A	TS-14-129		
OMB Expires	3 No. 1004-0137 3 October 31, 2014		
2014 Lease Serial No.	,		
2014 NM LC 029	9405B		
6. If Indian, Allote	e or Tribe Name		
TED N/A			
N/A	greement, Name and No.		
8. Lease Name and Ruby Federal	I Well No. 47		
9. API Well No.	11152		
30-025- 10. Field and Pool, or	r Evploratory		
Maljamar; Ye	so West 44500		
Sec. 18, T17S	Blk. and Survey of Area , R32E		
12. County or Parish			
Lea County	NM		
ng Unit dedicated to this res	; well		
oth 20. BLM/BIA Bond No. on file D/MD ES0085			
23. Estimated duration 7 days	on		
			
nis form:			
ons unless covered by ar	n existing bond on file (see		
formation and/or plans a	is may be required by the		
	Date 10 31 13		
	^{Dat} FEB - 4 2014		
OFFICE	<u> </u>		
ject lease which would e			
	R TWO YEARS		
nake to any department of	or agency of the United		
*(Inst ell Controlled	tructions on page 2) Water Basin		

SEE ATTACHED FOR CONDITIONS OF APPROVAL

11.

Approval Subject to General Requirements & Special Stipulations Attached

FEB 1 0 2014 du

Drilling Plan ConocoPhillips Company Maljamar, Grayburg-San Andres, Yeso (west)

Ruby Federal #47

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents		
Quaternary	Surface	Fresh Water		
Rustler	699	Anhydrite		
Salado (top of salt)	884	Salt		
Tansill (base of salt)	1876	Gas, Oil and Water		
Yates	2058	Gas, Oil and Water		
Seven Rivers	2365	Gas, Oil and Water		
Queen	3003	Gas, Oil and Water		
Grayburg	3444	Gas, Oil and Water		
San Andres	3796	Gas, Oil and Water		
Glorieta	5262	Gas, Oil and Water		
Paddock	5342	Gas, Oil and Water		
Blinebry	5708	Gas, Oil and Water		
Tubb	6720	Gas, Oil and Water		
Deepest estimated perforation	6720	Deepest estimated perf. is ~ Top of Tubb		
Total Depth (maximum)				

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

Туре	Hole Size	м	Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Factors lated per ConocoPhillip Corporate Criteria	
I Type	(in)	From	То	(inches)	(lb/ft)	G	Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt, Cond	20	0	40' - 85' (30' - 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	724' - 769'	8-5/8	24#	J-55	STC	2950	1370	244	1.60	4.01	3.69
Prod	7-7/8	0	6865' – 6910'	5-1/2	17#	L-80	LTC	7740	6290	338	2.15	2.53	2.01

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	769	24	2950	1370	244000	8.5	8.68	4.03	13.2	15.2
Production Casing	6910	17	7740	6290	338000	10	2.15	1.75	2.88	3.40

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

CanagaDhilling	Comorato	Critoria	for Minimum	Dooign Eastern	
ConocoPhillips	Corporate	Unterna	TOT MILLITUTE	Design racions	•

