

WFT Casing Head (Slip on Weld with O-Ring) Running Procedure

Publication RP-001 October 21, 2010

© 2010 Weatherford International Inc. All rights reserved

♥	WFT Casing Head (Slip on Weld with O-Bing)	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	BQ	Bence T. Ross	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	

Install the Casing Head

- 1. Examine the *WFT Casing Head*. Verify the following:
 - bore is clean and free of debris
 seal areas, threads and ring
 - grooves are clean and undamagedo-ring is properly installed, clean and undamaged
 - all peripheral equipment is intact and undamaged
- 2. Measure the pocket depth of the Casing Head and record this dimension.
- 3. Run the surface casing and cement as required.
- Determine the required elevation of the Casing Head as required by the Drilling Supervisor.
- 5. Use the following calulation to determine the correct final cut location of the surface casing.
- X = Pocket Depth
- Y = Overall Casing Head Height

Y - X = Distance from correct elevation point to surface casing cutoff height.

- Lift the riser assembly high enough to rough cut the surface casing a minimum of 12" above the anticipated final cut location, if applicable.
- Remove the spent portion of surface casing and the riser assembly and set aside.
- 8. Determine the correct elevation for the wellhead assembly.
- Rough cut the surface casing a minimum of 12" above the final cut location.
- Cut the conductor pipe a comfortable level below the final cut location of the surface casing.

11. Final cut the surface casing at the correct elevation.

NOTE: Ensure the cut on the surface casing is level as this will determine the orientation of the remainder of the wellhead equipment.

- 12. Bevel the surface casing with a 3/16" x 3/8" bevel and remove any sharp edges from the OD of the casing.
- 13. Break a 1/8" x 45° bevel on the ID of the surface casing.

₩	WFT Casing Head (Slip on Weld with O-Ring)	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	BQ	Bauco Ross	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	Page 1

Install the Casing Head

 Wipe the ID of the o-ring of the Casing Head with a light coat of oil or grease.

NOTE: Excessive oil or grease will prevent a positive seal from forming.

- 15. Lower the Casing Head over the surface casing stub to a positive stop.
- 16. Remove the fitting from the test port and set aside.
- 17. Orient the Casing Head as per the Drilling Superintendents instructions ensuring the face of the Casing Head is level and two holed to the drilling rig substructure.
- Weld and test the surface casing to the Casing Head as per the *REC-OMMENDED FIELD WELDING PROCEDURE* located in the back of this manual.
- Once all welding and testing is completed, replace the fitting into the open port and close the valve on the Casing Head.

RP-001	Reviewed By:	Approved By:
Rev 0	Bauce T. Ross	BQ
Page 2	Date: Oct 21, 2010	Date: Oct 21, 2010

WFT Casing Head (Slip on Weld with O-Ring) Running Procedure

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal

 Introduction and Scope. The following recommended procedure has been prepared with particular regard to attaining pressure-tight weld when attaching casing heads, flanges, etc., to casing. Although most of the high strength casing used (such as N-80) is not normally considered field weldable, some success may be obtained by using the following or similar procedures.

Caution: In some wellheads, the seal weld is also a structural weld and can be subjected to high tensile stresses. Consideration must therefore be given by competent authority to the mechanical properties of the weld and its heat affected zone.

a. The steels used in wellhead parts and in casing are high strength steels that are susceptible to cracking when welded. It is imperative that the finished weld and adjacent metal be free from cracks. The heat from welding also affects the mechanical properties. This is especially serious if the weld is subjected to service tension stresses.

b. This procedure is offered only as a recommendation. The responsibility for welding lies with the user and results are largely governed by the welder's skill. Weldability of the several makes and grades of casing varies widely, thus placing added responsibility on the welder. Transporting a qualified welder to the job, rather than using a less-skilled man who may be at hand, will, in most cases, prove economical. The responsible operating representative should ascertain the welder's qualifications and, if necessary, assure himself by instruction or demonstration, that the welder is able to perform the work satisfactorily.

- 2. Welding Conditions. Unfavorable welding conditions must be avoided or minimized in every way possible, as even the most skilled welder cannot successfully weld steels that are susceptible to cracking under adverse working conditions, or when the work is rushed. Work above the welder on the drilling floor should be avoided> The weld should be protected from dripping mud, water, and oil and from wind, rain, or other adverse weather conditions. The drilling mud, water, or other fluids must be lowered in the casing and kept at a low level until the weld has properly cooled. It is the responsibility of the user to provide supervision that will assure favorable working conditions, adequate time, and the necessary cooperation of the rig personnel.
- 3. Welding. The welding should be done by the shielded metal-arc or other approved process.

