				ı		OCD-H	IOBBS
Form 3160-5 (August 2007)	DI B	UNITED STATES EPARTMENT OF THE D UREAU OF LAND MANA	TERIOR		OBBS OCD	FORI OMB Expire	M APPROVED NO. 1004-0135 s: July 31, 2010
	SUNDRY	NOTICES AND REPO	RTS ON W	ELLS []]]	N 2 9 2015	 Lease Serial No. NMLC065863 	
а	Do not use th bandoned we	is form for proposals to II. Use form 3160-3 (API	drill or to r D) for such	∻enter an proposals.	11 25 U 2010	6. If Indian, Allottee	e or Tribe Name
S	SUBMIT IN TR	PLICATE - Other instruc	tions on re	verse side.	RECEIVED	7. If Unit or CA/Ag	reement, Name and/or No.
1. Type of Well	Gas Well 🔀 Ot	her: INJECTION	· =			8. Well Name and N ZIA AGI 1	0.
2. Name of Operator DCP MIDSTRE	EAM, LP	Contact: E-Mail: dale@geole	DALE T LIT ex.com	TLEJOHN		9. API Well No. 30-025-42208	1
3a. Address 370 17TH STR DENVER, CO	EET SUITE 25 80208-5406	00	3b. Phone N Ph: 505-8	o. (include area cod 42-8000	e)	10. Field and Pool, o EXPL BRUSH	or Exploratory Y/CHERRY CANYON
4. Location of Well	(Footage, Sec., T	., R., M., or Survey Description)	-			11. County or Parish	, and State
Sec 19 T19S R	32E 2305FNL 2100F	750FWL SLA955FWI	_			LEA COUNTY	, NM
12.	CHECK APPI	ROPRIATE BOX(ES) TO	INDICATI	NATURE OF	NOTICE, RI	EPORT, OR OTHI	ER DATA
TYPE OF SUB	MISSION			TYPE C	OF ACTION		
□ Notice of Inter	nt .	Acidize	Dee Dee	pen	Producti	on (Start/Resume)	Water Shut-Off
🛛 Subsequent Re	eport	Casing Repair		v Construction		lete	C Wen Integrity
Final Abandon	ment Notice	Change Plans	D Plu	g and Abandon	Tempor	orarily Abandon Drilling Ope	
		Convert to Injection	🗖 Plu	g Back	🗖 Water D	isposal	
If the proposal is to Attach the Bond un following completic testing has been con determined that the The Zia AGI #1 4,950 ft (4,857 Brushy Canyon encountered du injection zone al exceeded 3.75 µ ppm). H2S con The injection op January 26, 201 a clean hole with the bottom portio	deepen directiona der which the wor on of the involved mpleted. Final Ab site is ready for fi injection boreh TVD) to the we Formation on , ring drilling of t nd during circu opm, which is b centrations are en-hole was lo 5 (six logs atta n no significant on of the Cherr	Ily or recomplete horizontally, g k will be performed or provide t operations. If the operation resu andonment Notices shall be filed nal inspection.) In TD of 6,360 feet (6,192 January 25, 2015. Severa he injection borehole, as t lation prior to casing insta below the mud logging inst shown on the mud log (af gged from the intermediat ched). Caliper logs for the washouts from 4,950 ft to y Canyon Formation was	ive subsurface he Bond No. o alts in a multip d only after all (TVD). Drillin I Small isola he drill bit of lation. Non rumentation tached). e casing at injection (8 TD. The to determined	locations and meas 1 file with BLM/BI, e completion or rec requirements, inclu nch intermediate ig was terminate ted H2S detecti at through the pi e of the H2S co (Bloodhound) e 4,889 ft (4,799 T 3?-inch) boreho p of the injectio to be at a depth	A. Required sub completion in a n ding reclamation e casing TD a ed in the ons were roposed ncentrations error limit (+/- TVD) to TD or le indicates n zone at of 5,540 ft	tical depths of all perti sequent reports shall b ew interval, a Form 31 , have been completed t	nent markers and zones. > filed within 30 days 60-4 shall be filed once , and the operator has
14. I hereby certify that	tt the foregoing is	true and correct. Electronic Submission #29 For DCP M	9295 verifie	by the BLM We	Il Information	System	Va
		Committed to AFMSS for	processing	by LINDA JIMEN	NEZ on 05/08/2	015 ()	FIU
Name(Printed/Type		I I LEJOHN		Title GEOLE		PEDTEN F	
Signature	(Electronic St	ubmission)		Date 04/24/2	2015		JK KECUKD
		THIS SPACE FOR		L OR STATE	OFFICE US	E	
Approved By				Title		JUN 24	2015 Nate
conditions of approval, if ertify that the applicant h hich would entitle the applicant	f any, are attached holds legal or equi pplicant to conduc	Approval of this notice does not table title to those rights in the s t operations thereon.	ot warrant or ubject lease	Office	B	UREAU OF LAND	MANAGEMENT
itle 18 U.S.C. Section 10 States any false, fictition	001 and Title 43 L us or fraudulent st	S.C. Section 1212, make it a cr atements or representations as to	ime for any pe any matter wi	son knowingly and thin its jurisdiction.	l willfu lly to mak	e to any department of	agency of the United
<u></u>							. **
		UN-SUDIVITIEU ** OP			UPERAIL	JR-SUBWITTED	

۲,

.

.

fu

Additional data for EC transaction #299295 that would not fit on the form

32. Additional remarks, continued

(5,412 TVD) and the Brushy Canyon Formation was determined to be 5,775 ft (5,635 TVD) based on open-hole geophysical logs and the mud log.

The open-hole geophysical logs and mud log were also used to determine the best locations for perforation intervals in the proposed injection zone. Sixty of the locations between 5,550 and 6,254 ft (5,422 - 6,090 TVD) were selected for sidewall coring, which was performed immediately following the completion of the open-hole logging.

The Zia AGI #1 production casing was installed on January 29, 2015. The injection-casing shoe was set at 6,344 ft (6,176 TVD) in the Brushy Canyon Formation (pipe tally attached).

The injection casing for the Zia AGI #1 was cemented in two stages. A diverter valve tool (DVT) was placed at a depth of 4,578 ft (4,503 TVD) to allow uniform cement placement (Cement Reports Attached). The first stage, from 6,342 ft (6,174 TVD) to the DVT required extra EverCreteTM cement so additional testing was performed prior to cementing. Cementing was started with 16 bbl of 13.2 ppg cement followed by 42 bbls of EverCreteTM cement (16.1 ppg). The DVT dart was dropped which opened the DV tool and pushed mud to the surface with no cement returns to the surface. Wait on cement time for the first stage was more than 24 hours while continuously circulating fluid through DVT to surface to clean out second stage annulus space.

The second stage (DVT - surface) was composed of 144 bbls of 12.6 ppg lead cement followed by 16 bbls of tail cement with a yield of 1.98 cuft/sack. The DVT was closed and cement was pumped to the surface with 20 bbls returned to the surface. Wait on cement time for the second stage was more than 24 hours (more than 30 days). The cement returns were not witnessed by the BLM. Cement did not fall back and the injection casing remained cemented to surface (stage 1 and 2 cement reports attached).

The cement bond logs were run on April 19, 2015 (cement bond logs attached). They indicate good cement bond from TD to 4,694 ft (4,614 TVD), which is approximately 195 feet above the 9.625-inch intermediate casing shoe depth of 4,889 ft (4,799 TVD). A few areas of isolated questionable bond are present between the 7-inch and 9.625-inch casing at 3,916 to 3,215 ft (3,865 to 3,192 TVD), but they are within areas of very good cement bond behind the 9.625-inch casing.

A pressure test was performed on the 7-inch injection casing on April 20, 2015 (pressure test results attached). The chart indicates that the pressure was increased from 0 to 2,500 psi and held for 30 minutes with no decrease in pressure indicated prior to bleeding off the pressure back to 0 psi.

Schlumberger

CemCADE^{*} well cementing recommendation for multi-stage 7" Production Casing 1st Stage – Final Design with TD @ 6,360.0 feet & Stage Collar @ 4,578.0 feet

Operator	: Parsons Brinckerhoff	Well	:	ZIA #1
Country	: USA	Field	:	
State	: NM			
Prenared for	: Russell Brentley	Location		DCP 7ia AGI #1
Proposal No	· nuocon brondoy	Service Point		Hobbs NM
Ritoposul 110.			•	
Date Prepared	: 01-30-2015	Business Phone	:	575-393-6186
•		FAX No		

Prepared by	:	Peter Igharoro
Phone	:	575-390-4865
E-Mail Address	:	igharoro4@slb.com

Business Phone FAX No.	:	575-393-618

Disclaimer Notice:

Schunberger submits this document with the benefit of its ingoment, experience, and guou unread practices. This information is provided in accordance with generally accepted indicatory particle, why on a facts or information provided by others, limitations, computer models, measurements, assumptions and inferences that are not infallible. Calculations are estimates based on provided information. All proposals, recommendations, or predictions are primote only. NO WARRANTY IS GIVEN CONCERNING ACCURACY OR COMPLETENESS OF DATA, INFORMATION PRESENTED, EFFECTIVENESS OF MATERIAL, PRODUCTS OR SUPPLES, RECOMMENDATIONS MADE, OR RESULTS OF THE SERVICES RENDEERED. NO WARRANTY IS GIVEN CONCERNING ACCURACY ON COMPLETENESS OF DATA, INFORMATION PRESENTED, EFFECTIVENESS OF MATERIAL, PRODUCTS OR SUPPLES, RECOMMENDATIONS MADE, OR RESULTS OF THE SERVICES RENDEERED.

