ONSHORE ORDER NO. 1 Chevron * SD WE 15 FED P9 8H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1 TOBO PAGE: 1 TOBO PAGE: 0 TOBO PAG

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Formation	Sub-Sea TVD	KBTVD	
Rustler	2507	650	
Castile	157	3000	
Lamar	-1543	4700	
Bell Canyon	-1823	4980	
Cherry Canyon	-2718	5875	
Brushy Canyon	-4268	7425	
Bone Spring Limestone	-5648	8805	
Upr. Avalon	-5718	8875	
Lateral TD (Upper Avalon)	-5893	9050	13976

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Ex	xpected Base of Fresh Water	
Water	Rustler	650
Water	Bell Canyon	4980
Water	Cherry Canyon	5875
Oil/Gas	Brushy Canyon	7425
Oil/Gas	Bone Spring Limestone	8805
Oil/Gas	Upr. Avalon	8875
	1	

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic) for drill out below surface casing. Stack will be tested as specified in the attached testing requirements.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 2

ONSHORE ORDER NO. 1 Chevron * SD WE 15 FED P9 8H Lea County, NM

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	670'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	4,530'	12-1/4"	9-5/8"	40 #	HCK-55	LTC	New
Production	0'	13,976'	8-3/4"	5-1/2"	20.0 #	HCP-110	TXP BTC S	New

b. Casing design subject to revision based on geologic conditions encountered.

- C. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:	850'		
Intermediate Casing:	4800'		
Production Casing:	22,000' ME	0/9,200' TVD (12,800' VS (@ 90 deg inc)
Casing String	Min SF Burst	Min SF Collapse	Min SF Te

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.40	1.92	2.40	1.75
Intermediate	1.21	3.02	2.15	1.48
Production	1.30	2.51	2.48	1.51

Min SF is the smallest of a group of safety factors that include the following considerations:

		Surf	Int	Prod
Burst Design				
Pressure Test- Surface	ce, Int, Prod Csg	X	X	X
P external:	Water			
P internal:	Test psi + next section heaviest mud in csg			
Displace to Gas- Sur	fCsg	X		
P external:	Water			
P internal:	Dry Gas from Next Csg Point			
Frac at Shoe, Gas to	Surf- Int Csg		×	
P external:	Water			
	Dry Gas, 15 ppg Frac Gradient			
Stimulation (Frac) Pre	essures- Prod Csg	·		X
P external:	Water			
	Max inj pressure w/ heaviest injected fluid			
Tubing leak- Prod Cs	g (packer at KOP)			X
P external:	Water			
	Leak just below surf, 8.7 ppg packer fluid			
Collapse Design				
Full Evacuation		X	X	X
P external:	Water gradient in cement, mud above TOC			
P internal:	none			
Cementing- Surf, Int,	Prod Csg	X	X	X
P external:	Wet cement			
P internal:	water			
Tension Design				9
100k lb overpull		Х	X	X

ONSHORE ORDER NO. 1 Chevron * SD WE 15 FED P9 8H Lea County, NM

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	670'	14.8	1.35	125	801	6.57
Intermediate								
Lead	50:50 Poz Class C	0'	3,530'	11.9	2.43	150	1022	14.21
Tail	Class C	3,530'	4,530'	14.8	1.33	85	464	6.37
Production								
1st Lead	50:50 Poz Class H	3,680'	8,635'	11.5	2.51	50	708	15.51
2nd Lead	TXI	8,635'	12,976'	12.5	1.62	35	917	9.64
Tail	Acid Soluble	12,976'	13,976'	15	2.18	0	116	11.42

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one centralizer on every joint for the first 1000' from TD, then every other joint to EOB, then every third joint to KOP, and then every forth joint to intermediate casing.

