ONSHORE ORDER NO. 1 Chevron SD WE 15 FED P12 4H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Ground Elevation	3146	0	
Rustler	2496	650	
Castile	146	3000	
Lamar	-1554	4700	
Bell Canyon	-1834	4980	
Cherry Canyon	-2729	5875	
Brushy Canyon	-4279	7425	
Bone Spring Limestone	-5659	8805	
Upper Avalon	-5729	8875	
Lateral TD (Upper Avalon)	-5882	9028	13951

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth		
Deepest Experies	cted Base of Fresh Water	500		
Water	Rustler	650		
Water	ter Bell Canyon			
Water	Cherry Canyon	5875		
Oil/Gas	Brushy Canyon	7425		
Oil/Gas	Bone Spring Limestone	8805		
Oil/Gas	Upper Avalon	8875		

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic) for drill out below surface casing. Stack will be tested as specified in the attached testing requirements.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	TVD	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	650'	650'	17-1/2"	13-3/8"	54.5 #	J55	STC	New
Intermediate	0'	4,530'	4,485'	12-1/4"	9-5/8"	40 #	HCK-55	LTC	New
Production	0'	13,951'	9,028'	8-3/4"	5-1/2"	20.0 #	HCP-110	TXP BTC S	New

b. Casing design subject to revision based on geologic conditions encountered.

C. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:	850'			
Intermediate Casing:	4800'			
Production Casing:	22,000' MD)/9,200' TVD (12,800' VS @	2 90 deg inc)	
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.40	1.92	2.40	1.75
Intermediate	1.21	3.02	2.15	1.48
Production	1.30	2.51	2.48	1.51

Min SF is the smallest of a group of safety factors that include the following considerations:

		Surf	Int	Prod
Burst Design				
Pressure Test- Surfac	ce, Int, Prod Csg	X	X	X
P external:	Water			
P internal:	Test psi + next section heaviest mud in csg			
Displace to Gas- Surf	Csg	X		
P external:	Water			
P internal:	Dry Gas from Next Csg Point			
Frac at Shoe, Gas to	Surf- Int Csg		X	
P external:	Water			
P internal:	Dry Gas, 15 ppg Frac Gradient			
Stimulation (Frac) Pre	essures- Prod Csg			X
P external:	Water			
P internal:	Max inj pressure w/ heaviest injected fluid			
Tubing leak- Prod Cs	g (packer at KOP)			X
P external:	Water			
P internal:	Leak just below surf, 8.7 ppg packer fluid			
Collapse Design				
Full Evacuation		X	X	X
P external:	Water gradient in cement, mud above TOC			
P internal:	none			
Cementing- Surf, Int,	Prod Csg	X	X	X
P external:	Wet cement			
P internal:	water			
Tension Design				
100k lb overpull		X	X	X

ONSHORE ORDER NO. 1 Chevron SD WE 15 FED P12 4H Lea County, NM

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water	BBLs
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk	
Tail	Class C	0'	650'	14.8	1.35	125	749	6.57	180
Intermediate			2						
Lead	50:50 Poz	0'	3,530'	11.9	2.43	150	1025	14.21	444
Tail	Class C	3,530'	4,530'	14.8	1.33	85	464	6.37	110
Production									
1st Lead	50:50 Poz	3,680'	8,610'	11.5	2.51	50	704	15.51	315
2nd Lead	TXI	8,610'	12,951'	12.5	1.62	35	921	9.64	266
	Acid								
Tail	Soluble	12,951'	13,951'	15	2.18	0	116	11.42	45

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one centralizer on every joint for the first 1000' from TD, then every other joint to EOB, then every third joint to KOP, and then every forth joint to intermediate casing.

