COPY		PEP Hot					-
Form 3160-3 February 2005)		NOV 30	2015	OMB No	PPROVED 1004-0137 larch 31, 20	07	
UNITED STATES DEPARTMENT OF THE I	INTERIOR	RECE	WED	5. Lease Serial No. NM 14492			
BUREAU OF LAND MAN				6. If Indian, Allotee	or Tribe N	ame	
Ia. Type of work: DRILL REENTE	ER			7 If Unit or CA Agree	ement, Nan	ne and No.	
Ib. Type of Well: ØOil Well Gas Well Other	√ Sir	ngle Zone 🗌 Multip	le Zone	8. Lease Name and V Mesa 8105 JV-		30,	630
2. Name of Operator BTA Oil Producers, LLC (2603	297)	•		9. API Well No. 30-025 • 4	2962	2	
3a. Address 104 S. Pecos Midland, TX 79701		(include area code) 82-3753	11	10. Field and Pool. or F			203
Location of Well (Report location clearly and in accordance with any At surface 330' FNL & 710' FWL NW/NW S At proposed prod. zone 230' FSL & 950' FWL SW/SW Se	Sec. 12 UL -1	UNORTH	ODO)	11. Sec., T. R. M. or B Sec. 12, T26S-	lk. and Surv		
 Distance in miles and direction from nearest town or post office* 25 miles west from Jal, NM 		LUCAI	ION	12. County or Parish Lea		13. State N	M
 Distance from proposed* location to nearest property or lease line, ft (Also to nearest drig, unit line, if any) 230' 	16. No. of a	cres in lease	17 Spacin 160 a	ng Unit dedicated to this v	vell		
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 348' BHL to BHL (8105 JV-P Mesa #10H) 		Proposed Depth 20. BLM/BIA Bond No. on file 5,222' MD 11,635' TVD NM1195 NMB000849					
 Elevations (Show whether DF, KDB, RT, GL, etc.) 3287' GL 	22 Approxit	mate date work will sta 08/01/2015	rt*	23. Estimated duration 45 days	n		
	24. Attac						
 The following, completed in accordance with the requirements of Onshor I. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 		 Bond to cover t Item 20 above). Operator certific 	he operatio	his form: ons unless covered by an formation and/or plans as			
25. Signature hayla McConnell	Name	(Printed/Typed) Kayla McConnell			Date 04/2	3/2015	
Title 0 Regulatory Analyst	Email	: kmcconnell@btao	il.com		HOW		0.01
Approved by (Si Steeve Caffey	Name	(Printed Typed)		3	DNOV	18	201
FOR FIELD MANAGER	Office	BLM-CAR	SBA	D FIELD OF	FICE		
Application approval does not warrant or certify that the applicant hold conduct operations thereon.	ls legal or equi	table title to those right	its in the su	bjectfease which would of TWO YEARS	entitle the a	pplicant to	3
Conditions of approval, if any, are attached.							

Carlsbad Controlled Water Basin

K2 11/30/15

Witness Surface & Intermediate Casing

APPROVAL SUBJECT TO GENERAL REQUIREMENTS AND SPECIAL STIPULATIONS ATTACHED

SEEEATTRACHED FOR CCONDITIONS OF APPROVAL DEC 01 2015

1. Geologic Formations

TVD of target	11635	Pilot hole depth	N/A
MD at TD:	16222	Deepest expected fresh water:	175

