SUBMIT IN TR	IPLICATE - Other instructions	on reverse side.	7. If Unit or CA/Agre	7. If Unit or CA/Agreement, Name and/or No.			
1. Type of Well		HOBI	3S OCD. Well Name and No. COLGROVE 35 F	ED COM 702H			
2. Name of Operator EOG RESOURCES INCORP	Contact: STAN PORATEDE-Mail: stan_wagner@eog	WAGNER JUN gresources.com	1 4 2016 9. API Well No. 30-025-42983-6	00-X1			
3a. Address	3b. Ph Ph: 4	none No. (include area code) 432-686-3689 REC	EIVED ^{10.} Field and Pool, or WC-025 G09 S	Exploratory 263327G			
4. Location of Well (Footage, Sec., 1	T., R., M., or Survey Description)		11. County or Parish,	and State /			
Sec 35 T26S R33E Lot 4 360	FSL 245FWL		LEA COUNTY,	NM			
12. CHECK APP	ROPRIATE BOX(ES) TO INDI	CATE NATURE OF 1	NOTICE, REPORT, OR OTHE	ER DATA			
TYPE OF SUBMISSION		TYPE O	F ACTION				
Notice of Intent	Acidize	Deepen	Production (Start/Resume)	□ Water Shut-Off			
□ Subsequent Report	□ Alter Casing	Fracture Treat		Well Integrity			
Final Abandonment Notice	Casing Repair	New Construction Plug and Abandon	Recomplete Temporarily Abandon	Change to Original			
	Convert to Injection	Plug Back	□ Water Disposal	PD			
casing design, and the use of	f a multi-bowl wellhead system.						
Attached are specific details	f a multi-bowl wellhead system. related to these changes.	SEE A CONI	ATTACHED FOR DITIONS OF APPR	OVAL			
Attached are specific details	f a multi-bowl wellhead system. related to these changes.	SEE A CONI	ATTACHED FOR DITIONS OF APPR	.OVAL			
Attached are specific details 14. I hereby certify that the foregoing i	f a multi-bowl wellhead system. related to these changes. s true and correct. Electronic Submission #340497 For EOG RESOURCES mmitted to AFMSS for processing	SEE A CONI	ATTACHED FOR DITIONS OF APPR Il Information System to the Hobbs n 06/01/2016 (16PP0710SE)	OVAL			
14. I hereby certify that the foregoing i Name (Printed/Typed)	f a multi-bowl wellhead system. related to these changes. s true and correct. Electronic Submission #340497 For EOG RESOURCES nmitted to AFMSS for processing AGNER	Verified by the BLM We INCORPORATED, sent by PRISCILLA PEREZ o Title REGUL	ATTACHED FOR DITIONS OF APPR Il Information System to the Hobbs n 06/01/2016 (16PP0710SE) ATORY ANALYST	OVAL			
Attached are specific details 14. I hereby certify that the foregoing i Name (Printed/Typed) STAN WA Signature (Electronic	f a multi-bowl wellhead system. related to these changes. s true and correct. Electronic Submission #340497 For EOG RESOURCES mmitted to AFMSS for processing AGNER Submission)	Verified by the BLM We INCORPORATED, sent by PRISCILLA PEREZ o Title REGUL Date 05/26/2	ATTACHED FOR DITIONS OF APPR Il Information System to the Hobbs n 06/01/2016 (16PP0710SE) ATORY ANALYST	OVAL			
14. 1 hereby certify that the foregoing i Name (Printed/Typed) Signature	f a multi-bowl wellhead system. related to these changes. s true and correct. Electronic Submission #340497 For EOG RESOURCES I mmitted to AFMSS for processing I AGNER Submission) THIS SPACE FOR FE	Verified by the BLM We INCORPORATED, sent by PRISCILLA PEREZ o Title REGUL Date 05/26/2	ATTACHED FOR DITIONS OF APPR Il Information System to the Hobbs n 06/01/2016 (16PP0710SE) ATORY ANALYST 016 OFFICE USE	OVAL			
14. I hereby certify that the foregoing i 14. I hereby certify that the foregoing i 14. Signature Cor Name (Printed/Typed) Signature (Electronic	f a multi-bowl wellhead system. related to these changes. s true and correct. Electronic Submission #340497 For EOG RESOURCES I mmitted to AFMSS for processing AGNER Submission) THIS SPACE FOR FEI	Verified by the BLM We INCORPORATED, sent by PRISCILLA PEREZ o Title REGUL Date 05/26/2 DERAL OR STATE	ATTACHED FOR DITIONS OF APPR Il Information System to the Hobbs n 06/01/2016 (16PP0710SE) ATORY ANALYST 016 OFFICE USE PETROLEUM ENGINEER	OVAL			
14. I hereby certify that the foregoing i 14. I hereby certify that the foregoing i 16. Signature Cor Name (Printed/Typed) STAN WA Signature (Electronic Approved By (BLM Approver_Not If you and the applicant holds legal or equich would entitle the applicant to conduct	f a multi-bowl wellhead system. related to these changes. is true and correct. Electronic Submission #340497 For EOG RESOURCES mmitted to AFMSS for processing AGNER Submission) THIS SPACE FOR FE Specified).	Verified by the BLM We INCORPORATED, sent by PRISCILLA PEREZ o Title REGUL Date 05/26/2 DERAL OR STATE PR Title rant or lease Office Hobbs	ATTACHED FOR DITIONS OF APPR DITIONS OF APPR I Information System to the Hobbs n 06/01/2016 (16PP0710SE) ATORY ANALYST 016 OFFICE USE PETROLEUM ENGINEER	OVAL Date 06/07/20			

