Form [#] 3160-5 (June 2015) DE	UNITED STATES PARTMENT OF THE I UREAU OF LAND MANA		shad Fie		FORM A	APPROVED D. 1004-0137
B	UREAU OF LAND MANA	GEMENT	CD H	ahhe	5. Lease Serial No. NMNM114988	nuary 31, 2018
Do not use thi	s form for proposals to II. Use form 3160-3 (AP	drill or to re		50	6. If Indian, Allottee of	r Tribe Name
SUBMIT IN	TRIPLICATE - Other ins	tructions of			7. If Unit or CA/Agree	ment, Name and/or No.
1. Type of Well			1111 1720	M	8. Well Name and No. SEAWOLF 1-12 F	
2. Name of Operator Contact: REBECCA DEAL CENER 9. API Well No.						
DEVON ÉNERGY PRODUCT 3a. Address	ION CONTRACT: REBECCA	.DEAL@DVN.	COMRECCIÓN (include area code)		30-025-43764-0 10. Field and Pool or E	
333 WEST SHERIDAN AVEN OKLAHOMA CITY, OK 73102	2	Ph: 405-22			WC025G09S25	3336D-UPPER WC
 Location of Well (Footage, Sec., 7 Sec 1 T26S R33E NENW 160 32.079296 N Lat, 103.526627 	FNL 2467FWL				11. County or Parish, S LEA COUNTY, I	
12. CHECK THE AI	PROPRIATE BOX(ES)	TO INDICA	TE NATURE O	F NOTICE,	REPORT, OR OTH	IER DATA
TYPE OF SUBMISSION			TYPE OF	ACTION		
☑ Notice of Intent ☐ Subsequent Report	 Acidize Alter Casing Casing Repair 		pen Iraulic Fracturing v Construction	Product Reclam		 □ Water Shut-Off □ Well Integrity ☑ Other
Final Abandonment Notice	Change Plans	_	g and Abandon		arily Abandon	Change to Original A PD
13. Describe Proposed or Completed Op	Convert to Injection	🗖 Plu		U Water I	-	
following completion of the involved testing has been completed. Final Al determined that the site is ready for f Devon Energy respectfully rec ? Change BHL from 330 FSL	pandonment Notices must be fil inal inspection. quests the following chang	led only after all ges to the ori	requirements, includ	ing reclamatio	new interval, a Form 316 n, have been completed a	0-4 must be filed once nd the operator has
?- Change surface casing set	depth-from 1,000? to 850)?				
? Change of TVD from 12,61				C	SEE ATTACHED I	
Please see the attached revis	ed C-102, Drill Plan & Dir	ectional Surv	ey.	U	ONDITIONS OF APF	KUVAL
14. I hereby certify that the foregoing is Cc Name (Printed/Typed) REBECC/	Electronic Submission # For DEVON ENER(mmitted to AFMSS for pro	GY PRODUCT	ON COMPAN, sei	nt to the Hob	bbs 17ZS0007SE)	
Signature (Electronic S	Submission)		Date 07/07/20	017		
	THIS SPACE FO	DR FEDER			SE	
Approved By_ZQTA_STEVENS Conditions of approval, if any, are attache certify that the applicant holds legal or equ which would entitle the applicant to condu	itable title to those rights in the	s not warrant or e subject lease	TitlePETROLE	UM ENGINI	EER	Date 07/13/2017
Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent	U.S.C. Section 1212, make it a statements or representations as	crime for any p to any matter w	erson knowingly and ithin its jurisdiction.	willfully to ma	ake to any department or	agency of the United
(Instructions on page 2) ** BLM REV	ISED ** BLM REVISE	D ** BLM R	EVISED ** BLM	I REVISED) ** BLM REVISEI	D **
						1 Kz

Devon Energy, Seawolf 1-12 83H

HOBBS OCD

JUL 1 7 2017

RECEIVED

1. Geologic Formations

TVD of target	12,610'	Pilot hole depth	N/A	
MD at TD:	22,597'	Deepest expected fresh water:	746'	

Basin

*

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Rustler	746		
Top of Salt	1094		
Base of Salt	4817		
Delaware	5059		
Lower Brushy Canyon	9112		
1st BSPG Lime	9292		
1st BSPG Sand	10230		
2nd BSPG Lime	10505		
2nd BSPG Sand	10778		
3rd BSPG Lime	11272		
3rd BSPG Sand	11856		
Wolfcamp	12342		
Wolfcamp X	12369		
Wolfcamp Y	12465		
Wolfcamp 100	12526		
Wolfcamp 110	12598		
Wolfcamp 120	12675		
Wolfcamp 130	12742		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

\$

Hole	Casing	g Interval	Csg. Weight		Weight Grade Conn.		SF	SF	SF
Size	From	То	Size	(lbs)			Collapse	Bur st	Tension
14.75"	0	-850 /000	10.75"	40.5	J-55	STC	1.125	1.25	1.6
8.75"	0	11,846'	7.625"	29.7	P110	Flushmax III	1.125	1.25	1.6
6.75"	0	22,597'	5.5"	20	P110	SF/Flush	1.125	1.25	1.6

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

A variance is requested to wave the centralizer requirement for the 7-5/8" flush casing in the 8-3/4" hole and the 5-1/2" SF/Flush casing in the 6-3/4" hole.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	_
Is well is set of in high Cours / Kanata	N
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	NATIONAL PROPERTY AND INC.
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Casing	# Sks	Wt. lb/ gal	H ₂ 0 gal/sk	Yld ft3/ sack	Slurry Description
10-3/4" Surface	529	14.8	6.34	1.34	Tail: Class C Cement + 1% Calcium Chloride
	311	9	13.5	3.27	Lead: Tuned Light [®] Cement
7-5/8" Int	430	14.5	5.31	1.2	Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite
	122	10.9	20.6	3.31	1 st Stage Lead: (50:40:10) Class C: Silicalite: Enhancer 923 + 10% BWOC Bentonite + 0.05% BWOC SA-1015 + 0.3% BWOC HR-800 + 0.2% BWOC FE-2 + 0.125 lb/sk Pol-E-Flake + 0.5 lb/sk D-Air 5000
7-5/8" Int	430	14.5	5.31	1.2	1 st Stage Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite
Two					
Stage	230	10.9	20.6	3.31	2 nd Stage Lead: (50:40:10) Class C: Silicalite: Enhancer 923 + 10% BWOC Bentonite + 0.05% BWOC SA-1015 + 0.3% BWOC HR-800 + 0.2% BWOC FE-2 + 0.125 lb/sk Pol-E-Flake + 0.5 lb/sk D-Air 5000
	30	14.8	6.32	1.33	2 nd Stage Tail: Class C Cement + 0.125 lbs/sack Poly-E- Flake
5-1/2" Inter.	852	14.8	6.32	1.33	Tail: Class C Cement + 0.125 lbs/sack Poly-E-Flake

3. Cementing Program

14

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
10-3/4" Surface	0'	50%
7-5/8" Intermediate	0'	30%
7-5/8" Intermediate Two Stage Option	1 St Stage = 4900' / 2 nd Stage = 0'	30%
5-1/2" Production Casing	11,646'	25%

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	ре	-	Tested to:			
			Ann	ular	X	50% of rated working pressure			
0.2/42	12 5/02	514	Blind	Ram	X				
8-3/4"	13-5/8"	5M	Pipe	Ram	Х	514			
			Doubl	e Ram	X	5M			
			Other*						
			Ann	ular	X	50% of rated working pressure			
			Blind	Ram	X				
6-3/4"	13-5/8"	5M	13-5/8" 5M	5M	Pipe Ram		X		
							Double Ram		X
			Other *			۰.			
			Ann	nular					
			Blind	Ram					
			Pipe Ram						
			Doubl	e Ram					
			Other *						

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Y Formation integrity test will be performed per Onshore Order #2.

	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart. Y Are anchors required by manufacturer?
Y	Y Are anchors required by manufacturer? A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.
	 Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Wellhead will be installed by wellhead representatives. If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal. Wellhead representative will install the test plug for the initial BOP test. Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 3M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted. Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating. Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.
	After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2. After running the 7-5/8" intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 5M will already be installed on the wellhead.
	The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line

7. Drilling Conditions

14

Condition	Specify what type and where?
BH Pressure at deepest TVD	7200 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

 N
 H2S is present

 Y
 H2S Plan attached

8. Other facets of operation

Is this a walking operation? Yes

- 1. In the event the spudder rig is unable to drill the surface holes the drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2. The drilling rig will then batch drill the intermediate sections with either OBM or cut brine and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3. The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Yes

- 1. Spudder rig will move in and drill surface hole.
 - a. Rig will utilize fresh water based mud to drill 14 ¾" surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- **2.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- **3.** The wellhead will be installed and tested once the 10-3/4" surface casing is cut off and the WOC time has been reached.
- 4. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5. Spudder rig operations is expected to take 4-5 days per well on a multi well pad.

