a. ¹⁹¹ . a					A15-14-20	5 8
Form 3160-3 (March 2012)				OMB	M APPRUVED No. 1004-0137	
UNITED STA DEPARTMENT OF T		OCD Hobbs		5. Lease Serial No.	October 31, 2014	$\langle \rangle$
BUREAU OF LAND		- -	Han	NMLC 0802	258 🔨	\downarrow
APPLICATION FOR PERMIT	TO DRILL OF		SBS .	DED ^{If Indian, Allote} N/A	e or Tribe Name	>/
a. Type of work: X DRILL RI	EENTER	J.	^{JN} 16	$20^{7}_{\rm N/A}$ If Unit or CA Ag		d No.
b. Type of Well: X Oil Well Gas Well Other	X Si	ngle Zone 🔲 Mult	GORIVEI	8. Lease Name and Garnet Federa		#2
2. Name of Operator	\mathbf{i}			9. API Well No. 30-025- 4	+1923	
ConocoPhillips Company 4/01/ Ba. Address 600 N. Dairy Ashford Rd.	3b. Phone No). (include area code)	· · · · · · · · · · · · · · · · · · ·	10. Field and Pool, or	r Exploratory	
Office P10-4054 Houston, TX 77079 A. Location of Well (Report location clearly and in accordance of	(281)2	06-5281		Maljamar; Ye		44500
 Location of Well (Report location clearly and in accordance of At surface 990' FSL and 1035' FEL; UL P, Sec 				11. Sec., T. R. M. or Sec. 15, T17S		Area
At proposed prod. zone same as above	. 15, 1175, 165			1.		
 Distance in miles and direction from nearest town or post offic Approximately 3 miles south east of Maljama 		UNORT	HODO) 2. County or Parish Lea County	13. S NM	
5. Distance from proposed* 285' location to nearest	16. No. of a			g Unit dedicated to this	well	<u></u>
property or lease line, ft. (Also to nearest drig, unit line, if any)	80.00		40.00	·.		
8. Distance from proposed location* 130' to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed 7075'	d Depth TVD/MD	20. BLM/ ES008	BIA Bond No. on file 5		
Elevations (Show whether DF, KDB, RT, GL, etc.) 4027' GL	22. Approxir 04/01/	nate date work will sta 2014	ırt*	23. Estimated duration 7 days	on	
	24. Attac	hments				
ne following, completed in accordance with the requirements of (Onshore Oil and Gas	Order No.1, must be a	ttached to thi	s form:		
Well plat certified by a registered surveyor.		4. Bond to cover t Item 20 above).	he operation	ns unless covered by ar	a existing bond on	file (see
A Drilling Plan. A Surface Use Plan (if the location is on National Forest Sy SUPO must be filed with the appropriate Forest Service Office		5. Operator certifi		ormation and/or plans a	s may be required	by the
5. Signature	Name	(Printed/Typed)			Date 11 12/05/2	
le JUSAN D. N aund	Susa Susa	n B. Maunder			12/05/2	2013
Senior Regulatory Specialist					· · · · · · · · · · · · · · · · · · ·	
pproved by (Signd Steve Caffey	Name	(Printed/Typed) Steve			DateJUN 1	3 2014
FIELD MANAGER	Office	CARLSBAD F		e/	I	
oplication approval does not warrant or certify that the applican nduct operations thereon. onditions of approval, if any, are attached.	t holds legal or equit	able title to those righ		ectlease which would over the second se		
tle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make ates any false, fictitious or fraudulent statements or representatio	it a crime for any pe ons as to any matter w	erson knowingly and v ithin its jurisdiction.	villfully to m	ake to any department	or agency of the 1	Jnited
Continued on page 2)			<u></u>	*/1	······	
SWELL CONTROLLED WATER BASIN	,	CANINOT	וחסמ	JCE UNTIL NS		
	A. I. I.	CANNUT				
1-	06/16/14	CANNOT	PRODU	JCE UNTIL NS	L IS APPRC	VED
			SEE	TTACHED	FUR	
Approval Subject to General Requirements & Special Stipulations Attached			CON	DITIONS O	F APPRO	VAL

GJUN 1 7 2014 PM

HOBBS OCD

Operator Certification

JUN 1 6 2014

RECEIVED

I

CONOCOPHILLIPS COMPANY

CERTIFICATION:

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application with bond coverage provided by Nationwide Bond ES0085. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

B. Maunder Date: 12

Susan B. Maunder Senior Regulatory Specialist

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres, Yeso (west)</u>

Garnet Federal #2

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents				
Quaternary	Surface	Fresh Water				
Rustler	872	Anhydrite				
Salado (top of salt)	1038	Salt				
Tansill (base of salt)	2057	Gas, Oil and Water				
Yates	2196	Gas, Oil and Water				
Seven Rivers	2547	Gas, Oil and Water				
Queen	3165	Gas, Oil and Water				
Grayburg	3580	Gas, Oil and Water				
San Andres	3935	Gas, Oil and Water				
Glorieta	5428	Gas, Oil and Water				
Paddock	5517	Gas, Oil and Water				
Blinebry	5797	Gas, Oil and Water				
Tubb	6875	Gas, Oil and Water				
Deepest estimated perforation	6875	Deepest estimated perf. is ~ Top of Tubb				
Total Depth (maximum)	7075	200' below deepest estimated perforation				