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	EOG Resources
LEASE NO.:	NMNM121490
WELL NAME & NO.:	Colgrove 35 Fed Com 702H
SURFACE HOLE FOOTAGE:	360'/S & 245'/W
BOTTOM HOLE FOOTAGE	2409'/S & 991'/W SEC 26
LOCATION:	Section 35, T.26 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

A. CASING

All previous COAs still apply except the following:

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 1. The 10 3/4 inch surface casing shall be set at approximately 1000 feet (in a competent bed below the Magenta Dolomite, which is a Member of the Rustler, and if salt is encountered, set casing at least 25 feet above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 10 3/4 inch shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

2. The minimum required fill of cement behind the 7 5/8 inch intermediate is:

Cement to surface. If cement does not circulate see B.1.a, c-d above.

Formation below the 7 5/8 inch shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

- 3. The minimum required fill of cement behind the 5 1/2 inch production casing is:
 - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification. Excess calculates to 20%. Additional cement might be required.
- 4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and

hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).

- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2

hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the 3rd Bone Springs formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	822'
Top of Salt	1,160'
Base of Salt / Top Anhydrite	4,860'
Base Anhydrite	5,095'
Lamar	5,095'
Bell Canyon	5,121'
Cherry Canyon	6,140'
Brushy Canyon	7,850'
Bone Spring Lime	9,310'
1st Bone Spring Sand	10,200
2 nd Bone Spring Lime	10,460'
2 nd Bone Spring Sand	10,820'
3 rd Bone Spring Carb	11.120'
3 rd Bone Spring Sand	11,860'
Wolfcamp	12,290'
TD	12,500

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

0-400	Fresh Water
6,140'	Oil
7,850'	Oil
10,200'	Oil
10,460'	Oil
10,820	Oil
11,120`	Oil
11.860'	Oil
12,290'	Oil
	0- 400' 6,140' 7,850' 10,200' 10,460' 10,820' 11,120' 11,860' 12,290'

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 850' and circulating cement back to surface.

1.

4. CASING PROGRAM - NEW

Hole		Csg				DFmin	DFmin	DFmin
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0-850'130	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0-8,000'	7.625"	29.7#	HCP-110	LTC	1.125	1.25	1.60
8.75"	8,000 - 11,200	7.625"	29.7#	HCP-110	Ultra FJ	1.125	1.25	1.60
6.75"	0'-17,174'	5.5"	23#	HCP-110	ULT SFII	1.125	1.25	1.60

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Centralizers will be placed in the 9-7/8" hole interval at least one every third joint.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4" 850	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
1000	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,200'	1250	9.0	2.50	9.06	Class C + 0.6% ASM-3 + 0.15% CDF-4P + 0.6% LTR + 0.5% SCA-6 + 0.13 pps LCL-11 + 0.13 pps LDP-c-0215
	150	12.5	1.71	9.06	Class C + 0.6% LTR + 0.5% SCA-6 + 0.6% ASM-3 + 0.15% CDF-4P + 0.13% LCL-11 + 0.13% LCF-7
	525	15.6	1.19	5.20	Class H + 0.2% ASM-3 + 0.3% SCA-6 + 0.65% LTR + 0.3% SPC-2
5-1/2" 17,174	525	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL: -OSEE COA

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-850 1000	Fresh - Gel	8.6-8.8	28-34	N/c
850' - 11,200'	Brine	8.8-10.0	28-34	N/c
11,200' - 17,174'	Oil Base	10.0-11.5	58-68	3 - 6
Lateral				

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 182 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7475 psig. No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

11. WELLHEAD: - SEE COA

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi. Prior to running the intermediate casing, the rams will be changed out to accommodate the 7-5/8" casing. The bonnet seals will be tested to 1500 psi. After installing the intermediate casing the casing rams will be removed and replaced with variable bore rams. The remaining BOPE will not be retested after installing the intermediate casing.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

Wellhead drawing Attached.