Devon Energy, Seawolf 1-12 83H

- 6. The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- Drilling operations will be performed with the drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

.

 \underline{x} Directional Plan

____Other, describe

and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

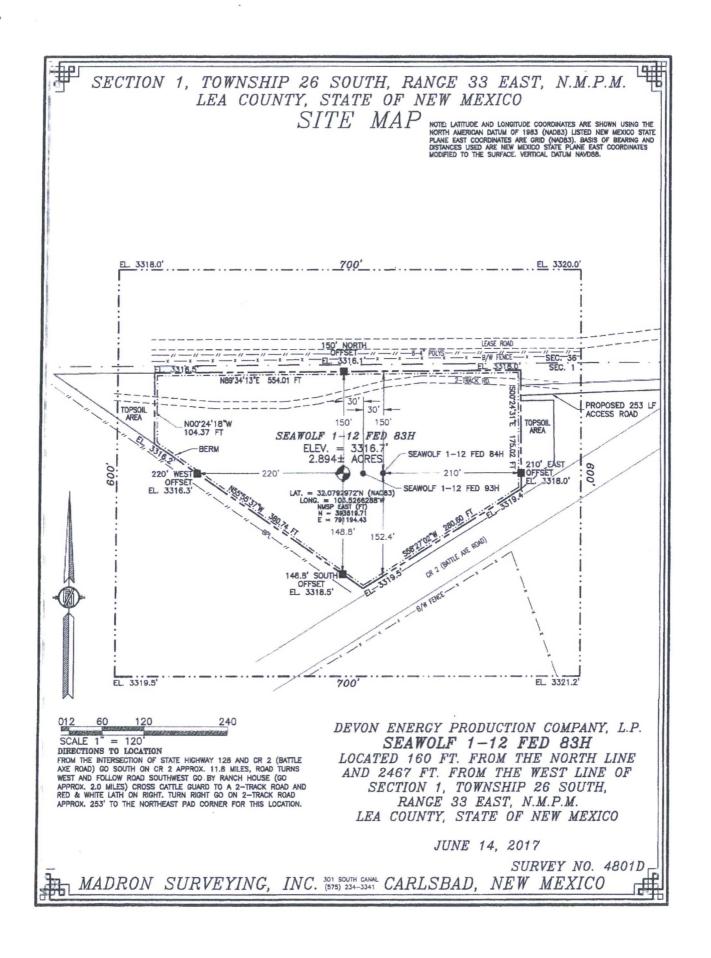
Devon requests a variance to use a flexible line with flanged ends between the BOP and the choke manifold (choke line). The line will be kept as straight as possible with minimal turns.