	Confect mape Conperate on	toria for thinking a bagin a doight	
	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Case #3 # / Limited to MRSP(CSFG + 0.2)pop) = 766 x 0.052 x (1 ± 32.3) + 0.2), = 7 MASP (MWyay + Text): fract Pressure) = 769 x 0.052 x 8 81.5 + 1500 = 11 Production: Cosing Bundt: Safety/Factor: Case #1. MPSP (MWnygrp) = 6510 x 0.052 x 8 855 691 = 3593.2 Case #1. MPSP (MWs; MPSP) = 7740 / 2539 = 215 MAWP for the Fracture: Stimulation (Carporate Criticnia) = 7740 / 1.15 = 6730 Collipsia - ConocoPhillips Rominified Load Cases 7740 / 1.15 = 6730 Collipsia - ConocoPhillips Rominified Load Cases 7740 / 1.15 = 6730 Collipsia - ConocoPhillips Rominified Load Cases 7740 / 1.15 = 6730 Collipsia - ConocoPhillips Rominified Load Cases 7740 / 1.15 = 6730 Collipsia - ConocoPhillips Rominified Load Cases 7769 x 0.052 x 8.55 501 5010 Surface Casing Collipsio Sofety Factor: <th>200 .200 340 381 77 840 .2381 .2381 .2381</th> <th>)<u>2((</u> ;=' ;= ;= ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</th> <th></th> <th>14.1</th> <th></th> <th>- 333</th> <th></th> <th>229</th>	200 .200 340 381 77 840 .2381 .2381 .2381) <u>2((</u> ;=' ;= ;= ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		14.1		- 333		229
The machine blane (Linky) blane is a britter Ching sector when the surface carby is tailed as table (a) to be all (a) per El (b) control (b) (a) a control (b)	200 340 341 361 77' 840 (full eyacus d to be PPT id to be	рто., 0:052 3		•	8).	- 333		229
The maximum bitrane (Lensy) bits of the Surface Crising Section within the surface carbon is bit with a factoring bit with a maximum bit maximum bit with a maximum bit with a maximum bit wit	200 340 341 361 77' 840 (full eyacus d to be PPT id to be	рто., 0:052 3		•	8).	- 333		229
gkävery hite pressure hat visuid if conserved conserved conserved and the same data of the sa	200 340 341 361 77' 840 (full eyacus d to be PPT id to be	рто., 0:052 3		•	8) -	- 333		229
Selfage Relet Winder Presure (00PP). 3000 Precide Frac Gradien as Sne (CSTG) = 1223 Selface Chang Bjust Selfey Factor: 2000 2010 2	200 340 341 361 77' 840 (full eyacus d to be PPT id to be	рто., 0:052 3		•	8).	- 333		229
Suiffac Charles Bints Safety Fractir - ARD put Respire Just Respire Ard Part Respire Compares the sum of DBP Diff Linkshown Address Sum ca Pressure (DBP	.200 340 381 77 840 2381 (full eyaçue d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT	рто., 0:052 3		•		- 333		229
Prediction Casing LAVR for Use Fractice Simulation - AVR burnt Realing / Corporate Literation Burnt Design Fractic Case #1. MPSP (Field SW @ Sulfmadgare + 200 (ps) = 769 x 0.052 x 19.23 - 400 + Case #2. MPSP (Field SW @ Sulfmadgare + 200 (ps) = 769 x 0.052 x 8.55 - 614 , 1 - Case #2.4 MPSP (Field SW @ Sulfmadgare + 200 (ps) = 769 x 0.052 x 8.55 - 614 , 1 - Case #2.4 MPSP (Field SW @ Sulfmadgare + 200 (ps) = 769 x 0.052 x 8.55 - 614 , 1 - Case #2.4 MPSP (Field SW @ Sulfmadgare + 720 (ps) = 769 x 0.052 x 8.55 - 614 , 1 - Case #1.4 MPSP (Field SW @ Sulfmadgare + 720 (ps) = 769 x 0.052 x 19.23 + 0.2 + 7 MASP (MWNe + Text Pression) = 769 x 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW @ Sulfmadgare + 769 x 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW @ Sulfmadgare + 769 x 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW @ Sulfmadgare + 769 x 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW @ Sulfmadgare + 769 x 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3593.2 Case #1. MPSP (Field SW & 0.052 x 10 = 3503.2 Case #1. MPSP (Field SW & 0.052 x 10 = 1000.2 MaxWP for the Fractice. Simulation (Case and Case a	.200 340 381 77 840 2381 (full eyaçue d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT d to'be PPT	рто., 0:052 3		•	8).	- 333	·] =	229
Cigs #2: MPSP (Field WWyer nisk disction) = 759 x 0.052 x 10.23 400 Cigs #2: MPSP (Field WWyer nisk disction TD) = 6910 x 0.052 x 8:55 614, 1. Cigs #2: MPSP (Field WWyer nisk disction TD) = 6910 x 0.052 x 8:55 614, 1. Cigs #2: MPSP (Field WWyer nisk disction TD) = 6910 x 0.052 x 15.23 4.00.4 Cigs #1: MPSP (WWyer nisk disction TD) = 6910 x 0.052 x 15.23 1500. = 1 Buritt Safety Factor, Max, MPSP p 6510 x 0.052 x 10.5 3533.2 Cigs #1: MPSP (WWyer nisk cigs the field state field state field state sta	340 38,1 77 2381 (full eyacua (full eyacua (рто., 0:052 3		•	8).	- 333	.] =	229
Cings #2: MPSP (Field(SW) @ Buillinged_care + 200 ppi) = 765 x 0.052 x 1523 - 400. + Case #3: MPSP (RKVs) @ Buillinged_care into TD 6910 x 0.052 x 8.55 - 601, 1 - 2 Case #3: MPSP (RKVs) @ Buillinged_care / 802 pp) 765 x 0.052 x 10.52 x 0.052 x 10.52 x 0.052 x 10.52 x 0.052 x 10.52 x 0.052 x 10.50 = 15.00	340 38,1 77 2381 (full eyacua (full eyacua (рто., 0:052 3		•	8).	- 333	.) =	229
Conie 44. MRSSP (MVMys + Top: Proc. GG) = 6910. x 0.052 xf. 8.65 691 = 2 Conie 33.6 4 Limited MRSSP (CRN ys + Top: Prestruit) = 769 x 0.052 xf. 15.23. + 0.2) p. 7 MASSP (MVMys + Top: Prestruit) = 769 x 0.052 xf. 15.6 15.00. = 11.00. Burit Safety Factor: Cons 41. MPSP (MVMys m) = 6910 x 0.052 x. 10. = 3593.2. Cose 44. MPSP (MVMys m) = 6910 x 0.052 x. 10. = 3593.2. Cose 44. MPSP (MVMys m) = 6910 x 0.052 x. 10. = 3593.2. Cose 44. MPSP (MVMys m) = 7740 f.	381) 77 840 -2381 (full eyacua id to be PPTI iurridice x 0:0 /	рто., 0:052 3	2118 [,] , , , , ,	•	3)	- 333		229