* Mark of Schlumberger

Client	:	Parsons Brinckerhoff	Well	:	ZIA #1
String	:	Production Casing	District	:	Hobbs, NM
Country	:	USA	Loadcase	:	7" Production Casing - Stg1 (Revised)

Schlumberger

Section 1: Well Description

Configuration	: Casing
Stage	: 1 st of 2
Rig Type	: Land
Mud Line	: 0.0 ft
Total MD	: 6360.0 ft
BHST	: 131 degF
Bit Size	: 8 1/2 in
1 st Stage TXI Lead	: 68sxs, 13
1 st Stage EverCRETE	: 287sxs. 1

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg1; Version wcs-cem473_08

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country	:	USA

 Well
 :
 ZIA #1

 District
 :
 Hobbs, NM

 Loadcase
 :
 7" Production Casing - Stg1 (Revised)

Schlumberger

Previous String						
MD	OD	Weight	ID			
(ft)	(in)	(lb/ft)	(in)			
4940.0	9 5/8	40.0	8.835			

1st Stage Collar : 4578.0 ft Landing Collar MD : 6295.0 ft Casing/liner Shoe MD : 6344.0 ft

Casing/Liner								
MD (ft)	OD (in)	Joint (ft)	Weight (lb/ft)	ID (in)	Grade	Collapse (psi)	Burst (psi)	Thread
318.6	7	39.9	29.7	6.276	HCL-80	5410	7240	LTC
5305.6	7	40.2	26.0	6.276	HCL-80	4870	6210	LTC
5615.3	7	44.2	26.0	6.276	28 Cr	4870	6210	Vam Top
6344.0	7	40.5	26.0	6.276	HCL-80	5410	7240	LTC

Mean OH Diameter	: 8.850 in
Mean Annular Excess	: 16.0 %
Mean OH Equivalent Diameter	: 9.108 in
Total OH Volume	: 114.4 bbl (including excess)

Caliper and Hole Size Data							
MD	Caliper	Excess	Equiv.				
(ft)	(in)	(%)	Diam.				
. ,			(in)				
4950.0	9.826	12.5	10.125				
5005.0	8.673	12.5	8.860				
5060.0	9.094	12.5	9.324				
5115.0	8.991	12.5	9.210				
5170.0	8.649	12.5	8.834				
5225.0	8.514	12.5	8.684				
5280.0	8.466	12.5	8.632				
5335.0	9.027	12.5	9.249				
5390.0	8.537	12.5	8.711				
5445.0	8.525	12.5	8.698				
5500.0	8.681	12.5 [·]	8.869				
5555.0	8.537	12.5	8.711				
5610.0	8.657	12.5	8.842				
5665.0	8.728	12.5	8.921				
5720.0	8.959	12.5	9.175				
5775.0	8.641	12.5	8.825				
5830.0	8.744	12.5	8.939				
5885.0	8.919	12.5	9.131				
5940.0	9.420	12.5	9.681				
5995.0	9.051	12.5	9.276				
6050.0	8.927	12.5	9.140				
6105.0	9.134	12.5	9.367				
6160.0	8.943	12.5	9.157				
6215.0	9.094	12.5	9.324				
6270.0	. 8.693	12.5	8.882				
6325.0	9.170	12.5	9.406				
6344.0	9.170	12.5	9.407				
6360.0	9.170	0.0	9.170				

Client String	:	Parsons Brinckerhoff Production Casing	Well District	:	ZIA #1 Hobbs, NM	Schlumberger
Country	:	USA	Loadcase	:	7" Production Casing - Stg1 (Revised)	•

The Well is considered VERTICAL

Formation Data								
MD	Frac.	Pore	Name	Lithology				
(ft)	(psi/ft)	(psi/ft)						
6360.0	0.700	0.416		- Sandstone				

	Geothermal Temperature Profile									
MDTVDTemperatureGradient(ft)(ft)(degF)(degF/1001										
×	0.0	0.0	80	0.0						
	5050.0	5050.0	120	0.8						
,	6200.0	6200.0	130	0.8						
	6360.0	6360.0	131	0.8						

Section 2: Fluid Sequence

Job Objectives: Cement 1st Stage 7" Production Casing from Casing Shoe @ 6344ft to SC @ 4578ft with16% OH annular excess over Caliper Log.

Original fluid	9.3ppg Loc.WBM k : 3.78E-5 lbf.s^n/ft2	9.30 lb/gal n : 0.945	Ty : 0.69 lbf/100ft2	
Displacement Volume	240.9 bbl			
Total Volume	324.4 bbl			
тос	4574.0 ft			
1st stage collar	4578.0 ft			

Fluid Sequence							
Name	Volume	Ann. Len	Тор	Density	·	F	Rheology
	(bbl)	(ft)	(ft)	(lb/gal)			
12.0ppg MPE Spacer	25.0	885.7	3688.3	12.00	k:2.12E-2 lbf.s^n/ft2	n:0.352	Ty:9.42 lbf/100ft2
13.2ppg Lead FB - Stg1	16.5	539.5	4574.0	13.20	k:1.33E-1 lbf.s^n/ft2	n:0.275	Ty:1.13 lbf/100ft2
16.0ppg E/CRETE Tail - Stg1	42.0	1230.5	5113.5	16.00	Pv:230.714 cP		Ty:13.38 lbf/100ft2
Fresh Water	20.0		5772.3	8.32	viscosity:1.452 cP		
9.3ppg Loc.WBM	40.0		4726.9	9.30	k:3.78E-5 lbf.s^n/ft2	n:0.945	Ty:0.69 lbf/100ft2
Fresh Water	20.0		4204.2	8.32	viscosity:1.452 cP		
9.3ppg Loc.WBM	160.9		0.0	9.30	k:3.78E-5 lbf.s^n/ft2	n:0.945	Ty:0.69 lbf/100ft2

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country		1154

Well District

: ZIA #1 Hobbs, NM. ÷ Loadcase : 7" Production Casing - Stg1 (Revised)

Schlumberger

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg1; Version wcs-cem473_08

Client	:	Parsons Brinckerhoff
String	:	Production Casing,
Country	:	USA

 Well
 :
 ZIA #1 '

 District
 :
 Hobbs, NM

 Loadcase
 :
 7" Production Casing - Stg1 (Revised)

Section 3: Pumping Schedule

Note: Well MUST BE circulated at least twice Bottoms up prior to Job execution with casing on bottom

Pumping Schedule						
Name	Flow Rate	Volume	Stage Time	Cum.Vol	lnj.	Comments
	(bbl/min)	(bbl)	(min)	(bbl)	Temp	
			_		(degF))
Fresh Water	0.0	0.0	0.0	0.0	80	Fill-up lines with Fresh Water
Fresh Water	0.0	0.0	10:0	0.0	80.	Pressure Test line to 300psi (low0 & 5000psi (high)
Fresh Water	0.0	0.0	0.0	0.0	80	Bleed-off Test Pressure
Fresh Water	0.0	0.0	0.0	0.0	80	Switch Back to Rig Pumps to Continue Circulation
Pause	0.0	0.0	0.0	0.0	80	SLB to Batch Mix 212sxs, 16.0ppg EverCRETE Slurry
Pause	0.0	0.0	0.0	0.0	80	Switch Line back to SLB Pump after Slurry Batch Mix
12.0ppg MPE Spacer	4.0	25.0	6.3	25.0	80	Mix & Pump 12.0ppg MudPUSH Expres* Spacer
13.2ppg Lead FB - Stg1	4.0	16.5	4.1	16.5	80	Mix & Pump 68sxs, 13.2ppg 1 st Stage TXI Lead Slurry
16.0ppg E/CRETE Tail - Stg1	4.0	42.0	10.5	42.0	80	Pump 212sxs, 16.0ppg 1 st Stage EverCRETE Slurry
Pause	0.0	0.0	10.0	0.0	80	Shut-down & Drop 1 st Stage Wiper Plug
Fresh Water	6.0	· 20.0	3.3	20.0	80	Start Displacement with Fresh Water Behind
9.3ppg Loc.WBM	6.0	40.0	6.7	40.0	80	Continue to Displace with 9.3ppg Location WB Mud
Fresh Water	6.0	20.0	3.3	20.0	80	Pump Fresh Water + Green Dye across SC @ 4578ft
9.3ppg Loc.WBM	6.0	120.0	20.0	120.0	80	Continue to Displace with 9.3ppg Location WB Mud
9.3ppg Loc.WBM	3.0	10.0	3.3	130.0	80	Reduce Rate Prior to Pressure Catch-up
9.3ppg Loc.WBM	4.0	20.0	5.0	150.0	80	Increase Rate afterPressure Catch-up
9.3ppg Loc.WBM	2.0	10.9	5.4	160.9	80	Reduce Rate Prior to Bump 1 st Stage Wiper Plug
Pause	0.0	0.0	10.0	0.0	80	Bump 1 st Stage Wiper Plug with 500psi Over
Pause	0.0	0.0	0.0	0.0	80	Bleed-off Bump Pressure & Check Float is holding
Pause	0.0	0.0	30.0	0.0	80	Client to Proceed to Open SC @ 4,578.0ft
Pause	0.0	0.0	60.0	0.0	80	SLB to Circulate Cement Clean from SC to Surface
Pause	0.0	0.0	0.0	0.0	80	SLB to Shut-down & Switch to Rig Pump
Shut-In	0.0	0.0	0.0	0.0	80	Rig to Continue to Circulate, while WOC 24Hrs