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

P A

Туре	Hole Size		Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str	1	Safety Fac Ilated per Co Corporate C	onocoPhillips
Type	· (in)	From .	То	(inches)	(lb/ft)			(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	_ 20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	397 – 942'	8-5/8	24#	J-55	STC	2950	1370	244	1.54	3.27	3.50
Prod	7-7/8	. 0	7020' – 7065'	5-1/2	17#	L-80	LTC	7740	6290	338	2.11	2.50	1.98

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	942	24	2950	1370	244000	8.5	7.09	3.29	·10.8	12.4
Production Casing	7065	17	7740	6290	338000	10	2.11	1.71	2.81	3.32

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips	Corporate	Criteria f	for Minimum	Design F	actors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Production Casing (5-1/2" 17# L-80 LTC)		2	65 35000 24 2950	137	- 70 244 0 00			5 1.5	4 3.	- 27 3.	50					
	7065	5 _	17 7740) 629	338000	39700	0 1	0 2.1	1 2	50 1.	8					
Burst - ConocoPhillips Required Load Cases																
The maximum internal (burst) load on the Surface Casing occurs when it The maximum internal (burst) load on the Production Casing occurs durin								rements)	L							
(LIAWP) is the pressure that would fit ConocoPhilips Corporate Criteria f	or Minimum Fe	ictors.							_							
Surface Casing Test Pressure = Surface Rated Working Pressure (80PE) =	1500				licted Pore P led Frac Gra				5 ppg 3 cpg							
Field SW =		PF9		Predici	eo Frac Gra	uicht at Shoe	: (Lara) =	13,2	2]668							
Surface Casing Burst Safety Factor = API Burst Rating / M Production Casing MAWP for the Fracture Stimulation = API						ım Allowable	Surface Pr	essure (uasp)							
Surface Casing Burst Safety Factor:											•					
Case #1. MPSP (MWhyd next section) =	942	x !	0.052	x	10	=	490									
Case #2. MPSP (Field SW @ Bullhead _{CSFG} + 200 psi) =	942		0.052	x	19.23	-	490	÷	200	=	652					
Case #3. MPSP (Kick Vol @ next section TD) = Case #4. MPSP (PPTD - GG) =	7065 7065		0.052 0.052	x x	8.55 8.55	-	612.3 706.5	-	415 2435	=	2112					
Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	942		0.052	x(19.23	+	0.2)=								
MASP (MWhyd + Test Pressure) =	942		0.052	x	8.5	+	1500	=	1916							
Burst Safety Factor (Max_MPSP or MASP) = Production Casing Burst Safety Factor:	2950	1	1916	=	1.54											
Case ∉1, MPSP (MWhyd TD) =	7065		0.052	x	10	=	3673.8									
Case #4. MPSP (PPTD - GG) =	7065 7740		0.052 3674	× =	8.55	-	706.5	=	2435							
Burst Safety Factor (Max. MPSP) = MAWP for the Fracture Stimulation (Corporate Criteria) =	7740		1.15] =	2.11 6730											
				1												
<u> Collapse – ConocoPhillips Required Load Cases</u>																
The maximum collapse load on the Surface Casing occurs when cementin	g to surface,	1/3 eva	custion to th	e next ca	sing setting	depih, ar dea	epest depth	of expos	sure (fuil e	vacuation).						
The maximum collapse load on the Production Casing occurs when cemer																
Incretore, the external pressure profile for the evacuation cases should the Surface Casing Collapse Safety Factor = API Collapse Ratin) We ass	iumed to b	e PP7D.						
Production Casing Collapse Safety Factor = API Collapse Ra	ling / Maximu	m Predk						menting	to Surface							
Cement Displacement Fluid (FW) = Surface Cement Lead =	8.34 13.6		D=		Cement = nt Lezd =	Cement to S	urface Bippg									
Surface Cement Tail =	14.8				ent Tall =		PP9 PP9									
Top of Surface Tail Cement =	300		Top of F	Prod Tail (Cement =	5200) n									
Surface Casing Collapse Safety Factor:																
Full Evacuation Diff Pressure =	942	X	0.052	X 0.050	8.55	=	419	200		0.070						276
Cementing Diff Lift Pressure = Collapse Safety Factor =	[(1370	642 /	x 419	0.052 =	x 3.27	13.6) + (300	x	0.052	x	14.8	1.	409] =	210
Production Casing Collapse Safety Factor:																
1/3 Evacuation Diff Pressure = Cementing Diff Lift Pressure =	l(l(7065		0.052 0.052	x x	8.55 11.8) - () + (7065 5200	/ x	3 0.052	x x	0.052 16.4	×.			2120 2515
Collapse Safety Factor =	6290		2515	=	2.50	11.0	,.(5200	Ŷ	0.032	^	10.4	,.	1004	1 -	2313
<u>Tensial Strength - ConocoPhillips Required Load Cases</u> The maximum axial (lension) load occurs If casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe	-	-		History												
						Easter										
Maximum Allowable Axial Load for Joint = API Joint Stre						Factor										
Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hook Load (Limited to 75% of Rig II	ngth Rating / ax Load) = M	Corpora aximum	te Minimum A Allowable A	xial Desi xial Load	gn Factor	Factor										
Maximum Allowable Axial Load for Joint = API Joint Stre	ngth Rating / ax Load) = M ble Hook Load	Cerpara aximum d - Bouy	te Minimum A Allowable A ant Wt of the	xial Desi xial Load String	gn Factor		verpul Requ	uired)								
Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hoak Load (Limäed to 75% of Rig b Maximum Allowable Overpuil Margin = Maximum Abluwa Maximum Allowable Overpuil Margin = Maximum Abluwa Tensial Safety Factor = API Pipe Yleki 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% =	ngth Rating / Ax Load) = M ble Hook Load ingth "OR" Rig 225000	Cerpora aximum d - Bouy Max Lo Ibs	te Minimum A Allowable A ant Wt of the	xial Desi xial Load String	gn Factor		verpuli Requ	uired)								