Cape 373 & Full Limited to MCSP (CSFG ± 0.2 pp.) 769 x 0.052 x 10 2.3 x 1.02.1 p. 7 MASP (MWyor 4 - factor (MAX, MPSP or MASP) 2500 / 1840 = 1.60 1.00.2 x 1.	77 840 (100 eyaçûê (100 eyaçûê 14 to`be PPTT 14 to`be PPTT 14 to`be PPTT 14 to`be 24	рто., 0:052 3	×	•	3)	-, 333		229
Biological State y Feator: Class #1. MPSP (MMASP) = 2950 / 1840 = 1,60 Production: Cooling Burst State y Feator: Class #4. MPSP (PPTD), GG) 6910 x 0.052 x 1.6 = 3533.2 Cass #4. MPSP (PPTD), GG) 6910 x 0.052 x 8.65 691 = Burst, State y Feator, Max, MPSP) 7740 / 2553 = 2.15 MAWP for the Fracture. Stimulation (Corporate Criteria) 7740 / 1.15 = 6730 Collipsize - ConscoPhillips Required Lond Cassa The instrum catagos Made on the Suiface Casing Action when company to the part pressure of the instrum of the instrum of the casing stating constraint when company to the case state prove and the casing state case state case and the case state case and the case state case and the case state cas	2381 (۱۹۰۵ میرونیو (۱۹۰۵ میرونیو (۱۹۰۵ میرونیو ۲ میرونیو ۲	рто., 0:052 3	, X	•	в),	- 333	.) =	229
Case #1. MPSP ((MVMpst)) = 6910 x 0.052 x 10 = 353.2. Burst Safety (PFD): GG) 6910 x 0.052 x 8.55 691 = Burst Safety Factor, (Max. MPSP) = 7740 / 3593 = 2.15 MAWP for the Fracture. Stimulation (Corporate Critering) = 7740 / 115 = 6730 Collingsing - Groupon/Dillips Required Lond Conso The inaphian catego bids on the Stifted Cating Long Acars when company to a variable, or 13 Sevacitation is in a nitig casing stifts depth of expansion and in the indication in the staft of expansion and in the indication in the staft of expansion and indication in the indin indication in the indication in the indin i	(full eyaçuş id to be PIJTI iurracê X: Q;C	рто., 0:052 3	×.	•	3).	- 333		229
Build Steley Factor (Max. MiRSP) = 7740 f 2593 = 2,15 MANPE for the Fracture. Slimulation (Corporate Criticita) = 7740 f 1,15 = 6730 Collipsen — ConnocaPhillips Required Load Coses The machine caleges back in the focula calege back in the focula cale and back ca	(full eyaçuş id to be PIJTI iurracê X: Q;C	рто., 0:052 3	, X, X	•	3).	- 333) =	229
MAWP: for the FriedLine Stimulation (Corporate Criticita) 7740 1 1.15 = 6730 Collingian — ConnocaPhillips Requiried Load Coses The maximum colleges bard on the Sufface Cathyn bickurs when comparise to aurisco, r0 8 vacuation in the maximum colleges bard on the Sufface Cathyn bickurs when comparise to the cathyn of the cathyn when we cathyn or the cathyn when comparise rates of the following on the cathyn when we cathyn when comparise to the cathyn bickurs are cathyn bickurs and the cathyn when comparise to the following the cathyn when we cathyn when comparise to the cathyn when the cathyn when comparise to the cathyn when the the cathyn when the cathyn when the cathyn when the cathyn the cathyn when the cathyn the cathyn the cathyn the cathyn the the cathyn when the cathyn the cathyn the the cathyn when the cathyn the transmitter the terming the transmitter the terming the tereming the terming the terming the terming the terming the terming	id to be PPTI burdače X 0:0	рто., 0:052 3	×	•	- - -	- 333	.) =	229
The imagining cells go bids on the Sufface cating bécaria viries names the surface. 10 evecuation to the neither design depth, or despanse, and the fights, the external subject of a the Production Cating beam of the Production Cating beams of the Production Production Cating beams of the Production Production Production Cating beams of the Production Production Cating beams of the Production Production	id to be PPTI burdače X 0:0	рто., 0:052 3	×	•	B).	- 333	.]=	229
The imagining cells go bids on the Sufface cating bécaria viries names the surface. 10 evecuation to the neither design depth, or despanse, and the fights, the external subject of a the Production Cating beam of the Production Cating beams of the Production Production Cating beams of the Production Production Production Cating beams of the Production Production Cating beams of the Production Production	id to be PPTI burdače X 0:0	рто., 0:052 3	X.	•	B).	- 333	.] =	229
berelgre, the external gressive profile for the eveneship cases and the for pressure of the fortions in the outstor of the distribution. Cases of c	iurface x 0;0	0;052 3	X.	•	B).	- 333	.) =	229
Surface Casing Collaps Safety Factor - AP Collapse Rating / Haximan Predicted States Production Casing Collapse Safety Factor - AP Collapse Rating / Haximan Predicted States Production Casing Collapse Safety Factor - AP Collapse Safety Factor - 13.6 prog Prod Carenel Least Collapse Safety Factor - 13.6 prog Prod Carenel Least 14.8 prog Carenol Tail - 52000 ft. 15.0 prog Prod Carenel Tail - 5200 ft. 15.0 prog Prod Prod Prog Prod Prod Prod Prod Prod Prod Prod Prod	iurface x 0;0	0;052 3	X.	•	B).	- 333	.) =	229