Total 03:07 hr:mn 324.4 bbl

Dynamic Se	curity Checks :	
Frac	502 psi	at 6344.0 ft
Pore	332 psi	at 4940.0 ft
Collapse	4157 psi	at 5615.3 ft
Burst	5307 psi	at 3688.3 ft

Temperature Results							
BHCT 111 degF Simulated Max HCT 131 degF							
Simulated BHCT	120 degF	Max HCT Depth	6344.0 ft				
CT at TOC	117 degF	Max HCT Time	00:00:20 hr:mn:sc				
Static temperatures	:		•.				
At Time	At Time (hr:mn) 00:00 hr:mn Geo. Temp.						
Top of Cement	(degF)	117 degF	117 degF				
Bottom Hole	(degF)	125 degF	131 degF				

Page 7

۱

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country	:	ŲSA

 Well
 :
 ZIA #1

 District
 :
 Hobbs, NM

 Loadcase
 :
 7" Production Casing - Stg1 (Revised)

Schlumberger

Section 4: Fluid Descriptions

	Fresh Water DESIGN	
Fluid No: 1	Density : 8.32 lb/gal	
At temp. : 80 degF	Viscosity 1.452 cP Gel Strength : (lbf/100ft2)	
WASH Wash Type Water Mud Type WBM	Water/Wash (vol.): 100.0 % Job volume : 40.0 bbl	
BASE FLUID		

Type : Fresh water Density : 8.32 lb/gal

Parsons - Zia 1 Production Mud

Fluid No: 2

							Signatures
Fluid No	: HNM15C0	44003	Client	: Parsons	, Location / Rig	: Precision 107	P. Quintana, LT1
				Brinckerhoff	-		
Date	: Ja <u>n-26-20</u> 1	15	Well Name	: Zia 1	Field	:	C.Okam LTT
Job Type		Production		Depth	6200.0 ft	TVD	5874.0 ft
BHST		128 degF		BHCT	115 degF	BHP	3424 psi
Starting T	Гетр. ((degF)		Time to Temp.	(hr:mn)	Heating Rate	(degF/min)
Starting F	Pressure ((psi)		Time to Pressure	(hr:mn)	Schedule	()

Composition

Density 9.30 lb/gal	Type	WBM	
---------------------	------	-----	--

Rheology

(rpm)	(deg)
300	2.0
200	1.0
100	1.0
60	1.0
30	1.0
6	1.0
3	1.0
Temperature	115 degE

Pressure	(psi)
Viscosity: 1.267	cP
Yield Point: 0.73	3 lbf/100ft2

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country	:	USA

 Well
 :
 ZIA #1

 District
 :
 Hobbs, NM

 Loadcase
 :
 7" Production Casing - Stg1 (Revised)

Schlumberger

Parsons - Zia 1 Production MPE

Fluid No: 3

						Signatures
Fluid No: HNM15	C044002	Client	: Parsons Brinckerhoff	Location / Rig	Precision 107	K. Hamburg
Date : Jan-28-2	015	Well Name	: Zia 1	Field	<u>.</u>	C.Okam LTT
Job Type	Production		Depth	6200.0 ft	TVD	5874.0 ft
BHST	128 degF		BHCT	115 degF	BHP	3424 psi
Starting Temp.	(degF)		Time to Temp.	(hr:mn)	Heating Rate	(degF/min)
Starting Pressure	(psi)		Time to Pressure	(hr:mn)	Schedule	()

Composition

Density	12.00 lb/gal	Туре	Others	Mix Water/Spacer (vol)	86.3 %
Porosity	86.7 %	Solid Vol. Fraction	13.3 %		
Code	Concentration		Component		
n in					Lot Number
Fresh water					
B389	B389 0.800 lb/bbl of spacer		Viscosifier		4H0791W
D047	0.200 gal/bbl of spacer		Antifoam		TU4E0313A1
D031	200.08 lb/bbl of spacer		weight agent		

Rheology

(rpm)	(deg)
300	28.0
200	25.0
100	22.0
60	20.0
30	18.5
6	14.5
3	13.0

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg1; Version wcs-cem473_08

Client String	:	Parsons Brinckerhoff Production Casing	Well District	:	ZIA #1 Hobbs, NM	Schlumberger
Country	:	USA	Loadcase	:	7" Production Casing - Stg1 (Revised)	-

Parson Zia #1 1st Stage Lead Field Blend

Fluid No: 4

						Signatures
Fluid No :	HNM15C042005	Client	: Parsons Brinkerhoff	Location / Rig	.: PRECISION 107	Cwhite LT1
Date :	Jan-24-2015	Well Name	: Zia 1	Field		STORRES
Job Type	PRODUC	TION	Depth	6360.0 ft	TVD	6360.0 ft
BHST	129 degF	:	BHCT	119 degF	BHP	2748 psi
Starting Ten	np. 80 deg F		Time to Temp.	01:10 hr:mn	Heating Rate	0.56 degF/min
Starting Pre	ssure468 psi		Time to Pressure	01:10 hr:mn	Schedule	9.5-1

Composition

Slurry Density Solid Vol. Fractior	13.20 lb/gal n 34.6 %	Yield Porosity	1.35 ft3/sk 65.4 %	Mix Fluid Slurry type	6.613 gal/sk Conventional
Ĉode	Concentration	Sack Reference	Component	Blend Density	Lot Number
D049 Fresh water	6.563 gal/sk	75 lb of BLEND	Blend Base Fluid	176.05 lb/ft3	Bulk Tap
D130 D046 D042	0.130 lb/sk 0.200 %BWOC 3.000 lb/sk 0.100 %BWOC		Lost circ Antifoam LCM/extender	• • •	bulk cw4l0456a1 bulk
D005 D201 D177	0.100 %BWOC 0.050 gal/sk	×	Retarder Retarder		g101414-04 2014316AL

Rheology

Temperature		80 degF		118 degF			
(rpm)	Up (deg)	Down (deg)	Average (deg)	Up (deg)	Down (deg)	Average (deg)	
300	32.0	32.0	32.0	74.0	74.0	74.0	
200	27.0	27.0	27.0	65.0	60.0	62.5	
100	21.0	22.0	21.5	57.0	51.0	54.0	
60	19.0	20.0	19.5	49.0	46.0	47.5	
30	16.0	17.0	16.5	41.0	41.0	41.0	
6	13.0	15.0	14.0	22.0	27.0	24.5	
3	12.0	13.0	12.5	13.0	20.0	16.5	
10 sec Gel	14 deg - 14.94 lbf/100ft2			i/100ft2 21 deg - 22.41 lbf/100ft2		oft2	
10 min Gel	18 deg - 19.21 lbf/100ft2			21 deg - 22.41 lbf/100ft2		Oft2	
Rheo, computed	Viscosity: 16.876	cP Yield Point: 15	.56 lbf/100ft2	2 Viscosity: 34.516 cP Yield Point: 40.30 lbf/100ft2			

Thickening Time

Consistency	Time
NOTE: 45 minute	Go-No-Go @ 01:25
POD :	04:40 hr:mn
30 Bc	04:43 hr:mn
50 Bc	05:02 hr:mn
70 Bc	05:11 hr:mn

Free Fluid

0.0 mL/250mL in 2 hrs
At 118 degF and 0 deg incl
Sedimentation : None

Client String	:	Parsons Brinckerhoff Production Casing	Well District	:	ZIA #1 Hobbs NM	Schlim	beraer
Country	:	USA	Loadcase	:	7" Production Casing - Stg1 (Revised)		U

Parsons – Zia #1- 1st Stage Field Blend Evercrete

Fluid No: 5

1

<u> </u>						Signatures
Fluid No : HN	IM15C044001	Client	Parsons Brinckerhoff	Location / Rig	: Precision 107	P. Quintana, LT1
Date : Jar	1-26-2015	Well Name	: Zia <u>1</u>	Field	:	C.Okam LTT
Job Type	Productio	n	Depth	6200.0 ft	TVD	5874.0 ft
BHST	128 degF		BHCT	115 degF	BHP	3424 psi
Starting Temp.	80 degF		Time to Temp.	00:50 hr:mn	Heating Rate	0.57 degF/min
Starting Pressu	ure 444 psi		Time to Pressure	00:50 hr:mn	Schedule	9.5-1

Composition

onany bonony interve	ibiyai neiu	1.12 Tt3/SK	Mix Fluid	3.565 gal/sk	
Solid Vol. Fraction 57.6 %	6 Porosity	42.4 %	Slurry type	Conventional	

Code	Concentration	Sack Reference	Component	
n			Blend Der	nsity Lot Number
EverCRETE_We		100 lb of BLEND	Blend 160.87 lb/l	t3 FB3505
Fresh water	2.555 gal/sk		Base Fluid	Tap ·
D065	0.300 %BWOB		Dispersant	6032
D167	0.100 %BWOB		Fluid loss	ESD0900561
D174	15.000 %BWOC		Expanding ce	CW4L0513A1
D206	0.010 gai/sk		Antifoam	S1230141
D600G	1.000 gal/sk		GASBLOK	LG14D39R2P

Rheology

Temperature		80 degF		'	115 degF		
(rpm)	up (deg)	Down (deg)	Average (deg)	Up (deg)	Down (deg)	Average (deg)	
300	130.0	130.0	130.0	118.0	118.0	118.0	
200	. 90.0	94.0	92.0	73.0	84.0	78.5	
100	51.0	53.0	52.0	47.0	49.0	48.0	
60	34.0	36.0	35.0	35.0	34.0	34.5	
30	20.0	22.0	21.0	25.0	22.0	23.5	
6	6.0	7.0	6.5	11.0	8.0	9.5	
3	4.0	5.0	4.5	7.0	5.0	6.0	
10 sec Gel	6 deg - 7.13 lbf/100ft2			6 deg - 7.13 lbf/100ft2			
10 min Gel	21	deg - 24.94 lbf/10	Oft2	34 deg - 40.38 lbf/100ft2			
Rheo. computed	Viscosity: 268.068	3 cP Yield Point:	11.07 lbf/100ft2	Viscosity: 230.714 cP Yield Point: 13.38 lbf/100ft2			

Thickening Time

Consistency	Time
Remark : Thickening time do	not include batch time
POD:	05:20 hr:mn
30 Bc	05:54 hr:mn
50 Bc	06:07 hr:mn
70 Bc	06:08 hr:mn
Batch Mix Time: 02:00 hr:mn	at 90 degF
Free Fluid	
0.0 mL/250mL in 2 hrs	
At 115 degF and 45 deg incl	
Sedimentation : None	
Fluid Loss	
API Fluid Loss 16 mL	
In 30 min at 115 degF and 1000	psi

Comments

Thickening Time Comment : Go/NoGo: 30min@1:08

Client String	:	Parsons Brinckerhoff Production Casing	Well District	:	ZIA #1 Hobbs, NM	Schlumberger
Country	:	USA	Loadcase	:	7" Production Casing - Stg1 (Revised)	-

Parsons Brinckerhoff

Zia #1

7" Production Casing, 1st Stage Cement Job from Casing Shoe @ 6,344 feet to Stage Collar @ 4,578.0 feet with approved cement volumes:

January 30th, 2015

Job Procedure

- 1. Rig.up Schlumberger following WS Standard 5
- 2. Confirm well data and calculations with company representative on location (slurry and mix water volumes, tonnage, displacement volume and what fluid).
- 3. Confirm mud properties with company representative or mud company representative. Schlumberger supervisor to document mud yield point, viscosity, and density in cement treatment report
- 4. Verify rigs circulating pressure prior to start of cementing job. If circulating pressures are greater than 20% of CemCADE simulation, initiate Management of Change. Note: Well MUST BE circulated 2 X bottoms-up with casing on bottom prior to cement job execution.
- 5. Conduct a safety and procedure meeting with all personnel present before treatment begins. Go over contingency and recommendations plans.
- 6. Pressure test treating lines with fresh Water to 300psi (Low) and 5000 psi (High). Remember use a 2" Lateral and Isolation valves on SLB and Rig Pump line connecting to Cement Head. Do not break lines after Pressure Test to avoid retesting.
- 7. Switch to Rig Pumps to continue to circulate while SLB Batc Mix EverCRETE Slurry in Batch Mixer (BM).
- 8. Batch Mix 42.0 bbls, 212sxs of 16.0ppg EverCRETE Slurry in stages from Cement Unit 14.0 bbl Tub. Care MUST be taken to maintain density. If slurry density varies more than 0.1 ppg from the design density, stop and recirculate slurry in mix tub until density is within range.
- 9. Switch line back to SLB Pump after BM to Commence Pumping down-hole.
- 10. Mix & Pump 25.0 bbls, 12.0 ppg MudPUSH Expres* (MPE) Spacer at 3.5 to 4.0 bpm rate.
- 11. Mix and pump 16.5 bbls, 68sxs of 13.2 ppg TXI, 1st Stage Lead Cement Slurry at 3.5 to 4.0 bpm rates. If slurry density varies more than 0.1 ppg from the design density, stop and recirculate slurry in mix tub until density is within range.
- 12. Pump 42.0 bbls, 212sxs of 16.0 ppg EverCRETE, 1st Stage Tail Cement Slurry at 3.5 to 4.0 bpm rates from Batch Mixer.
- 13. Shut-down, Wash-up and Drop 1st Stage Wiper Plug.
- 14. Start Displacement with 20.0 bbls Fresh Water behind Wiper Plug at 5.5 to 6.0 bpm rates
- 15. Continue to Displace with 40.0 bbls of 9.3ppg Location WB Mud at 5.5 to 6.6 bpm rates
- 16. Pump 20.0 bbl Fresh Water with Green Dye @ 4.5 to 5.0 bpm rates to place across DV-Tool @ 4,578.0 feet
- 17. Continue to Displacement with 160.9 bbls of 9.3ppg Location Water Base Mud (WBM) as follows;
 - > Pump 120.0 bbl @ 5.5 to 6.0 bpm prior to Pressure Catch-up
 - Pump 10.0 bbl @ 2.5 to 3.0 bpm (Reducing Pump Rate Prior to Pressure Catch-up)
 - > Pump 20.0 bbl @ 3.5 to 4.0 bpm (Increasing Pump Rate after Pressure Catch-up)
 - Pump 10.9 bbl @ 1.5 to 2.0 bpm (Reducing Rate to Slowly Bump 1st Stage Wiper Plug)
- 18. Bump 1st stage Wiper plug with 500psi Over
- 19. Bleed back the pressure to ensure the float is holding.
- 20. Client to Proceed to Open Stage Collar (DV) Ports @ 4,578.0 feet
- 21. SLB to Circulate Cement Clean to Surface and Calculate with client final FC volume with Green Dye on surface prior to 2nd Stage.
- 22. SLB to switch to Rig Pumps to continue with circulation and Client to WOC +/-24hrs Prior to Starting 2nd Stage as per discussed
 - > Notes: 42.0 bbls, 16.0ppg EverCRETE, 1st Stage Cement Slurry Min. volume pumped in order to start displacement in the event of a failure.
 - Also 30 minutes Maximum allowable shutdown time after slurry mixing as per lab instructions.

This is a preliminary job procedure and is subject to change on location once the Schlumberger Representative collects final well details. A final Job procedure is to be produced on location, and agreed upon between company Rep. and SLB Job Supervisor and has to be communicated to SLB Service Manager and/or Technical Engineer prior to Job Execution. Also Note that if loss is experienced during displacement, pump rate should be dropped to 3.0 bpm (if pump time permits) until regain full circulation.

Schlumberger

CemCADE^{*} well cementing recommendation for multi-stage 7" Production Casing 2nd Stage – Final Design with TD @ 6,360.0 feet & Stage Collar @ 4,578.0 feet

Operator	: Parsons Brinckerhoff	Well	: ZIA #1
Country	: USA	Field	:
State	: NM		

Prepared for	: Russell Brentley	Location		DCP Zia AGI #1
Proposal No.	:	Service Point	:	Hobbs, NM
Date Prepared	: 01-30-2015	Business Phone	:	575-393-6186
		FAX No.	:	

Prepared by	: Peter Igharoro
Phone	: 575-390-4865
E-Mail Address	: igharoro4@slb.com

SIGN	
St.	EXEC
L.	UTE
ALUAT	E

Disclaimer Notice:

Schlumberger submits this document with the benefit of its judgment, experience, and good oilfield practices. This information is provided in accordance with generally accepted industry practice, relying on facts or information provided by others, limitations, computer models, measurements, assumptions and inferences that are not infallible. Calculations are estimates based on provided information. All proposals, recommendations, or predictions are options only. NO WARRANTY IS GIVEN CONCERNING ACCURACY OR COMPLETENESS OF DATA, INFORMATION PRESENTED, EFFECTIVENESS OF MATERIAL, PRODUCTS OR SUPPLIES, RECOMMENDATIONS MADE, OR RESULTS OF THE SERVICES RENDERED.

Mark of Schlumberger

Client	: Parsons Brinckerhoff	Well	:	ZIA #1	
String	: Production Casing	District	:	Hobbs, NM	UDINUIU
Country	: USA	. Loadcase	:	7" Production Casing - Stg2	

Section 1: Well Description

 2^{nd} Stage Poz/C Lead : 407sxs, 12.6ppg 35:65 Poz/C Cement Blend (Yield = 1.98ft³/Sk; TOC = 0.0ft) 2^{nd} Stage TXI Tail : 68sxs, 13.2ppg TXI Cement Blend (Yield = 1.35t³/Sk; TOC = 3,869.5ft)

engen

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg2; Version wcs-cem473_08

Client	:	Parsons Brinckerhoff	
String	:	Production Casing	
Country	:	USA	·

 Well
 :
 ZIA #1

 District
 :
 Hobbs, NM

 Loadcase
 :
 7" Production Casing - Stg2

Schlumberger

Previous String								
MD	OD	Weight	ID					
(ft)	(in)	(lb/ft)	(in)					
4940.0	9 5/8	40.0	8.835					

1st Stage Collar : 4578.0 ft Landing Collar MD : 6295.0 ft Casing/liner Shoe MD : 6344.0 ft

			C	asing/Lin	er			
MD (ft)	OD (in)	Joint (ft)	Weight (lb/ft)	ID (in)	Grade	Collapse _(psi)	Burst (psi)	Thread
318.6	7	39.9	29.7	6.276	HCL-80	5410	7240	LTC
5305.6	7	40.2	26.0	6.276	HCL-80	4870	6210	LTC
5615.3	7	, 44.2	26.0	6.276	28 Cr	4870	6210	Vam Top
6344.0	7	40.5	26.0	6.276	HCL-80	5410	7240	LTC

Mean OH Diameter: 8.850 inMean Annular Excess: 16.0 %Mean OH Equivalent Diameter : 9.108 inTotal OH Volume: 114.4 bbl (including excess)

	Caliper and Ho	ole Size Data	
MD	Caliper	Excess	Equiv.
(ft)	(in)	(%)	Diam.
			(in)
4950.0	9.826	12.5	10.125
5005.0	8.673	12.5	8.860
5060.0	9.094	12.5	9.324
5115.0	8.991	12.5	9.210
5170.0	8.649	12.5	8.834
5225.0	. 8.514 ,	12.5	8.684
5280.0	8.466	12.5	8.632
5335.0	9.027	12.5	9.249
5390.0	8.537	12.5	8.711
5445.0	8.525	12.5	8.698
5500.0	8.681	12.5	8.869
5555.0	8.537	12.5	8.711
5610.0	8.657	12.5	8.842
5665,0	8.728	12.5	8.921
5720.0	8.959	12.5	9.175
5775.0	8.641	12.5	8.825
5830.0	8.744	12.5	8.939
5885.0	8.919	12.5	9.131
5940.0	9.420	12.5	9.681
5995.0	9.051	12.5	9.276
6050.0	8.927	. 12.5	9.140
6105.0	9.134	12.5	9.367
6160.0	8.943	12.5	9.157
6215.0	9.094	12.5	9.324
6270.0	8.693	12.5	8.882
6325.0	9.170	12.5	9.406
6344.0	9.170	12.5	9.407
6360.0	9.170	0.0	. 9.170

{

Client	:	Parsons Brinckerhoff	Well	:	ZIA #1
String	:	Production Casing	District	:	Hobbs, NM
Country	:	USA	Loadcase	:	7" Production Casing - Stg2

The Well is considered VERTICAL

		Formation	Data	
MD (ft)	Frac. (psi/ft)	Pore (psi/ft)	Name	Lithology
6360.0	0.700	0.416		Sandstone

Geothermal Temperature Profile								
MD (ft)	TVD (ft)	Temperature (deaF)	Gradient (degF/100ft)					
0.0	0.0	80	0.0					
5050.0	5050.0	120	0.8					
6200.0	6200.0	130	0.8					
6360.0	6360.0	131	0.8					

Section 2: Fluid Sequence

Job Objectives: Cement 2nd Stage 7" Production Casing SC @ 4578ft to Surface with approved Cement Volumes

Original fluid	9.3ppg Loc.WBM k : 3.78E-5 lbf.s^n/ft2	9.30 lb/gal n : 0.945	Ty : 0.69 lbf/100ft2	
Dead end fluid Displacement Volume	Fresh Water 175.2 bbl		8.32 lb/gal	
Total Volume	363.7 bbl			
Previous TOC	4578.0 ft			

Fluid Sequence									
Name /	Volume (bbl)	Ann. Len (ft)	Top (ft)	Density (lb/gal)		Rheology			
12.0ppg MPE Spacer	25.0	0.0		12.00	k:2.12E-2 lbf.s^n/ft2	n:0.352	Ty:9.42 lbf/100ft2		
12.6ppg Lead FB - Stg2	143.5	3869.5		12.60	k:1.09E-1 lbf.s^n/ft2	n:0.192	Ty:0.33 lbf/100ft2		
13.2ppg Tail FB - Stg2	20.0	708.5	3869.5	13.20	k:1.40E-1 lbf.s^n/ft2	n:0.242	Ty:1.39 lbf/100ft2		
Fresh Water	20.0		4055.3	8.32	viscosity:1.452 cP				
9.3ppg Loc.WBM	155.2		0.0	9.30	k:3.78E-5 lbf.s^n/ft2	n:0.945	Ty:0.69 lbf/100ft2		

Page 4

Schlumberger

Client String Country	::	Parsons Brinckerhoff Production Casing USA	Well District Loadcase	::	ZIA #1 Hobbs, NM 7" Production Casing - Stg2	Schlumberger
-----------------------------	----	--	------------------------------	----	--	--------------

Client	:	Parsons Brinckerhoff	Well	:	ZIA #1
String	:	Production Casing	District	:	Hobbs, NM
Country	:	USA	Loadcase	:	7" Production Casing - Stg2

Schlumberger

Section 3: Pumping Schedule

Note: Well MUST BE circulated at least twice bottoms up prior to 2nd Stage cement job execution

			• Pumping	Schedule		
Name	Flow Rate	Volume	Stage Time	Cum.Vol	Inj.	Comments
	(bbl/min)	(bbl)	(min)	(bbl)	Temp.	
· · · · · · · · · · · · · · · · · · ·			•		(degF)	-
Fresh Water	0.0	0.0	0.0	0.0	80	Fill-up lines with Fresh Water
Fresh Water	0.0	0.0	10.0	0.0	80	Pressure Test line to 300psi (low) & 5000psi (high)
Fresh Water	0.0	0.0	0.0	0.0	80	Bleed-off Test Pressure
12.0ppg MPE Spacer	5.0	25.0	5.0	25.0	80	Mix & Pump 12.0ppg MudPUSH Expres* Spacer
12.6ppg Lead FB - Stg2	5.0	143.5	28.7	143.5	80	Mix & Pump 407sxs, 12.6ppg 2 nd Stage Lead Slurry
13.2ppg Tail FB - Stg2	5.0	20.0	4.0	20.0	80	Mix & Pump 68sxssxs, 13.2ppg 2 nd Stage Tail Slurry
2 ¹¹⁴ Stage Closing Plug	0.0	0.0	10.0	0.0	80	Shut-down, Wash-up & Drop 2 nd Stage Closing Plug
Fresh Water	6.0	20.0	3.3	20.0	80	Start Displacement with Fresh Water Behind
9.3ppg Location WBM	6.0	25.0	4.2	25.0	80	Continue to Displace with Location WB Mud
9.3ppg Location WBM	3.0	10.0	3.3	35.0	80	Reduce Rate Prior to pressure Catch-up
9.3ppg Location WBM	4.0	110.0	27.5	145.0	80	Increase Rate after Pressure Catch-up
9.3ppg Location WBM	2.0	10.2	′ 5.1	155.2	80	Reduce Rate Prior to Bump 2 nd Stage Closing Plug
9.3ppg Location WBM	0.0	0.0 /	10.0	0.0	80	Bump 2 nd Stage Closing Plug with 500psi Over
9.3ppg Location WBM	0.0	0.0	0.0	0.0	80	Bleed-off Bump Pressure & Check Float
9.3ppg Location WBM	0.0	0.0	0.0	0.0	80	End Displacement / End Job

Total 01:51 hr:mn 363.7 bbl

Dynamic S	ecurity Checks :		
Collapse	3810 psi	at 4578.0 ft	
Burst	5973 psi	at 3869.5 ft	

Temperature Results						
BHCT	100 degF	Simulated Max HCT	117 degF			
Simulated BHCT	103 degF	Max HCT Depth	4578.0 ft			
CT at TOC	81 degF	Max HCT Time	00:09:37 hr:mn:sc			
Static temperatures :						
At Time	(hr:mn)	00:00 hr:mn	Geo. Temp.			
Top of Cement	(degF)	81 degF	80 degF			
Bottom Hole	(degF)	104 degF	117 degF			

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg2; Version wcs-cem473_08

Pumped Volume (bbl)

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country	:	USA

Well : ZIA #1 District : Hobbs, NM Loadcase : 7" Production Casing - Stg2

Schlumberger

Section 4: Fluid Descriptions

Fresh Water DESIGN

Fluid No: 1 Rheo Model		WTONIAN degF		Density	: 8.32 lb/gal
At temp.	: 80 degF			Viscosity Gel Strength	: 1.452 cP : (lbf/100ft2)
WASH Wash Type Mud Type	: Water : WBM	Water/Wash	(vol.): 100	.0%	Job volume : 20.0 bbl
BASE FLUID Type	: Fresh water	Density	: 8.32 lb/g	al	

Parsons - Zia 1 Production Mud

Fluid No: 2

						Signatures
Fluid No : HNM	15C044003	Client	Parsons Brinckerhoff	Location / Rig	: Precision 107	P. Quintana, LT1
Date : Jan-2	6-2015	Well Name	: Zia 1	Field	·	C.Okam LTT
Јор Туре	Productio	on	Depth	6200.0 ft	TVD	5874.0 ft
BHST	128 degF		BHCT	115 degF	BHP	3424 psi
Starting Temp.	(degF)		Time to Temp.	(hr:mn)	Heating Rate	(degF/min)
Starting Pressure	(psi)		Time to Pressure	(hr:mn)	Schedule	()

Composition

Density 9.30 lb/gal Type WBM

Rheology

(rpm)	(deg)
300	2.0
200	1.0
100	1.0
60	1.0
30	1.0
6	1.0
3	1.0
Temperature	115 degF

Temperature	[115 deg⊢			
Pressure	(psi)			
Viscosity: 1.267 cP				
Yield Point: 0.73 lbf/100ft2				

Client	:	Parsons Brinckerhoff
String	:	Production Casing
Country	:	USA

Well : ZIA #1 District : Hobbs, NM Loadcase : 7" Production Casing - Stg2

ŝ

Parsons - Zia 1 Production MPE

Fluid No: 3

						Signatures
Fluid No : HNM1	5C044002	Client	: Parsons Brinckerhoff	Location / Rig	: Precision 107	K. Hamburg
Date : Jan-28-	2015	Well Name	: Zia 1	Field	:	C.Okam LTT
Job Type	Productio	n	Depth	6200.0 ft	TVD	5874.0 ft
BHST	128 degF		BHCT	115 degF	BHP	3424 psi
Starting Temp.	(degF)	~	Time to Temp.	(hr:mn)	Heating Rate	(degF/min)
Starting Pressure	(psi)		Time to Pressure	(hr:mn)	Schedule	()

Composition

Density	12.00 lb/gal	Туре	Others	Mix Water/Spacer (vol)	86.3 %
Porosity	86.7 %	Solid Vol. Fraction	13.3 %	· · ·	
Code	Concentration		Component		
					Lot Number
Fresh water					
B389	0.800 lb/bbl of s	pacer	Viscosifier		4H0791W
D047	0.200 gal/bbl of	spacer	Antifoam		TU4E0313A1
D031	200.08 lb/bbl of	spacer	weight agent		

Rheology

(rpm)	(deg)
300	28.0
200	25.0
100	22.0
60	20.0
30	18.5
6	14.5
3 .	13.0

pb zia #1 - finalrev1.cfw; 01-30-2015; LoadCase Production Casing - Stg2; Version wcs-cem473_08

Client String Country	: : :	Parsons Brinckerhoff Production Casing USA	Well District Loadcase	::	ZIA #1 Hobbs, NM 7" Production Casing - Stg2		Schlumberger
-----------------------------	-------------	--	------------------------------	----	--	--	--------------

Parson - Zia 1 2nd Stage Field Blend Lead

Fluid No: 4

						Signatures
Fluid No	: HNM15C042001	Client	: Parsons Brinkerhoff	Location / Rig	: PRECISION 107	P. Quintana, LT1
Date	: Jan-24-2015	Well Name	: Zia 1	Field	:\	STORRES
Job Type	PRODU	CTION	Depth	5000.0 ft	TVD	5000.0 ft
BHST	121 deg	F	BHCT	108 degF	BHP	2900 psi
Starting T	emp. 80 degF		Time to Temp.	00:29 hr:mn	Heating Rate	0.80 degF/min
Starting P	ressure 400 psi		Time to Pressure	00:29 hr:mn	Schedule	9.5-1

Composition

Slurry Density Solid Vol. Fraction	12.60 lb/gal 27.3 %	12.60 lb/gal Yield 27.3 % Porosity		Mix Fluid Slurry type	10.764 gal/sk Conventional
Code	Concentration	Sack Reference	Component		
				Blend Density	Lot Number
26/61 D035/C	· ····	87 lb of BLEND	Blend	182.33 lb/ft3	FB3489
Fresh water	10.604 gal/sk		Base Fluid		Тар
D046	0.200 %BWOB		Antifoam		CW4L0456A1
D020	4.000 %BWOB		Extender		BULK
D042	3.000 lb/sk		LCM/extender		BULK
D130	0.130 lb/sk		Lost circ		BULK
D044	5.000 %BWOW		Salt		BULK

Rheology

Temperature		80 degF		108 degF			
(rpm)	Up (deg)	Down (deg)	Average (deg)	Up (deg)	Down (deg)	Average (deg)	
- 300	41.0	41.0	41.0	36.0	36.0	36.0	
200	38.0	37.0	37.5	33.0	33.0	33.0	
100	34.0	33.0	33.5	29.0	28.0	28.5	
60	32.0	31.0	31.5	27.0	26.0	26.5	
30	30.0	29.0	29.5	25.0	24.0	24.5	
6	22.0	. 24.0	23.0	15.0	19.0	17.0	
3	15.0	20.0	17.5	10.0	15.0	12.5	
10 sec Gel	18	deg - 19.21 lbf/100	Oft2	13	deg - 13.88 lbf/10	Oft2	
10 min Gel	19 deg - 20.28 lbf/100ft2			15 deg - 16.01 lbf/100ft2			
Rheo. computed	Viscosity: 12.262	CP Yield Point: 2	9.05 lbf/100ft2	Viscosity: 12.601 cP Yield Point: 23.97 lbf/100ft2			

Thickening Time

Consistency	Time
POD :	02:24 hr:mn
30 Bc	03:57 hr:mn
50 Bc	04:43 hr:mn
70 Bc	05:53 hr:mn

Free Fluid

2.0 mL/250mL in 2 hrs	
At 105 degF and 0 deg incl	
Sedimentation : None	

Client	:	Parsons Brinckerhoff	Well	:	ZIA #1
String	:	Production Casing	District	:	Hobbs, NM
Country	:	USA	Loadcase	:	7" Production Casing - Stg2

13.2ppg Tail FB - Stg2 DESIGN

Fluid No: 5		Density	: 13.20 lb/gal
Rheo. Model	: HERSCHEL_B.	k	: 1.40E-1 lbf.s^n/ft2
At temp.	: 108 degF	n	: 0.242
		' Ту	: 1.39 lbf/100ft2
		Gel Strength	: (lbf/100ft2)
DESIGN		-	. ,

BLEND	SLURRY	
Name : D049	Mix Fluid :6.613 gal/sk	Job volume : 20.0 bbl
Dry Density : 176.05 lb/ft3	Yield : 1.35 ft3/sk	Quantity : 83.06 sk
Sack Weight : 75 lb	Solid Fraction : 34.6 %	
BASE FLUID		,
Type : Fresh water	Density : 8.32 lb/gal	Base Fluid : 6.563 gal/sk

Additives						
Code	Conc.	Function				
D130	0.130 lb/sk blend	Lost circ				
D046	0.200 %BWOC	Antifoam				
D042	3.000 lb/sk blend	LCM/extender				
D065	0.100 %BWOC	Dispersant				
D201	0.100 %BWOC	Retarder				

Rheometric Measurements

Rheometer type :35 Geometry :R1B1	(rpm)	At 108 degF (deg)
Spring No : 1.0	300	64.0
	200	57.0
	100	49.0
	60	44.0
•	30	39.5
	6	27.0
	3	18.5
		Viscosity : (cP)
10 sec Gel Strength		17.08 lbf/100ft2
10 min Gel Strength		23:48 lbf/100ft2

NOTE: The 2nd Stage FB lab Testing is not ready at the time of this report and result will be available prior to job execution

Page 11

Schlumberger

Client String Country	::	Parsons Brinckerhoff Production Casing USA	Well District Loadcase	::	ZIA #1 Hobbs, NM 7" Production Casing - Stg2		Schlumberger
-----------------------------	----	--	------------------------------	----	--	--	--------------

Parsons Brinckerhoff

Zia #1

7" Production Casing, 2nd Stage Cement Job from Stage Collar @ 4,578.0 feet to Surface with approved cement volumes:

January 30th, 2015

Job Procedure

- 1. Rig up Schlumberger following WS Standard 5
- 2. Confirm well data and calculations with company representative on location (slurry and mix water volumes, tonnage, displacement volume and what fluid).
- Confirm mud properties with company representative or mud company representative. Schlumberger supervisor to document mud yield point, viscosity, and density in cement treatment report
- 4. Verify rigs circulating pressure prior to start of cementing job. If circulating pressures are greater than 20% of CemCADE simulation, initiate Management of Change. Note: Well MUST BE circulated 2 X bottoms-up with casing on bottom prior to cement job execution.
- 5. Conduct a safety and procedure meeting with all personnel present before treatment begins. Go over contingency and recommendations plans.
- 6. Pressure test treating lines with fresh Water to 300psi (Low) and 5000 psi (High). Remember use a 2" Lateral and Isolation valves on SLB and Rig Pump line connecting to Cement Head. Do not break lines after Pressure Test to avoid retesting.
- 7. Mix & Pump 25.0 bbls, 12.0 ppg MudPUSH Expres* (MPE) Spacer at 4.5 to 5.0 bpm rate.
- 8. Mix and pump 143.5 bbls, 407sxs of 12.6 ppg 35:65 Poz/C, 2nd Stage Lead Cement Slurry at 4.5 to 5.0 bpm rates. If slurry density varies more than 0.1 ppg from the design density, stop and recirculate slurry in mix tub until density is within range.
- 9. Mix & Pump 20.0 bbls, 68sxs of 13.2 ppg TXI, 2nd Stage Tail Cement Slurry at 4.5 to 5.0 bpm rates.
- 10. Shut-down, Wash-up and Drop 2nd Stage Closing / Wiper Plug.
- 11. Start Displacement with 20.0 bbls Fresh Water behind Wiper Plug at 5.5 to 6.0 bpm rates
- 12. Continue to Displacement with 155.2 bbls of 9.3ppg Location Water Base Mud (WBM) as follows;
 - Pump 25.0 bbl @ 5.5 to 6.0 bpm prior to Pressure Catch-up
 - > Pump 10.0 bbl @ 2.5 to 3.0 bpm (Reducing Pump Rate Prior to Pressure Catch-up)
 - > Pump 110.0 bbl @ 3.5 to 4.0 bpm (Increasing Pump Rate after Pressure Catch-up)
 - Pump 10.2 bbl @ 1.5 to 2.0 bpm (Reducing Rate to Slowly Bump 1st Stage Wiper Plug)
- 13. Bump 2nd Stage Wiper plug with 500psi Over
- 14. Bleed back the pressure to ensure the float is holding.
- 15. Client to Proceed to Open Stage Collar (DV) Ports @ 4,578.0 feet
- 16. SLB to Circulate Cement Clean to Surface and Calculate with client final FC volume with Green Dye on surface prior to 2nd Stage.
- 17. SLB to switch to Rig Pumps to continue with circulation and Client to WOC +/-24hrs Prior to Starting 2nd Stage as per discussed
 - Notes: 143.5 bbls, 12.6ppg 35:65 Poz/C, 2nd Stage Lead Slurry Min. volume pumped in order to start displacement in the event of a failure.
 - > Also 10 minutes Maximum allowable shutdown time after slurry mixing as per lab instructions.

This is a preliminary job procedure and is subject to change on location once the Schlumberger Representative collects final well details. A final Job procedure is to be produced on location, and agreed upon between company Rep. and SLB Job Supervisor and has to be communicated to SLB Service Manager and/or Technical Engineer prior to Job Execution. Also Note that if loss is experienced during displacement, pump rate should be dropped to 3.0 bpm (if pump time permits) until regain full circulation.

-

.

.

•

.

Well

							Date	28-Jan-15	
							Total Depth	6,360	
							Shoe Depth	6,344	
							Rathole	16	
1								Total	<u>`Collar</u>
Run Jt#	Unit #	Length	<u>O.D.</u>	Weight	Grade	Thread	Remarks	Length	Depth
1	F/S	1.90	7	26	HCL-80	1.10		1.94	6,342.06
2	1	45.30	7	26	HCL-80	LTC	(2) Cent 1 & 2	47.20	6,296.80
3	17C	1.52	7	26	HCL-80	LTC			6,295.28
4	2	45.32	7	26	HCL-80	LTC	(2) Cent 3 & 4	94.04	6,249.96
5	3	45.30	7	26	HCL-80	LTC	(2) Cent 5 & 6	139.34	6,204.66
6	4	45.30	7	26	HCL-80	LTC	(2) Cent 7 & 8	184.64	6,159.36
7	5	45.30	7	26	HCL-80	LTC	(2) Cent 9 & 10	229.94	6,114.06
8	6	45.28	7	26	HCL-80	LTC	2-Cent 11 & 12	275.22	6,068.78
	7	45.32	7	26	HCL-80	LTC	2-Cent 13 & 14	320.54	6,023.46
10	8	45.30	7	26	HCL-80	LŤC	2-Cent 15 & 16	365.84	5,978.16
11	9	45.25	7	26	HCL-80	LTC	2-Cent 17 & 18	411.09	5,932.91
12	10	45.42	7	26	HCL-80	LTC	2-Cent 19 & 20	456.51	5,887.49
13	11	45.30	7·	26	HCL-80	LTC	2-Cent 21 & 22	501.81	5,842.19
14	12	45.30	7	26	HCL-80	LTC	2-Cent 23 & 24	547,11	5,796.89
15	13	45.44	7	26	HCL-80	LIC	2-Cent 25 & 26	592.55	5,751.45
16	14	45.30	7	26	HCL-80	LTC	2-Cent 27 & 28	637.85	5,706.15
17 .	15	45.54	7	26	HCL-80	LTC	2-Cent 29 & 30	683.39	5,660.61
18	16	45.30	7	26	HCL-80	LTC	2-Cent 31 & 32	728.69	5,615.31
19	17	30.60	7	26	28 Cr	Vam Top	2-Cent 33 & 34	759.29	5,584.71
20	18	28.17	7	26	28 Cr	Vam Top	2-Cent 35 & 36	787.46	5,556.54
21	19	35.70	7	26	28 Cr	Vam Top	2-Cent 37 & 38	823.16	5,520.84
22	20	30.23	7	26	28 Cr	Vam Top	- "AA	853.39	5,490.61
23	21	33.02	7	26	28 Cr	Vam Top	Cent #39	886.41	5,457.59
24	22	25.42	7	26	28 Cr	Vam Top		911.83	5,432.17
25	23	32.53	7	26	28 Cr	Vam Top	Cent #40	944.36	5,399.64
26	24	30.80	7	26	28 Cr	Vam Top	0	975.16	5,368.84
27	25	31.12	7	26	28 Cr	Vam Top	Cent #41	1,006.28	5,337.72
28	26	32.07	7	26	28 Cr	Vam Top	X-0	1,038.35	5,305.65
29	27	45.30	7	26	HCL-80	LIC		1,083.05	5,200.35
30	28	45.30	7	26	HCL-80	LIC	. Cent #42	1,128.95	5,215.05
31	. 29	45.30	7	26	HCL-80	LIC	0	1,1/4.25	5,109.75
32	30	45.30	7	26	HCL-80	LIC	Cent #43	1,219.55	5,124.45
33	31	45.28	7	26	HCL-80	LIC	0	1,264.83	5,0/9.1/
34	32	45.30	7	26	HCL-80	LIC	Cent #44	1,310.13	5,033.87
35	33	45.30	7	26	HCL-80	LIC	0	1,355.43	4,988.57
36	34	45.30	7	26	HCL-80	LIC	Cent #45	1,400.73	4,943.27
37	35	45.27	7	26	HCL-80	LIC	0	1,446.00	4,898.00
38	36	45.30	7	26	HCL-80	LIC	Cent #46	1,491.30	4,852.70
39	37	45.33	7	26	HCL-80	LIC		1,536.63	4,807.37
40	38	45.34	7	26	HCL-80	LIC	0	1,581.97	4,762.03
41	39	45.30	7	26	HCL-80	LIC	Cent #47	1,027.27	4,/10./3
42	40	45.31	7	26	HCL-80			1,0/2.50	4,071.42
43	41	45.32	7	26	HCL-80		Court #49	1,717.90	4,020.10
44	42	45.31		26	HCL-80		Cent #48	1,705.21	4,300.75
DVTool	2-Stage	2.70		26	HCL-80			1,705.91	4,370.09
45	43	45.30	7	26	HCL-80	LIC	C	1,011.21	4,332.79
46	44	45.30	7	26	HCL-80		Cent #49	1,001.91	4,407.49
. 47	45	45.30	7	20	HCL-80		,	1,901.01	4,442.19
48	40	45.41	7	20			Cent #50	1,997.52	4 351 48
49	47	45.30	7	20			COIR #30	2 037 85	4 306 15
50	48	43.33	7	20	HCL-00			12,037.03	4 260 82
51	49	45.55	7	20		LIC		2,005.10	4 215 31
52	50	45.51	7	20	HCL-80		Cent #51	2,128.09	4,213.31
53	51	45.51	7	20			Cont #51	2,174.00	4 124 70
54	52	43.30	7	20	HCL-80	LTC		2,264.60	4.079.40
33	55	45.50	4	20	HCL-80	ITC	•	2,201.00	4.033.90
57	54	45.50	7	20	HCL-80	iTC	Cent #52	2,355.62	3.988.38
5/	22	45.54	, 7	20	HCL-80	ITC	Concroz	2,400 92	3.943.08
50 50	50	45.30	7	20	HCLINO	ITC		2.446.24	3.897.76
29 20	/د دو	45.32	, ·	20	HCL-80	LTC		2.491.55	3.852.45
6U	28 50	43.31	7	· 20	HCL-80		Cent #53	2,536 85	3.807.15
01	57 20	43,30	י ד	20	HC1.90		Com #33	2,582.38	3.761.62
62	00	43.33	7	20	HCL.90			2.627 97	3.716.08
63	01	43.34	, ,	20				7 673 70	3.670.71
64	02	43.31 15 19	ו ר	20	HCL-00		Cent #51	2.718 71	3.675 79
65	63	45.42	/ 7	20			Cont #34	2,710.71	3 570 01
66	64	45.58	7	20				2,704.02	3 534 51
67	60	45.40	1	20				7 844 20	3,480 11
68	66	43.40 15 10	2	20		110		2,966 29	3.443.71
69	0/	43.40	7	20			Cent #55	2.945 60	3,398 31
70	68	43.40	/	20.	HCL-00	LIC	Cont #33	wy/TJ107	0,070,01