Maximum Alawable Axial Load for Joint = API Joint Sire Maximum Alawable Hoak Load (Limäed to 75% of Hig L Maximum Alawable Overpud Margin = Haximum Alawa Tensial Safety Factor = API Pipe Yiek 'OR' API Joint Sir	ngth Rating / ax Load) = M ble Hook Load mgth 'OR' Rig	Cerpora aximum d - Bouy Max Lo Ibs	te Minimum A Allowable A ant Wt of the	xial Desi xial Load String	gn Factor		verpul Reqi	uired)								
Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hoak Load (Limäed to 75% of Rig U Maximum Allowable Overpull Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yleid'OR API Joint Sto Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor:	ngth Rating / ax Losd) = M ble Hook Load mgth 'OR' Rig 225000 50000	Cerpora aximum d - Bouy Max Lo Ibs	te Minimum A Allowable A ant Wt of the	xial Desi xial Load String	gn Factor		verpul Reqi	uired)								
Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hoak Load (Limäed to 75% of Rig U Maximum Allowable Overpull Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yleid VOR API Joint Stin Rig Max Load (300,000 bs) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air Wt =	ngth Rating / Ax Load) = M ble Hook Load ingth "OR" Rig 225000	Corpora aximum d - Bouy Max Lo Ibs Ibs	te Minimum A Allowable A ant Wt of the	xial Desi xial Load String	gn Factor		verpuli Reqi	uired)								
Maximum Alowable Axial Load for Joint = API Joint Stre Maximum Alowable Hoak Load (Limäed to 75% of Rig U Maximum Alowable Overputi Margin = Maximum Alowa Tensial Safety Factor = API Ripe Yleid 'OR API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overputi Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) =	ngth Rating / ax Load) = 13 ble Hoak Load mgth 10R Rig 225000 50000 22608 22608 381000	Corpora aximum d - Bouy Max Lo Ibs Ibs Ibs Ibs	te Minimum A Allowable A ant Wi of the ad Rating / (0.870 1.40	xial Desi xial Load String Bouyant = =	gn Factor W1 of String 19674 272143		verpuli Reqi	uired)								
Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Hoak Load (Limäed to 75% of Rig U Maximum Allowable Overpull Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yleid 'OR API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	ngth Rating / ax Load) = 13 ble Hook Load ingth 'OR' Rig 225000 50000 22608 22608 381000 244000	Corpora aximum d - Bouy Max Lo Ibs Ibs Ibs	te Minimum A Allowable A ant Wt of the ad Rating / (0.870	xial Desi xial Load String Bouyant	gn Factor WL of String 19674		verpul Requ	uired)								
Maximum Alowable Axial Load for Jeint - APJ Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Pipe Vield 'OR APJ Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin =	ngth Rating / ax Load) = 13 ble Hoak Loak mgth 'OR' Rig 225000 500000 22608 22608 281000 244600 174286 174286	Cerpara aximum d - Bouy Max Lo Ibs Ibs Ibs - (te Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608	xial Desi xial Load String Bouyant = =	gn Factor Wt of String 19674 272143 174286 0.870		154612	uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor - API Rige Yield 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hock Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load Joint = Max. Allowable Axial Load Joint = Max. Allowable Axial Load Joint = Max. Allowable Safety Factor =	ngth Rating / ax Load) = 13 ble Hook Load ingth 'OR' Rig 225000 50000 22608 22608 381000 244000 174286	Cerpara aximum d - Bouy Max Lo Ibs Ibs Ibs - (te Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40	xial Desi xial Load s String Bouyant = = =	gn Factor Wt of String 19674 272143 174286	+ Minimum O		uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor - API Rige Yield 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hock Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load Joint = Max. Allowable Axial Load Joint = Max. Allowable Axial Load Joint = Max. Allowable Safety Factor =	ngth Rating / ax Load) = 13 ble Hoak Loak mgth 'OR' Rig 225000 500000 22608 22608 281000 244600 174286 174286	Cerpara aximum d - Bouy Max Lo Ibs Ibs Ibs - (te Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608	xial Desi xial Load String Bouyant = = = X	gn Factor Wt of String 19674 272143 174286 0.870	+ Mantmum O	154612	uired)								
Maximum Alowable Axial Load for Joint = API Joint Stre Maximum Alowable Hoak Load (Limäed to 75% of Rig U Maximum Alowable Overputi Margin = Maximum Alowa Tensial Safety Factor = API Ripe Yield'OR API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oint) = Max. Allowable Axial Load (Oint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	ngth Rating / ax Load) = M kle Hook Loae mgth 'OR Rby 225000 50000 22608 22608 22608 381000 244000 174286 244000 174286 244000 120105	Cerpara aximum d - Bouy Max Lo Ibs Ibs Ibs - (/ (/ (X	te Hinimum A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847	xial Desi xial Load String Bouyant = = = x +	gn Factor Wt of String 19674 272143 174286 0.870 50000 101768	+ Mantmum O	154612	uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin - Maximum Alowable Tensial Safety Factor - API Rije Yikel 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor: Air Wi = Production Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi =	ngth Rating / ax Load) = IJ ble Hook Lease mention OR Aby 225000 50000 22608 22608 281000 244000 174286 244000 124286 244000 120105 120105 397000	Cerpara aximum d - Bouy Max Lo ibs ibs ibs ibs - (/ (/ (x /	te Hinimum A Aloveable A ant Wi of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40	xial Desi xial Load String Bouyant = = = x + +	gn Factor Wt of String 19674 272143 174286 0.870 50000 101768 283571	+ Mantmum O	154612	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) U Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor - API Rpe Ytek' OR API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wl = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Constant Safety Factor = Production Cosing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	ngth Rating / ax Load) = M kle Hook Loae mgth 'OR Rby 225000 50000 22608 22608 22608 381000 244000 174286 244000 174286 244000 120105	Cerpara aximum d - Bouy Max Lo Ibs Ibs Ibs - (/ (/ (X	te Hinimum A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847	xial Desi xial Load String Bouyant = = = x +	gn Factor Wt of String 19674 272143 174286 0.870 50000 101768	+ Minimum O) = } =	154612	uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin = Maximum Alow Tensial Safety Factor = API Rpe Ytel 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yfeld) = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yfeld) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpul Margin =	ngth Rating / ax Load) = IJ ble Hook Load menti OR Aig 225000 50000 22608 22608 28000 244000 244000 244000 174286 244000 120105 120105 397000 338000 225000	Cerpara aximum 1 - Bouy Max Lo Ibs Ibs / / / / / / / / / / / / / / / / / / /	te Minimum A Aloveable A ant Wi of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40	vxial Desi String Bouyant = = x + = = x x + x X	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) U Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rije Vieti 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dinit) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor = Production Cosing Tensial Strength Safety Factor = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Chint) = Max. Allowable Axial Load (Chint) =	ngth Rating / ax Load) = IJ ble Hook Load menti OR Aig 225000 50000 22608 22608 28000 244000 244000 244000 174286 244000 120105 120105 397000 338000 225000	Cerpara aximum 1 - Bouy Max Lo Ibs Ibs / / / / / / / / / / / / / / / / / / /	te Hinimum A Alsovable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40	xial Desi xial Load String Bouyant = = = = x + = = = = = = = = = = =	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429	+ Minimum O) = } =	154612 3.50	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) U Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rpe Ytek' OR API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wl = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axiel Load (Joint) = Max. Allowable Safety Factor: Froduction Cosing Tensial Strength Safety Factor = Production Cosing Tensial Strength Safety Factor = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpul Margin = Tensial Safety Factor =	ngth Rating / ax Lood) = IJ ble Hook Look medit OR Age 225000 50000 22608 22608 22608 22608 22608 22608 22608 22608 244000 174286 14286 244000 174286 14286 244000 120105 397000 338000 225000 300000	Cerpara aximum 1 - Bouy Max Lo Ibs Ibs / / / / / / / / / / / / / / / / / / /	te Minimum A Aloveable A ant Wi of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40	vxial Desi String Bouyant = = x + = = x x + x X	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) & Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rige Yield 'OR' API Joint Stin Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load) (Joint) = Max. Allowable Axial Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpul Margin =	ngth Rating / ax Lood) = M ke Hoak Loca (225000) 500000 225008 22608 22608 381000 244000 174286 174286 174286 174286 174286 174286 244000 120105 397000 338000 338000 2255000 2255000	Corpora aximum 4 - Bauy Wax Lo Bos Ibs Ibs - ((/ (/ (te Hinimum A Allowable A and Wath the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40	vxial Desi String Bouyant = = x + = = x x + x X	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) U Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rije Vieti 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air WI = Bouyant WI = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Viet) Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Max. Allowable Overpul Margin = Tensial Safety Factor = Max. Allowable Overpul Margin = Tensial Safety Factor =	ngth Rating / ax Lood) = M ble Hook Loase mugh 'OR ASD 225000 500000 22608 22608 22608 22608 22608 22608 244000 174286 244000 174286 244000 174286 244000 120105 120105 120105 120105 397000 338000 225000 225000 3000000	Corpora aximum d - Boay Max Lo Ibs Ibs Ibs Ibs - (/ / / / / / / / / / / / / / / / / / /	te Minimum A Aloveable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	vxial Desi String Bouyant = = x + = = x x + x X	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Joint - APJ Joint Sire Maximum Alowable Hoak