Colgrove 35 Fed Com #702H

T-26-S, R-33-E

EOG Resources - Midland

Lea County, NM (NAD 27 NME) Colgrove 35 Fed Com #702H

OH

Plan: Plan #1

Standard Planning Report

26 May, 2016

Planning Report

Database:	EDM 5000.1 Single User Db					Local Co-	ordinate Refe	rence:	We	#1021		
Company:	EOG	Resources - Mic	dland			TVD Reference:			KB	KB = 25 @ 3345.0usft		
Project:	Lea C	ounty, NM (NAI	D 27 NM	IE)		MD Reference: KB				KB = 25 @ 3345.0usft		
Site:	Colgrove 35 Fed Com #702H OH					North Refe	erence:		Gri	d		
Vell:						Survey Ca	Iculation Me	thod:	Mir	nimum Curvatu	ure	
Wellbore:												
Jesign:	Plan #	11				1.0	C. C	Sold Dr. And	S. a			
Project	Lea Co	unty, NM (NAD	27 NME	E)								
Map System: Geo Datum:	US State Plane 1927 (Exact solution) NAD 1927 (NADCON CONUS)					System Dat	um:		Mean	Sea Level		
Map Zone:	New Me	kico East 3001										
Site	Colgroy	ve 35 Fed Com										
Site Position:	,			Northing:		365.	.015.00 usft	Latitude:				32° 0' 4.048
From:	Mag	0		Easting:		742	682.00 usft	Longitud	le:			103° 33' 1.713 \
Position Uncertainty	y:	0.0) usft	Slot Radius	5:		13-3/16 "	Grid Con	vergen	ce:		0.41
Well	#702H											
	ANIC	0.	.0 usft	Northin	g:		365,015.0	0 usft	Latitud	de:		32° 0' 4.046
Well Position	TN/-5				-		740 740 0	0				103 33 1 365 1
Well Position	+E/-W	30.	.0 usft	Easting	:		/42./12.0	0 usn	Longi	tude:		100 00 1.000 1
Well Position Position Uncertainty Wellbore Magnetics	+E/-W y OH	30. 0. del Name	.0 usft .0 usft	Easting Wellhea Sample Date	: ad Elevation	on: Declina	742,712.0 0.	0 usft	Groun Dip Ang	ude: d Level:	Field	3.320.0 us
Well Position Position Uncertainty Wellbore Magnetics	+E/-W y OH Mo	30. 0. del Name IGRF2015	.0 usft .0 usft	Easting Wellhea Sample Date 6/18/	: ad Elevatio e /2015	on: Declina (°)	742.712.0 0. tion 7.14	0 usft	Longit Groun Dip Ang (°)	ude: d Level: jle 59.89	Field (3,320.0 us Strength nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design	HN/-S +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft	Easting Wellhea Sample Date 6/18/	: ad Elevati e 2015	on: Declina (°)	7.14	0 usft	Longit Groun Dip Ang (")	id Level: Ile 59.89	Field (3,320.0 us Strength nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes:	+R/-S +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft	Easting Wellhea Sample Date 6/18/	: ad Elevati e 2015	on: Declina (°)	742,712,0 0. tion 7.14	0 usft	Longit Groun Dip Ang (°)	ude: Id Level: Jie 59.89	Field	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version:	+E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft	Easting Wellhea Sample Date 6/18/ Phase:	: nd Elevati 2015 PI	on: Declina (°) LAN	7 14 142./12.0 0. 10 14 11	e On Depth	Longit Groun Dip Ang (°)	ude: d Level: le 59.89	Field	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Version:	+R/-S +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft septh Fro	Easting Wellhea Sample Date 6/18/ Phase: om (TVD)	e 2015 Pl	on: Declina (°) LAN +N/-S	742.712.0 0. tion 7.14	e On Depti E/-W	Longit Groun Dip Ang (°)	id Level: Jie 59.89 Dire	Field 0.0	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	+R/-S +E/-W y OH Mo Plan #1	30. del Name IGRF2015	.0 usft .0 usft septh Frc (us	Easting Wellhea Sample Date 6/18/ Phase: on (TVD) o	e 2015 Pl	on: Declina (°) LAN +N/-S (usft)	7 14 7 14	e On Depti E/-W usft)	Longit Groun Dip Ang (*)	ude: d Level: le 59.89 Dire ((Field (0.0 (*********************************	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Version:	+R/-S +E/-W y OH Mo	30. 0. del Name IGRF2015	.0 usft .0 usft s epth Fro (us 0.	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) ift) 0	e 2015 Pl	on: Declina (°) LAN +N/-S (usft) 0.0	7.14 7.14	e On Depth E/-W usft) 0.0	Longit Groun Dip Ang (*)	ude: Id Level: 59.89 Dire (8.	Field (0.0 (*) .85	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	+R/-S +E/-W y OH Mo	30. del Name IGRF2015	.0 usft .0 usft s epth Frc (us 0.	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) ift) 0	e 2015 Pl	on: Declina (°) LAN +N/-S (usft) 0.0	7.14 Ti + (1	e On Depti E/-W usft) 0.0	Longit Groun Dip Ang (*)	ude: d Level: jle 59.89 Dire (8.	