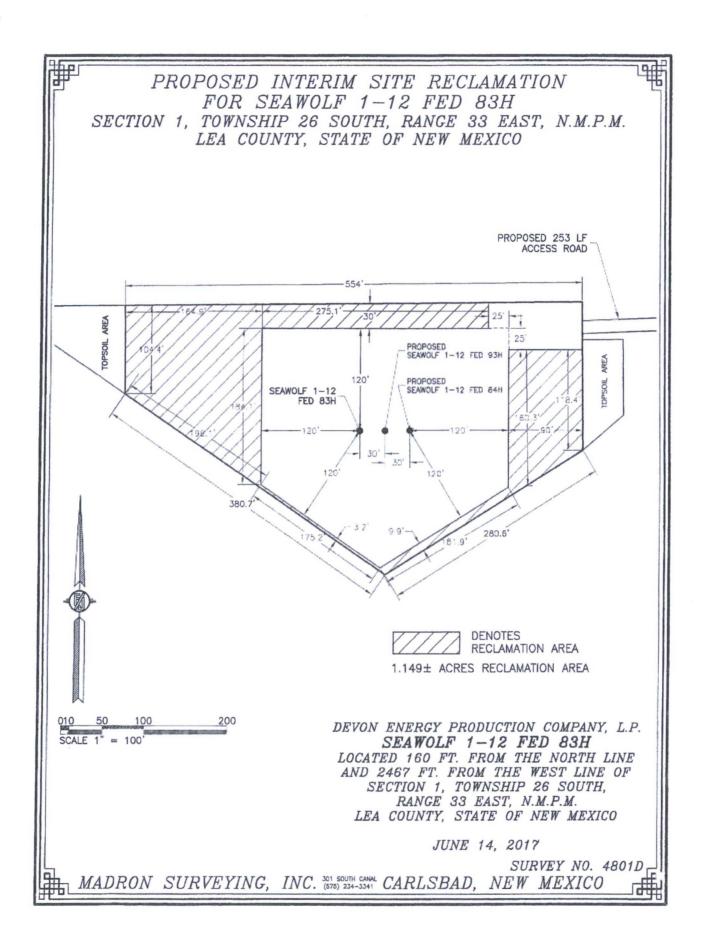
5. Mud Program

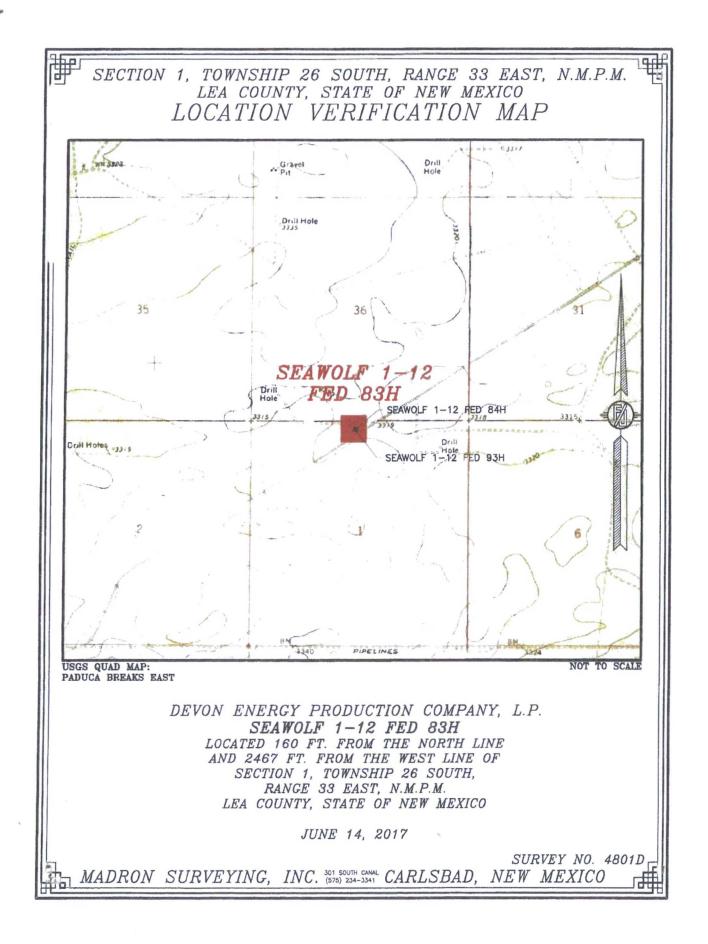
.

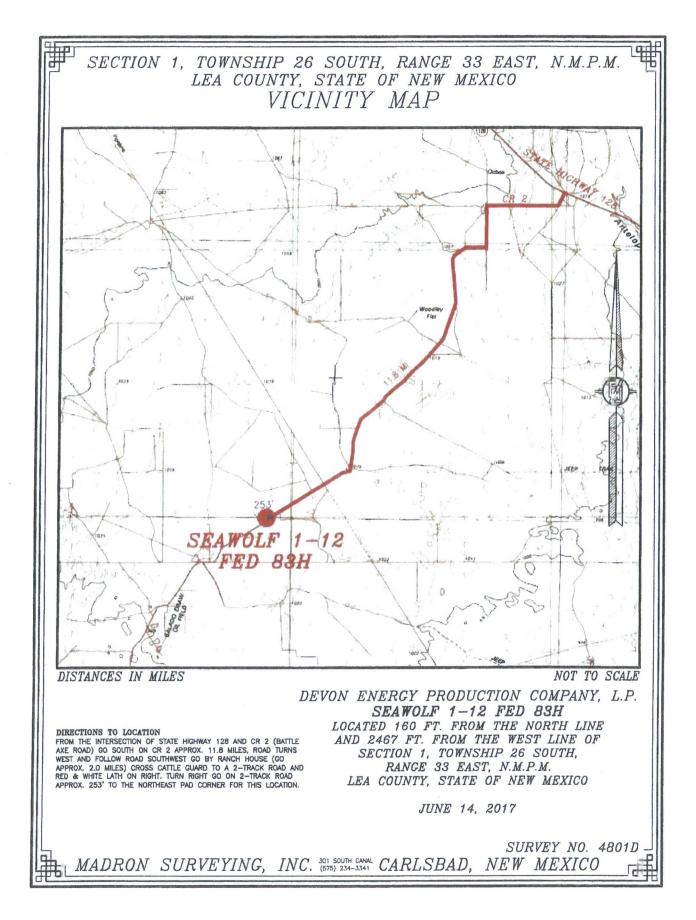
Depth		Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
0	850-1000	FW Gel	8.6-8.8	28-34	N/C	
850'	11,846'	OBM/Cut Brine	8.6-10	34-65	N/C - 6	
11,846'	22,597'	Oil Based Mud	9.5-12	45-65	N/C - 6	