Load (Limited to 75% of Rig D Maximum Alowable Overpul Margin = Maximum Abova Tensial Safely Factor = API Pipe Yield 'OR API Joint Sin Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Oripe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oripe Yield) = Max. Allowable Axial Load (Oripe Yield) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Corepul Margin = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load Safety Factor =	ngth Rating / ax Lood) = M be Hoak Loca ingth 'OR' Rig 225000 500000 225008 22608 381000 244000 174286 174286 174286 174286 174286 174286 174286 174286 397000 338000 225000 300000 0 00000 0 0 0 0 0 0 0 0 0 0	Corpora aximum d - Bouy libs libs libs - ((/ (/ (/ (/ (/ (te Hinimum A Allowable A Allowable A ant Wit of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xial Load sial Load String Bouyant = = = x + + = = x + +	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) U Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rije Vieti 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air WI = Bouyant WI = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Viet) Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Max. Allowable Overpul Margin = Tensial Safety Factor = Max. Allowable Overpul Margin = Tensial Safety Factor =	ngth Rating / ax Lood) = M be Hoak Loca ingth 'OR' Rig 225000 500000 225008 22608 381000 244000 174286 174286 174286 174286 174286 174286 174286 174286 397000 338000 225000 300000 0 00000 0 0 0 0 0 0 0 0 0 0	Corpara aximum d - Bouy Max Lo Ibs Ibs Ibs - ((/ (/ (/ (/ (/ (/ (/ (/ (/ (te Hinimum A Allowable A Allowable A ant Wit of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xial Load sial Load String Bouyant = = = x + + = = x + +	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Joint - APJ Joint Sire Maximum Alowable Hoak Load (Limited to 75% of Rig) Maximum Alowable Overpull Margin = Maximum Abovable Maximum Alowable Overpull Margin = Maximum Abova Tensial Safety Factor = API Pipe Yield 'OR API Joint Sin Rig Max Load (Jain,000 bs) x 75% = Winimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor: Production Cosing Tensial Strength Safety Factor: Max. Allowable Corepull Margin = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Allowable Axia Load Factor	ngth Rating / ax Lood) = M ket Hoak Loos (225000) 500000 225008 22608 22608 22608 22608 22608 22608 22608 22600 244000 174286 174286 244000 174286 174286 244000 174286 397000 338000 225000 300000 225000 300000 225000 300000	Corpara aximum d - Bouy Max Lo Ibs Ibs Ibs - ((/ (/ (/ (/ (/ (/ (/ (/ (/ (te Hinimum A Allowable A Allowable A ant Wit of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	xial Load sial Load String Bouyant = = = x + + = = x + +	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000	+ Minimum 0) =) =) =	154612 3.50 123232	uired)								
Maximum Alowable Axial Load for Joint - APJ Joint Sire Maximum Alowable Hoak Load (Limited to 75% of Rig) Maximum Alowable Overpull Margin = Maximum Abovable Maximum Alowable Overpull Margin = Maximum Abova Tensial Safety Factor = API Pipe Yield 'OR API Joint Sin Rig Max Load (Jain,000 bs) x 75% = Winimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor: Production Cosing Tensial Strength Safety Factor: Max. Allowable Corepull Margin = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Max. Allowable Axial Load Softy Factor = Allowable Axial Load Softy Factor = Allowable Axia Load Factor	ngth Rating / ax Lood) = M ket Hoak Loos (225000) 500000 225008 22608 22608 22608 22608 22608 22608 22608 22600 244000 174286 174286 244000 174286 174286 244000 174286 397000 338000 225000 300000 225000 300000 225000 300000	Corpara aximum d - Bouy Max Lo Ibs Ibs Ibs - ((/ (/ (/ (/ (/ (/ (/ (/ (/ (te idinimum A Allowable A Allowable A and Wa of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 120105 101768 e conductor he load oximum Predik	xial Load sial Load String Bouyant = = = x + + = = x + +	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000	+ Minimum 0) =) =) =	154612 3.50 123232 1.98	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Rije Vieti 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oripe Yield) = Max. Allowable Axial Load (Oripe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Cripe Yield) = Max. Allowable Overpull Margin = Tensial Safety Factor = Max. Allowable Overpull Margin = Tensial Safety Factor = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load 2 With a support of a plate or tanding ring. The surface cashs is also calcul but not thided. Any other axial loads such as a snubbing unt or other voi Compression Safety Factor = API Axial Joint Strength Factor Surf Casing Wi (Bouyant) = Prod Casing Wi (Bouyant) = Prod Casing Wi (Bouyant) =	ngth Rating / ax Lord) = IJ bite Hoak Loras minuth 'OR Raby 225000 500000 22608 22608 22608 22608 22608 244000 174286 244000 174286 244000 174286 244000 120105 120105 120105 120105 225000 225000 225000 225000 3000000 225000 22608 22600 22600 225000 20000 225000 20000 225000 20000 225000 2000000	Corpara aximum 4 - Bouy Max Lo Bos Ibs bs / / / / / / / / / / / / / / / / /	te Minimum A Aloveable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	vial Desi xial Load string string Bouyant = = x + = x + cted Load 0.870 0.847	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000 10.847 50000	+ Wintmum 0) ==) =) =	154612 3.50 123232 1.98	uired)								