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	650'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
650'	4,530'	Brine	9.5 - 10.1	28 - 30	NC - NC
4,530'	8,610'	OBM	8.3 - 9.6	28 - 30	NC - NC
8,610'	9,359'	OBM	8.3 - 9.6	28 - 30	15 - 25
9,359'	13,951'	OBM	8.3 - 9.6	28 - 30	15 - 25

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Surface to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional hole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

- a. No abnormal pressures or temperatures are expected. Estimated BHP is: 4500 psi
 b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event
- that H2S is encountered

SD WE 15 FED P12 1H

SD WE 15 FED P12 3H

SD WE 15 FED P12 2H

SD WE 15 FED P12 4H

Training

FEB 1 3 2017

HOBBS OCD

MCBU Drilling and Completions H₂S training requirements are intended to define the minimum level training required for employees, contractors and visitors to enter or perform work at MCBU Drilling and Completions locations that have known concentrations of H₂S.

Awareness Level

Employees and visitors to MCBU Drilling and Completions locations that have known concentrations of H_2S , who are not required to perform work in H_2S areas, will be provided with an awareness level of H_2S training prior to entering any H_2S areas. At a minimum, awareness level training will include:

- 1. Physical and chemical properties of H₂S
- 2. Health hazards of H₂S
- 3. Personal protective equipment
- 4. Information regarding potential sources of H₂S
- 5. Alarms and emergency evacuation procedures

Awareness level training will be developed and conducted by personnel who are qualified either by specific training, educational experience and/or work-related background.

Advanced Level H₂S Training

Employees and contractors required to work in areas that may contain H₂S will be provided with Advanced Level H₂S training prior to initial assignment. In addition to the Awareness Level requirements, Advanced Level H₂S training will include:

- 1. H₂S safe work practice procedures;
- 2. Emergency contingency plan procedures;
- 3. Methods to detect the presence or release of H₂S (e.g., alarms, monitoring equipment), including hands-on training with direct reading and personal monitoring H₂S equipment.
- Basic overview of respiratory protective equipment suitable for use in H₂S environments. Note: Employees who work at sites that participate in the Chevron Respirator User program will require separate respirator training as required by the MCBU Respiratory Protection Program;
- Basic overview of emergency rescue techniques, first aid, CPR and medical evaluation procedures. Employees who may be required to perform "standby" duties are required to receive additional first aid and CPR training, which is not covered in the Advanced Level H₂S training;
- 6. Proficiency examination covering all course material.

Advanced H₂S training courses will be instructed by personnel who have successfully completed an appropriate H₂S train-the-trainer development course (ANSI/ASSE Z390.1-2006) or who possess significant past experience through educational or work-related background.

Page 1 of 5

H₂S Training Certification

All employees and visitors will be issued an H₂S training certification card (or certificate) upon successful completion of the appropriate H₂S training course. Personnel working in an H₂S environment will carry a current H₂S training certification card as proof of having received the proper training on their person at all times.

Briefing Area

A minimum of two briefing areas will be established in locations that at least one area will be upwind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated upwind briefing areas for instructions.

H₂S Equipment

Respiratory Protection

- a) Six 30 minute SCBAs 2 at each briefing area and 2 in the Safety Trailer.
- b) Eight 5 minute EBAs 5 in the dog house at the rig floor, 1 at the accumulator, 1 at the shale shakers and 1 at the mud pits.

Visual Warning System

- a) One color code sign, displaying all possible conditions, will be placed at the entrance to the location with a flag displaying the current condition.
- b) Two windsocks will be on location, one on the dog house and one on the Drill Site Manager's Trailer.

H₂S Detection and Monitoring System

- a) H₂S monitoring system (sensor head, warning light and siren) placed throughout rig.
 - Drilling Rig Locations: at a minimum, in the area of the Shale shaker, rig floor, and bell nipple.
 - Workover Rig Locations: at a minimum, in the area of the Cellar, rig floor and circulating tanks or shale shaker.