- 4. Filler Metal. Filler Metals. For root pass, it's recommended to use E6010, E6011 (AC), E6019 or equivalent electrodes. The E7018 or E7018-A1 electrodes may also be used for root pass operations but has the tendency to trap slag in tight grooves. The E6010, E6011 and E6019 offer good penetration and weld deposit ductility with relatively high intrinsic hydrogen content. Since the E7018 and E7018-A1 are less susceptible to hydrogen induced cracking, it is recommended for use as the filler metal for completion of the weld groove after the root pass is completed. The E6010, E6011 (AC), E6019, E7018 and E7018-A1 are classified under one of the following codes AWS A5.1 (latest edition): Mild Steel covered electrodes or the AWS A5.5 (latest edition): Low Alloy Steel Covered Arc-Welding Electrodes. The low hydrogen electrodes, E7018 and E7018-A1, should not be exposed to the atmosphere until ready for use. It's recommended that hydrogen electrodes remain in their sealed containers. When a job arises, the container shall be opened and all unused remaining electrodes to be stored in heat electrode storage ovens. Low hydrogen electrodes exposed to the atmosphere, except water, for more than two hours should be dried 1 to 2 hours at 600°F to 700 °F (316°C to 371 °C) just before use. It's recommended for any low hydrogen electrode containing water on the surface should be scrapped.
- 5. Preparation of Base Metal. The area to be welded should be dry and free of any paint, grease/oil and dirt. All rust and heat-treat surface scale shall be ground to bright metal before welding.
- 6. Preheating. Prior to any heating, the wellhead member shall be inspected for the presence of any o-rings or other polymeric seals. If any o-rings or seals are identified then preheating requires close monitoring as noted in paragraph 6a. Before applying preheat, the fluid should be bailed out of the casing to a point several inches (>6" or 150 mm) below the weld joint/location. Preheat both the casing and wellhead member for a minimum distance of three (3) inches on each side of the weld joint using a suitable preheating torch in accordance with the temperatures shown below in a and b. The preheat temperature should be checked by the use of heat sensitive crayons. Special attention must be given to preheating the thick sections of wellhead parts to be welded, to insure uniform heating and expansion with respect to the relatively thin casing.

a. Wellhead members containing o-rings and other polymeric seals have tight limits on the preheat and interpass temperatures. Those temperatures must be controlled at 200°F to 325°F or 93 °C to 160°C and closely monitored to prevent damage to the o-ring or seals.

b. Wellhead members not containing o-rings and other polymeric seals should be maintained at a preheat and interpass temperature of 400°F to 600°F or 200°C to 300°C.

₩	WFT Casing Head	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	BQ	Bauch T. Ross	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	Page 3

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal (continued)

7. Welding Technique. Use a 1/8 or 5/32-inch (3.2 or 4.0 mm) E6010 or E7018 electrode and step weld the first bead (root pass); that, weld approximately 2 to 4 inches (50 to 100 mm) and then move diametrically opposite this point and weld 2 to 4 inches (50 to 100 mm) halfway between the first two welds, move diametrically opposite this weld, and so on until the first pass is completed. This second pass should be made with a 5/32-inch (4.0 mm) low hydrogen electrode of the proper strength and may be continuous. The balance of the welding groove may then be filled with continuous passes without back stepping or lacing, using a 3/16-inch (4.8 mm) low hydrogen electrode. All beads should be stringer beads with good penetration. There should be no undercutting and weld shall be workmanlike in appearance.

Test ports should be open when welding is performed to prevent pressure buildup within the test cavity.

b. During welding the temperature of the base metal on either side of the weld should be maintained at 200 to 300°F (93 to 149°C).

c. Care should be taken to insure that the welding cable is properly grounded to the casing, but ground wire should not be welded to the casing or the wellhead. Ground wire should be firmly clamped to the casing, the wellhead, or fixed in position between pipe slips. Bad contact may cause sparking, with resultant hard spots beneath which incipient cracks may develop. The welding cable should not be grounded to the steel derrick, nor to the rotary-table base.

- Cleaning. All slag or flux remaining on any welding bead 8 should be removed before laying the next bead. This also applies to the completed weld.
- Defects. Any cracks or blow holes that appear on any 9. bead should be removed to sound metal by chipping or grinding before depositing the next bead.
- 10. Postheating. Post-heating should be performed at the temperatures shown below and held at that temperature for no less than one hour followed by a slow cooling. The post-heating temperature should be in accordance with the following paragraphs.

a. Wellhead members containing o-rings and other polymeric seals have tight limits on the post-heating temperatures. Those temperatures must be controlled at 250°F to 300°F or 120 °C to 150°C and closely monitored to prevent damage to the o-ring or seals.

b. Wellhead members not containing o-rings and other polymeric seals should be post-heated at a temperature of 400°F to 600°F or 200°C to 300°C.

- 11. Cooling, Rapid cooling must be avoided. To assure slow cooling, welds should be protected from extreme weather conditions (cold, rain, high winds, etc.) by the use of suitable insulating material. (Specially designed insulating blankets are available at many welding supply stores.) Particular attention should be given to maintaining uniform cooling of the thick sections of the wellhead parts and the relatively thin casing, as the relatively thin casing will pull away from the head or hanger if allowed to cool more rapidly. The welds should cool in air to less than 200°F (93°C) (measured with a heat sensitive crayon) prior to permitting the mud to rise in the casing.
- 12. Test the Weld. After cooling, test the weld. The weld must be cool otherwise the test media will crack the weld. The test pressure should be no more than 80% of the casing collapse pressure.

Test Media				
Acceptable Medias	Unacceptable Medias			
Water Water Soluable Oil Inert Gas •Nitrogen •Argon Gas	Oxygen Acetylene Hydraulic Oil Motor Oil Brake Fluid			

RP-001	Reviewed By:	Approved By:	WFT Casing Head
Rev 0	Bauco Rosa	BQ	(Slip on Weld with O-Ring) Running Procedure
Page 4	Date: Oct 21, 2010	Date: Oct 21, 2010	

WAR 37 200 RECEIVED WED

Wellhead Field Service Manual

WFT-SB Wellhead System Running Procedure

Publication: SM-11-1 Release Date: December 2014

©2014 Weatherford International Ltd. All Rights Reserved

Weatherford		Prepared By:	Reviewed By:	Approved By:	SM-11-1
	Field Service Manual	Manion Robertson	Bruce Ross	Manuel Zaragoza	Rev WIP
aacumenter in d	Mariaal	Marion Robertson	Bruce Ross	Manuel Zaragoza	Dans 4 - (0.1
5-3-GL-GL-WES-00XXX		Dec 2014	Dec 2014	Dec 2014	Page 1 of 24

Table of Content

.