Cáment Obspeciment Plud (WV)- Surtaci Cénient Lead - Surtaci Cénient Lead - Surtaci Cénient Lead - Surtaci Cénient Lead - Surtaci Cénient Lead - Top of Surtace Tal Cénient - Collapse Safety Factor: 1/2 Evacuation Diff. Pressure - Collapse Safety Factor: 1/2 Evacuation Diff. Pressure - Collapse Safety Factor - 1/2 Evacuation Diff. Pressure - Collapse Safety Factor - 1/2 Evacuation Diff. Pressure - 1/2 Evacuation Diff. Pressure - Collapse Safety Factor - 1/2 Evacuation Diff. Pressure - 1/3 Evacuation Diff. Pressure - 1/4 Evacuation Diff. Pres	x 0.0	3	x	•	3)·	- 333	.) =	229
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	x	•	B).	- 333	.) =	229
Sürface Casing Collapse Safety Factor: Full, Execution Diff. Pressure: 769 x. 0.052. x. 8.55 = 342 Campaning Diff. Lift: Pressure: [(468. x. 0.052. x. 8.55 = 342 Production: Casing Collapse Safety Factor: 1/3 Evacuation Diff. Pressure: [(6910 x. 0.052. x. 8.55 = 342 Production: Casing Collapse Safety Factor: 1/3 Evacuation Diff. Pressure: [(6910 x. 0.052. x. 8.55). (6910 Camenting Diff. Lift: Pressure: [(6910 x. 0.052. x. 8.55). (6910 Camenting Diff. Lift: Pressure: [(1710 x. 0.052. x. 1.5). (6910 Callapse: Safety Factor: [(1710 x. 0.052. x. 1.5). (6910 Callapse: Safety Factor: [(1710 x. 0.052. x. 1.5). (6910 Maximi Madi Lensife Nattion Allapse Factor: </td <td></td> <td>3</td> <td>x</td> <td>•</td> <td>B).</td> <td>- 333</td> <td>.) = .</td> <td>229</td>		3	x	•	B).	- 333	.) = .	229
Full Evacuation Diff. Pressure: 769 x. 0.052 x. 8.55 = 342 Camaning Diff. Lift Pressure: [(469. x. 0.052 x. 13.6) + (300 Production Cesting.Collepse Selety Factor: 1370. /: 342 = 4.61. Production Cesting.Collepse Selety Factor: 1/3. Evacuation Diff. Pressure: [(6910. x. 0.052 x. 8.55) - (6910 Collepse Selety Factor: 1/3. Evacuation Diff. Pressure: [(6910. x. 0.052 x. 8.55) - (6910 Collepse Selety Factor: 1/3. Evacuation Diff. Pressure: [(6910. x. 0.052 x. 8.55) - (6910 Collepse Selety Factor: 6290. /. 2487. = 2.53 Tensial: Strength Addition of a ccursi if Camp yeers to get a tuck and optid on to try to get if unstack. Maximum Advabb Addit Load for Prev Yeld - API Prev Yeld Strength Raing / Comparete Minimum Additi Design Factor 10.64. Maximum Advabb Addit Load for Prev Yeld 'OR API Load Load - Bouyant Wi of the String. Tensiel Setv Factor: 252000 js.5 Re we tood (300.000 Bas) 225000 js.5 500000 js.5 500		3	x	•	₿).	- 333	.) = [.]	229
Cernenting Diff Lift Pressure = Collepse Safety Factor = 1370. / 342 = 4.01 13.6) + (300 Production Cesting Collepse Safety Factor = 1/3, Evacuation Diff. Pressure = 1/3, Evacuation Diff. Pressure = Collepse Safety (Factor = Callepse Callepse Safety (Factor = Maximum Abvabb Axia Lead for Pace Viel (Callepse Callepse Calle		3	x	•	8 }	- 333	.) =	229
Production Cesing Collépse Safety Factor: 1/3 Evacuation Diff Pressure:= [(6910 x '0.052 x 8.55) - (6910 Cemening Diff Lift Pressure:= [(1710 x 0.052 x 11.8) + (5200 Collápse Safety Factor:= 6290 , 2487 = 2.53 Tensial Strength - ConocoPhillips Rodulted Load Cases The maximum Adv Identity of the set of the	/ × 0.0		×					
Cementing Diff Lift Pressure:= ((1710 x 0.052 x 11.8) + (5200 Collapse-Safety/Factor = 6290 / 2487 = 2.53 Teinslal. Strength - ConocoPhillips Rodulted Load Cases The maximum Advise Advised and puted on to try to get if unstuck. Maximum Advise Advise Advised and puted on to try to get if unstuck. Maximum Advise Advise Advised and puted on to try to get if unstuck. Maximum Advise Advise Advise Advised and puted on to try to get if unstuck. Maximum Advise Advise Advise Advise Advised and puted on to try to get if unstuck. Maximum Advise Advise Advise Advise Advise Advised Adv	/ ×, 0.0		x					
Collapse Safety Factor:= 6290 / 2487. = 2.53 Trenslal Strength - ConocoPhillips Rodulted Load Cesses The maximum Abivable Actal Load (or Pae Yield - AP! Ppe Yield Strength Railing / Comprete Minimum Actal Design Factor Maximum Abivable Actal Load (or Pae Yield - AP! Ppe Yield Strength Railing / Comprete Minimum Actal Design Factor Maximum Abivable Actal Load (Imited to 75% of Rig Max Load) - Maximum Abivable Actal Design Factor Maximum Abivable Most Load (Limited to 75% of Rig Max Load) - Maximum Abivable Actal Load Baix Margin - API Pipe Yield' OR API John Strength 'OR: Rig Max Load Railing / (Bouyant Wi of String + Minimum Overput Required) Rig Max Load (100,000 his) X 75% - 225000 bis Surface: Casing Tenslal Strength Safety Factor: Air Wt = Air Wt = 18456 Bouyant Wi = 18456 Bouyant Wi = 18456 Max: Allowable Axial Load (Joint) = 244000 Max: Allowable Axial Load (Joint) = 244000 Max: Allowable Axial Load (Joint) = 244000 Bouyant Wi = 1174265 Max: Allowable Overpull Margin = 174265 Max: Allowable Overpull Margin = 174265 Max: Allowable Overpull Margin = 174265 Max: Allowable Axial L		0.0321	X	0.05. 16.			4.)]≓ 71:=	