Basin

Quaternary FillSurfaceWaterRustler717WaterHOBBS OTop of Salt1362SaltBase of SaltBase of Salt4477SaltNOV 3 ODelaware4717Oil/GasColl/GasCherry Canyon5962Oil/GasRECENBrushy Canyon7387Oil/GasRECENBone Spring8642Oil/GasColl/GasAtokaMorrowBarnett ShaleWoodford ShaleDevonianFusselmanEllenburgerGranite Wash	Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Top of Salt1362SaltBase of Salt4477SaltNOV 3 0Delaware4717Oil/GasOil/GasCherry Canyon5962Oil/GasRECENBrushy Canyon7387Oil/GasRECENBone Spring8642Oil/GasOil/GasAtokaMorrowBarnett ShaleDevonianFusselmanEllenburger	Quaternary Fill	Surface	Water	
Top of Salt1362SaltBase of Salt4477SaltNOV 3 0Delaware4717Oil/GasOil/GasCherry Canyon5962Oil/GasRECENBrushy Canyon7387Oil/GasRECENBone Spring8642Oil/GasOil/GasAtokaMorrowBarnett ShaleVoodford ShaleDevonianFusselmanEllenburger	Rustler	717	Water	HOBBS O
Delaware4717Oil/GasCherry Canyon5962Oil/GasBrushy Canyon7387Oil/GasBone Spring8642Oil/GasAtokaMorrowBarnett ShaleWoodford ShaleDevonianFusselmanEllenburger	Top of Salt	1362	Salt	
Delaware4717Oil/GasCherry Canyon5962Oil/GasBrushy Canyon7387Oil/GasBone Spring8642Oil/GasAtokaMorrowBarnett ShaleWoodford ShaleDevonianFusselmanEllenburger	Base of Salt	4477	Salt	NOV 30
Brushy Canyon7387Oil/GasBone Spring8642Oil/GasAtokaMorrowBarnett ShaleWoodford ShaleDevonianFusselmanEllenburger	Delaware	4717	Oil/Gas	1101 0.0
Brushy Canyon 7387 Oil/Gas Bone Spring 8642 Oil/Gas Atoka Morrow Barnett Shale Woodford Shale Devonian Fusselman	Cherry Canyon	5962	Oil/Gas	DECEN
Atoka Image: Constraint of the second seco	Brushy Canyon	7387	Oil/Gas	RECEIV
MorrowImage: Second	Bone Spring	8642	Oil/Gas	
Barnett Shale	Atoka			
Woodford Shale	Morrow			
Devonian Ellenburger	Barnett Shale			
Fusselman Ellenburger	Woodford Shale			
Ellenburger	Devonian			
	Fusselman			
Granite Wash	Ellenburger			
	Granite Wash			

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

	Hole	Casing	g Interval	Csg.Size	e Weig	Grade	Conn.	SF	SF	SF
	Size	From	То		ht (lbs)			Collapse	Burst	Tension
v	17.5"	0	247810'	13.375"	54.5	J55	STC	1.43	1.26	2.59
A	12.25"	0	4687	9.625"	40	J55	LTC	1.19	1.89	2.1
r	8.75"	0	11908	5.5"	17	P110	LTC	1.56	1.6	2.63
	7.875"	11908	16222	5.5"	17	P110	LTC	1.56	1.6	1.91
					BLM Minimum Safety Fact			1.125	1	1.6 Dry 1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	N/A
Is well within the designated 4 string boundary.	N
is wen wrunn die designated 4 string boundary.	19
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	Y
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	N/A
Is 2 nd string set 100' to 600' below the base of salt?	N/A
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	N/A
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	N/A
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	N/A

3. Cementing Program

Casing	#Sks	Wt. lb/ Gal	Yld ft3/ sack	H20 gal/ sk	500# Comp. Strength (hours)	Slurry Description
Surf.	570	13.5	1.75	8	10	Lead: Class C
	200	14.8	1.34	8	8	Tail: Class C, circ to surf. 100% excess
Inter.	950	12.7	1.94	8	15	1st stage Lead: Class C Blend
	250	14.8	1.33	8	10	1st stage Tail: Class C, circ to surf, 65% excess
Prod.	1000	11.3	2.92	8	14	1 st Lead: 50:50 Blend Class H
	950	14.4	1.22	8	10	1 st Tail: 50:50 Blend Class H
				1		

BTA Oil Producers LLC, Mesa 8105 JV-P #23H

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0.	100%
Intermediate	0.	65%
Production	4187	20%

Include Pilot Hole Cementing specs: **Pilot hole depth** <u>N/A</u> **KOP** <u>11158</u>

Plug Bottom			Slurry Description and Cement Type

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ty	/pe	~	Tested to:
- 1 1 W - 2 . M		1	Ann	nular	X	50% of working pressure
		5M	Blind	l Ram	X	ENL
12-1/4"	13-5/8"	5M 3M	Pipe	Ram	X	5ML
		-	Doubl	e Ram		2 TVI
			Other*			
			Ann	nular		
			Blind	Ram		
			Pipe	Ram		
			Doubl	e Ram		
			Other *			
			Ann	ular		
			Blind	Ram		
			Pipe	Ram		
			-	e Ram		
			Other *			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Х	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
No	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
· ·	Y /N Are anchors required by manufacturer?
ND	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.
	• N/A
	See attached schematic.