.

WFT-Split Bowl (SB) Wellhead System

Nellhead System Assembly Drawing	J
----------------------------------	---

Running Procedure

Casing Head/Spool Assembly Rig-Up and Installation4
Testing the BOP
Running and Retrieving the Long Bowl Protector
Running the Bowl Protector Prior to Drilling6
Retrieving the Bowl Protector After Drilling7
Hanging Off the Intermediate Casing7
Hanging Off the Intermediate Casing- Contingency Completion9
Installation of the Pack-Off Bushing and Energizing the Seals10
Installation
Energizing the Seal
Retesting the BOP Stack
Running and Retrieving the Short Bowl Protector15
Running Short Bowl Protector15
Retrieving the Short Bowl Protector16
Running the Production Casing
Installation of the Slip-Type Casing Hanger Under the BOP Stack
Installation of the Slip-Type Casing Hanger Through the BOP Stack
Hanging Off the Production Casing
Installation and Testing the Tubing Spool Assembly20
Installation
Testing the Secondary Seal and Flange Connection20
Testing the BOP21
Hanging Off the Production Tubing String
Installing and Testing of the Production Tree23
Installation

***	Field Ormiters	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Marian Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
weatherintu	manaal	Marion Robertson	Brad Franks	Manual Zaragoza	Page 2 of 24
5-3-GL-GL-WES-00XXX		Dec 2014	Dec 2014	Dec 2014	Faye 2 01 24

•	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Moothorford		Masion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weaulerioru	Mariaar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 3 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 5 01 24

WFT Split Bowl (SB) Multi-Bowl/Conventional Wellhead System (Continued)

WFT-SB Casing Head/Spool Assembly Rig Up and Installation

 Determine the correct elevation for the wellhead system, and cut the conductor pipe at a comfortable elevation, below the surface casing final cut.

NOTE

Ensure that the cut on the conductor is level, as this will determine the orientation of all remaining wellhead equipment.

- Remove any excess conductor pipe and set aside.
- Grind the conductor pipe and remove any sharp edges, ensuring that the conductor pipe cut is level.
- Run the surface casing to the required depth and cement casing in place. Allow the cement to set.
- Lift the blow-out preventer (BOP) or diverter and prepare to cut off the surface casing at a sufficient height above the cellar deck to facilitate the installation of the WFT-SB Casing Head/Spool Assembly with Base Plate.
- Once the surface casing is released from the rig floor, cut it approximately 12 inches (or more) above the final cut location.
- 7. Remove the excess surface casing, and the BOP or diverter, and set aside.
- Bevel the surface casing outer diameter (3/16" x 3/8") and inner diameter (1/8" x 45 degrees). Remove any sharp edges.

- 9. Examine the Casing Head with Slip-On Weld (SOW) bottom prep. Verify the following:
- O-ring seal, bore, ports and exposed ring grooves are clean and in good condition.
- Test fittings, studs and nuts, valves, flanges and bull plugs are intact and in good condition.

- 10. Determine the correct elevation for the wellhead assembly. Measure depth of the surface casing socket in SOW with Oring bottom prep.
- 11. Lightly lubricate the casing stub with an oil or light grease.

Excessive oil or grease will prevent a positive seal from forming.

12. Align and level the WFT-SB Casing Head/Spool Assembly over the casing stub, orienting the outlets to drilling equipment, per the drilling supervisor's direction.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Field Service	Manior Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
weamerioru	Marraa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 4 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 4 01 24

- 14. Slowly and carefully lower the assembly over the casing stub until the stub bottoms in the casing socket.
- 15. Remove the test fitting from the casing head test port, and set aside.
- Ensure that the WFT-SB Casing Head/Spool Assembly is plumb and level.
- 17. Weld and test the surface casing using the recommended welding procedure located in the Appendices Section of this manual.

Testing the BOP Stack

- 1. Examine the Test Plug/Running & Retrieval Tool. Verify the following:
- Elastomer seals, threads and plugs are intact and in good condition.
- Drill pipe threads are correct size, clean and in good condition.
- Install a new, appropriately sized ring gasket in the ring groove of the WFT-SB Spool and make up the BOP stack.

NOTE

Immediately after make-up of the BOP stack and periodically during drilling of hole for the casing string, the BOP stack (flanged connections and rams) must be tested.

 Orient the test plug with elastomer down/ACME threads up, and make up a joint of drill pipe to the test plug.

If pressure is to be supplied through the drill pipe, remove the pipe plug from the weep port.

Ensure that the test plug elastomer is down and Acme threads are up when testing.

- 4. Fully retract all lockscrews in the entire WFT-SB casing head/spool assembly.
- Lubricate the test plug elastomer seal with a light oil or grease.
- Lower the test plug through the BOP stack into the WFT-SB assembly, until it lands on the casing head load shoulder.

*	E: LI O	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weethorford	Field Service	Menior Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weathertord	manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 5 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 5 01 24

- Open lower casing head side outlet valve. Monitor any leakage past the test plug seal.
- Close the BOP rams on the drill pipe, and test to 5,000 psi or as required by the drilling supervisor.
- 9. After a satisfactory test is achieved, release pressure and open the rams.
- 10. Remove as much fluid from the BOP stack as possible.
- 11. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 12. Close all outlet valves on WFT-SB Casing Head/Spool Assembly.
- 13. Repeat Steps 1 thru 12, as required during drilling of the hole.

Running and Retrieval of the Long Bowl Protector

Always use a bowl protector while drilling to protect wellhead load shoulders from damage by drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string.