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rig) Maximum Alowable Overpull Margin - Maximum Abov Tensial Safety Factor = API Pipe Yield 'OR' API Joint Str Rig Max Load (300,000 bs) x 75% = Uninnum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Overpul Margin = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load C The maximum axial (compression) load for the wells where the surface co with a support of a plate or landing ring. The surface cashs g has calcul U untof thed. Any other axial loads such as a snabing unt or other wo Compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial Welfhead Load = Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Tubing Wt (Air Wt) =	ngth Rating / ax Load) = M ax Load) = M 225000 225000 22608 22608 22608 22608 22608 22600 244000 174286 174286 174286 174286 174286 397000 338000 225000 300000 300000 300000 225000 225000 225000 225000 225000 300000 300000 300000 225000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 200000 200000 200000 200000 20000000 200000000	Cerpara aximum I - Bouy Max Lo Ibs Ibs - (/ / (/ / 2000) 22608 12010: X	te Minimum A Allowable A annt Wu of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 120105 101768 conductor he load o the load. bxtrum Predk	votal Dest vial Load String Bouyant = = = x + + x + ctcd Load 0.870 0.847 =	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000 101768 283571 241429 0.847 50000	+ Wintmum O) ==) =) =) = 19674 101768	154612 3.50 123232 1.98	uired)								
Maximum Alowable Axial Load for Jeint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rg) but Maximum Alowable Overput Margin = Maximum Abov Tensial Safety Factor = API Piev Viet 'OR API Joint Str Rig Max Load (J00,000 bs) x 75% = Uninnum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Oint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor = Production Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor = Compression Strength <u>ConocoPhillips Required Load (C</u> The maximum axial (compression) load for the vet is where the surface ce wh a support of a plate or landing ring. The surface casing is also caked but not finded. Any other axial loads such as a snubbing unit or other wou Compression Safety Factor = API Axial Joint Strength Rating 'OR API Axial Uvelhead Load = Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Fluid Wt] =	ngth Rating / ax Lood) = M bits Hoak Loose (1994) = M 225000 225000 22608 22608 22608 22608 22608 22600 244000 174286 174286 244000 174286 174286 244000 174286 244000 225000 200000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000 200000000	Corpara aximum 4 - Bouy Max Lo Bos Ibs bs / / / / / / / / / / / / / / / / /	te Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	vxial Desi xial Load String Bouyant = = x + x + cted Load 0.870 0.8470 - x	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000 0.847 50000 101768 283571 241429 0.847 50000 101768 283571 241429 0.847 50000 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 283571 24142 101768 101768 283571 241429 0.847 500000 101768 283571 241429 0.847 500000 101768 283571 241429 0.847 500000 101768 283571 241429 0.847 500000 101768 101768 201768 10000 101768 101768 10000 101768 10000 101768 101768 10000 101768 10000 101768 10000 101768 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000000	+ Minimum O) =) =) =) = 19674 101768 ×	154612 3.50 123232 1.98	×	2.441] *2 =	11261					
Maximum Alowable Axial Load for Joint - API Joint Stre Maximum Alowable Hoak Load (Limited to 75% of Rg) by Maximum Alowable Overpul Margin = Maximum Abova Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stn Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Max. Allowable Overpul Margin = Tensial Safety Factor = Compression Strength — ConocoPhillips Required Load C The maximum axial (compression) load for the wells where the surface c wh a support of a plate or binding ring. The surface casing is also cakuu U unt at timed. Any other axial bads such as a sanubbig und or other wo Compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial Wethead Load = Conductor & Surface Compression Safety Factor Surf Casing Wi (Bouyant) = Tubing Wi (Kir WI) =	ngth Rating / ax Load) = M ax Load) = M 225000 225000 22608 22608 22608 22608 22608 22600 244000 174286 174286 174286 174286 174286 397000 338000 225000 300000 300000 300000 225000 225000 225000 225000 225000 300000 300000 300000 225000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 30000 225000 200000 200000 200000 200000 20000000 200000000	Corpara assimum d - Bouy Max Lo Bus bs bs / / / / / / / / / / / / / / / /	te Minimum A Allowable A annt Wu of the ad Rating / (0.870 1.40 1.40 22608 19674 0.847 1.40 120105 101768 conductor he load o the load. bxtrum Predk	votal Dest vial Load String Bouyant = = = x + + x + ctcd Load 0.870 0.847 =	gn Factor 19674 272143 174286 0.870 50000 101768 283571 241429 0.847 50000 101768 283571 241429 0.847 50000	+ Wintmum O) ==) =) =) = 19674 101768	154612 3.50 123232 1.98	×	2.44 <u>1</u> 11261		11261 181626					