ONSHORE ORDER NO. 1 Chevron SD WE 15 FED P9 8H Lea County, NM

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	670'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
670'	4,530'	Brine	9.5 - 10.1	28 - 30	NC - NC
4,530'	8,635'	FW/Cut Brine	8.3 - 9.6	28 - 30	NC - NC
8,635'	9,385'	Cut Brine	8.3 - 9.6	28 - 30	15 - 25
9,385'	13,976'	FW/Cut Brine	8.3 - 9.6	28 - 30	15 - 25

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

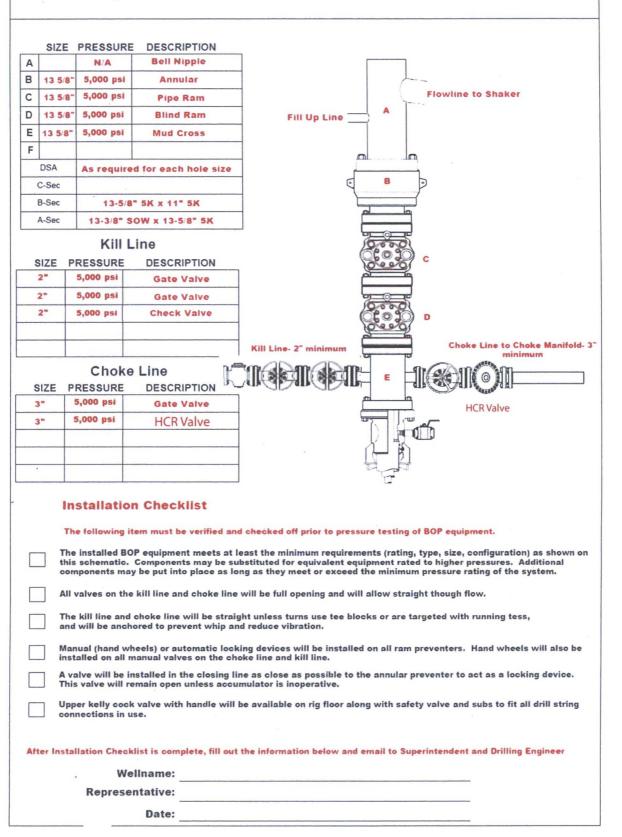
- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

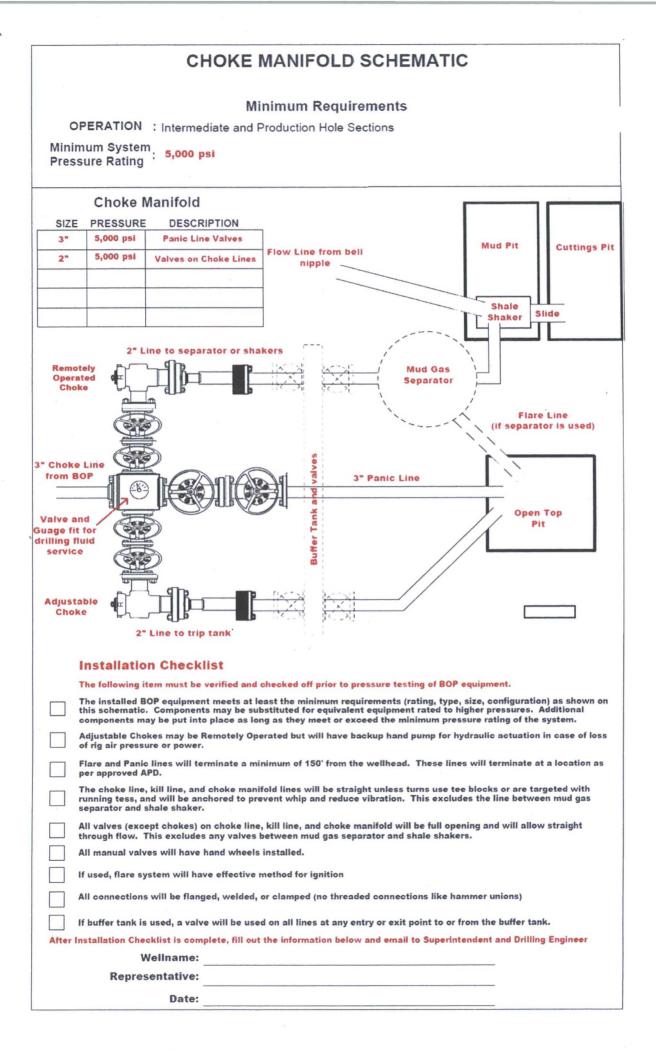
TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

c. Conventional whole core samples are not planned.