Field (0.0 (*) .85	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Version: Vertical Section: Plan Sections Measured Depth Incl (usft)	+R/-S +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft state epth Frc (us 0. Vertica Depth (usft)	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) off) 0	r d Elevati 2015 Pl	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft)	742.712.0 0, tion 7.14 Ti +((1) Dogleg Rate (*(100usft)	e On Depti E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) h:	id Level: 16 59.89 0 0 0 0 0 0 0 0 0 0 0 0 0	Field (0.0 (*) .85	3,320.0 us Strength (nT) 48,013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incl (usft)	+R/-S +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft s epth Frc (us 0. Vertica Depth (usft)	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) oft) 0	e 2015 Pl	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft)	7.14 7.14 Ti + (1) Dogleg Rate (*/100usft)	e On Depti E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) h:	ude: d Level: jle 59.89 Dire (0 Turn Rate /100usft) 0.00	Field (0.0 (*) .85 TFO (*)	Strength nT) 48.013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth Incl (usft) 0.0	+R/-3 +E/-W y OH Mo Plan #1	30. 0. del Name IGRF2015	.0 usft .0 usft 	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) ift) 0 0 0 0 0 0 0 0 0 0 0 0 0	: d Elevati 2015 Pl //-S sft) 0.0 0.0	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	7.14 7.14 Ti + (u Dogleg Rate (*/100usft) 0.00	e On Dept/ E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) h: sft) (* 0 00	ude: d Level: jle 59.89 Dire (8. Turn Rate //100usft) 0.00	Field (0.0 ection (*) .85 TFO (*) 0.00 0.00	Strength nT) 48.013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incl (usft) 0.0 4.500.0 5 110.0	+R/-3 +E/-W y OH Mo Plan #1 Plan #1 ination (*) 0.00 0.00	30. 0. del Name IGRF2015 De Azimuth (*) 0.00 0.00 113.68	epth Frc (us 0. Vertica Depth (usft) 4,50	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) ift) 0 0 0 0 0 0 0 0 0 0 0 0 0	: d Elevati 2015 Pl //-S sft) 0.0 0.0 0.0	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.0	742.712.0 0. tion 7.14 Ti + (t) Dogleg Rate (*/100usft) 0.00 0.00	e On Dept/ E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) h: sft) (* 0.00 1.00	ude: d Level: jle 59.89 Dire (8. Turn Rate //100usft) 0.00 0.00	Field (0.0 ection (*) .85 TFO (*) 0.00 0.00 113.68	Strength nT) 48.013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth Incl (usft) 0.0 4.500.0 5.110.0 11 944 9	+R/-3 +E/-W y OH Mo Plan #1 Plan #1 ination (*) 0.00 0.00 6.10	30. del Name IGRF2015 Azimuth (*) 0.00 0.00 113.68 113.68	.0 usft .0 usft .0 usft 	Easting Wellhea Sample Date 6/18/ Phase: on (TVD) ift) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2015 Pl //-S sft) 0.0 0.0 -13.0 -304.7	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 29.7 604 P	7.14 Ti + (*/100usft) 0.00 0.00 0.00 0.00 0.00	e On Dept/ E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) (*) h: sft) (* 0.00 1.00 0.00	tude: d Level: jle 59.89 Dire (Dire (8. Turn Rate 7/100usft) 0.00 0.00 0.00 0.00	Field (0.0 ection (*) .85 TFO (*) 0.00 0.00 113.68	Strength nT) 48.013
Well Position Position Uncertainty Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth (usft) 0.0 4.500.0 5.110.0 11.944.8 12.86.7	+R/-3 +E/-W y OH Mo Plan #1 Plan #1 0.00 0.00 6.10 6.10 90.00	30. 0. del Name IGRF2015 Azimuth (*) 0.00 0.00 113.68 113.68 356 52	.0 usft .0 usft .0 usft 	Easting Wellhea Sample Date 6/18/ Phase: om (TVD) fft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e 2015 2015 Pl 1/-S sft) 0.0 0.0 -304.7 268.2	on: Declina (°) LAN +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 29.7 694.8 748 1	742.712.0 0. tion 7.14 Ti + (t Dogleg Rate (*/100usft) 0.00 0.00 1.00 0.00 1.00	e On Dept/ E/-W usft) 0.0 Build Rate (*/100us	Longit Groun Dip Ang (*) (*) h: sft) (* 0.00 0.00 1.00 0.00 9.07	tude: d Level: jle 59.89 Dire (Dire (8. Turn Rate (/100usft) 0.00 0.0	Field (0.0 ection (*) .85 TFO (*) 0.00 0.00 113.68 0.00 -114.04	Strength nT) 48.013