5. Mud Program

	Depth		Туре	Weight (ppg)	Viscosity	Water Loss	
F	rom	То				A State of the set	
1 0		747 810'	FW Spud	8.5-8.8	35-45	N/C	
2	47	4687	Saturated Brine	10.0-10.2	28-34	N/C	
4	687	TD	Cut Brine	8.6-9.2	28-34	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Log	ging, Coring and Testing.						
Х	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole).						
	Stated logs run will be in the Completion Report and submitted to the BLM.						
	No Logs are planned based on well control or offset log information.						
X	Drill stem test? If yes, explain - will be run based on geological sample shows						
	Coring? If yes, explain						

Add	litional logs planned	Interval
	Resistivity	
	Density	
	CBL	
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5400 psi
Abnormal Temperature	Yes/No

Mitigation measure for abnormal conditions. Describe. No abnormal pressures or temperatures are anticipated. All personnel will be familiar with all aspects of safe operation of equipment being used to drill this well.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

 H2S is present

 X
 H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments <u>x</u> Directional Plan Other, describe

Attachment to APD BTA Oil Producers, LLC Mesa 8105 JV-P #23H Sec 12, T26S, R32E Lea County, NM

BTA Oil Producers, LLC

Lea County, NM Mesa Sec 1 & 12, T26S, R32E Mesa 23H

Wellbore #1

Plan: Design #1

Standard Planning Report

16 March, 2015

BTA

Planning Report

Database:	LOW JO	000.1 Single Use	er Db		Local Co-	ordinate Refe	rence:	Well Mesa 23H		
Company:	BTA Oil	Producers, LLC			TVD Refer	ence:		GL @ 3287.0us	ft (Original W	ell Elev)
Project:	Lea Co	unty, NM			MD Refere			GL @ 3287.0us		
Site:	Mesa S	ec 1 & 12, T26S	, R32E		North Ref			Grid		
Well:	Mesa 2					Iculation Met		Minimum Curva	ture	
Wellbore:	Wellbor				00110) 00	in the second seco	and at			14.
Design:	Design									
R. I. I	1	NH Los Co								
Project	Lea Cou	nty, NM, Lea Co	unty, NM							
Map System:		Plane 1927 (Exa			System Dat	um:	Gr	ound Level		
Geo Datum:		(NADCON CON	NUS)							
Map Zone:	New Mexic	co East 3001					Us	ing geodetic sci	ale factor	
Site	Mesa Se	c 1 & 12, T26S.	R32E							
Site Position:			Northi	ng:	388,	357.80 usft	Latitude:			32° 3' 56.723 N
From:	Map		Eastin	g:	718.	031.00 usft	Longitude:			103° 37' 46.202 W
Position Uncertainty	4	0.0 u	sft Slot R	adius:		13-3/16 "	Grid Converg	ence:		0.37
Well	Mesa 23	н								
Well Position	+N/-S	-654.6	usft No	orthing:		387,703.20) usft Lat	itude:		32° 3' 50.339 N
	+E/-W	-1,457.7		sting:		716,573.40		gitude:		103° 38' 3 189 W
								3		
Position Uncertainty Wellbore		0.0		ellhead Elevation	n:	0.0) usft Gro	ound Level:		3,287.0 usf
	Wellbore	0.0 e #1 el Name	usft We Sample	ellhead Elevation	n: Declina (°)	tion		ingle.	DITE:	Strength (nT)
Wellbore	Wellbore	0.0 e #1	usft We Sample	ellhead Elevation	Declina		Dip A	ingle	DITE:	Strength
Wellbore	Wellbore	0.0 e #1 el Name GRF200510	usft We Sample	ellhead Elevation	Declina	tion	Dip A	ingle.	DITE:	Strength (nT)
Wellbore Magnetics	Wellbore Mode	0.0 e #1 el Name GRF200510	usft We Sample	ellhead Elevation	Declina	tion	Dip A	ingle.	DITE:	Strength (nT)
Wellbore Magnetics Design	Wellbore Mode	0.0 e #1 el Name GRF200510	usft We Sample	e Date 2/31/2009	Declina	tion 7.77	Dip A	ingle.	DITE:	Strength (nT)
Wellbore Magnetics Design Audit Notes:	Wellbore Mode	0.0 e #1 el Name GRF200510	usft We Sample	e Date 2/31/2009 e: PR	Declina (°)	tion 7.77 Tie	Dip A (*	(ngle)) 60.08		Strength (nT)
Wellbore Magnetics Design Audit Notes: Version:	Wellbore Mode	0.0 e #1 el Name GRF200510	Sample Sample 1 Phase	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE	tion 7.77 Tie +t	Dip A (* e On Depth:	(ngle) 60.08 Dir	0.0	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version:	Wellbore Mode	0.0 e #1 el Name GRF200510	Sample Sample 1 Phase th From (TV	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE +N/-S	tion 7.77 Tic +E (u	Dip A (* e On Depth: E/-W	(ngle) 60.08 Dir	0.0 ection	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version:	Wellbore Mode	0.0 e #1 el Name GRF200510	Sample Sample 1 Phase th From (TV (usft)	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE +N/-S (usft)	tion 7.77 Tic +E (u	Dip A (* e On Depth: E/-W isft)	(ngle) 60.08 Dir	0.0 ection (*)	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	Wellbore Mode	0.0 e #1 el Name GRF200510 1 Dep	Sample Sample 1 Phase th From (TV (usft) 0.0	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE +N/-S (usft)	tion 7.77 Tie +t (u (u	Dip A (* e On Depth: E/-W Isft) 0.0	(ngle) 60.08 Dir 17	0.0 ection (*)	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	Wellbore Modi	0.0 e #1 el Name GRF200510 1 Dep	Sample Sample 1 Phase th From (TV (usft) 0.0	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE +N/-S (usft) 0.0	tion 7.77 Tit (u (u	Dip A (* e On Depth: E/-W isft) 0.0 Build	(ngle) 60.08 Die 17 Turn	0.0 ection (*) 76.82	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin	Wellbore Modi	0.0 e #1 el Name GRF200510 1 Dep Azimuth	Sample Sample 1 Phase th From (TV (usft) 0.0	e Date 2/31/2009 e: PR	Declina (°) OTOTYPE +N/-S (usft)	tion 7.77 Tie +t (u (u	Dip A (* e On Depth: E/-W Isft) 0.0	(ngle) 60.08 Dir 17	0.0 ection (*)	Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	Wellbore Mode Design #	0.0 e #1 el Name GRF200510 1 Dep Azimuth	Sample Sample 1 Phase th From (TV (usft) 0.0 ertical Depth	e Date 2/31/2009 e: PR (D) +N/-S	Declina (°) OTOTYPE +N/-S (usft) 0.0 +E/-W	tion 7.77 Tit +E (u (u ()) Dogleg Rate	Dip A (* e On Depth: E/-W usft) 0.0 Build Rate	(ngle) 60.08 Die 17 Turn Rate	0.0 ection (*) 76.82 TFO	Strength (nT) 48,690
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin (usft)	Wellbore Mode Design #	0.0 e #1 et Name GRF200510 1 Dep Azimuth	Sample Sample 1 Phase th From (TV (usft) 0.0 ertical Depth (usft)	e Date 2/31/2009 e: PR 7D) +N/-S (usft)	Declina (°) OTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	Tion 7.77 Tio +E (u (u (u ()) Dogleg Rate (°/100usft)	Dip A (* e On Depth: E/-W isft) 0.0 Build Rate (*/100usft)	(ngle) 60.08 Dir 17 Turn Rate (*/100usft)	0.0 ection (°) 76.82 TFO (°)	Strength (nT) 48,690 Target
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin (usft) 1	Wellbore Mode Design #	0.0 e #1 el Name GRF200510 1 Dep Azimuth	Sample Sample 1 Phase th From (TV (usft) 0.0 ertical Depth (usft) 0.0	e Date 2/31/2009 e: PR 7D) +N/-S (usft) 0.0	Declina (*) OTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0	tion 7.77 Tid +E (u (u () Dogleg Rate (°/100usft) 0.00	Dip A (* e On Depth: E/-W isft) 0.0 Build Rate (*/100usft) 0.00	(ngle) 60.08 Dir 17 Turn Rate (*/100usft) 0.00	0.0 ection (*) 76.82 TFO (*) 0.00	Strength (nT) 48,690 Target