d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE


a. No abnormal pressures or temperatures are expected. Estimated BHP is: 4500 psi
b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered


BLOWOUT PREVENTOR SCHEMATIC

Minimum Requirements

OPERATION : Intermediate and Production Hole Sections

Minimum System Pressure Rating : 5,000 psi

BOPE Testing

Minimum Requirements

Closing Unit and Accumulator Checklist

The following item must be performed, verified, and checked off at least once per well prior to low/high pressure testing of BOP equipment. This must be repeated after 6 months on the same well.

Precharge pressure for each accumulator bottle must fall within the range below. Bottles may be further charged with nitrogen gas only. Tested precharge pressures must be recorded for each individual bottle and kept on location through the end of the well. Test will be conducted prior to connecting unit to BOP stack. Accumulator working Minimum acceptable Desired precharge Maximum acceptable Minimum acceptable pressure rating operating pressure pressure precharge pressure precharge pressure 1500 psi 1500 psi 750 psi 800 psi 700 psi 2000 psi 2000 psi 1000 psi 1100 psi 900 psi 3000 psi 3000 psi 1000 psi 1100 psi 900 psi Accumulator will have sufficient capacity to open the hydraulically-controlled choke line valve (if used), close all rams, close the annular preventer, and retain a minimum of 200 psi above the maximum acceptable precharge pressure (see table above) on the closing manifold without the use of the closing pumps. This test will be performed with test pressure recorded and kept on location through the end of the well Accumulator fluid reservoir will be double the usable fluid volume of the accumulator system capacity. Fluid level will be maintained at manufacturer's recommendations. Usable fluid volume will be recorded. Reservior capacity will be recorded. Reservoir fluid level will be recorded along with manufacturer's recommendation. All will be kept on location through the end of the well. Closing unit system will have two independent power sources (not counting accumulator bottles) to close the preventers. Power for the closing unit pumps will be available to the unit at all times so that the pumps will automatically start when the closing valve manifold pressure decreases to the pre-set level. It is recommended to check that air line to accumulator pump is "ON" during each tour change. With accumulator bottles isolated, closing unit will be capable of opening the hydraulically-operated choke line valve (if used) plus close the annular preventer on the smallest size drill pipe within 2 minutes and obtain a minimum of 200 psi above maximum acceptable precharge pressure (see table above) on the closing manifold. Test pressure and closing time will be recorded and kept on location through the end of the well. Master controls for the BOPE system will be located at the accumulator and will be capable of opening and closing all preventer and the choke line valve (if used) Remote controls for the BOPE system will be readily accessible (clear path) to the driller and located on the rig floor (not in the dog house). Remote controls will be capable of closing all preventers. Record accumulator tests in drilling reports and IADC sheet **BOPE Test Checklist** The following item must be ckecked off prior to beginning test BLM will be given at least 4 hour notice prior to beginning BOPE testing Valve on casing head below test plug will be open Test will be performed using clear water. The following item must be performed during the BOPE testing and then checked off BOPE will be pressure tested when initially installed, whenever any seal subject to test pressure is broken, following related repairs, and at a minimum of 30 days intervals. Test pressure and times will be recorded by a 3rd party on a test chart and kept on location through the end of the well. Test plug will be used Ram type preventer and all related well control equipment will be tested to 250 psi (low) and 5,000 psi (high). Annular type preventer will be tested to 250 psi (low) and 3,500 psi (high). Valves will be tested from the working pressure side with all down stream valves open. The check valve will be held open to test the kill line valve(s) Each pressure test will be held for 10 minutes with no allowable leak off. Master controls and remote controls to the closing unit (accumulator) must be function tested as part of the BOP testing Record BOP tests and pressures in drilling reports and IADC sheet After Installation Checklist is complete, fill out the information below and email to Superintendent and Drilling Engineer along with any/all BOP and accumulator test charts and reports from 3rd parties. Wellname: **Representative:** Date: