-717.6 N, -499 | 668,079.23<br>.2 E)                    | 667,136.45 | 32° (                                   | 50' 7.630 N              | 103° 47' 21.070 W                     |
| Measured<br>Depth<br>(usft)         Vertical<br>Depth<br>(usft)         Vertical<br>Depth<br>(usft)         Name         Casing<br>Diameter<br>(")         Hole<br>Diameter<br>(")           85.0         85.0         Conductor         16         20           830.0         830.0         Surface         8-5/8         12-1/4           7,166.0         7,020.6         Production         5-1/2         7-7/8           Formations         Vertical<br>Depth<br>(usft)         Vertical<br>Depth         Vertical<br>Depth         Vertical<br>Depth         Vertical<br>Depth         Vertical<br>Depth         Production         Dip         Dip           760.0         760.0         Rustler         0.00         0.00         0.00         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*)         (*) <td>Casing Points</td> <td>•• •.</td> <td></td> <td></td> <td></td> <td></td> <td>······································</td> <td></td> <td></td> <td></td> <td></td>                                                          | Casing Points                                                                     | •• •.                                         |                              |                            |                       |                          | ······································ |            |                                         |                          |                                       |
| 85.0       85.0       Conductor       16       20         830.0       830.0       Surface       8-5/8       12-1/4         7,166.0       7,020.6       Production       5-1/2       7-7/8         Measured Vertical Depth Depth (usft)       Name       Lithology       Dip       Direction         760.0       760.0       Rustler       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 <t< td=""><td></td><td>Measured<br/>Depth<br/>(usft)</td><td>Vertical<br/>Depth<br/>(usft)</td><td></td><td></td><td>Name</td><td>,</td><td>C<br/>Di</td><td>Casing<br/>iameter<br/>('')</td><td>Hole<br/>Diameter<br/>('')</td><td></td></t<>                                                                                                                                                     |                                                                                   | Measured<br>Depth<br>(usft)                   | Vertical<br>Depth<br>(usft)  |                            |                       | Name                     | ,                                      | C<br>Di    | Casing<br>iameter<br>('')               | Hole<br>Diameter<br>('') |                                       |
| 830.0       830.0       Surface       8-5/8       12-1/4         7,166.0       7,020.6       Production       5-1/2       7-7/8         Formations       Name       Lithology       Dip       Direction         1000       760.0       760.0       Rustler       0.00         938.0       938.0       Salado       0.00         1,960.0       1,960.0       Tansill       0.00         3,523.2       3,487.0       Grayburg       0.00         3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   | 85,0                                          | 85.0                         | Conductor                  |                       |                          |                                        |            | 16                                      | 2                        | 0                                     |
| 7,166.0         7,020.6         Production         5-1/2         7-7/8           Formations         Measured         Vertical         Dip         Dip           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0                                                                                                                                                                                                                                                                                                     |                                                                                   | 830.0                                         | 830.0                        | ) Surface                  |                       |                          |                                        |            | 8-5/8                                   | 12-1/                    | 4                                     |
| Formations         Measured Depth         Vertical Depth         Dip           Depth         Depth         (usft)         (usft)         Name         Lithology         (°)         (°)           760.0         760.0         Rustler         0.00         0.00         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         (°)         <                                                                                                                                                                                                                                                                                                                            |                                                                                   | 7,166.0                                       | 7,020.6                      | 6 Production               |                       |                          |                                        |            | 5-1/2                                   | 7-7/                     | 8                                     |
| Measured<br>Depth<br>(usft)Vertical<br>DepthDip<br>Direction $(usft)$ $(usft)$ NameLithology(°) $760.0$ $760.0$ Rustler $0.00$ $760.0$ $760.0$ Rustler $0.00$ $938.0$ $938.0$ Salado $0.00$ $1,960.0$ $1,960.0$ Tansill $0.00$ $3,523.2$ $3,487.0$ Grayburg $0.00$ $3,904.8$ $3,851.0$ San Andres $0.00$ $5,459.3$ $5,340.0$ Glorieta $0.00$ $5,544.7$ $5,424.0$ Paddock $0.00$ $6,297.2$ $6,165.0$ Blinebry $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formations                                                                        | · · · ·                                       |                              |                            |                       |                          |                                        |            | <b>.</b>                                |                          |                                       |
| Depth<br>(usft)         Depth<br>(usft)         Depth<br>(usft)         Depth<br>(usft)         Dip<br>Dip<br>(")         Direction           760.0         760.0         Rustler         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <                                                                                                                                                                                                                                                              | ×                                                                                 | Measured                                      | Vertical                     |                            |                       |                          |                                        |            |                                         | Dip                      |                                       |
| (usft)         (usft)         Name         Lithology         (°)         (°)           760.0         760.0         Rustler         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                     |                                                                                   | Depth                                         | Depth                        |                            |                       |                          |                                        |            | Dip                                     | Direction                |                                       |
| 760.0       760.0       Rustler       0.00         938.0       938.0       Salado       0.00         1,960.0       1,960.0       Tansill       0.00         3,523.2       3,487.0       Grayburg       0.00         3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   | (usft)                                        | (usft)                       |                            | Name                  |                          | Litholog                               | IV         | (°)                                     | (°)                      |                                       |
| 938.0       938.0       Salado       0.00         1,960.0       1,960.0       Tansill       0.00         3,523.2       3,487.0       Grayburg       0.00         3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | 760.0                                         | 760.0                        | Rustler                    |                       | *.                       |                                        |            | 0.00                                    |                          |                                       |
| 1,960.0       1,960.0       Tansill       0.00         3,523.2       3,487.0       Grayburg       0.00         3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   | 938.0                                         | 938.0                        | Salado                     |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 3,523.2       3,487.0       Grayburg       0.00         3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | 1,960.0                                       | 1,960.0                      | Tansill                    |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 3,904.8       3,851.0       San Andres       0.00         5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00         0.001       0.001       0.001       0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | 3,523.2                                       | 3,487.0                      | Grayburg                   |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 5,459.3       5,340.0       Glorieta       0.00         5,544.7       5,424.0       Paddock       0.00         6,297.2       6,165.0       Blinebry       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                   | 3,904.8                                       | 3,851.0                      | San Andres                 |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 5,544.7         5,424.0         Paddock         0.00           6,297.2         6,165.0         Blinebry         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | 5,459.3                                       | 5,340.0                      | Glorieta                   |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 6,297.2 6,165.0 Blinebry 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | 5,544.7                                       | 5,424,0                      | Paddock                    |                       |                          |                                        |            | 0.00                                    |                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   | 6,297.2                                       | 6,165.0                      | Blinebry                   |                       |                          |                                        |            | 0.00                                    |                          |                                       |
| 600 (100 (100 (100 (100 (100 (100 (100 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   | 6 921 6                                       | 6 780 0                      | Tubb                       |                       |                          |                                        |            | 0.00                                    |                          |                                       |