.

BTA Planning Report

EDM 5000.1 Single User Db BTA Oil Producers, LLC Database: Local Co-ordinate Reference: Well Mesa 23H Company: TVD Reference: GL @ 3287.0usft (Original Well Elev) Lea County, NM Project: MD Reference: GL @ 3287.0usft (Original Well Elev) Site: Mesa Sec 1 & 12, T26S, R32E North Reference: Grid Well: Mesa 23H Minimum Curvature Survey Calculation Method: Wellbore: Wellbore #1 Design: Design #1

Planned Survey

×.

Measured			Vertical			Vertical	Dogleg	Build	Turn	
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	
0.0	0 00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00	
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00	
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00	
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00	
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00	
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00	
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00	
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00	
3,800.0	0.00	0.00	3,800.0 3,900.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0 00	0.00	
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00	
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00	
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.00	

COMPASS 5000.1 Build 72

.

BTA BTA

Planning Report

Database: Company: Project:	EDM 5000.1 Single User Db BTA Oil Producers, LLC Lea County, NM	Local Co-ordinate Reference: TVD Reference: MD Reference:	Well Mesa 23H GL @ 3287.0usft (Original Well Elev) GL @ 3287.0usft (Original Well Elev)
Site:	Mesa Sec 1 & 12, T26S, R32E	North Reference:	Grid
Well:	Mesa 23H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

.