The maximum Askal (lengin) fold occurs if casing yere to get stuck and public on to try to get if unstruct. Maximum Abivrable Askal Load for, Pay Yield - API Pay Yield Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Overpul Margin + Maximum Abivrable Hold Load Maximum Abivrable Coverpul Required + Sequence Casing Tensial Strength Safety Factor: Air W1 = 18456 Bouvent W1 = 18456 Bouvent W1 = 18456 Bouvent W1 = 18456 Max: Allowable Askal Load (Delint) = 244000 / 1.40 = 272143 Max: Allowable Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable (Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable (Deverpul Margin = 174286 - (18456 x 0.870) = 158225 Tensial Safety Factor: Air W1 = 117470 Bouvent W1 = 117470 Bouvent W1 = 117470 Bouvent W1 = 117470 Max. Allowable Askal Load (Pipe Yield) = 397000 / 1.40 = 283571 Max. Allowable Askal Load (Cont) = 397000 / 1.40 = 2441429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Loint) = 338000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to 75% of Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 325000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 M							•	
The maximum Askal (lengin) fold occurs if casing yere to get stuck and public on to try to get if unstruct. Maximum Abivrable Askal Load for, Pay Yield - API Pay Yield Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Askal Load (Linkie + API) obit Strength Raing / Comparise Minimum Askal Design Factor Maximum Abivrable Overpul Margin + Maximum Abivrable Hold Load Maximum Abivrable Coverpul Required + Sequence Casing Tensial Strength Safety Factor: Air W1 = 18456 Bouvent W1 = 18456 Bouvent W1 = 18456 Bouvent W1 = 18456 Max: Allowable Askal Load (Delint) = 244000 / 1.40 = 272143 Max: Allowable Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable (Askal Load (Delint) = 244000 / 1.40 = 174286 Max. Allowable (Deverpul Margin = 174286 - (18456 x 0.870) = 158225 Tensial Safety Factor: Air W1 = 117470 Bouvent W1 = 117470 Bouvent W1 = 117470 Bouvent W1 = 117470 Max. Allowable Askal Load (Pipe Yield) = 397000 / 1.40 = 283571 Max. Allowable Askal Load (Cont) = 397000 / 1.40 = 2441429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 397000 / 1.40 = 241429 Max. Allowable Askal Load (Loint) = 338000 / 1.40 = 241429 Max. Allowable Askal Load (Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to 75% of Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 Max. Allowable Book Load (Linkie to Righ Max Load) = 325000 Max. Allowable Book Load (Linkie to Righ Max Load) = 225000 M			• •					
Naxmum Aliovable Axial Lead for Jbhl - API Johl Strength Raling / Corporate Ultrimum Axial Design Factor Haximum Aliovable Overpul Margin - Haximum Aliovable Hoat Lead - Maximum Aliovable Axial Lead Maximum Aliovable Overpul Margin - Haximum Aliovable Hoat Lead - Balagy of the String Tensial Safety Factor: API Pipe Vield 'OR API John Stringth' OR. Rig Max Lead Raling / (Bouyant Wi of String + Minimum Overpul Required) Rig Max Lead (300,000 libs) x 75% - Minimum Overpul Required - Surface: Casing Tensial Strength Safety Factor: Air Wi = 18456 Bouyant Wi = 18456 Bouyant Wi = 18456 Bouyant Wi = 18456 Max: Allowable Axial Lead (Pipe Yield) = 381000 / Max: Allowable Axial Lead (Pipe Yield) = 381000 / Max: Allowable Axial Lead (Joint) = 244000 / Max: Allowable Hook Lead (Imited to 75% of Rig Max Lead) = 174286 Max: Allowable Strength Safety Factor: Air Wi = 174286 Air Wi = 174286 Air Wi = 174286 Max: Allowable Strength Safety Factor: Air Wi = 117470 Bouyant Wi = 117470 Max: Allowable Axial, Lead (Pipe Yield) =								
Maximum Aboveble Overpul Margin - Maximum Aboveble Hook Load - Bouyant Wi of the String. Tensiel Safety Factor API Pipe Yield 'OR API John Strength 'OR Rig Max Load Raing / (Bouyant Wi of String + Minimum Overpul Required) Rig Max Load (300,000 lbs) x 75% - USDOD) bis Surface: Cosing Tensial Strength Safety Factor: Air Wi = 18456 Bouyant Wi = 18456 Bouyant Wi = 18456 Minimum Overpul Required - 225000 bis Surface: Cosing Tensial Strength Safety Factor: - Mix: Allowable Axial Load (20) bis 381000 / 1.40 = Max: Allowable Axial Load (20) - Axial Load (20) = 174286 - Max: Allowable Overpull Margin = 174286 - 18456 Max: Allowable Overpull Margin = 174286 - 18456 Max: Allowable Overpull Margin = 174286 - 18456 - Max: Allowable Overpull Margin = 174286 - 18456 - - Max: Allowable Overpull Margin = 174286 - 18456 - - - - - - - - - - - - - - - -								
Tensipi Safety Feder - APP Peer Vistr OR: APJ Lost Strength 'OR: Rby Hax Load Raing / (Bouyant Wi of String + Minimum Overpul Required) Rby Hax Load (300,000 lib.) x 75% - Minimum Overpul Required - 225000 lib.) Surface: Cesing Tensial Strength Safety Factor: Minimum Overpul Required - 18456 Bouyant Wi = 18456 Bouyant Wi = Surface: Cesing Tensial Strength Safety Factor: Max: Allowable Axial Load (File Vield) = 381000 / 140 = 1.40 = 272143 272143 Max: Allowable Axial Load (File Vield) = 381000 / 174286 1.40 = 174266 Max: Allowable Overpul Margin = 174286 - 174286 18456 x 0.870) = 158225 Production Cesing Tensial Strength Safety Factor = 244000 / 16061 + 50000) = 3.69 Production Cesing Tensial Strength Safety Factor = 244000 / 16061 + 50000) = 3.69 Production Cesing Tensial Strength Safety Factor = 247000 / 140 = 28357.1	•	•						
Minimum Overpul Required + 50000) bs Surface: Casing Tensial Strength Safety Factor: Air Wi = 18456 Bouyant Wi = 18456 50000) bs Miax: Allowable Axial Load (Pipe Yield) = 381000 / 1.40 = 272143 Max: Allowable Axial Load (Joint) = 244000 / 1.40 = 272143 Max: Allowable Axial Load (Joint) = 244000 / 1.40 = 174286 Max: Allowable Overpull Margin = 174266 18456 x 0.870) 158225 Tensial Stelly Factor: 244000 / 16051 + 50000)) 3.69 Production Casing Tensial Strength Sofoty Factor: Air Wit 117470 . 0.847 = 9536 Max: Allowable Axial, Load (Pipe Yield) = 397000 1.40 = 243129 Max: Allowable Hook Load (Limit) = 338000 1.40 = 243129 Max: Allowable Hook Load (Limit) = 325000 1.40 = 241429 Max: Allowable Hook Load (Limit) =								