Running in the Bowl Protector prior to Drilling

- 1. Examine the Long Bowl Protector. Verify the following:
 - Bore drift is correct size, clean, in good condition, and free of debris
 - Threads are clean and undamaged
 - O-ring seals are properly installed, clean, and undamaged.

- 2. Examine the Bowl Protector Running/Retrieval Tool. Verify the following:
 - Threads are clean, undamaged and free of debris
 - Ports are clean and unobstructed.
 - Drill Pipe threads are correct size, clean and in good condition.
- Orient the Bowl Protector Running Tool with Acme threads down.

Ensure that the left hand (LH) Acme threads are down prior to engaging Bowl Protector Running Tool into Long Bowl Protector.

**	Field Comise	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Waatharford	Field Service	Manion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
vveauleriuru	manaar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 6 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 0 01 24

- 4. Make-up a drill pipe joint to the Running Tool.
- 5. Thread Running Tool into the Long Bowl Protector, rotating two turns counterclockwise.
- Verify that all lockscrews in the WFT-SB Casing Head/Spool Assembly are fully retracted.
- Slowly lower the Running Tool/Bowl Protector Assembly through the BOP stack and into the WFT-SB Casing Head/Spool Assembly, until it lands securely on the casing head load shoulder.
- On WFT-SB Casing Spool, run in two Lockscrews ("snug" tight ONLY), 180 degrees apart, to hold Bowl Protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to the Bowl Protector and the lockscrews.

- Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 10. Drill out and prepare to run the casing string per the drilling supervisor's instruction.

Retrieving the Bowl Protector after Drilling

- 1. Make-up the retrieval tool to the drill pipe, with Acme threads down.
- 2. Slowly lower the retrieval tool through the BOP Stack into the Bowl Protector.
- Rotate the retrieval Tool counterclockwise, two turns, to engage with bowl protector Acme threads.

 Fully retract both lockscrews on the WFT-SB casing spool, and retrieve the bowl protector.

Ensure that all lockscrews in both the upper flange (casing spool) and lower flange (casing head) of the wellhead Assembly are fully retracted from well bore.

5. Remove the bowl protector and the running and retrieval tool from the drill floor.

Hanging off the Intermediate Casing

1. Run the intermediate casing as required and space out appropriately for the mandrel casing hanger.

If the intermediate casing becomes stuck and the mandrel casing hanger cannot be landed, refer to STAGE 4B.

- 2. Examine the WFT-SBD-SN Mandrel Casing Hanger. Verify the following:
 - Bore drift is correct size, clean and free of debris
 - All threads are clean and undamaged.
 - Flow-By flutes are clear and unobstructed.
 - Slick Neck seal area is clean and undamaged.
- Examine the Mandrel Casing Hanger Running Tool. Verify the following:
 - Threads are clean and in good condition.
 - O-ring seals are clean and undamaged.
- Thread the mandrel hanger onto the last joint of casing to be run. Torque the connection thread to manufacturer's optimum "make-up" torque value.
- Make up a landing joint to the top of the running tool. Torque the connection to thread manufacturer's maximum "make-up" torque valve.

If Steps 4 and 5 were performed prior to being shipped to location, the hanger running tool should be backed off and made back up to ensure it will back off freely.

*	Field Ormine	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weathorford	Field Service	Masion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weamerioru	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Page 7 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage / 01 24

 Liberally lubricate the outer diameter of the hanger neck and inner diameter of the running tool O-ring seals with a light oil or grease.

Do NOT use pipe dope or other metal based compounds. This will cause galling.

 Maintaining a neutral weight, rotate the hanger running tool with chain tongs, first clockwise until a thread "jump" can be felt, then counterclockwise, approximately eight turns, to a positive

stop, and then back off (clockwise) one quarter (1/4) turn.

Do NOT torque the running tool to the casing hanger connection. Do NOT back off more than one quarter (1/4) turn.

- 8. Remove the flush fitting hex head pipe plug from the outer diameter of the running tool and attach a test pump.
- 9. Apply hydraulic test pressure to 5,000 psi and hold for 15 minutes or as required by the drilling supervisor.
- 10. Upon completion of a successful test, bleed off test pressure through the test pump and remove the pump. Replace the pipe plug.
- Locate indicator groove machined in outer diameter of Running Tool, coat with white paint.

- Verify that all lockscrews in the WFT-SB casing head/casing spool assembly are fully retracted.
- 13. Slowly and carefully lower the mandrel hanger through the BOP stack, and land the hanger onto the casing head load shoulder.
- 14. Slack off weight on the casing.
- 15. Check that the well is stable and no pressure buildup or mud flow is occurring.

**	Fieldonia	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service	Marion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weathertord	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Dago 8 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 0 01 24

- 16. Drain the BOP stack through the casing head side outlet valves.
- 17. Remove the pipe plug from the casing head flange port marked "Inspection Port."
- Visually verify that the running tool groove is in the center of the inspection port, and that the mandrel hanger has landed properly.
- 19. Reinstall the pipe plug and tighten securely.
- 20. Place a paint mark on the landing joint level with the rig floor, and cement casing as required.

NOTE

If the casing is to be reciprocated during cementing, it is advisable to pick up the mandrel hanger a minimum of eight feet above the landing point. Place a mark on the landing joint, level with the rig floor, and then reciprocate above that point. If at any time resistance is felt, land the mandrel casing hanger immediately.

21. Retrieve the hanger running tool and landing joint by rotating landing joint clockwise (to the right), fourteen full turns.

Hanging off Intermediate Casing – Contingency Completion

The following procedure should ONLY be followed if the intermediate casing should become stuck in the hole. If the casing did NOT get stuck and is successfully hung off with the mandrel casing hanger, skip this stage.

- Cement the intermediate casing in accordance with the program, taking returns through the flow-by flutes of the mandrel casing hanger as required.
- 2. Drain the casing head bowl through the side outlet.
- 3. Separate the WFT-SB casing spool from the casing head.
- Pull up on WFT-SB casing spool and suspend it above casing head, high enough to install a WFT-21 Slip Type Casing Hanger.
- 5. Wash out as required.
- Examine the WFT-21 slip type casing hanger. Verify the following:
 - · Hanger is correct size, clean and undamaged.
 - Slip segments are sharp and in proper position.
 - All screws are in place.
- 7. Remove the latch screw to open the slip type hanger.
- 8. Place two boards on the casing head flange, against the casing, to support the hanger.
- 9. Wrap the hanger around the casing and replace the latch screw.
- 10. Prepare to lower the hanger into the casing head bowl.
- 11. Grease the WFT-21 slip type casing hanger body and remove the slip retaining cap screws.
- 12. Remove the boards and allow the hanger to slide down into the casing head.

	Field Osmiss	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Masion Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
	manual	Marion Robertson	Brad Franks	Manual Zaragoza	Dogo 0 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page 9 01 24

 Once the hanger has landed securely on the casing head bowl load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack once more.

- Rough cut the casing approximately eight inches, or more, above the top of the casing head flange. Remove the excess casing.
- 15. Final cut the casing at 2 1/2" +/- 1/8" above casing head flange.
- 16. Bevel the casing outer diameter (1/4" x 30 degrees) and inner diameter (1/8" x 30 degrees).
- 17. Remove and discard the used gasket ring from the casing head.
- Clean the mating ring grooves on the WFT-SB casing spool and casing head. Lightly wipe with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- 19. Install a new appropriately sized ring gasket into the casing head groove.
- Loosely reconnect or make up the WFT-SB casing spool to the casing head.

The casing spool to casing head connection will be fully tightened after the pack-off bushing is run and proper setting is verified.

Installation of the Pack-Off Bushing and Energizing the P-Seals

WFT-SB Pack-Off Bushing Installation

NOTE

Installation procedure is identical for both Standard and Emergency WFT-SB Pack-Off Bushings.

- 1. Determine which pack-off bushing to use:
 - If casing has been run normally and is hung off with a mandrel casing hanger, use a standard packoff bushing.
- Examine the appropriate pack-off bushing. Verify the following:
 - All elastomer seals are in place and undamaged.
 - Bore, ports and alignment lugs are clean and in good condition.
 - Coat the lockscrew relief groove with white paint.
- Liberally lubricate the inner diameter of the double P-seal grooves and outer diameter of dovetail seals with a light oil or grease.

***	Field Overlag	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Masion Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
	Mariaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 10 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- 4. Examine the pack-off bushing running tool. Verify the following:
 - All elastomer seals are properly installed, clean and undamaged
 - Threads are clean, undamaged and free of debris
 - Bore and ports are clean and unobstructed.
- 5. Make-up a landing joint to the running tool and rack back assembly.
- Run two or three stands of heavy weight drill pipe or collars in the hole and set floor slips.

Use heavy weight drill pipe or drill collars. Weight required to push Pack-Off Bushing into Casing Head, over Mandrel Hanger slick neck, is approximately 14,000 lbs.

When lowering the drill pipe into the well, extreme caution must be taken to not damage the top of the mandrel hanger with the end of the drill pipe. It is recommended that the drill pipe be centralized to the hanger inner diameter, as closely as possible, when entering the hanger.

- Carefully lower the bushing over the drill pipe and set it on top of floor slips.
- Make up the landing joint/running tool assembly to the drill pipe suspended in floor slips.
- Carefully pick up the pack-off bushing, thread the bushing into the running tool, then rotate the bushing approximately two turns counterclockwise (to the left), coming to a positive stop.

 Lower the assembly through the BOP Stack and the WFT-SB spool assembly until the pack-off bushing lands on the casing hanger.

- 11. Verify, through inspection port that the pack-off bushing has landed properly after:
 - ensuring well is stable and no pressure buildup or mud flow is occurring.
 - drain BOP Stack through Casing Head side outlet valves.
 - remove Pipe Plug (1"-NPT) from Casing Head flange port marked "Inspection Port".
 - Check, to ensure, bottom of Lockscrew relief groove (painted white) on Support Bushing is at bottom of inspection port.
 - Reinstall Pipe Plug and tighten securely.
- 12. Fully run in all Casing Head Lockscrews (lower flange), in an alternating cross pattern.
- 13. Using two chain tongs, 180° apart, rotate Landing Joint/Running Tool approximately 2 turns clockwise (to the

*	Field Ormine	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Waathorford	Field Service	Mession Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weamenioru	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Page 11 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

right), coming to a stop and carefully lift tool to Drill Floor, set aside.

NOTE

If the Contingency Pack-Off Bushing is being installed, it is now necessary to make up the Speed Head Casing Head/Casing Spool connection. Tighten all studs in an alternating cross pattern until the flange bolting is fully made up.

Energizing the P-Seals

- Locate the two lower injection fittings ("INJ"), located 180 degrees apart on the casing head. Remove the dust cap from one fitting and remove the second fitting entirely.
- 2. Attach a bleeder tool to the injection fitting without the dust cap, in the casing head. Open the bleeder tool.
- Attach a plastic injection tool to the open port and inject plastic packing into the port until a continuous stream flows from the bleeder tool. Close the bleeder tool.
- 4. Remove the injection tool. Reinstall the injection fitting into the open port and remove the dust cap. Reattach the injection tool.
- Continue injecting plastic packing to 5,000 psi. or to 80% of casing collapse pressure, whichever is less.

The strength of a mandrel casing hanger slick neck is equivalent to P110 Grade casing with the same weight as run in the casing string.

- 6. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- If pressure drops, the plastic packing has not filled the seal area completely. Open the bleeder tool, bleed off the pressure and repeat Steps 5 and 6, until pressure is stabilized.
- 8. Remove the plastic injection tool and bleeder tool. Reinstall the dust caps on both injection fittings.
- 9. Repeat Steps 1 thru 8 to pack off and energize the upper P-Seal.

**	Field Comise	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weathorford	Field Service	Mession Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weathertora "	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Page 12 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- 10. Locate the "SEAL TEST" fitting, slightly below and 90 degrees from the injection fittings. Remove the dust cap from this fitting.
- 11. Attach a test pump to the fitting.
- 12. Pump clean test fluid between the P-Seals until a test pressure of **5,000 psi** or **80% of casing collapse pressure** is attained, whichever is lower.

Do NOT exceed 80% of casing collapse pressure when a slip type casing hanger and contingency pack-off bushing are utilized.

- Hold test pressure for 15 minutes or as required by the drilling supervisor.
- 14. If pressure drops, a leak has developed. Take the appropriate action per the following table:

Leak Location	Cause	Action
Into the bore of the casing head	Upper P- seal leaking	Bleed off pressure and re-inject plastic packing into leaking upper P- seal port.
Around the casing	Lower P- Seal leaking	Bleed off pressure and re-inject plastic packing into lower P-seal port.

- 15. Repeat Steps 12 thru 14 until a satisfactory test is achieved.
- Once a satisfactory test is achieved, carefully bleed off pressure and remove Test Pump.
- 17. Attach the bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool port away from people and property.

18. Remove the bleeder tool and reinstall dust cap in Test Port Fitting.

*	Field Comiss	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Field Service 5-3-GL-GL-WES-00XXX Manual	Monion-Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
	manaar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 13 of
		December 2014	December 2014	December 2014	24

Retesting the BOP Stack

- 1. Examine the Test Plug/Running Tool. Verify the following:
 - Elastomer seals are intact and in good condition.
 - Drill pipe threads are clean and in good condition.

Immediately after testing the support bushing seals and periodically during conditioning of the hole prior to running tubing, the BOP stack (flanged connections and rams) must be tested.

 Orient the test plug with elastomer down/ACME threads up. Make up a joint of drill pipe to the test plug.

Remove the pipe plug from the weep port if pressure is to be supplied through the drill pipe.

Make sure the elastomer is down and ACME threads are up when testing.

3. Fully retract all lockscrews in the upper WFT-SB Spool Assembly.

Do NOT retract the lockscrews located in the casing head (lower flange). Doing so could allow the pack-off support bushing to rise out of position.

- 5. Lower the test plug through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.
- Open the upper WFT-SB casing spool side outlet valves. Monitor for any leakage past the test plug seal.
- 7. Close the BOP rams on the drill pipe and test to **10,000 psi** or as required by the drilling supervisor.
- 8. After a satisfactory test is achieved, release all pressure and open the rams.
- 9. Remove as much fluid from the BOP stack as possible.
- 10. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 11. Close all outlet valves on the WFT-SB casing head/spool assembly.

**	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatharford		Manion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weatherioru	manaar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 14 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

4. Lubricate the test plug elastomer seal with light oil or grease.

Running and Retrieving the Short Bowl Protector

Always use a bowl protector while drilling to protect the wellhead load shoulders from damage by the drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string!

Running the Bowl Protector Prior to Drilling

- 1. Examine the short bowl protector. Verify the following:
 - Bore drift is correct size, is clean, in good condition, and free of debris.
 - Threads are correct size and type.
 - Threads are clean and in good condition.
- 2. Orient the bowl protector running tool with ACME threads down.

The running tool is the same tool used for handling the long bowl protector.

Make sure that the left hand (LH) ACME threads are down prior to engaging the bowl protector running tool into the short bowl protector.

- Make-up a drill pipe joint to the running tool.
- 4. Thread the running tool into the short bowl protector, rotating two turns counterclockwise (to the left).
- Verify that all upper lockscrews in the WFT-SB spool assembly are fully retracted. Slowly lower the running

tool/bowl protector assembly through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.

Do NOT retract the lower lockscrews located in the WFT-SB casing head, as this could allow the pack-off bushing to rise out of position.

 On the upper WFT-SB spool assembly, run in two lockscrews ("snug" tight ONLY), 180 degrees apart, to hold the bowl protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to both the bowl protector and lockscrews.

- 7. Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 8. Drill out and prepare to the production casing string per the drilling supervisor's instructions.

***	5. 1.1.0	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weathorford	Field Service	Mosion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weauterioru	Mariaar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 15 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Retrieval of the Short Bowl Protector After Drilling

- Make up the retrieval tool to the drill pipe with ACME threads down.
- 2. Slowly lower the retrieval tool into the bowl protector.
- Rotate the retrieval tool counterclockwise, two turns, to engage with the bowl protector ACME threads.
- Fully retract both lockscrews on the casing spool (upper flange), and retrieve the bowl protector.
- 5. Remove the bowl protector and retrieval tool from the drill string.

Running the Production Casing

1. Run the production casing to necessary depth and cement as required.

There are two methods for installing WFT-22 Slip Type Casing Hangers:

- Under the BOP stack.
- Through the BOP stack.