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0 00	0.00
5,500.0	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
5,600.0	0.00	0.00	5,600.0	0.0	0.0	0.0	0.00	0.00	0.00
5,700.0	0.00	0.00	5,700.0	0.0	0.0	0.0	0.00	0.00	0.00
5,800.0	0.00	0.00	5,800.0	0.0	0.0	0.0	0.00	0.00	0.00
5,900.0	0.00	0.00	5,900.0	0.0	0.0	0.0	0.00	0.00	0.00
6,000.0	0.00	0.00	6,000.0	0.0	0.0	0.0	0.00	0.00	0.00
6,100.0	0.00	0.00	6,100.0	0.0	0.0	0.0	0.00	0.00	0.00
6,200.0	0.00	0.00	6,200.0	0.0	0.0	0.0	0.00	0.00	0.00
6,300.0	0.00	0.00	6,300.0	0.0	0.0	0.0	0.00	0.00	0.00
6,400.0	0.00	0.00	6,400.0	0.0	0.0	0.0	0.00	0.00	0.00
6,500.0	0.00	0.00	6,500.0	0.0	0.0	0.0	0.00	0.00	0.00
6,600.0	0.00	0.00	6,600.0	0.0	0.0	0.0	0.00	0.00	0.00
6,700.0	0.00	0.00	6,700.0	0.0	0.0	0.0	0.00	0.00	0.00
6,800.0	0.00	0.00	6,800.0	0.0	0.0	0.0	0.00	0.00	0.00
6,900.0	0.00	0.00	6,900.0	0.0	0.0	0.0	0.00	0.00	0.00
7,000.0	0.00	0.00	7,000.0	0.0	0.0	0.0	0.00	0.00	0.00
7,100.0	0.00	0.00	7,100.0	0.0	0.0	0.0	0.00	0.00	0.00
7,200.0	0.00	0.00	7,200.0	0.0	0.0	0.0	0.00	0.00	0.00
7,300.0	0.00	0.00	7,300.0	0.0	0.0	0.0	0.00	0.00	0.00
7,400.0	0.00	0.00	7,400.0	0.0	0.0	0.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,500.0	0.0	0.0	0.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,600.0	0.0	0.0	0.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,700.0	0.0	0.0	0.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,800.0	0.0	0.0	0.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,900.0	0.0	0.0	0.0	0.00	0.00	0.00
8,000.0	0.00	0.00	0.000,8	0.0	0.0	0.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,100.0	0.0	0.0	0.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,200.0	0.0	0.0	0.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,300.0	0.0	0.0	0.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,400.0	0.0	0.0	0.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,500.0	0.0	0.0	0.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,600.0	0.0	0.0	0.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,700.0	0.0	0.0	0.0	0.00	0.00	0.00
8,800.0 8,900.0	0.00	0.00	8,800.0 8,900.0	0.0	0.0	0.0	0.00	0.00	0.00
9,000.0	0.00	0.00	9,000.0	0.0	0.0	0.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,100.0	0.0	0.0	0.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,200.0	0.0	0.0	0.0	0.00	0.00	0.00
9,300.0 9,400.0	0.00	0.00	9,300.0 9,400.0	0.0	0.0	0.0	0.00	0.00	0.00
							0.00	0.00	0.00
9,500.0	0.00	0.00	9,500.0	0.0	0.0	0.0	0.00	0.00	0.00
9,600.0	0.00		9,600.0	0.0	0.0	0.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,700.0 9,800.0	0.0	0.0	0.0	0.00	0.00	0.00
9,800.0 9,900.0	0.00	0.00	9,900.0	0.0	0.0	0.0	0.00	0.00	0.00
							0.00	0.00	0.00
10,000.0	0.00	0.00	10,000.0	0.0	0.0	0.0			
10,100.0	0.00	0.00	10,100.0	0.0	0.0	0.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,200.0	0.0	0.0	0.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,300.0	0.0	0.0	0.0	0.00	0.00	0.00
10,400.0	0.00	0.00	10,400.0	0.0	0.0	0.0	0.00	0.00	0.00
10,500.0	0.00	0.00	10,500.0	0.0	0.0	0.0	0.00	0.00	0.00
10,600.0	0.00	0.00	10,600.0	0.0	0.0	0.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,700.0	0.0	0.0	0.0	0.00	0.00	0.00