Well Control Equipment

- a) Flare Line 150' from wellhead with igniter.
- b) Choke manifold with a remotely operated choke.
- c) Mud / gas separator

Mud Program

In the event of drilling, completions, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater the following shall be considered:

- 1. Use of a degasser
- 2. Use of a zinc based mud treatment
- 3. Increasing mud weight

Public Safety - Emergency Assistance

Agency	Telephone Number
Lea County Sheriff's Department	575-396-3611
Fire Department:	
Carlsbad	575-885-3125
Artesia	575-746-5050
Lea County Regional Medical Center	575-492-5000
Jal Community Hospital	505-395-2511
Lea County Emergency Management	575-396-8602
Poison Control Center	800-222-1222

Page 3 of 5

Chevron MCBU D&C Emergency Notifications

Below are lists of contacts to be used in emergency situations.

	Name	Title	Office Number	Cell Phone
1.	Kenneth Hodges	Drilling Engineer	(713) 372-2154	(832) 470-3579
2.	Elmo Cecchetti	Superintendent	(713) 372-1235	(412) 719-7885
5.	Ikenna Chukwumaeze	Drilling Manager	(713) 372-7591	(281) 615-0701
6.	Scott Nash	Operations Manager	(713) 372-5747	(281) 814-9713
7.	Luke Meaux	D&C HES	(432) 687-7133	(432) 208-3572
8.	Brendan Gustus	Completion Engineer	(713) 372-1309	(432) 530-6158

H₂S

Ν

A 1002

254

SC25

0 Aigma

10------

27.9

123 **

35-35-3

5----

e' 191233

Wind Sept

Chevron

Smalling Area

Shark

Courters

Sign

Access Road

(2282-27)

*

BLOWOUT PREVENTOR SCHEMATIC **Minimum Requirements OPERATION** : Intermediate and Production Hole Sections Minimum System Pressure Rating : 5,000 psi SIZE PRESSURE DESCRIPTION **Bell Nipple** А N/A в 5,000 psi Annular 13 5/8 **Flowline to Shaker** С 5,000 psi 13 5/8 **Pipe Ram** A D 13 5/8" 5,000 psi **Blind Ram Fill Up Line** Е 5,000 psi 13 5/8" **Mud Cross** F DSA As required for each hole size B C-Sec 13-5/8" 5K x 11" 5K B-Sec A-Sec 13-3/8" SOW x 13-5/8" 5K Kill Line O C PRESSURE DESCRIPTION SIZE 2" 5,000 psi **Gate Valve** 2" 5,000 psi **Gate Valve** 2" 5,000 psi **Check Valve** D Choke Line to Choke Manifold- 3" Kill Line- 2" minimum minimum **Choke Line** 0 E SIZE PRESSURE DESCRIPTION 5,000 psi Gate Valve 3" **HCR** Valve 3" 5,000 psi **HCR** Valve -u **Installation Checklist** The following item must be verified and checked off prior to pressure testing of BOP equipment. The installed BOP equipment meets at least the minimum requirements (rating, type, size, configuration) as shown on this schematic. Components may be substituted for equivalent equipment rated to higher pressures. Additional components may be put into place as long as they meet or exceed the minimum pressure rating of the system. All valves on the kill line and choke line will be full opening and will allow straight though flow. The kill line and choke line will be straight unless turns use tee blocks or are targeted with running tess, and will be anchored to prevent whip and reduce vibration. Manual (hand wheels) or automatic locking devices will be installed on all ram preventers. Hand wheels will also be installed on all manual valves on the choke line and kill line. A valve will be installed in the closing line as close as possible to the annular preventer to act as a locking device. This valve will remain open unless accumulator is inoperative. Upper kelly cock valve with handle will be available on rig floor along with safety valve and subs to fit all drill string connections in use. After Installation Checklist is complete, fill out the information below and email to Superintendent and Drilling Engineer Wellname: **Representative:** Date:

CHOKE MANIFOLD SCHEMATIC

Minimum Requirements

OPERATION : Intermediate and Production Hole Sections

Minimum System : 5,000 psi Pressure Rating

BOPE Testing

Minimum Requirements

Closing Unit and Accumulator Checklist

The following item must be performed, verified, and checked off at least once per well prior to low/high pressure testing of BOP equipment. This must be repeated after 6 months on the same well.