Installation of the Slip-Type Casing Hanger Under the BOP Stack

- 1. Drain the casing head through the uppermost side outlet valve.
- Lift and suspend the BOP stack above the WFT-SB spool assembly to a minimum of 18 inches.
- 3. Wash out the WFT-SB casing head/spool assembly as required.
- 4. Confirm that ONLY the lockscrews in the casing spool (upper flange) are fully retracted.

- Examine the WFT-22 slip-type casing hanger. Verify the following:
 - Slip segments are clean and undamaged.
 - All screws are in place.
 - Packing element is clean and undamaged.

The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.

- 6. Place two boards across the casing spool face, against the casing, to support the hanger.
- 7. Disengage the spring loaded latch, open the hanger and wrap the hanger around the casing, allowing the support boards to carry weight.
- 8. Re-engage the casing hanger spring loaded latch.
- Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- 10. Supporting the weight of the casing hanger, remove the support boards and lower the hanger into the WFT-SB casing head/spool assembly until it lands on the pack-off bushing load shoulder.

Do NOT drop the hanger; lower it carefully.

	Weatherford Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1	
•		Field Service	Menior Robertson	Brad Franks	Manual Zaragoza	Rev WIP
		Marraar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 16 of
	5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation of the Slip-Type Casing Hanger through the BOP Stack

- Drain the WFT-SB casing head/spool assembly and BOP stack through the side outlet valves on the spool assembly.
- 2. Wash out the wellhead assembly until clean returns are seen.
- Examine the slip type casing hanger. Verify the following:
 - slip segments are clean and undamaged
 - all screws are in place
 - Packing Element is clean and undamaged.

The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.

- Place two boards across the rotary table, against the casing, to support the hanger.
- Disengage the spring loaded latch, open the hanger and wrap it around the casing, allowing the support boards to carry the weight.
- 6. Re-engage the casing hanger's spring loaded latch.
- Measure the distance from the top flange of the WFT-SB casing spool to the drilling rig floor (RKB).
- 8. Measure out two lengths of soft-line cord (rope) to the same length as the

RKB measurement, and adding an additional 10 feet to each line.

- 9. Mark the soft line cord at the required length.
- 10. Install two eyebolts into the tapped holes in the top of the casing hanger slip segments, 180 degrees apart.
- 11. Securely tie the soft-line cord to the eyebolts.

Measuring the soft-line cord and installing the eyebolts into the hanger segments should be done offline.

- 12. Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- 13. Supporting the weight of the casing hanger, remove the support boards and carefully lower the hanger through the BOP stack into the WFT-SB casing head/spool assembly, until it securely lands on the pack-off bushing load shoulder.

Do NOT drop hanger; lower it carefully.

Hanging off the Production Casing

 With the casing hanger now landed onto the pack-off bushing load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on the weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack off once more.

- Rough cut casing approximately 16" above top of WFT-SB Spool top flange. Remove excess casing.
- 3. Carefully remove BOP stack, set aside.
- Final cut the casing at about 12 7/8" +/-1/8" above the face of the WFT-SB spool, which will allow room for the double studded adapter flange.
- Grind the casing stub level and bevel the casing outer diameter (1/4" x 1/8") and inner diameter (1/8" x 45 degrees).

**	Field Ormiter	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Manual	Masion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
		Marion Robertson	Brad Franks	Manual Zaragoza	Page 18 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation of the Double-Studded Adapter (DSA) Flange

- 1. Examine the double studded adapter (DSA) Flange. Verify the following:
 - Ring grooves are clean and undamaged.
 - Stud threads are clean and undamaged.
- 2. Orient the DSA flange with the 10M side down.
- Thoroughly clean the mating grooves of the DSA flange and the WFT-SB spool assembly. Wipe lightly with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- Install a new appropriately sized ring gasket into the WFT-SB spool assembly groove.
- 5. Lift, while holding level, and carefully lower the DSA over the production casing stub until it lands on the ring gasket.
- Make-up the flange connection with appropriate nuts, tightening in alternate cross pattern, as required by API 6A.
- Fill the void area in the DSA around the production casing with a light weight oil.
- Continue filling with a light weight oil to the top of the DSA.

Do NOT allow oil to run into the ring groove. This may prevent a positive seal from forming.

**	Field Comise	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service	Mession Robertson	Brad Franks	Manual Zaragoza	Rev WIP
	5-3-GL-GL-WES-00XXX	Marion Robertson	Brad Franks	Manual Zaragoza	Page 19 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation and Testing of the Tubing Spool Assembly

Installation of the TCM Tubing Spool Assembly

- 1. Examine the tubing spool assembly. Verify the following:
 - bore is clean and free of debris
 - ring grooves and seals are clean and undamaged
 - PE-seal assembly is properly installed, clean and undamaged.
- 2. Thoroughly clean the mating ring grooves of the WFT-TCM Tubing Spool and WFT-SB Casing Spool.
- Lightly lubricate the inner diameter of the PE-seal and outer diameter of the casing stub with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- Install a new appropriately sized ring gasket into the WFT-SB casing spool assembly groove.
- Orient the tubing spool assembly as required and carefully lower it over the casing stub, until it lands on the ring gasket.
- Make up the flange connection with the appropriate studs and nuts, tightening in an alternating cross pattern, as required by API 6A.

Testing the Secondary Seal and Flange Connection Test

- Locate the test port fitting on the OD of the tubing spool lower flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to the test port fitting.

- Pump clean test fluid into the void area between the flanges until a test pressure of 10,000 psi or 80% of casing collapse pressure is attained, whichever is lower.
- 4. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off pressure and remove the test pump
- 6. Attach a bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool port away from people and property.