COMPASS 5000.1 Build 72

BTA

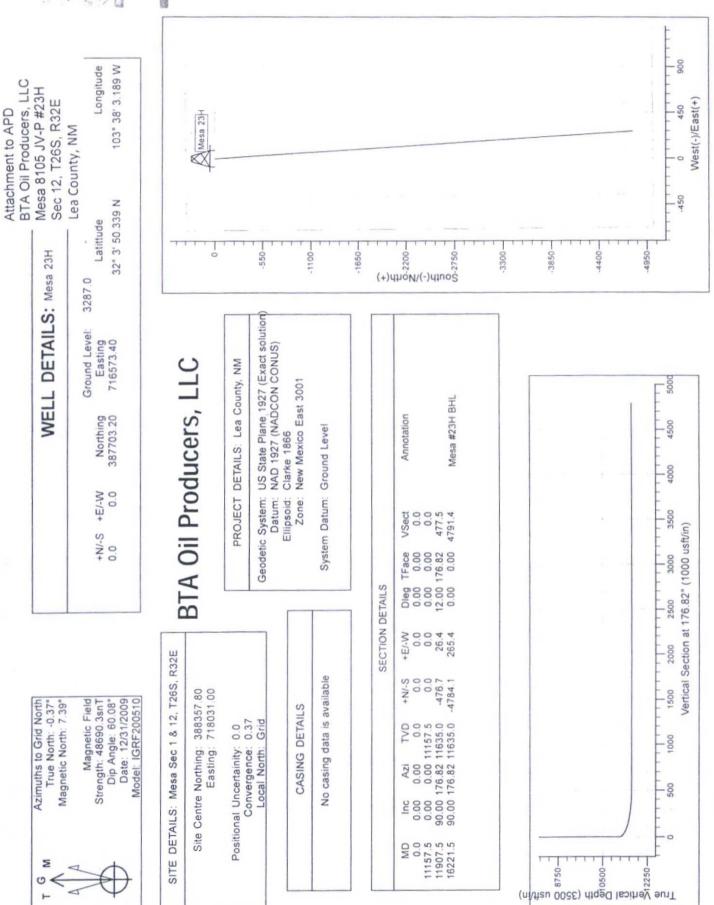
Planning Report

Design:	Design #1		
Wellbore:	Wellbore #1		
Well:	Mesa 23H	Survey Calculation Method:	Minimum Curvature
Site:	Mesa Sec 1 & 12, T26S, R32E	North Reference:	Grid
Project:	Lea County, NM	MD Reference:	GL @ 3287.0usft (Original Well Elev)
Company:	BTA Oil Producers, LLC	TVD Reference:	GL @ 3287.0usft (Original Well Elev)
Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well Mesa 23H

