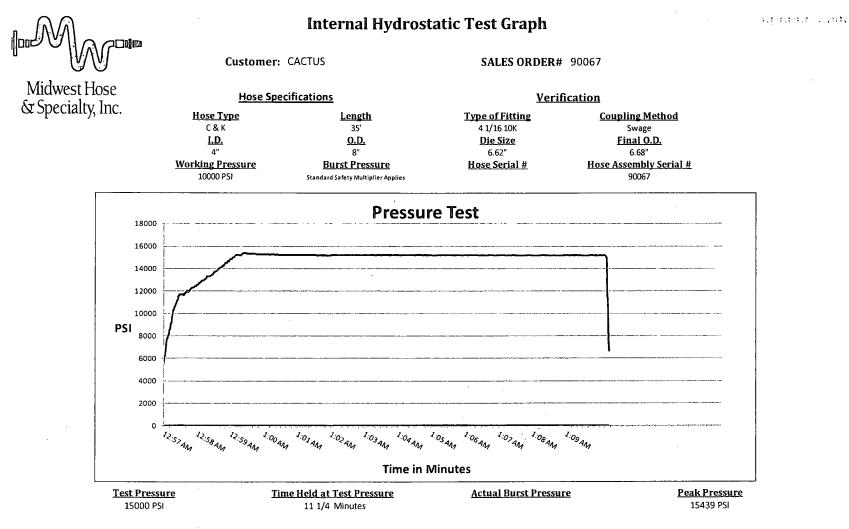


EOG 5M Choke Manifold Diagram (rev. 3/21/14)

5

MIDWEST

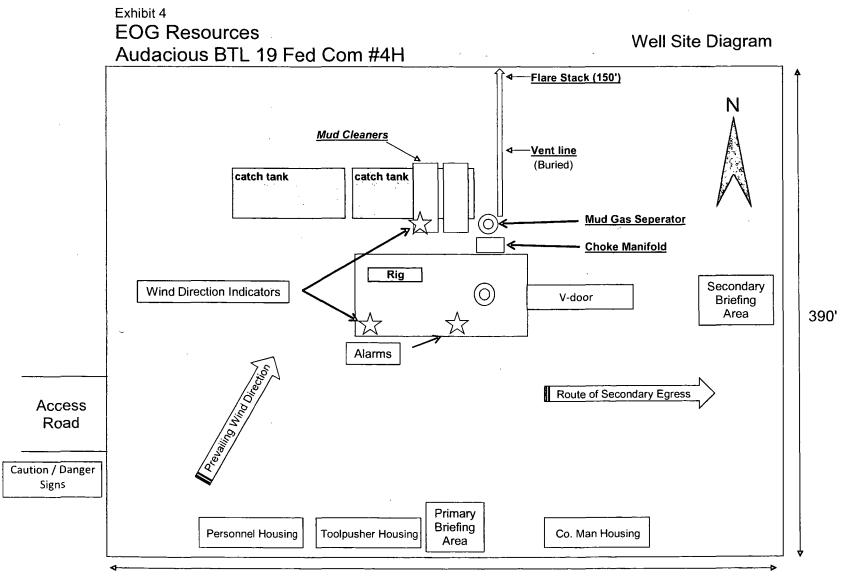

HOSE AND SPECIALTY INC.

,

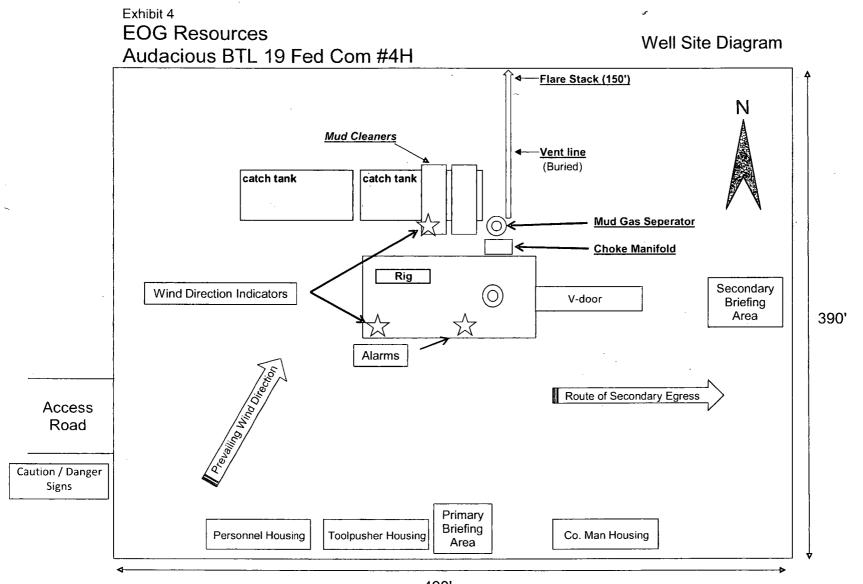
.