Planning Report

 Database:
 EDM 5000.1 Single User Db

 Company:
 EOG Resources - Midland

 Project:
 Lea County, NM (NAD 27 NME)

 Site:
 Colgrove 35 Fed Com

 Well:
 #702H

 Wellbore:
 OH

 Design:
 Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well #702H KB = 25 @ 3345.0usft KB = 25 @ 3345.0usft Grid Minimum Curvature

Planned Survey

Measu	red			Vertical			Vertical	Dogleg	Build	Turn
Dept	h	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft	the second of	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
a free strength	Charles P		1111111	A DECEMBER OF	(usit)	(uait)	(adia)		1	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
1	0.001	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
2	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
3	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
4	\$00.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
		0.00		500.0						
	0.000	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
e	500.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
1	00.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
8	300.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
5	900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1.0	0.00	0.00	0.00	1.000.0	0.0	0.0	0.0	0.00	0.00	0.00
1.1	0.00	0.00	0.00	1 100 0	0.0	0.0	0.0	0.00	0.00	0.00
1 3	200.0	0.00	0.00	1 200 0	0.0	0.0	0.0	0.00	0.00	0.00
1.3	300.0	0.00	0.00	1 300 0	0.0	0.0	0.0	0.00	0.00	0.00
1.4	100.0	0.00	0.00	1 400 0	0.0	0.0	0.0	0.00	0.00	0.00
1.5	00.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,5	500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,6	600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1.7	00.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,8	300.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,9	0.00	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
20	0000	0.00	0.00	2 000 0	0.0	0.0	0.0	0.00	0.00	0.00
2,0	00.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,1	00.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,2	200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2.3	00.00	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,4	0.00	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2.5	0.00	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,6	0.00	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2.7	0.00	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,8	0.008	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2.9	0.00	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,0	0.00	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,1	00.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,2	00.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,3	0.00	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,4	00.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3.5	0.00	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3.6	0.00	0.00	0.00	3 600 0	0.0	0.0	0.0	0.00	0.00	0.00
3.7	00.0	0.00	0.00	3 700 0	0.0	0.0	0.0	0.00	0.00	0.00
3.8	00.0	0.00	0.00	3 800 0	0.0	0.0	0.0	0.00	0.00	0.00
3.9	00.0	0.00	0.00	3 900 0	0.0	0.0	0.0	0.00	0.00	0.00
0,0	00.0	0.00	0.00	0,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,0	00.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,1	00.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,2	00.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,3	00.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,4	00.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4.5	00.0	0.00	0.00	4 500 0	0.0	0.0	0.0	0.00	0.00	0.00
4,0	00.0	1.00	112.69	4,500.0	0.0	0.0	0.0	1.00	1.00	0.00
4,6	00.0	1.00	113.00	4,000.0	-0.4	0.8	-0.2	1.00	1.00	0.00
4,/	0.00	2.00	113.68	4,700.0	-1.4	3.2	-0.9	1.00	1.00	0.00
4,8	0.00	3.00	113.68	4,/99.9	-3.2	1.2	-2.0	1.00	1.00	0.00
4,9	00.0	4.00	113.68	4,899.7	-5.6	12.8	-3.6	1.00	1.00	0.00
5.0	00.0	5.00	113.68	4,999.4	-8.8	20.0	-5.6	1.00	1.00	0.00
5.1	10.0	6.10	113.68	5,108.8	-13.0	29.7	-8.3	1.00	1.00	0.00
5.2	00.0	6.10	113.68	5,198.3	-16.9	38.5	-10.8	0.00	0.00	0.00
5.3	00.0	6.10	113.68	5,297.8	-21.1	48.2	-13.5	0.00	0.00	0.00
-1-										

5/26/2016 8:56:57AM

COMPASS 5000.1 Build 78

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design: EDM 5000.1 Single User Db EOG Resources - Midland Lea County, NM (NAD 27 NME) Colgrove 35 Fed Com #702H OH Plan #1 Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well #702H KB = 25 @ 3345.0usft KB = 25 @ 3345.0usft Grid Minimum Curvature