- 7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.
- 8. Install a new appropriately sized ring gasket into the tubing spool groove.

Weatherford	Field Comise	Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Field Service	Mession Robertson	Brad Franks	Manual Zaragoza	Rev WIP
	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Swi-13-1 Rev WIP Page 20 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Testing the BOP

Immediately after the make-up of the BOP Stack and periodically during drilling of hole for the next string, the BOP stack (flanged connections and rams) must be tested.

- 1. Examine the test plug. Verify that:
 - O-ring seals and plugs are properly installed, clean and undamaged.
 - All threads are clean and undamaged.
- 2. Orient the test plug with O-ring seals up and drill pipe pin connection down.
- Make up a joint of drill pipe to the top of the test plug.

NOTE

If pressure is to be supplied through the drill pipe, the pipe plug should be removed from the weep port.

- 4. Fully retract all lockscrews on the WFT-TCM tubing spool assembly.
- 5. Open the side outlet valves on the tubing spool.
- 6. Wipe the test plug O-ring seals with a light oil or grease.
- Lower the test plug through the BOP until it lands on the tubing spool load shoulder.
- 8. Close the BOP rams on the drill pipe and test to **10,000 psi maximum**.
- Monitor the open outlets for signs of leakage past the test plug.

- 10. Once a satisfactory test is achieved, release pressure and open the rams.
- 11. Close the side outlet valves.
- 12. Remove as much fluid from the BOP stack as possible.
- 13. Slowly retrieve the test plug, avoiding damage to the seals.
- 14. Repeat this procedure, as required, during drilling or conditioning of the hole.

~		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weathorford	Field Service	Manio-Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weatneriord	Mariaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 21 of 24
5-3-GL-GL-WES-00XXX	3-GL-GL-WES-00XXX	December 2014	December 2014	December 2014	

Hanging off the Production Tubing String

- 1. Run the production tubing and space out appropriately for the tubing hanger.
- 2. Examine the TC1AEN Tubing Hanger. Verify the following;
 - Packing element is clean and undamaged.
 - S-seals are properly installed.
 - S-seals are clean and undamaged.
 - All threads are clean and undamaged.
- 3. Make-up a short handling joint to the top of the tubing hanger.
- Pick up the tubing hanger and make it up to the tubing string, tightening the connection to the thread manufacturer's recommended optimum torque value.
- 5. Remove the short handling joint from the top of the hanger. Make up the landing joint to the top of the tubing hanger, tightening the connection to the thread manufacturer's recommended minimum torque values.
- Ensure that all tubing spool lockscrews are fully retracted from the bore and open side outlet valves. Drain the BOP stack.

The side outlet valves should remain open while landing the tubing hanger.

- 7. Calculate the distance from the tubing spool load shoulder to the rig floor. Measure from the face of the tubing spool.
- Carefully lower the tubing hanger into the well, tallying the tubing every five feet, until the tubing hanger lands securely on the tubing spool load shoulder.
- 9. Run in all tubing spool lockscrews, in an alternating cross pattern, to 300 ft-lbs, in 75 ft-lb increments.
- 10. Remove the landing joint from the tubing hanger, and set it aside.

~	Field Comise	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Manual	Mario-Robertson	Brad Franks	Manual Zaragoza	Rev WIP
	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Page 22 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- Install the Type H Back Pressure Valve, carefully lowering the BPV through the BOP stack into the tubing hanger. Rotate the BPV counterclockwise (to the left) until it bottoms out in the tubing hanger BPV prep. Continue rotating counterclockwise, approximately 7 turns, to retrieve the running tool.
- 12. With the well safe and under control, the BOP stack may be removed.

Installation and Testing of the Production Tree

Installation

- Examine the production tree assembly. Verify the following;
 - Bore is clean and free of debris.
 - All valves are in the fully open position.
 - All threads and seal areas are clean and undamaged.
 - All fittings, nuts and handwheels are intact and undamaged.
- 2. Thoroughly clean all exposed portions of the tubing hanger, tubing head adapter flange and bottom prep of the tubing head adapter.
- Thoroughly clean mating ring grooves of the tubing head adapter flange and WFT-TCM tubing spool.
- Lightly lubricate the tubing hanger neck outer diameter and tubing head adapter flange bottom prep with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

 Install a new appropriately sized ring gasket into the WFT-TCM tubing spool groove. 6. Fill the void area around the hanger with hydraulic fluid, to the top of the tubing spool assembly.

Do NOT overfill the void area, allowing oil to run into the ring groove. This may prevent a positive seal from forming.

•		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Field Service	Manion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
	Marion Robertson	Brad Franks	Manual Zaragoza	Page 23 of	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

 Align and level the production tree above the tubing hanger and carefully lower it over the tubing hanger neck, landing it on the ring gasket.

Do NOT damage the hanger neck seals, as this will impair their sealing ability.

 Make up the connection using the appropriate studs and nuts, and tightening in an alternating cross pattern, as required by API 6A.

Testing the Production Tree Connection

- Locate the test port fitting on the outer diameter of the tubing head adapter flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to test port fitting, and open the pump.
- Pump clean test fluid into void area between flanges, test to 10,000 psi maximum.
- Hold and monitor pressure for 15 minutes or as required by the production supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off test pressure and remove the test pump.
- Attach a bleeder tool to the test port fitting, and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool away from people and property.

7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.

- 8. Remove the type 'H' back pressure valve (BPV) through the production tree.
- 9. Ensure that the well is safe and secure by closing all gate valves.

***		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Field Service	Monion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
	manaan	Marion Robertson	Brad Franks	Manual Zaragoza	Page 24 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24