.

. INT	FERNA	. HYDROST	ATIC TEST	repor	T	
Customer:				P.O. Numb	er:	
CACTUS				RIG #123		
				Asset # N	A10761	
		HOSE SPECI	FICATIONS			
Туре: Сі	HOKE LIN	E		Length:	35'	
I.D.	4"	INCHES	O.D.	8"	INC	HES
WORKING PRI	ESSURE	TEST PRESSUR	Ē	BURST PRES	SURE	
10,000	PSi	15,000	PSI			P\$I_
COUPLINGS						
Type of End						
4	1/16 10K F	LANGE				
Type of Coupling: MANUFACTURED BY						
SWEDGED MIDWEST HOSE & SPECIALTY						
PROCEDURE						
Hose assembly pressure tested with water at ambient temperature. TIME HELD AT TEST PRESSURE ACTUAL BURST PRESSURE:						
001110	1	MIN.	L		0	PSI
COMMENTS:						
SN#90087 M10761 Hose is covered with stainless steel armour cover and						
wraped with fire resistant vermiculite coated fiberglass						
insulation rated for 1500 degrees complete with lifting eyes						
Date:		Tested By:		Approved:		
6/1	6/2011	BOBBY FINK		MENDI J	ACKS	NC


Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Bobby Fink


Approved By: Mendi Jackson

1

x Mendi Jackson

490'

•

۰.

	M 110 HC. 6.750 in.	0.375 in. V	7 5/8 in. 29.70 lb/ft
OPERILES	CONNECTIONF	30 136	RIPE PROPERI
Premium integral semi-flus	Connection Type	7.625 in.	Nominal OD
7.711 in.	Connection OD (nom)	6.875 in.	Nominal ID
6.820 in.	Connection ID (nom)	8.541 sqin.	Nominal Cross Section Area
4.822 in.	Make-up Loss	High Collapse	Grade Type
5.912 sgin.	Critical Cross Section	110 ksi	Min. Yield Strength
69.2 % of pipe	Tension Efficiency	140 ksi	Max. Yield Strength
48.5 % of pipe	Compression Efficiency	125 ksi	Min. Ultimate Tensile Strength
100 % of pipe	Internal Pressure Efficiency		[
100 % of pipe	External Pressure Efficiency		
MAINTES	FIELD TOROU	armanaes	CONNECTION PERFO
11300 ft.lb	· · · · · · · · · · · · · · · · · · ·	651 klb	
12600 ft.lb	Min. Make-up torque	455 kib	Tensile Yield Strength
13900 ft.lb	Opti. Make-up torque Max. Make-up torque		Compression Resistance
		9470 psi	Internal Yield Pressure
		7890 psi	Uniaxial Collapse Pressure
		TDB	Max. Bending Capacity
		20 °/100 ft	Max Bending with Sealability
50 100 150	VAM Performan 50 50 -100% VME -100 -100% VME -100 -100% VME -100 -100% VME -100 -100% VME -100 -100% VME -100% VME -	es a near flush design with a, compression and gas ed according to the most an excellent performance	VAM® SLIJ-II is a semi-flush integra all casing applications. It combines high performances in tension, sealability. VAM® SLIJ-II has been validated stringent tests protocols, and has a history in the world's most prolific Hi
	Performan 100% VME 100% VME 100% CV3 -100 -	es a near flush design with a, compression and gas ed according to the most an excellent performance HPHT wells.	all casing applications. It combines high performances in tension, sealability. VAM® SLIJ-II has been validated stringent tests protocols, and has a history in the world's most prolific Hi

Vallourec Group

2

٠

.