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	6.10	113.68	5,397.2	-25.4	57.9	-16.2	0.00	0.00	. 0.00
5 500 0	6 10	113.68	5 496 6	-29.7	67.7	-18.0	0.00	0.00	0.00
5,600,0	6.10	113.68	5 596 1	-33.9	77.4	-21.6	0.00	0.00	0.00
5,000.0	6 10	113.68	5 695 5	-38.2	87.1	-24.4	0.00	0.00	0.00
5,800.0	6 10	113.68	5 704 0	-42.5	96.9	-27.1	0.00	0.00	0.00
5,000.0	6.10	113.68	5 804 4	42.5	106.6	-27.1	0.00	0.00	0.00
5,500.0	0.10	113.00	5.054.4	-40.7	100.0	-25.0	0.00	0.00	0.00
6,000.0	6.10	113.68	5,993.8	-51.0	116.3	-32.5	0.00	0.00	0.00
6,100.0	6.10	113.68	6,093.2	-55.3	126.1	-35.2	0.00	0.00	0.00
6,200.0	6.10	113.68	6,192.7	-59.5	135.8	-38.0	0.00	0.00	0.00
6,300.0	6.10	113.68	6,292.1	-63.8	145.5	-40.7	0.00	0.00	0.00
6,400.0	6.10	113.68	6,391.5	-68.1	155.2	-43 4	0.00	0.00	0.00
6,500.0	6.10	113.68	6 491.0	-72.4	165.0	-46.1	0.00	0.00	0.00
6,600,0	6.10	113.68	6 590.4	-76.6	174.7	-48.8	0.00	0.00	0.00
6,700.0	6.10	113.68	6,689,8	-80.9	184.4	-51.6	0.00	0.00	0.00
6,800,0	6.10	113.68	6 789 3	-85.2	194 2	-54.3	0.00	0.00	0.00
6,900,0	6.10	113.68	6,888.7	-89.4	203.9	-57.0	0.00	0.00	0.00
7,000.0	6.10	113.68	6,988.1	-93.7	213.6	-59.7	0.00	0.00	0.00
7,100.0	6,10	113.68	7,087.6	-98.0	223.4	-62.4	0.00	0.00	0.00
7,200.0	6.10	113.68	7,187.0	-102.2	233.1	-65.2	0.00	0.00	0.00
7,300.0	6.10	113.68	7,286.4	-106.5	242.8	-67.9	0.00	0.00	0.00
7,400.0	6.10	113.68	7,385.9	-110.8	252.6	-70.6	0.00	0.00	0.00
7,500.0	6.10	113.68	7,485.3	-115.0	262.3	-73.3	0.00	0.00	0.00
7,600.0	6.10	113.68	7,584.7	-119.3	272.0	-76.0	0.00	0.00	0.00
7,700.0	6.10	113.68	7,684.2	-123.6	281.8	-78.8	0.00	0.00	0.00
7,800.0	6.10	113.68	7,783.6	-127.8	291.5	-81.5	0.00	0.00	0.00
7.900.0	6.10	113.68	7,883.1	-132.1	301.2	-84.2	0.00	0.00	0.00
8,000.0	6.10	113.68	7.982.5	-136.4	311.0	-86.9	0.00	0.00	0.00
8,100.0	6.10	113.68	8.081.9	-140.6	320.7	-89.6	0.00	0.00	0.00
8,200.0	6.10	113.68	8,181.4	-144 9	330.4	-92.4	0.00	0.00	0.00
8,300,0	6.10	113.68	8,280,8	-149.2	340.1	-95.1	0.00	0.00	0.00
8,400.0	6.10	113.68	8,380.2	-153.4	349.9	-97.8	• 0.00	0.00	0.00
8 500 0	6 10	113 68	8 479 7	-1577	359 6	-100 5	0.00	0.00	0.00
8,600,0	6 10	113.68	8 579 1	-162.0	369.3	-103.2	0.00	0.00	0.00
8 700 0	6.10	113.68	8 678 5	-166.2	379 1	-105.9	0.00	0.00	0.00
8 800 0	6.10	113 68	8,778.0	-170 5	388.8	-108 7	0.00	0.00	0.00
8,900.0	6.10	113.68	8.877.4	-174.8	398.5	-111.4	0.00	0.00	0.00
0.000.0	6.40	440.00	0.070.0	470.4	400.0		0.00	0.00	0.00
9,000.0	6.10	113.68	8,976.8	-1/9.1	408.3	-114.1	0.00	0.00	0.00
9,100.0	6.10	113.00	9,076.3	-183.3	418.0	-110.8	0.00	0.00	0.00
9,200.0	6.10	113.00	9,175.7	-187.0	427.7	-119.5	0.00	0.00	0.00
9,300.0	6.10	113.68	9,275.1	-191.8	437.5	-122.5	0.00	0.00	0.00
5,400.0	0.10	115.00	5,574.0	-130.1	441.2	-125.0	0.00	0.00	0.00
9,500.0	6.10	113.68	9,474.0	-200.4	456.9	-127.7	0.00	0.00	0.00
9,600.0	6.10	113.68	9,573.4	-204.7	466.7	-130.4	0.00	0.00	0.00
9,700.0	6.10	113.68	9,672.9	-208.9	476.4	-133.1	0.00	0.00	0.00
9,800.0	6.10	113.68	9,772.3	-213.2	486.1	-135.9	0.00	0.00	0.00
9,900.0	6.10	113.68	9,871.7	-217.5	495.9	-138.6	0.00	0.00	0.00
10,000.0	6.10	113.68	9,971.2	-221.7	505.6	-141.3	0.00	0.00	0.00
10,100.0	6.10	113.68	10.070.6	-226.0	515.3	-144.0	0.00	0.00	0.00
10,200.0	6.10	113.68	10,170.0	-230.3	525.0	-146.7	0.00	0.00	0.00
10,300.0	6.10	113.68	10,269.5	-234.5	534.8	-149.5	0.00	0.00	0.00
10,400.0	6 10	113.68	10.368.9	-238.8	544.5	-152.2	0.00	0.00	0.00
10,500.0	6.10	113.68	10.468.3	-243 1	554.2	-154.9	0.00	0.00	0.00
10,600.0	6.10	113.68	10,567.8	-247.3	564.0	-157.6	0.00	0.00	0.00
10,700.0	6.10	113.68	10,667.2	-251.6	573.7	-160.3	0.00	0.00	0.00

5/26/2016 8:56:57AM

COMPASS 5000.1 Build 78

Planning Report

 Database:
 EDM 5000.1 Single User Db

 Company:
 EOG Resources - Midland

 Project:
 Lea County, NM (NAD 27 NME)

 Site:
 Colgrove 35 Fed Com

 Well:
 #702H

 Wellbore:
 OH

 Design:
 Plan #1

Planned Survey

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well #702H KB = 25 @ 3345.0usft KB = 25 @ 3345.0usft Grid Minimum Curvature