3,398.31 Charles 11! Slack

Energy S	torage Ser	vices	7	34		ITC		7 001 10	2 2 2 2 7 91	
71	69	45.50	1	26				2,991.19 3.024 77	3,332.81	
72	70	45.53	/	20	HCL-80			3,030./2 2 003 00	3,30/.40 2 363 00	
73	71	45.28	/	26	HCL-80	LIC		3,082.00	3,202.00	
74	72	45.30	7	26	HCL-80	LIC	0	3,127.30	3,216.70	
75	73	45.28	7	26	HCL-80	LTC	Cent #56	3,172.58	3,171.42	
76	74	45.32	7	26	HCL-80	LTC		3,217.90	3,126.10	
77	75	45.30	7	26	HCL-80	LTC		3,263.20	3,080.80	
78	76	45.30	7	26	HCL-80	LTC		3,308.50	3,035.50	
79 '	77	45.32	7	26	HCL-80	LTC		3,353.82	2,990.18	
80	78	45.30	7	26	HCL-80	LTC	Cent #57	3,399.12	2,944.88	
81	79	45.30	7 .	26	HCL-80	LTC		3,444.42	2,899.58	
82	80	45.30	7	26	HCL-80	LTC		3,489.72	2,854.28	
83	81	45.00	7	26	HCL-80	LTC		3.534.72	2.809.28	
84	82	45.30	7	26	HCL-80	LTC		3.580.02	2.763.98	
95	82	45.00	7	26	HCL-80	ITC	Cent #58	3.625.25	2.718.75	•
80	81	45.25	7	26	HCL 80	ITC	Cent #50	3 670 77	2 673 23	
80	04	45.52	7	20	HCL-80	LIC		3 716 31	2,075.25	
8/	85	45.54	7	20	HCL-80			3,710.31	- 2,027.07	
88	86	45.52	<u>/</u>	26	HCL-80	LIC		3,/01.03	2,582.17	
89	. 87	45.22	7	26	HCL-80	LIC	~ // # *	3,807.05	2,536.95	
90	88	45.52	7	26	HCL-80	LTC	Cent #59	3,852.57	2,491.43	
91	89	45.30	7	26	HCL-80	LTC		3,897.87	2,446.13	
92	90	45.30	7	26	HCL-80	LTC		3,943.17	2,400.83	
93	91	45.32	7	26	HCL-80	LTC		3,988.49	2,355.51	
94	92	45.32	7	26	HCL-80	LTC		4,033.81	2,310.19	
95	93	45 30	7	26	HCL-80	LTC	Cent #60	4,079,11	2,264.89	
96	9 <u>4</u>	45 30	7	26	HCL-80	LTC		4,124,41	2,219.59	
07	05	15.00	7	26	HCL-80	UTC		4,169,69	2,174.31	
7/ 00	95	4J.20	7	20	HCL 20	ITC		4,215 02	2.128.98	
78 00	90 07	40.33	7	20	HCL-00			4 760 22	2.083.68	
99	-97	45.30	1	20	HCL-80		Court #61	4,200.32	2,005.00	
100	98	45.55	7	20	HCL-80		Cent #61	4,305.87	2,030.13	
101	99	45,50	7	26	HCL-80	LIC		4,351.37	1,992.03	
102	100	45.00	7	26	HCL-80	LTC		4,396.37	1,947.63	
103	101	45.30	7	26	HCL-80	LTC		4,441.67	1,902.33	
104	102	45.47	7	26	HCL-80	LTC		4,487.14	1,856.86	
105	103	45.30	7	26	HCL-80	LTC	Cent #62	4,532.44	1,811.56	
106	104	45.30	7	26	HCL-80	LTC		4,577.74	1,766.26	
107	105	45.50	7	26	HCL-80	LTC		4,623.24	1,720.76	
108	106	45.30	7	26	HCL-80	LTC		4,668.54	1,675.46	
109	107	45.30	7	26	HCL-80	LTC		4,713.84	1,630.16	·
110	108	45 52	7	26	HCL-80	LTC	Cent #63	4,759.36	1,584.64	
111	109	45.30	7.	26	HCL-80	LTC		4.804.66	1.539.34	
112	110	45.00	7	26	HCL-80	LTC		4.849.95	1,494.05	
112	110	45.20	7	26	HCL-80	LTC		4 895 25	1.448.75	
115	112	45.30	7	26	HCL-80	LTC		4 940 57	1.403.43	
114	112	45.32	7	20	HCL-80	LTC	Cont #61	4,540.07	1 358 16	
115	113	45.27	/	20	HCL-80	LIC	Cent #04	4,505.04	1,330.10	
116	114	45.28	/	26	HCL-80			5,031.12	1,312.00	
117	115	45.28	7	26	HCL-80	LIC		5,076.40	1,267.00	
118	116	45.26	7	26	HCL-80	LIC		5,121.66	1,222.34	
119	117	45.32	7	26	HCL-80	LTC		5,166.98	1,177.02	
120	118	45.30	7	26	HCL-80	LTC	Cent #65	5,212.28	1,131.72	
121	119	45.27	7	26	HCL-80	LTC		5,257.55	1,086.45	
122	120	45.30	7	26	HCL-80	LTC		5,302.85	1,041.15	
123	121	45.27	7	26	HCL-80	LTC		5,348.12	995.88	
124	127	45 30	7	26	HCL-80	LTC		5,393.42	950.58	*
125	122	45 30	7	26	HCL-80	LTC	Cent #66	5.438.72	905.28	
125	123	45.30	, ,	26	HCL-80	LTC		5,484 02	859.98	
120	124	40.00	, ,	20	HCL.M	LTC		5 529 29	814 71	
127	125	45.27	2	20.				0,020.20 E E7A E7	760 42	
128	126	45.28	-	20	HCL-80			0,0/4.0/	107.43	
129	127	45.50	7	26	HCL-80	LIC	0	5,620.07	123.93	
130	128	45.27	. 7	26	HCL-80	LIC	Cent #67	5,665.34	0/8.00	
131	129	45.00	7	26 .	HCL-80	LTC		5,710.34	633.66	
132	130	45.12	7	26	HCL-80	LTC		5,755.46	588.54	
133	131	45.12	7	26	HCL-80	LTC		5,800.58	543.42	
134	132	44.85	7	26	HCL-80	LTC		5,845.43	498.57	
135	133	44.88	7	26	HCL-80	LTC	Cent #68	5,890.31	453.69	
136	134	44 91	7	26	HCL-80	LTC		5,935.22	408.78	
137	135	44 QN	7	26	HCL-80	LTC		5,980.12	363.88	
120	133	44.30	7	20	HC1_90	ITC		6.025.42	318.58	
138	130	40.30	7.7.00	20		ITC		6 037 07	316.02	
	X-0	1.65	/ X /.625	20 X 29.7				0,027.07	310.73	
139	137	45.32	7 5/8	29.7	HCL-80	LIC		0,072.39	2/1.01	
140	138	45.35	7 5/8	29.7	HCL-80	LTC		6,117.74	226.26	
141	139	45.39	7 5/8	29.7	HCL-80	LTC		6,163.13	180.87	
142	140	45.35	7 5/8	29.7	HCL-80	LTC		6,208.48	135.52	
143	141	45.37	7 5/8	29.7	HCL-80	LTC		6,253.85	90.15	
144	142	45.33	7 5/8	29.7	HCL-80	LTC		6,299.18	44.82	
1.1.1									0.63	

8 151	Extra Total Joints	7'' On	26 PPF Location Charles W. Slack