Air W1 = 18456 Bouyant W1 = 18456 Bouyant W1 = 18456 Max: Allowable Axial Load (Pipe Yield) = 381000 / Max: Allowable Axial Load (Joint) = 244000 / Max: Allowable Axial Load (Joint) = 244000 / Max: Allowable Overpull Margin = 174286 Max: Allowable Overpull Margin = 174286 Max: Allowable Overpull Margin = 174286 Max: Allowable Strength Sefety Factor: 244000 / Air W1 = 117470 Bouyant W1 = 117470 Bouyant W1 = 117470 Bouyant W1 = 117470 Max: Allowable Axial, Load (Pipe Yield) = 397000 / Max: Allowable Axial, Load (Pipe Yield) = 397000 / Max: Allowable Axial, Load (Clinit) = 338000 / Max: Allowable Hook Load (Linit) = 325000 Max: Allowable Overpull Margin = 225000 Max: Allowable Overpull Margin = 225000								
Bouyant Wi = 18456 x 0.870 = 16061. Mix: Allowable Axial: Load (Pipe Yield) = 381000 / 1.40 = 272143 Max: Allowable Axial: Load (Joint) = 244000 / 1.40 = 174286 Max: Allowable Overpull Margin = 174286 174286 18456 x 0.870) = 158225 Tensial Sefety Factor = 244000 / 16061 + 50000) = 3.69 Production Cealing Tensiel Strength Safety Factor = 244000 / 16061 + 50000) = 3.69 Production Cealing Tensiel Strength Safety Factor = 117470 x 0.847 = 95536 Max: Allowable Axial, Load (Pipe Yield) = 397000 / 1.40 = 243129 Max: Allowable Hook Load (Limit) = 338000 / 1.40 = 243129 Max: Allowable Hook Load (Limit to 75% of Rig Max Load (Joint) = 328000 / 1.40 = 241429 M								
Mix: Allowable Axial Load (Pipe Yield) = 381000 / 1.40 = 272143 Max: Allowable Axial Load (Limit) = 244000 / 1.40 = 174286 Max: Allowable Hook Load (Limited to 75% of Rig Max Load) = 174286 - 174286 - Max: Allowable Hook Load (Limited to 75% of Rig Max Load) = 174286 - 18456 x 0.870) = 158225 Tensial Safety Factor = 244000 / 16061 + 50000) = 3.69 Production Ceeling Tensial Strength Safety Factor = Air Wt = 117470 x 0.847 = 95536 Max: Allowable Axial, Load (Pipe Yield) = 397000 / 1.40 = 283571 Max: Allowable Axial, Load (Rig Max Load) = 225000 / 1.40 = 241429 Max: Allowable Hook Load (Limit) = 75% of Rig Max Load) = 225000 - 117470 x 0.847 = 125454								
Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = 174265. Max. Allowable Overpull Margin = 174265. Tensial Selectly Factor = 244000 Production Cealing Tensial Selectly Factor = 244000 Max. Allowable Asial, Load (Pipe Yield) = 397000 Max. Allowable Asial, Load (Pipe Yield) = 397000 Max. Allowable Asial, Load (Pipe Yield) = 397000 Max. Allowable Hook Load (Limit) = 325000 Max. Allowable Hook Load (Limit) = 325000 Max. Allowable Organization (Computed To 75% of Rig Max Load)								
Tensial Safety Factor = 244000 / (16061 + 50000) = 3.69 Production Cesing Tensiel Strength Safety Factor: Air Wr 117470 - - - - - 3.69 Air Wr 117470 x 0.847 = 99536 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Air Wt = 117470 Air Wt = 117470 x 0.847 = 93536 Max. Allowable Axial, Load (Pipe Yield) = .397000 / 1.40 = 283571 Max. Allowable Axial, Load (Pipe Yield) = .397000 / 1.40 = 283571 Max. Allowable Axial, Load (Joint) = .338000 / 1.40 = 241429 Max. Allowable Hook Load (Limited to 75% of Rig Max Load) -> .225000 - 1.100 = 241429 Max. Allowable Overpull Margin = .225000 - 1.17470 x 0.847) = 125464		·	•					
Max. Allowable Axial, Load (Pipe Yield) = .397000 / 1.40 = 283571 Max. Allowable Axial, Load (Joint) = .338000 / 1.40 = 241429 Max. Allowable Hook, Load (Limit) di To 5% of Rig, Max Load) = .225000 . 1.40 = 241429 Max. Allowable Hook, Load (Limit) di To 5% of Rig, Max Load) = .225000 .			÷ .		•			
Max. Allowable Hook Load (Linnited to 75% of Rig Max Load) = 338000 / <u>1.40</u> = 241429 Max. Allowable Hook Load (Linnited to 75% of Rig Max Load) =, 225000 Max. Allowable Overpul) (Margin = 225000 - (117470 x 0.847) = 125454	•		. *					
Max. Allewable; Overpull; Margin = 225000 - (1.17470 x 0.847) = 125464		· • .						
Tensial Salety,⊨actor = 3000000 / (59536 + 500000) = 2.01								
			•					
Compression Strength ConocoPhillips Regulared Load Cases				•				
The maximum axial (compression) (bad for the yeal is where the surface casing to handed on the conductor								
with a support of a plate or landing ring. The surface cashig is also calculated to bear 60% of the load. but not tribled. Any other extel leads such as a snubbing unit or other would need to be added to the load.	. *		. *•	•				
Compřession Safely Factor, = API Axial Joint Strength Řaling: OR' API Axial Poo Yield Rating / Maximum Prédicted Load Weithend Load = 3000 jits								
Conductor & Surface Compression Safety/Factor			•					
Sùri,Casing,Wit(Bouyant),= (18456 x 0.870) = 16061							•	
Prod(Casing Wr.(Bouyant) = (117470 x 0.847) = 99536 Tubling Wr.(Air W1) = 6910 x <u>6.5</u> = <u>44915</u>								
Conductor Compression Salety Factor = 432956 / 174526 = 2,48 Load on Surface:Casing = 174526 x 60% = 104715	<u>441</u> *2		11014 174526					