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate (°/100usft)
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(-/100usit)
10,800.0	0.00	0.00	10,800.0	0.0	0.0	0.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,900.0	0.0	0.0	0.0	0.00	0 00	0.00
							0.00	0.00	0.00
11,000.0	0.00	0.00	11,000.0	0.0	0.0	0.0	0.00	0.00	
11,100.0	0.00	0.00	11,100.0	0.0	0.0	0.0	0.00	0 00	0.00
11,157.5	0.00	0.00	11,157.5	0.0	0.0	0.0	0.00	0.00	0.00
11,200.0	5.10	176.82	11,199.9	-1.9	0.1	1.9	12.00	12.00	0.00
11,300.0	17.10	176.82	11,297.9	-21.1	1.2	21.1	12.00	12.00	0.00
11,400.0	29.10	176.82	11,389.7	-60.2	3.3	60.3	12.00	12.00	0.00
11,500.0	41.10	176.82	11,471.4	-117.5	6.5	117.6	12.00	12.00	0.00
11,600.0	53.10	176.82	11,539.3	-190.5	10.6	190.8	12.00	12.00	0.00
11,700.0	65.10	176.82	11,590.6	-276.0	15.3	276.4	12.00	12.00	0.00
11,800.0	77.10	176.82	11,622.9	-370.3	20.5	370.8	12.00	12.00	0.00
11,900.0	89.10	176.82	11,634.9	-469.2	26.0	469.9	12.00	12.00	0.00
11,907.5	90.00	176.82	11,635.0	-476.7	26.4	477.5	12.00	12.00	0.00
12,000.0	90.00	176.82	11,635.0	-569.1	31.6	569.9	0.00	0.00	0.00
12,100.0	90.00	176.82	11,635.0	-668.9	37.1	669.9	0.00	0.00	0.00
12,200.0	90.00	176.82	11,635.0	-768.7	42.6	769.9	0.00	0.00	0.00
12,300.0	90.00	176.82	11,635.0	-868.6	48.2	869.9	0.00	0.00	0.00
12,300.0	90.00	176.82	11,635.0	-968.4	53.7	969.9	0.00	0.00	0.00
12,400.0	90.00	176.82	11,635.0	-1,068.3	59.3	1,069.9	0.00	0.00	0.00
12,500.0	90.00	176.82	11,635.0	-1,168.1	64.8	1,169.9	0.00	0.00	0.00
12,600.0	90.00	176.82	11,635.0	-1,168.1	70.3	1,269.9	0.00	0.00	0.00
12,700.0	90.00	170.02	11,035.0	-1,200.0	10.5				
12,800.0	90.00	176.82	11,635.0	-1,367.8	75.9	1,369.9	0.00	0.00	0.00
12,900.0	90.00	176.82	11,635.0	-1,467.7	81.4	1,469.9	0.00	0.00	0.00
13,000.0	90.00	176.82	11,635.0	-1,567.5	87.0	1,569.9	0.00	0.00	0.00
13,100.0	90.00	176.82	11,635.0	-1,667.4	92.5	1,669.9	0.00	0.00	0.00
13,200.0	90.00	176.82	11,635.0	-1,767.2	98.0	1,769.9	0.00	0.00	0.00
					100.0	1 860 0	0.00	0.00	0.00
13,300.0	90.00	176.82	11,635.0	-1,867.1	103.6	1,869.9	0.00	0.00	0.00
13,400.0	90.00	176.82	11,635.0	-1,966.9	109.1	1,969.9		0.00	0.00
13,500.0	90.00	176.82	11,635.0	-2,066.8	114.7	2,069.9	0.00		
13,600.0	90.00	176.82	11,635.0	-2,166.6	120.2	2,169.9	0.00	0.00	0.00
13,700.0	90.00	176.82	11,635.0	-2,266.4	125.7	2,269.9	0.00	0.00	0.00
13,800.0	90.00	176.82	11,635.0	-2,366.3	131.3	2,369.9	0.00	0.00	0.00
13,900.0	90.00	176.82	11,635.0	-2,466.1	136.8	2,469.9	0.00	0.00	0.00
14,000.0	90.00	176.82	11,635.0	-2,566.0	142.4	2,569.9	0.00	0.00	0.00
14,100.0	90.00	176.82	11,635.0	-2,665.8	147.9	2,669.9	0.00	0.00	0.00
14,200.0	90.00	176.82	11,635.0	-2,765.7	153.4	2,769.9	0.00	0.00	0.00
14,300.0	90.00	176.82	11,635.0	-2,865.5	159.0	2,869.9	0.00	0.00	0.00
14,400.0	90.00	176.82	11,635.0	-2,965.4	164.5	2,969.9	0.00	0.00	0.00
14,500.0	90.00	176.82	11,635.0	-3,065.2	170.1	3,069.9	0.00	0.00	0.00
14,600.0	90.00	176.82	11,635.0	-3,165.1	175.6	3,169.9	0.00	0.00	0.00
14,700.0	90.00	176.82	11,635.0	-3,264.9	181.1	3,269.9	0 00	0.00	0.00
14 800 0	90.00	176.82	11,635.0	-3,364.8	186.7	3,369.9	0.00	0.00	0.00
14,800.0				and the second		3,469.9	0.00	0.00	0.00
14,900.0	90.00	176.82	11,635.0	-3,464.6	192.2 197.7	3,569.9	0.00	0.00	0.00
15,000.0	90.00	176.82	11,635.0	-3,564.4			0.00	0.00	0.00
15,100.0	90.00	176.82	11,635.0	-3,664.3	203.3	3,669.9	0.00	0.00	0.00
15,200.0	90.00	176.82	11,635.0	-3,764.1	208.8	3,769.9	0.00	0.00	0.00
15,300.0	90.00	176.82	11,635.0	-3,864.0	214.4	3,869.9	0.00	0.00	0.00
15,400.0	90.00	176.82	11,635.0	-3,963.8	219.9	3,969.9	0.00	0.00	0.00
15,500.0	90.00	176.82	11,635.0	-4,063.7	225.4	4,069.9	0.00	0.00	0.00
15,600.0	90.00	176.82	11,635.0	-4,163.5	231.0	4,169.9	0.00	0.00	0.00
15,700.0	90.00	176.82	11,635.0	-4,263.4	236.5	4,269.9	0.00	0.00	0.00
15,700.0									
15,800.0	90.00	176.82	11,635.0	-4,363.2	242.1	4,369.9	0.00	0.00	0.00
15,900.0	90.00	176.82	11,635.0	-4,463.1	247.6	4,469.9	0.00	0.00	0.00