Precharge pressure for each accumulator bottle must fall within the range below. Bottles may be further charged with nitrogen gas only. Tested precharge pressures must be recorded for each individual bottle and kept on location through the end of the well. Test will be conducted prior to connecting unit to BOP stack.

Check one that applies	Accumulator working pressure rating	Minimum acceptable operating pressure	Desired precharge pressure	Maximum acceptable precharge pressure	Minimum acceptable precharge pressure
	1500 psi	1500 psi	750 psi	800 psi	700 psi
	2000 psi	2000 psi	1000 psi	1100 psi	900 psi
	3000 psi	3000 psi	1000 psi	1100 psi	900 psi

Accumulator will have sufficient capacity to open the hydraulically-controlled choke line valve (if used), close all rams, close the annular preventer, and retain a minimum of 200 psi above the maximum acceptable precharge pressure (see table above) on the closing manifold without the use of the closing pumps. This test will be performed with test pressure recorded and kept on location through the end of the well

Accumulator fluid reservoir will be double the usable fluid volume of the accumulator system capacity. Fluid level will be maintained at manufacturer's recommendations. Usable fluid volume will be recorded. Reservior capacity will be recorded. Reservior capacity will be recorded. Reservior fluid level will be recorded along with manufacturer's recommendation. All will be kept on location through the end of the well.

Closing unit system will have two independent power sources (not counting accumulator bottles) to close the preventers.

Power for the closing unit pumps will be available to the unit at all times so that the pumps will automatically start when the closing valve manifold pressure decreases to the pre-set level. It is recommended to check that air line to accumulator pump is "ON" during each tour change.

With accumulator bottles isolated, closing unit will be capable of opening the hydraulically-operated choke line valve (if used) plus close the annular preventer on the smallest size drill pipe within 2 minutes and obtain a minimum of 200 psi above maximum acceptable precharge pressure (see table above) on the closing manifold. Test pressure and closing time will be recorded and kept on location through the end of the well.

Master controls for the BOPE system will be located at the accumulator and will be capable of opening and closing all preventer and the choke line valve (if used)

Remote controls for the BOPE system will be readily accessible (clear path) to the driller and located on the rig floor (not in the dog house). Remote controls will be capable of closing all preventers.

Record accumulator tests in drilling reports and IADC sheet

BOPE Test Checklist

The following item must be ckecked off prior to beginning test

BLM will be given at least 4 hour notice prior to beginning BOPE testing

Valve on casing head below test plug will be open

Test will be performed using clear water.

The following item must be performed during the BOPE testing and then checked off

BOPE will be pressure tested when initially installed, whenever any seal subject to test pressure is broken, following related repairs, and at a minimum of 30 days intervals. Test pressure and times will be recorded by a 3rd party on a test chart and kept on location through the end of the well.

Test plug will be used

Ram type preventer and all related well control equipment will be tested to 250 psi (low) and 5,000 psi (high).

Annular type preventer will be tested to 250 psi (low) and 3,500 psi (high).

Valves will be tested from the working pressure side with all down stream valves open. The check valve will be held open to test the kill line valve(s)

Each pressure test will be held for 10 minutes with no allowable leak off.

Master controls and remote controls to the closing unit (accumulator) must be function tested as part of the BOP testing

Record BOP tests and pressures in drilling reports and IADC sheet

After Installation Checklist is complete, fill out the information below and email to Superintendent and Drilling Engineer along with any/all BOP and accumulator test charts and reports from 3rd parties.

Wellname:

Representative:

Date:

UH-2 Unihead Odessa 13" Single Piece **FMC** Technologies

We put you first. And keep you ahead.