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

		Slurry	Inter Ft I	vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
\$ 18	Lead	Class C	Surface	424' 469'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
	Tail	Class C	424' – 469'	724' – 769'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

ſ		Slurry		ervals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
1/2	Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
	Tail	Class H	5200'	6865' – 6910'	16.4	400	428	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing & Cementing Program – TXI/LW Cementing Option for Grayburg-San Andres:

ConocoPhillips Company respectfully requests the options to our cementing program. This option will only be implemented in the cementing operation of wells requesting for co-mingling after approval and authorization by all agencies have been obtained. The intention for the alternative option to the cementing program for the Production Casing is to:

- Accommodate the additional frac'ing and stimulation of the Grayburg-San Andres by placement of the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		ervals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	50:50 Poz/C	Surface	3000'	. 11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6865' – 6910'	13.2	800	1120	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11[°] 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 - 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 750

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

Ruby Federal #47

(Date: 8/13/2013)

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

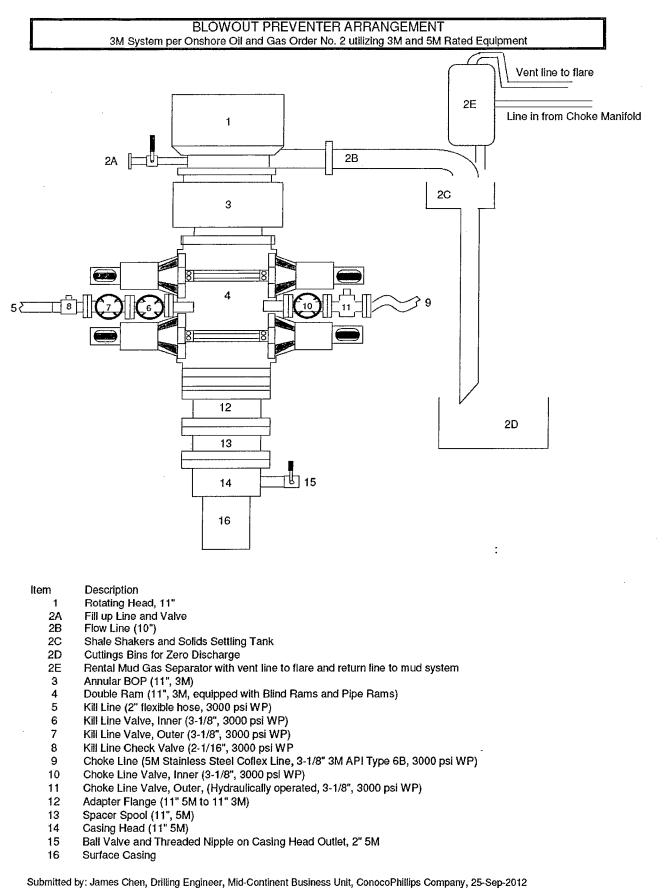
ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

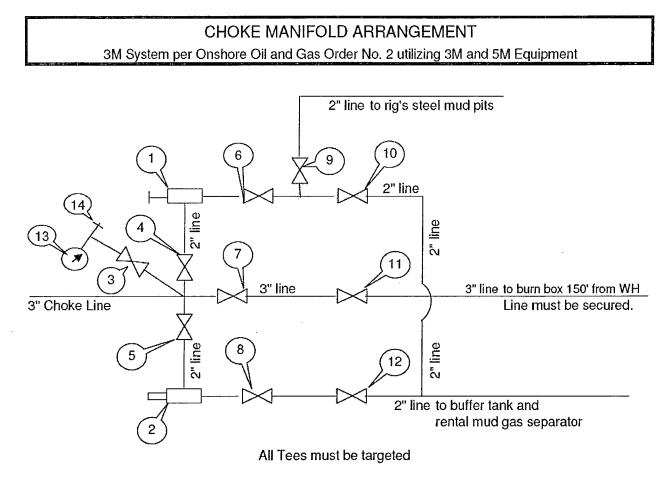
Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