.

•

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Į	rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	597' – 642'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	597' – 642'	897' – 942'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	7020' – 7065'	16.4	400	428	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing & Cementing Program – TXI/LW Cementing Option for Grayburg-San Andres:

ConocoPhillips Company respectfully requests the options to our cementing program. This option will only be implemented in the cementing operation of wells requesting for co-mingling after approval and authorization by all agencies have been obtained. The intention for the alternative option to the cementing program for the Production Casing is to:

- Accommodate the additional frac'ing and stimulation of the Grayburg-San Andres by placement of the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft N		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	7020' – 7065'	13.2	800	1120	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

Surface Casing Point to

Conversion to Mud at TD

TD

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.

The mud systems that are proposed for use are as follows:

Brine (Saturated

Brine Based Mud

NaCl₂) in Steel Pits

(NaCl₂) in Steel Pits

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

10

10

29

33 - 40

N.C.

5 - 10

10 – 11

10 – 11

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

Vol

bbl

120 - 160

500 - 1000

0 - 750

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	860	160	29	13

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

<u>Attachments:</u>

- Attachment # 1...... BOP and Choke Manifold Schematic 3M System
- Attachment # 2...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 9 December 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (281) 206-5244 Cell (832) 768-1647

TXI Energy Services provides specialized drilling products and petrochemical support services to the energy industry. Whether we're supplying well cement and additives for the next deep water project in the Gulf of Mexico or implementing new environmental procedures, our group shares a commitment to improved performance.

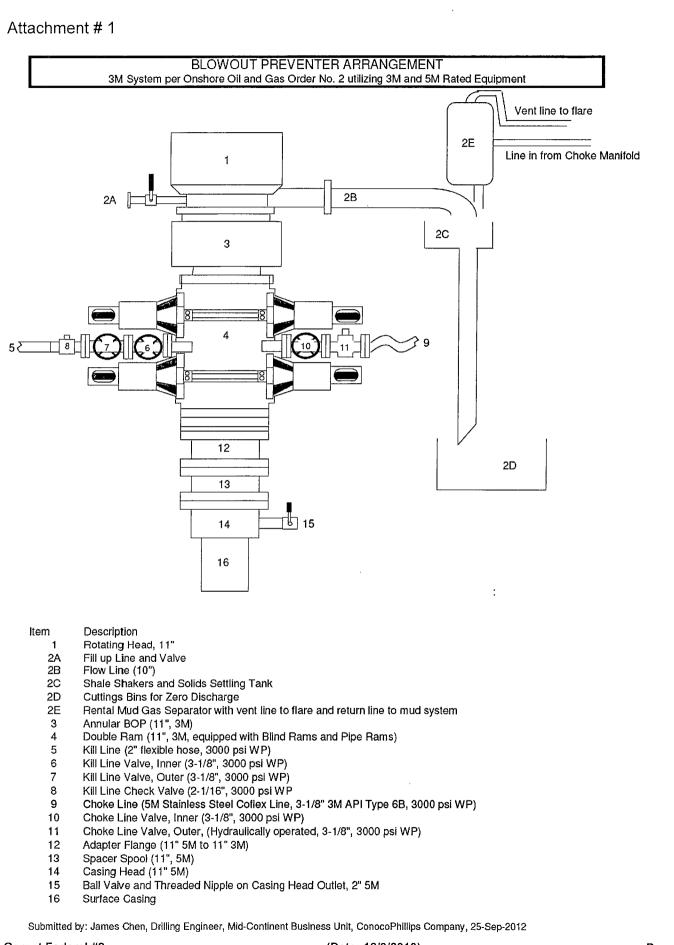
TXI is dedicated to providing environmental services that benefit people and the planet. Our Energy Services division removes and recycles a variety of non-hazardous by-products from petrochemical refineries and provides solidification materials to remediation sites.

Drilling Products

TXI Lightweight OilWell Cement is a low-density cement that can be mixed in a range of 12.0 to 14.2 pounds per gallon. In addition to being the world's only manufacturer of lightweight oil well cement. TXI also manufactures and distributes two classifications of well cements that meet the American Petroleum Institute specifications

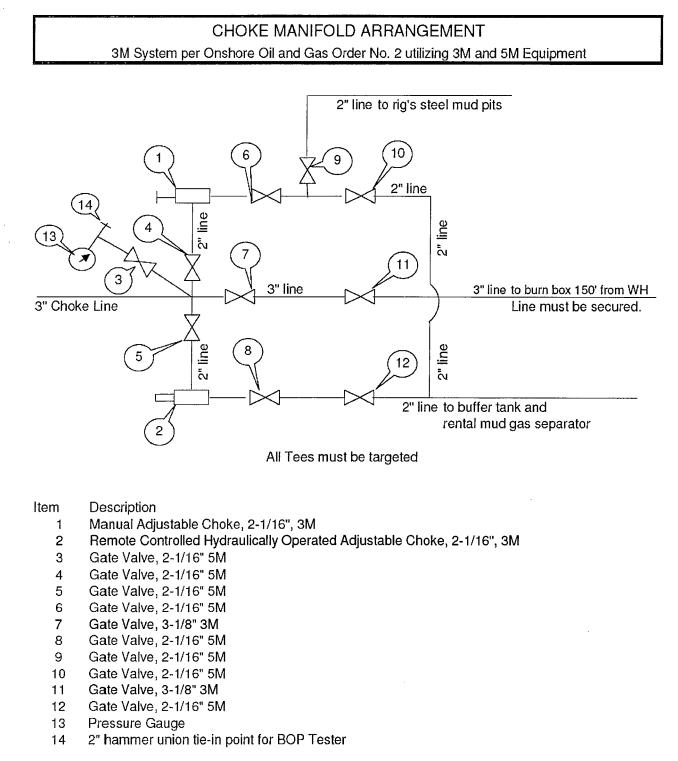
- · Class A. a "general purpose" cement for use at low to moderate temperatures
- · Class C, a moderate sulfate-resistant (MSR) cament for depths to 6000 feet
- · Other Special Cements

Cement Additives


TXI Energy Services, in partnership with a worldwide chemical manufacturer, can supply a wide verity of cement additives.