COMPASS 5000.1 Build 72

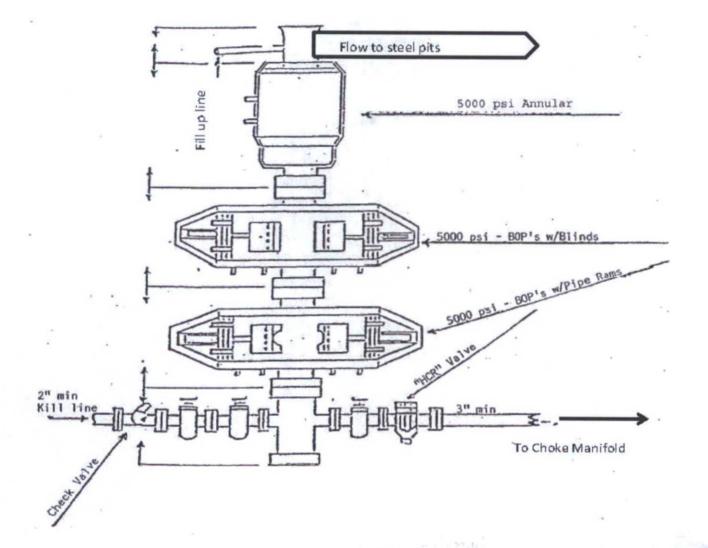

.

.

BTA Planning Report

Database:	EDM 5000.1	Single User D	b					Well Mesa 2	зн	×		
Company:	BTA Oil Produ	cers, LLC						GL @ 3287.0usft (Original Well Elev)				
Project:	Lea County, M	M			MD Refer	rence:		GL @ 3287	GL @ 3287 Ousft (Original Well Elev)			
Site:	Mesa Sec 1 8	12, T265, R	32E		North Re	ference:		Grid				
Well:	Mesa 23H				Survey C	alculation Me	ethod:	Minimum Cu	irvature			
Wellbore:	Wellbore #1											
Design:	Design #1											
Planned Survey												
Measured			Vertical				Vertical	Dogleg	Build	Turn		
Depth	Inclination	Azimuth	Depth	+	N/-S	+E/-W	Section	Rate	Rate	Rate		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)		
16,000.0	90.00	176 82	11,635	5.0	-4,562.9	253.1	4,569.9	0.00	0.00	0.00		
16,100.0	90.00	176.82	11,635	5.0	-4,662.8	258.7	4,669.9	0.00	0.00	0.00		
16,200.0	90.00	176.82	11,635	5 0	-4,762.6	264.2	4,769 9	0.00	0.00	0 00		
16,221.5	90.00	176.82	11,635	5 0	-4,784 1	265.4	4,791.4	0 00	0.00	0.00		
Mesa #23H B	BHL											
Design Targets												
Target Name												
- hit/miss target	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northin	a F	Easting				
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)		(usft)	Latitude	Longitud		
Mesa #23H BHL	0.00	0.00	11,635.0	-4,784	1 265.4	382,9	19.30	716,838.80	32° 3' 2.981 N	103° 38' 0	466 W	

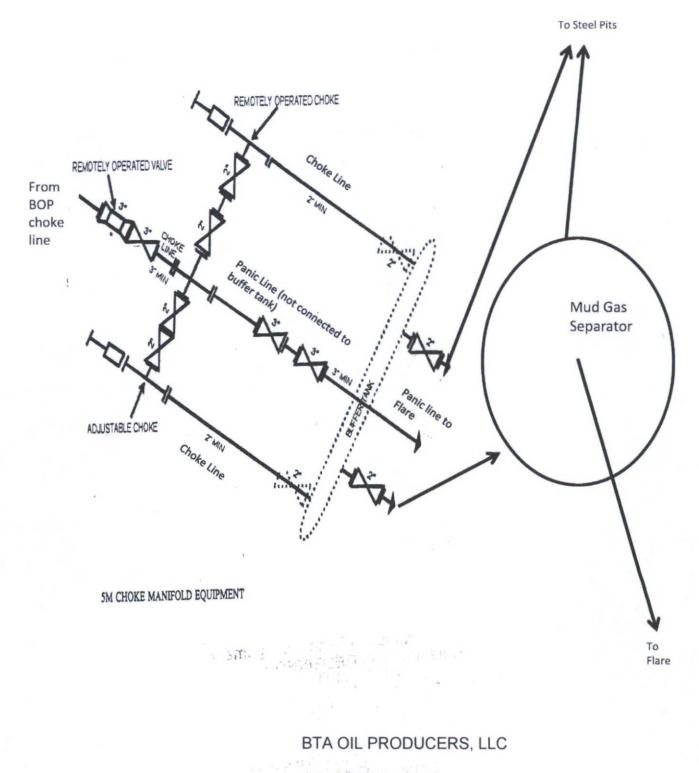
- plan hits target center - Point



5 Y ~ B P

A.

1


13-5/8" 5,000 PSI BOP

BTA OIL PRODUCERS, LLC

Attachment to APD

109.1

Attachment to APD