Manufacturer: Midwest Hose & Specialty

Serial Number: SN#90067

Length: 35'

Size: OD = 8" ID = 4"

Ends: Flanges Size: 4-1/16"

WP Rating: 10,000 psi Anchors required by manfacturer: No

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400009721

Operator Name: EOG RESOURCES INC

Well Name: AUDACIOUS BTL 19 FED COM

Well Type: OIL WELL

Submission Date: 01/25/2017

Well Number: 4H

Well Work Type: Drill

2 **Section 1 - Geologic Formations ID:** Surface formation Name: RUSTLER Lithology(ies): ANHYDRITE Elevation: 2502 True Vertical Depth: 934 Measured Depth: 934 Mineral Resource(s): NONE Is this a producing formation? N **ID:** Formation 1 Name: TOP SALT Lithology(ies): SALT Elevation: 1238 True Vertical Depth: 1264 Measured Depth: 1264 Mineral Resource(s): NONE Is this a producing formation? N **ID:** Formation 2 Name: BASE OF SALT Lithology(ies): SALT Elevation: -2192 True Vertical Depth: 4694 Measured Depth: 4694 Mineral Resource(s): NONE Is this a producing formation? N

Well Name: AUDACIOUS BTL 19 FE	D COM Well Number:	4H
ID: Formation 3	Name: LAMAR	· · · · · · · · · · · · · · · · · · ·
Lithology(ies):		
LIMESTONE		
Elevation: -2432	True Vertical Depth: 4934	Measured Depth: 4934
Mineral Resource(s):		
NONE		
Is this a producing formation? N		
ID: Formation 4	Name: BELL CANYON	
Lithology(ies):		
SANDSTONE		
Elevation: -2467	True Vertical Depth: 4969	Measured Depth: 4969
Mineral Resource(s):	,	
NATURAL GAS		
OIL		
Is this a producing formation? N		
ID: Formation 5	Name: CHERRY CANYON	
Lithology(ies):		
SANDSTONE		
Elevation: -3542	True Vertical Depth: 6044	Measured Depth: 6044
Mineral Resource(s):		
NATURAL GAS		
OIL		
Is this a producing formation? N		
ID: Formation 6	Name: BRUSHY CANYON	
Lithology(ies):		
SANDSTONE		

Well Name: AUDACIOUS BTL 19 FED COM Well Number: 4H				
Mineral Resource(s):				
NATURAL GAS				
OIL	ζ			
Is this a producing formation? N				
ID: Formation 7	Name: BONE SPRING LIME			
Lithology(ies):				
LIMESTONE				
Elevation: -6602	True Vertical Depth: 9104	Measured Depth: 9104		
Mineral Resource(s):				
NONE				
Is this a producing formation? N				
ID: Formation 8	Name: BONE SPRING 1ST			
Lithology(ies):				
SANDSTONE				
Elevation: -7547	True Vertical Depth: 10049	Measured Depth: 10049		
Mineral Resource(s):				
NATURAL GAS				
OIL		·		
Is this a producing formation? N				
ID: Formation 9	Name: BONE SPRING 2ND			
Lithology(ies):				
SANDSTONE				
Elevation: -8042	True Vertical Depth: 10544	Measured Depth: 10544		
Mineral Resource(s):				
NATURAL GAS				
OIL				

/ell Name: AUDACIOUS BTL 191	FED COM Well Number:	: 4H
: Formation 10	Name: BONE SPRING 3RD	· · · · · · · ·
hology(ies):		
SANDSTONE		
vation: -9229	True Vertical Depth: 11731	Measured Depth: 11731
neral Resource(s):		
NATURAL GAS		
OIL		
his a producing formation? N		
Formation 11	Name: WOLFCAMP	
ology(ies):		
SHALE		
vation: -9671	True Vertical Depth: 12173	Measured Depth: 12173
neral Resource(s):		
NATURAL GAS		
OIL		
nis a producing formation? Y		

Pressure Rating (PSI): 5M

Rating Depth: 12400

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil and Gas order No. 2.

Requesting Variance? YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Well Name: AUDACIOUS BTL 19 FED COM

Well Number: 4H

Choke Diagram Attachment:

Audacious19fedcom4H 5 M Choke Manifold Diagram (3-21-14)_01-25-2017.pdf

BOP Diagram Attachment:

audacious19fedcom4H 5 M BOP Diagram (8-14-14)_01-25-2017.pdf

Section 3 - Casing			
String Type: SURFACE	Other String Type:		
Hole Size: 14.75			
Top setting depth MD: 0		Top setting depth TVD: 0	
Top setting depth MSL: -8920			
Bottom setting depth MD: 960		Bottom setting depth TVD: 960	
Bottom setting depth MSL: -9880			
Calculated casing length MD: 960			
Casing Size: 10.75	Other Size		
Grade: J-55	Other Grade:		
Weight: 40.5			
Joint Type: STC	Other Joint Type:		
Condition: NEW			
Inspection Document:			
Standard: API			
Spec Document:			
Tapered String?: N			
Tapered String Spec:			
Safety Factors			
Collapse Design Safety Factor: 1.125		Burst Design Safety Factor: 1.25	
Joint Tensile Design Safety Factor	t ype : BUOYANT	Joint Tensile Design Safety Factor: 1.6	
Body Tensile Design Safety Factor	type: BUOYANT	Body Tensile Design Safety Factor: 1.6	
Casing Design Assumptions and W	orksheet(s):		

Operator Name: EOG RESOURCES INC
Well Name: AUDACIOUS BTL 19 FED COM

.

Well Number: 4H

String Type: INTERMEDIATE	Other String Type			
String Type: INTERMEDIATE	Other String Type	Other String Type:		
Hole Size: 9.875				
Top setting depth MD: 0		Top setting depth TVD: 0		
Top setting depth MSL: -8920				
Bottom setting depth MD: 1000		Bottom setting depth TVD: 1000		
Bottom setting depth MSL: -9920				
Calculated casing length MD: 1000)			
Casing Size: 7.625	Other Size			
Grade: HCP-110	Other Grade:			
Weight: 29.7				
Joint Type: LTC	Other Joint Type	: Flushmax III		
Condition: NEW				
Inspection Document:				
Standard: API				
Spec Document:				
Tapered String?: N				
Tapered String Spec:				
Safety Factors				
Collapse Design Safety Factor: 1.125		Burst Design Safety Factor: 1.25		
Joint Tensile Design Safety Fac	tor type: BUOYANT	Joint Tensile Design Safety Factor: 1.6		
Body Tensile Design Safety Factor type: BUOYANT		Body Tensile Design Safety Factor: 1.6		
Casing Design Assumptions an	d Worksheet(s):			

Well Name: AUDACIOUS BTL 19 FED COM

Casing Design Assumptions and Worksheet(s):

Other String Type: String Type: PRODUCTION Hole Size: 6.75 Top setting depth MD: 0 Top setting depth TVD: 0 Top setting depth MSL: -8920 Bottom setting depth TVD: 10600 Bottom setting depth MD: 10600 Bottom setting depth MSL: -19520 Calculated casing length MD: 10600 Casing Size: 5.5 Other Size Grade: OTHER Other Grade: P-110EC Weight: 20 Joint Type: OTHER Other Joint Type: DWC/C-IS MS Condition: NEW Inspection Document: Standard: API **Spec Document:** Tapered String?: N **Tapered String Spec: Safety Factors** Burst Design Safety Factor: 1.25 Collapse Design Safety Factor: 1.125 Joint Tensile Design Safety Factor type: BUOYANT Joint Tensile Design Safety Factor: 1.6 Body Tensile Design Safety Factor: 1.6 Body Tensile Design Safety Factor type: BUOYANT

Well Number: 4H

.

v

Well Name: AUDACIOUS BTL 19 FED COM

Well Number: 4H

String Type: PRODUCTION	Other String Type:		
Hole Size: 6.75	x		
Top setting depth MD: 10600	Top setting depth TVD: 10600		
Top setting depth MSL: -19520	х. Х		
Bottom setting depth MD: 19833	Bottom setting depth TVD: 12400		
Bottom setting depth MSL: -21320			
Calculated casing length MD: 9233			
Casing Size: 5.5	Other Size		
Grade: OTHER	Other Grade: P-110EC		
Weight: 20			
Joint Type: OTHER	Other Joint Type: VAM SFC		
Condition: NEW			
Inspection Document:			
Standard: API			
Spec Document:			
Tapered String?: N			
Tapered String Spec:			
Safety Factors			
Collapse Design Safety Factor: 1.12	25 Burst Design Safety Factor: 1.25		
Joint Tensile Design Safety Factor	type: BUOYANT Joint Tensile Design Safety Factor: 1.6		
Body Tensile Design Safety Factor	type: BUOYANT Body Tensile Design Safety Factor: 1.6		
Casing Design Assumptions and W	/orksheet(s):		

Audacious BTL 19 Fed Com 4H BLM Plan_01-25-2017.pdf

.1

Well Name: AUDACIOUS BTL 19 FED COM

Casing Design Assumptions and Worksheet(s):

Well Number: 4H

String Type: INTERMEDIATE	Other String Type:
Hole Size: 9.875	
Top setting depth MD: 1000	Top setting depth TVD: 1000
Top setting depth MSL: -9920	
Bottom setting depth MD: 3000	Bottom setting depth TVD: 3000
Bottom setting depth MSL: -11920	
Calculated casing length MD: 2000	
Casing Size: 7.625	Other Size
Grade: OTHER	Other Grade: P-110EC
Weight: 29.7	
Joint Type: OTHER	Other Joint Type: SJIJ II
Condition: NEW	
Inspection Document:	
Standard: API	
Spec Document:	
Tapered String?: N	
Tapered String Spec:	
Safety Factors	
Collapse Design Safety Factor: 1.1	25 Burst Design Safety Factor: 1.25
Joint Tensile Design Safety Factor	type: BUOYANT Joint Tensile Design Safety Factor: 1.6
Body Tensile Design Safety Factor	type: BUOYANT Body Tensile Design Safety Factor: 1.6

G				
Operator Name: EOG RESOURCES IN	IC			
Well Name: AUDACIOUS BTL 19 FED COM		Well Number: 4H		
String Type: INTERMEDIATE	Other String Type:			
Hole Size: 8.75				
Top setting depth MD: 3000		Top setting depth TVD: 3000		
Top setting depth MSL: -11920				
Bottom setting depth MD: 11100		Bottom setting depth TVD: 11100		
Bottom setting depth MSL: -20020				
Calculated casing length MD: 8100				
Casing Size: 7.625	Other Size			
Grade: HCP-110	Other Grade:			
Weight: 29.7				
Joint Type: OTHER	Other Joint Type:	Flushmax III		
Condition: NEW				
Inspection Document:				
Standard: API				
Spec Document:				
Tapered String?: N				
Tapered String Spec:				
Safety Factors				
Collapse Design Safety Factor: 1.12	25	Burst Design Safety Factor: 1.25		
Joint Tensile Design Safety Factor	type: BUOYANT	Joint Tensile Design Safety Factor: 1.6		

Audacious BTL 19 Fed Com 4H BLM Plan_01-25-2017.pdf

Body Tensile Design Safety Factor: 1.6

Section 4 - Cement

Body Tensile Design Safety Factor type: BUOYANT

Casing Design Assumptions and Worksheet(s):

Casing String Type: INTERMEDIATE

برائر فلحويد مريسا للعرض يترفرني مرياب والوطيط أليرك والموطعان وللقرم والتواسط ومستوارب ويقور وسيعرض والمرابع بعرفه تقتناه

Well Name: AUDACIOUS BTL 19 FED COM

Well Number: 4H

Stage Tool Depth:

<u>Lead</u>		
Top MD of Segment: 0	Bottom MD Segment: 0	Cement Type: 0
Additives: 0	Quantity (sks): 0	Yield (cu.ff./sk): 0
Density: 0	Volume (cu.ft.): 0	Percent Excess:

Stage Tool Depth:

<u>Lead</u>		
Top MD of Segment: 0	Bottom MD Segment: 0	Cement Type: 0
Additives: 0	Quantity (sks): 0	Yield (cu.ff./sk): 0
Density: 0	Volume (cu.ft.): 0	Percent Excess:

Casing String Type: SURFACE

Stage Tool Depth:

<u>Lead</u>

Top MD of Segment: 0	Bottom MD Segment: 960	Cement Type: Class C
Additives: Class C + 4.0% Bentonite +	,	Yield (cu.ff./sk): 1.73
0.6% CD-32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)	Volume (cu.ft.): 562	Percent Excess: 25
Pansity: 13.5		
	Battom MD Commants 000	Coment Tyrney Close C
,	Bottom MD Segment: 960	Cement Type: Class C
Top MD of Segment: 960	Quantity (sks): 200	Yield (cu.ff./sk): 1.34

Casing String Type: INTERMEDIATE

Stage Tool Depth:

Density: 14.8

Lead

Top MD of Segment: 0	Bottom MD Segment: 11100	Cement Type: Class C
Additives: Class C + 5% Gypsum + 3%	Quantity (sks): 2250	Yield (cu.ff./sk): 1.38
CaCl2 pumped via Bradenhead (TOC@Surface) _Pansity: 14.8	Volume (cu.ft.): 3105	Percent Excess: 25
	Bottom MD Segment: 11100	Cement Type: Class H
Top MD of Segment: 11100	Quantity (sks): 550	Yield (cu.ff./sk): 1.2
Additives: 50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20%	Volume (cu.ft.): 660	Percent Excess: 25

Well Name: AUDACIOUS BTL 19 FED COM

Well Number: 4H

CPT35 + 0.80% CPT16A + 0.25% CPT503P **Density:** 14.4

Percent Excess: 25

Casing String Type: PRODUCTION

Stage Tool Depth:

<u>Lead</u>

Top MD of Segment: 10600	Bottom MD Segment: 19833	Cement Type: Class H
Additives: Class H + 0.1% C-20 +	Quantity (sks): 1000	Yield (cu.ff./sk): 1.26
0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,600')	Volume (cu.ft.): 1260	Percent Excess: 25
Density: 14.1		

Stage Tool Depth:

<u>Lead</u>

Top MD of Segment: 10600	Bottom MD Segment: 20185	Cement Type: Class H
Additives: Class H + 0.1% C-20 +	Quantity (sks): 725	Yield (cu.ff./sk): 1.26
0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,600') Density: 14.1	Volume (cu.ft.) : 913	Percent Excess: 25

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

Circulating Medium Table

Operator Name: EOG RESOURCES INCWell Name: AUDACIOUS BTL 19 FED COMWell Number: 4H

Top Depth: 960 Bottom Depth: 11100 Mud Type: SALT SATURATED Min Weight (lbs./gal.): 8.8 Max Weight (lbs./gal.): 10 Density (lbs/cu.ft.): Gel Strength (lbs/100 sq.ft.): PH: Viscosity (CP): Filtration (cc): Salinity (ppm): Additional Characteristics: Top Depth: 11100 Bottom Depth: 19833 Mud Type: OIL-BASED MUD Min Weight (Ibs./gal.): 10 Max Weight (lbs./gal.): 11.5 Density (lbs/cu.ft.): Gel Strength (lbs/100 sq.ft.): PH: Viscosity (CP): Filtration (cc): Salinity (ppm): Additional Characteristics: Top Depth: 0 Bottom Depth: 960 Mud Type: WATER-BASED MUD Min Weight (Ibs./gal.): 8.6 Max Weight (lbs./gal.): 8.8 Density (lbs/cu.ft.): Gel Strength (lbs/100 sq.ft.): PH: Viscosity (CP): Filtration (cc): Salinity (ppm): **Additional Characteristics:**

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Well Name: AUDACIOUS BTL 19 FED COM

Well Number: 4H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7415

Anticipated Surface Pressure: 4687

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal proessures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Audacious BTL 19 Fed Com 4H H2S Plan Summary_01-25-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Audacious BTL Federal Com 4H Planning Report 01-25-2017.pdf

Audacious BTL Federal Com 4H Wall Plot_01-25-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

audacious19fedcom4H 5.500in 20.00 VST P110EC DWC_C-IS MS Spec Sheet_01-25-2017.pdf Audacious BTL 19 Fed Com 4H rig layout_01-25-2017.pdf audacious19fedcom4H 5.500in 20.00 VST P110EC VAM SFC Spec Sheet_01-25-2017.pdf audacious19fedcom4H 7.625in 29.70 P-110 FlushMax III Spec Sheet_01-25-2017.pdf Audacious19fedcom4H 7.625in 29.7 P110EC VAM SLIJ-II_01-25-2017.pdf audacious19fedcom4H Co-Flex Hose Certification_01-25-2017.PDF audacious19fedcom4H Co-Flex Hose Test Chart_01-25-2017.pdf

Other Variance attachment:

Issued on: 24 Jan. 2017

13 0D

7 5/8 in.

<u>57</u> 1/1/0/0/ o V.

API Drift

6.750 in.

Grade

VM 110 HC

Connection Data Sheet

的。他们的问题是否

Connection

VAM® SLIJ-II

1

d

 \mathcal{F} 1 .

Ť

Š.

h 1

- 1997年の日本に、東京の日本の

,

 \mathbb{Z}_{i} 14

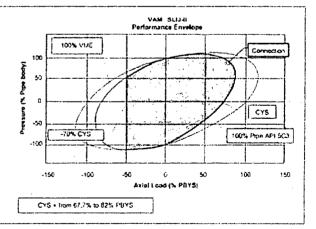
9		EINTEROTHERIN	3
	Ļ	Nominal OD	7.625 in.
;[î		Nominal ID	6.875 in.
i fi	-	Nominal Cross Section Area	8.541 sqin.
ť.	Ĵ	Grade Type	High Collapse
ľ		Min, Yield Strength	110 ksi
	.	Max. Yield Strength	140 ksi
	1	Min. Ultimate Tensile Strength	125 ksi
1.		1	

Weight

29.70 lb/ft

Wall Th.

0.375 in.


CONNEGRON	ALCONTRACTOR
Connection Type	Premium integral semi-flush
Connection OD (nom)	7.711 in.
Connection ID (nom)	6.820 in.
Make-up Loss	4.822 in.
Critical Cross Section	5.912 sqin.
Tension Efficiency	69.2 % of pipe
Compression Efficiency	48.5 % of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe

TEDIAM
651 klb
455 klb
9470 psi
7890 psi
TDB
20 °/100 ft

EVERSTOR OFER	YALVIES
Min. Make-up torque	11300 ft.lb
Opti. Make-up torque	12600 ft.lb
Max. Make-up torque	13900 ft.lb

VAM® SLIJ-II is a semi-flush integral premium connection for all casing applications. It combines a near flush design with high performances in tension, compression and gas sealability.

VAM® SLIJ-II has been validated according to the most stringent tests protocols, and has an excellent performance history in the world's most prolific HPHT wells.

, Do you need help on this product? - Remainbor no one knows VAM®like VAM 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -A HERE cahāda@vamfiēldsūrvicē.com Usa@vamfiēldsūrvicē.com baku@vamfiēldservicē.com baku@vamfiēldser rvice con Disa@vamfieldservice.com baku@vamfieldservice.com nigena@yanıfieldservice.com singapore@vainfieldservice.com mexico@vamfieldSarvica.com brazil@vamfieldService.com brazil@vamfieldService.com with australia@vamfieldService.com Over 140 VAMO Specialists available worldwide 24/7 for Rig Site Assistance , mexico@vamfieldservice.com brazil@vainfieldservice.com vallourec

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

VAM[®] SFC Make-Up Loss 5.132 Box Critical Area 0.361 Wall Pin Critical Connection **O**.**D**. Connection Area Pipe 5.701 I.D. 1.D. 4.719 4.778 WEIGHT WALL DRIFT O.D. GRADE 5.500 20.00 0.361 VST P110EC 4.653 PIPE BODY PROPERTIES CONNECTION PROPERTIES Material Grade VST P110EC **Connection OD** 5.701 in 4.719 in Min. Yield Strength 125 ksi **Connection ID** Min. Tensile Strength 135 ksi Make up Loss 5.132 in **Outside Diameter** 5.500 in **Box Critical Area** 4.083 sq.in. %PB Section Area Inside Diameter 4.778 in 70.1% **Nominal Area** 5.828 sq.in. **Pin Critical Area** 4.123 sq.in.

729 kips

787 kips

14,360 psi

12,090 psi

Pipe

O.D.

5.500

Date: Time:

Yield Strength

*High Collapse

Ultimate Strength

Min Internal Yield

Contact: tech.support@vam-usa.com

14-Jun-16

2:31 PM

Ref. Drawing: SI-PD 100414 Rev.B

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereaf; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

%PB Section Area

Yield Strength

Min Internal Yield

Wk Compression

Max Pure Bending

TORQUE DATA ft-ib

opt

9,700

*High Collapse

min

8,700

Parting Load

70.7%

510 kips

551 kips

357 kips 20 °/100 ft

14,360 psi

12,090 psi

max

10,700

TECHNICAL SPECIFICATIONS

These specifications are furnished for general information only and are not intended for design purposes. This information is preliminary and may change subject to a final design by VAM-USA Engineering. This is not a controlled document.

DWC/C-IS MS standard		Casing	5.500" O.D.	20.00 lb./ft.	VST P-110EC
		<u>Material</u>			
VST P-110EC		Grade			
125,000		Minimum Yield Strength	N /		
135,000		Minimum Ultimate Streng	gth (psi.)		
		Pipe Dimensions			
5.500		Nominal Pipe Body OD (,	VAM-USA	ouston Pkwy, Suite 150
4.778		Nominal Pipe Body ID (in		Houston, TX 770)41
0.361 20.00		Nominal Wall Thickness Nominal Weight (lbs./ft.)	(In.)	Phone: (713) 4 Fax: (713) 479-	
19.83		Plain End Weight (lbs./ft.)	E-mail: VAMUSA	sales@na.vallourec.com
5.828		Nominal Pipe Body Area			
		Pipe Body Performance	e Properties		
729,000		Minimum Pipe Body Yiel			
12,090		Minimum Collapse Press			
14,360		Minimum Internal Yield P	Pressure (psi.)		
13.100		Hydrostatic Test Pressur	e (psi.)		
		Connection Dimension	<u>s</u>		
6.115		Connection OD (in.)			
4.778		Connection ID (in.)			
4.653 4.13		Connection Drift Diamete Make-up Loss (in.)	er (m.)		
5.828		Critical Area (sq. in.)			
100.0		Joint Efficiency (%)			
		Connection Performance	<u>ce Properties</u>		
729,000	(1)	Joint Strength (lbs.)			
26,040	(2)	Reference String Length	(ft.) 1.4 Design I	actor	
728,000	(3)	API Joint Strength (lbs.)			
729,000		Compression Rating (lbs			
12,090 14,360	(4)	API Collapse Pressure R API Internal Pressure Re	•		
104.2	(-)	Maximum Uniaxial Bend		00 ft.)	
		Approximated Field En	d Torque Values		
16,600	(5)	Minimum Final Torque (ft			
19,100	(5)	Maximum Final Torque (f	•		
21,600	(6)	Connection Yield Torque	(ftlbs.)		
(2) Reference String(3) API Joint Streng	g Length th is for	num pipe body yield strength multip is the joint strength divided by both reference only. It is calculated from sistance is calculated from Formula	n the weight in air and t n Formulas 42 and 43 i	he design factor. in the API Bulletin 5C3.	

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades v obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advite obtain current connection specifications and verify pipe mechanical properties for each application.

(5) Torque values are approximated and may be affected by field conditions.

(6) Connection yield torque is not to be exceeded.

1

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM2308

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Repo

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Wetal One Corp			Rev.	
	Make up loss	\$		
- En	\dots	- - -	me	22 20 - 20 20 - 20
D Pin critic	ರ cal area		Box critical an	ea
D : D :				
Pipe Body Grade	Imperia	<u>al</u>	<u>S.I.</u> P110	
Pipe OD (D)	P110 7 5/8	in	193.68	mm
Weight	29.7	ib/ft	44.25	kg/m
Actual weight	29.0	ib/ft	43.26	kg/m
Wall thickness (t)	0.375	in	9.53	mm
Pipe ID (d)	6.875	in	174.63	mm
Pipe body cross section	8.537	in ²	5,508	mm²
Drift Dia.	6.750	in	171.45	mm
	-			
Connection Box OD (W)	7.625	in	193.68	mm
PIN ID	6.875	in	174.63	mm
Pin critical area	4.420	in ²	2,852	mm ²
Box critical area	4.424	in ²	2,854	mm ²
Joint load efficiency	60	%	60	%
Make up loss	3.040	in in	77.22	mm
Thread taper		/16 (3/4 i		1 1010
Number of threads		5 thread		
			<u></u>	
Connection Performance			2,500	k N
	563.4	kips	2,506 52.2	MPa
Tensile Yield load	7 574			
	7,574 5,350	psi psi	36.9	MPa

•