-

а **н** 1 г



# **Proposed Directional Well Plan**

, \*





Ruby Federal #27

(Date: 10/28/2013)

.; e



- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8
- Gate Valve, 2-1/16" 5M 9 Gate Valve, 2-1/16" 5M
- Gate Valve, 2-1/16" 5M 10
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

(Date: 10/28/2013)

# **Request for Variance**

# **ConocoPhillips Company**

Lease Number: NM LC 029405B Well: Ruby Federal #27 Location: Sec. 17, T17S, R32E Date: 10/29/2013

# Request:



ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

# Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

# Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

# **Contact Information:**

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

# Attachment # 1



# **Reliance Eliminator Choke & Kill**

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

| Nor                                      | Non  | I OD                     | Weight     |            | Min Bend Rad |             | ius Max W |               |          |
|------------------------------------------|------|--------------------------|------------|------------|--------------|-------------|-----------|---------------|----------|
| in.                                      | mm.  | iņ.                      | mm         | lb/ft      | kg/m         | ln.         | mm.       | psi           | Mpa      |
| 3                                        | 76.2 | 5.11                     | 129.79     | 14.5       | 21.46        | 48          | 1219.     | 2 5000        | 34.47    |
| 3-1/2                                    | 88.9 | 5.79                     | 147.06     | 20.14      | 29.80        | 54          | 1371.     | 6 5000        | 34.47    |
| an a |      | میں ایک<br>میں ایک ایک ا |            |            |              |             |           |               |          |
|                                          | 904  | 2 . Jo at 5 . 2          | <u></u>    |            |              |             |           | • • •         |          |
| Fittings                                 |      |                          | Flanges    | ì          | Han          | nmer Un     | ions      | Othe          | r        |
| RC4X5055                                 |      | R35 - 3-1                | 8 5000# A  | PI Type 6B | All Un       | ion Configu | rations   | LP Threaded C | onnectio |
| RC3X5055                                 |      | R31 - 3-1                | /8 3000# A | PI Type 6B |              |             |           | Graylo        | ck       |
| ~~~~~~                                   |      | i                        |            |            |              |             |           | Custom F      | nds      |

## Attachment # 2

, >



#### Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Ruby Federal #27 Location: Sec. 17, T17S, R32E Date: 10/29/2013

1.1

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

# The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc. 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
  - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
  - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

James Chen Drilling Engineer Office: 281-206-5244 Cell: 832.678.1647

# SPECIFICATIONS

FLOOR 3/16" PL one piece CROSS MEMBER: 3 x 4 1 channel 16" on center

WALLS: 3/16 PL solid welded with tubing

top: insi de liner hooks DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant (ormed

PICK UP: Standard cable with 2" x 6" x 1/4" ralls, quisseltat eachterossmember

WHEELS 10/DIA x 9 long with rease fittings DOOR LATCH Stindependent ratches binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal

retainer s WELDS: All welds continuous except sub

structur e crossmembers FINISH: Coated Inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22-11\* long (21-8 inside), 99' wide (88' inside), see drawing for height OPTIONS: Steel grit blast and special paint, Ampliroll, Hell and Dino pickup

ROOF: 3/16" PL roof panels with tubing and channel support frame.

LIDS: (2) 68" x 90" metal rolling lids spring loaded, self raising

ROLLERS. 4 V-groove rollers with delrin bearings and grease fittings OPENING: (2) 60" x 82" openings with 8" divider centered on

container

LATCH (2) independent ratchet binders with chains oerlid

CASKETS: Extructed nubber seal with metal retainers

# Heavy Duty Split Metal Rolling Lid



| CONT. | <u> </u> | D  |
|-------|----------|----|
| 20 YD | 41       | 53 |
| 25 YD | 53       | 65 |
| 30 YD | 65       | 77 |



31

t