Attachments:


- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment


Contact Information:

Proposed 13 August 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647


Ruby Federal #47

(Date: 8/13/2013)

Attachment # 2

Item Description

- 1 Manual Adjustable Choke, 2-1/16", 3M
- 2 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Request for Variance

ConocoPhillips Company

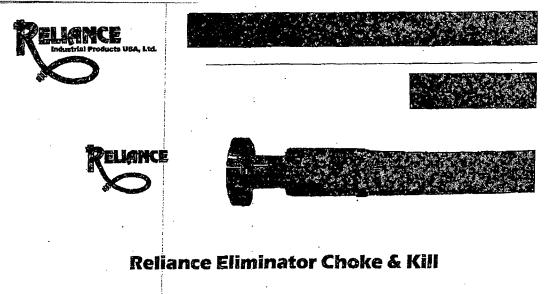
Lease Number: NM LC 029405B Well: Ruby Federal #47 Location: Sec. 18, T17S, R32E Date: 8/13/2013

<u>Request:</u>

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

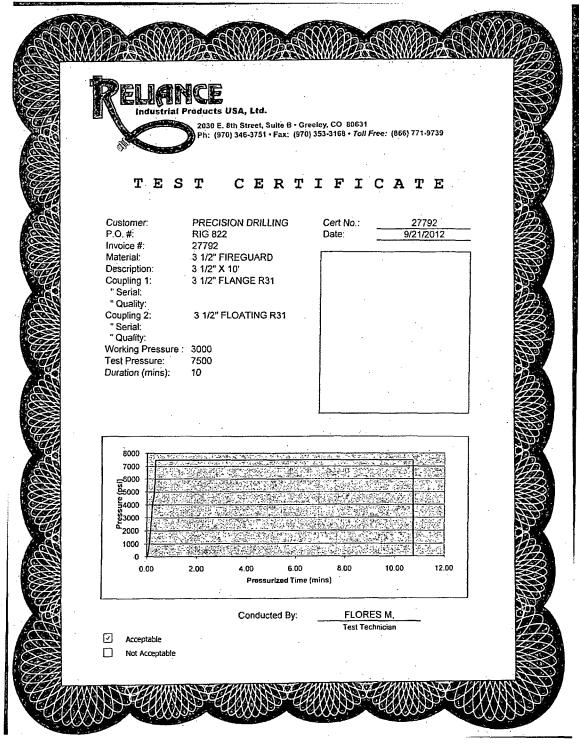

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 1


This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom. ID			Nom OD Wei		•		end Radi		
in.	mm.	iņ.	mm	Ib/ft	kg/m	in.	mm.		Mpa
3	76.2	5.11	129.79	14.5	21.46	48	1219		34.4
3-1/2	88.9 5	5.79	147.06	20.14	29.80	54	1371.	.6 5000	34.4
		, È n e a	· · ·						
		an a	A Contraction of the second se					•	
Fittings			Flanges	•	Har	nmer Ur	lons	Othe	r
RC4X5055	R3	5 - 3-1	/8 5000# A	PI Type 6B	All Un	ion Config	urations	LP Threaded C	
RC3X5055	R3	1 - 3-1	/8 3000# AI	PI Type 6B				Graylo	
RC4X5575		1						Custom I	Ends
				•					

Attachment # 2

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Ruby Federal #47 Location: Sec. 18, T17S, R372E Date: 8/13/2013

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any need repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc.

4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

James Chen Drilling Engineer Office: 832.486.2184 Cell: 832.678.1647

SPECIFICATIONS

FLOORE S/46 PLONE please CROSS MEMBER: 3 x 4.1 channel 16 on center

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

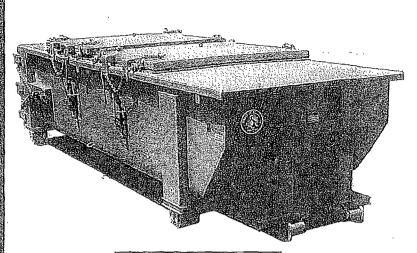
DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed PICK U P: Standard cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings DOOR LATCH: Sindependent ratchet binders with chains, vertical second laten CASKETS Extruded rubber seal with metal.

retainers

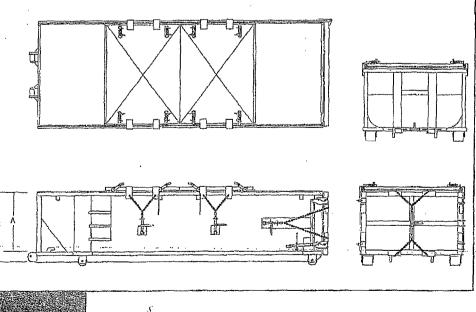
retainer's WELDS: All welds continuous except sub-structure crossmembers FINISH: Coated Inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMENSIONS: 22-11⁺¹ long (21-8⁺ inside), 99" wide (88" inside), see drawing for height OPTIONS: Steel grit blast and special paint, Amplicoll, Hell and Dino pickup ROOF: 3/16' PL roof panels with lubing and a

channel support frame LIDS: (2) 68" x 90" metal rolling lids spring.

loaded, self raising


ROLLERS: 4" Vegroove rollers with delrin. bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8¹¹ divider centered on: container


LATCH:(2) independent retchet binders with chains perlid GASKETS: Extruded rubber

seal with metal retainers

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD	53	65
30 YD	65	77

31

ŧ.