Vertical Measured Vertical Dogleg Build Turn Depth Depth Section Rate Rate Rate Inclination Azimuth +N/-S +E/-W (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (*) (°) (usft) (usft) 10,800.0 6.10 113.68 10,766.6 -255.9 583.4 -163.1 0.00 0.00 0.00 10,900.0 113.68 10,866.1 -260.1 6.10 593.2 -165.8 0.00 0.00 0.00 11,000.0 113.68 10,965.5 6.10 -264 4 602 9 -168.5 0.00 0.00 0.00 11.100.0 6.10 113.68 11.064.9 -268.7 612.6 -171.2 0.00 0.00 0.00 11 200 0 6 10 113 68 11.164.4 -272.9 622.4 -173.9 0.00 0.00 0.00 11,300.0 6.10 113.68 11,263.8 -277.2 632.1 -176.7 0.00 0.00 0.00 11,400.0 6.10 113.68 11,363.2 -281.5 641.8 -179.4 0.00 0.00 0.00 11,500.0 6.10 113.68 11,462.7 -285.7 -182.1 651.6 0.00 0.00 0.00 11,600.0 6.10 113.68 11,562.1 -290.0 661.3 -184.8 0.00 0.00 0.00 11,700.0 6.10 113.68 11.661.5 -294.3 671.0 -187.5 0.00 0.00 0.00 11,800.0 6.10 113.68 11.761.0 -298.6 680.7 -190.3 0.00 0.00 0.00 11,900.0 6.10 113.68 11,860.4 -302.8 690.5 -193.0 0.00 0.00 0.00 6.10 11 944.8 113 68 11,904,9 -304.7 694.8 -194.2 0.00 0.00 0.00 11,950.0 109.06 11,910,1 -304.9 5.91 695.3 -194.3 10.00 -3.71 -88.84 12.000.0 6.34 60.93 11,959.9 -304.4 700.2 -193.1 10.00 0.86 -96 26 12.050.0 9.76 34.05 12 009 4 -299.6 705 0 -187.6 10.00 6.85 -53.75 12,100.0 14.15 22.27 12,058.3 -290.4 709.7 -177.8 10.00 8.78 -23.55 12,150.0 18.84 16.12 12,106.2 -277 0 714.2 -163.8 10.00 9.38 -12.30 12,200.0 23.66 12.38 12,152.8 -259.4 718.6 -145.8 10.00 9,63 -7.49 12.250.0 28.53 9.85 12,197.7 -237.8 722.8 -123.8 10.00 9.75 -5.06 12,300.0 33,44 8.01 12,240.6 -212.4 726.8 -98.1 10.00 9.82 -3 68 12.350.0 38.37 6.59 12,281.0 -183.3 730.5 -68.8 10.00 9.86 -2.83 12,400.0 43.32 5.46 12 318 9 -150.8 733 9 -36 1 10 00 9 89 -2.28 12 450.0 48 27 4 51 12.353.7 -115.1 737.0 -0.4 10.00 9.91 -1.89 12,500.0 53.23 3.70 12.385.3 -76.5 739.8 38.2 10.00 9.92 -1.62 12,550.0 58.20 2.99 12.413.5 -35.3 79.3 742.2 10.00 9.93 -1.42 12,438.0 12,600.0 63.17 2.35 744.2 8.2 122.6 10.00 9.94 -1.28FTP(CG 35 Fed Com #702H) 12,650.0 68.14 1.76 12,458.6 53.7 745.8 167.8 10 00 9 94 -1 17 12,700.0 73 11 1.22 12.475.2 100.9 747.0 214.6 10.00 9.95 -1.09 12,750.0 78.09 0.70 12,487.6 149.3 747.9 262.6 10.00 9.95 -1.04 12.800.0 83.06 0.20 12,495.8 198.6 748.2 311.3 10.00 9.95 -1.00 12,850.0 88.04 359.71 12,499.7 248.4 748.2 360.6 9.95 10.00 -0.98 12,869.7 90.00 359.52 12.500.0 268.2 748.1 380.0 10.00 9.95 -0.97 12,900.0 90.00 359.52 12.500.0 298.4 747.8 409.9 0.00 0.00 0.00 13,000.0 90.00 359.52 12,500.0 398.4 747.0 508 6 0 00 0.00 0.00 13,100,0 90.00 359.52 12,500.0 498.4 746.1 607.3 0.00 0.00 0.00 13,200.0 90.00 359.52 12.500.0 598.4 745.3 706.0 0.00 0.00 0.00 13,300.0 90.00 359.52 12,500.0 698.4 744 5 804.6 0.00 0.00 0.00 13,400.0 359.52 12,500.0 90.00 798.4 743.6 903.3 0.00 0.00 0.00 13.500.0 90.00 359.52 12,500.0 898.4 742.8 1.002.0 0.00 0.00 0.00 13,600.0 90.00 359.52 12,500.0 998.4 741.9 1,100.7 0.00 0.00 0.00 13,700.0 90.00 359.52 12,500.0 1.098.4 741.1 1,199.3 0.00 0.00 0.00 13,800.0 90.00 359.52 1,198.4 0.00 12 500.0 740 3 1 298.0 0.00 0.00 13,900.0 90.00 359.52 12,500.0 1,298.4 739.4 1.396.7 0.00 0.00 0.00 14,000.0 90.00 359.52 12.500.0 1.398.4 738 6 1.495.4 0.00 0.00 0.00 14,100.0 90.00 359.52 12,500.0 1,498,4 737.8 1.594.0 0.00 0.00 0.00 14,200.0 90.00 359.52 12,500.0 1,598.4 736.9 1.692.7 0.00 0.00 0.00 359.52 14,300.0 90.00 1,791.4 0.00 0.00 0.00 12,500.0 1,698.4 736.1 14,400.0 90.00 359.52 12.500.0 1,798.4 735.2 1.890.1 0.00 0.00 0.00 14,500.0 90.00 359.52 12.500.0 1,898.4 734.4 1,988.8 0.00 0.00 0.00 90 00 359 52 12 500 0 1 998 4 14 600 0 7336 2 087 4 0.00 0.00 0.00 14,700.0 90.00 359.52 12.500.0 2,098.4 732.7 2,186.1 0.00 0.00 0.00