TXI Energy Services

11111 Wilcrest Green, Suite 108, Houston, Texas 77042, Phone 713.329.2611 www.txi.com


Overview | Eco Standards | Investor Relations | Products | MSDS | Real Estate | Careers | Contact Us | © 2013 Texas Industries, Inc. All Rights Reserved.

http://www.txi.com/TXI-products/TXI-energy-services

Garnet Federal #2

Attachment # 2

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Request for Variance

ConocoPhillips Company

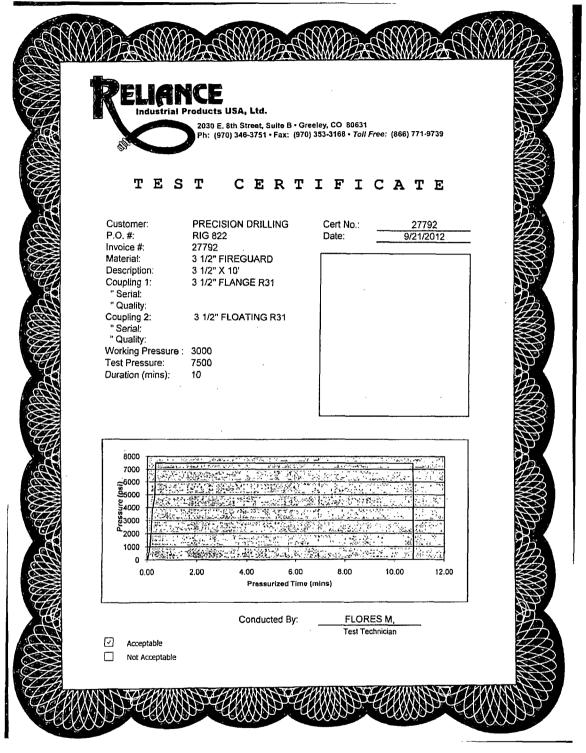
Lease Number: NM LC 080258 Well: Garnet #2 Location: Sec. 15, T17S, R32E Date: 12/3/2013

Request:

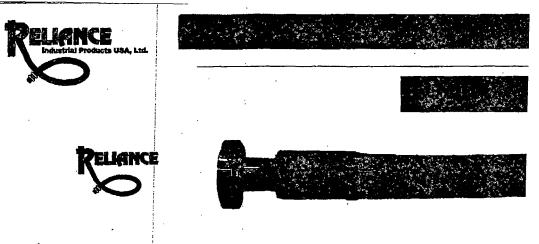
ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.


Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer


Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 2

Attachment # 1

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom. ID			Nom OD Weig		ght Min Bend Radi		nd Radiu	us Max WP	
in.	mm.	in	i. mm	lb/ft	kg/m	in.	mm.	psi	Mpa
· <u>3</u>	76.2	5.	11 129.7	9 14.5	21.46	48	1219.	2 5000	34.4
3-1/2	88.9	5.1	79 147.00	5 20.14	29.80	54	1371.0	6 5000	34.4
a state of the	وبعدي والأران								
		÷.3	15 1 7 15 1 7 17 1 7				*	·	
Fittings		Flanges		Hammer Unions		lons	Other		
		-	API Type 6B	All Un	ion Configu	rations	LP Threaded C	-	
1		- 3-1/8 3000# API Type 6B		· · · · · · · · · · · · · · · · · · ·			Graylock		
RC4X5575								Custom E	
							•		
		i	•.						

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Garnet #2 Location: Sec. 15, T17S, R32E Date: 12/3/2013

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc. 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

James Chen Drilling Engineer Office: 281-206-5244 Cell: 832.678.1647

SPECIFICATIONS

FLOOR : 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on

center

WALLS: 3/16" PL solid welded with tubing lop, insi de liner hooks

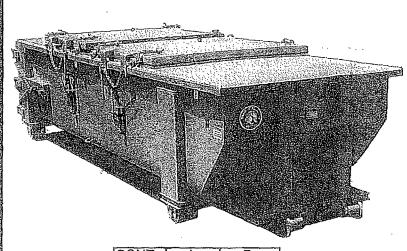
DOOR: 3/16" PL with tubing frame FRONTE 3/167 PL slant formed

PICK U P: Standard.cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings DOOR LATCH: 3 Independent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainers

WELDS: All welds continuous except sub structur e crossmembers

FINISH: Coated inside and out with direct to metal, rust inhibiting activic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22-11 long (21-8' inside), 99" wid e (88" inside), see drawing for height OPTIONS Steel grit blast and special paint. Amplicell, Helland Dinerolokup

ROOF: 3/16" PL roof panels with tubing and channel support frame


LIDS: (2) 68" x 90" metal rolling lids spring loaded, self raising ROLLERS: 4" V-groove rollers with defrin bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8" divider centered on container

LATCH:(2) independent ratchet binders with chains. per lid GASKETS: Extruded rubber

seal with metal retainers

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD	53	65
30 YD	65	77

31

.C

ŝ.