5/26/2016 8:56:57AM

COMPASS 5000.1 Build 78

Plan #1

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:

EDM 5000.1 Single User Db EOG Resources - Midland Lea County, NM (NAD 27 NME) Colgrove 35 Fed Com #702H OH Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well #702H KB = 25 @ 3345.0usft KB = 25 @ 3345.0usft Grid Minimum Curvature

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
14,800.0	90.00	359.52	12,500.0	2,198,4	731.9	2,284.8	0.00	0.00	0.00	
14,900.0	90.00	359.52	12,500.0	2,298.4	731.1	2.383.5	0.00	0.00	0.00	
15,000.0	90.00	359.52	12,500.0	2,398.4	730.2	2,482.1	0.00	0.00	0.00	
15.100.0	90.00	359.52	12,500.0	2,498.4	729.4	2.580.8	0.00	0.00	0.00	
15.200.0	90.00	359.52	12,500.0	2,598.3	728.5	2.679.5	0 00	0.00	0.00	
15.300.0	90.00	359.52	12.500.0	2,698.3	727.7	2,778.2	0.00	0.00	0.00	
15,400.0	90.00	359.52	12.500.0	2,798.3	726.9	2,876.9	0.00	0.00	0.00	
15,500.0	90.00	359.52	12,500.0	2,898.3	726.0	2,975.5	0.00	0.00	0.00	
15,600.0	90.00	359.52	12,500.0	2,998.3	725.2	3,074.2	0.00	0.00	0.00	
15.700.0	90.00	359.52	12,500.0	3,098.3	724.4	3.172.9	0.00	0.00	0.00	
15,800.0	90.00	359.52	12,500.0	3,198.3	723.5	3,271.6	0.00	0.00	0.00	
15,900.0	90.00	359.52	12,500.0	3,298.3	722.7	3,370.2	0.00	0.00	0.00	
16,000.0	90.00	359.52	12.500.0	3,398.3	721.8	3,468.9	0.00	0.00	0.00	
16.100.0	90.00	359.52	12,500.0	3,498.3	721.0	3,567.6	0.00	0.00	0.00	
16.200.0	90.00	359.52	12,500.0	3,598.3	720.2	3,666.3	0.00	0.00	0.00	
16.300.0	90.00	359.52	12,500.0	3,698.3	719.3	3,764.9	0.00	0,00	0.00	
16,400.0	90.00	359.52	12,500.0	3,798.3	718.5	3,863.6	0.00	0.00	0.00	
16,500.0	90.00	359.52	12,500.0	3,898.3	717.7	3,962.3	0.00	0.00	0.00	
16,600.0	. 90.00	359.52	12.500.0	3,998.3	716.8	4,061.0	0.00	0.00	0.00	
16,700.0	90.00	359.52	12.500.0	4,098.3	716.0	4.159.7	0.00	0.00	0.00	
16,800.0	90.00	359.52	12,500.0	4,198.3	715.1	4.258.3	0.00	0.00	0.00	
16,900.0	90.00	359.52	12,500.0	4,298.3	714 3	4 357.0	0.00	0.00	0.00	
17,000.0	90.00	359.52	12,500.0	4,398.3	713.5	4,455.7	0.00	0.00	0.00	
17,100.0	90.00	359.52	12,500 0	4,498.3	712.6	4.554.4	0.00	0.00	0.00	
17,174.7	90.00	359.52	12.500.0	4.573.0	712.0	4.628.1	0.00	0.00	0.00	
PBHL(CG 35	Fed Com #702H	1)								

Design Targets									
Target Name - hit/miss target D - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP(CG 35 Fed Com #7 - plan misses target ce - Point	0.00 nter by 70.6	0.00 usft at 1260	12,500.0 0.0usft MD	-25.0 (12438.0 TVD)	750.0 8.2 N 744.2 E	364,990.00	743.462.00	32° 0' 3.744 N	103° 32' 52.658 W
PBHL(CG 35 Fed Com # - plan hits target center - Point	0.00	0.00	12.500.0	4.573.0	712.0	369,588.00	743.424.00	32° 0' 49.248 N	103° 32' 52.711 W