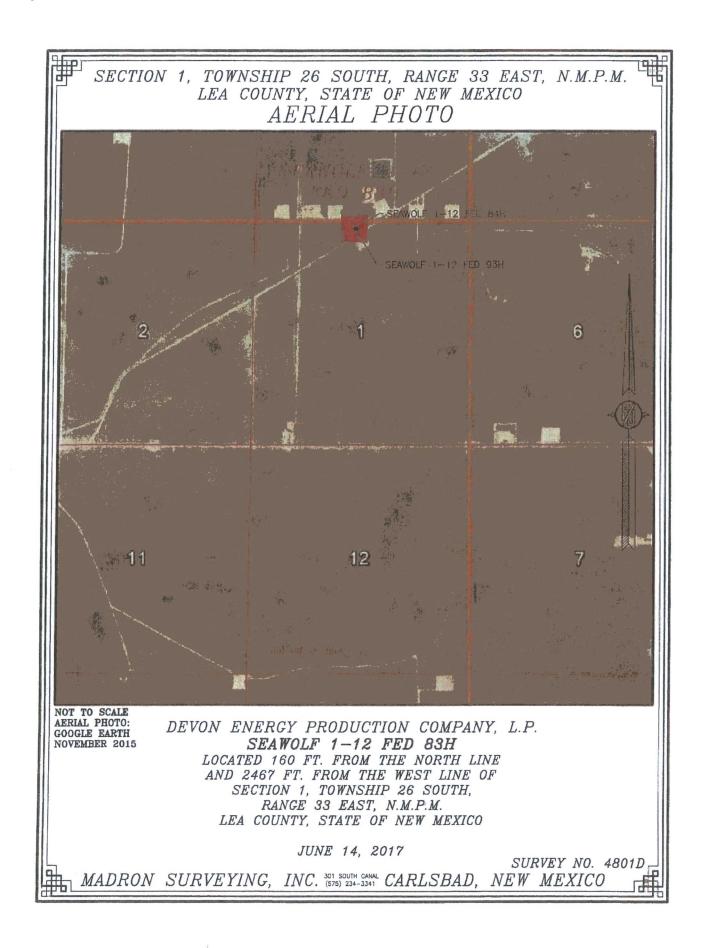
Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.


What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	


6. Logging and Testing Procedures


Log	ging, Coring and Testing.
Х	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated
	logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain


Add	itional logs planned	Interval				
	Resistivity	Int. shoe to KOP				
	Density	Int. shoe to KOP				
Х	CBL	Production casing				
Х	Mud log	Intermediate shoe to TD				
	PEX					


6 Drilling Plan

3 25	30	29	28	27	26	E M4 25	30	29
5 36	31	32	36	1.34	35	36	31	32 128
1	6	5	.4	3	2	1	6	5
1 12	7	8	9	10/	11	12	7	8
4 13	.18	17	16 •NM T25	15 5 R34E	-14	13	18 '	1700-
3 24	19	20	21	22	23	24	19	20
5 25	30	29 //	28	27	26	25	30	29
5 36 253	31	32	33	34	35	36 4	31	32
	6	5	4	3	2	1	6	5
NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH NOVEMBER 2015 DEVON ENERGY PRODUCTION COMPANY, L.P. SEAWOLF 1-12 FED 83H LOCATED 160 FT. FROM THE NORTH LINE AND 2467 FT. FROM THE WEST LINE OF SECTION 1, TOWNSHIP 26 SOUTH, RANGE 33 EAST, N.M.P.M. LEA COUNTY, STATE OF NEW MEXICO								

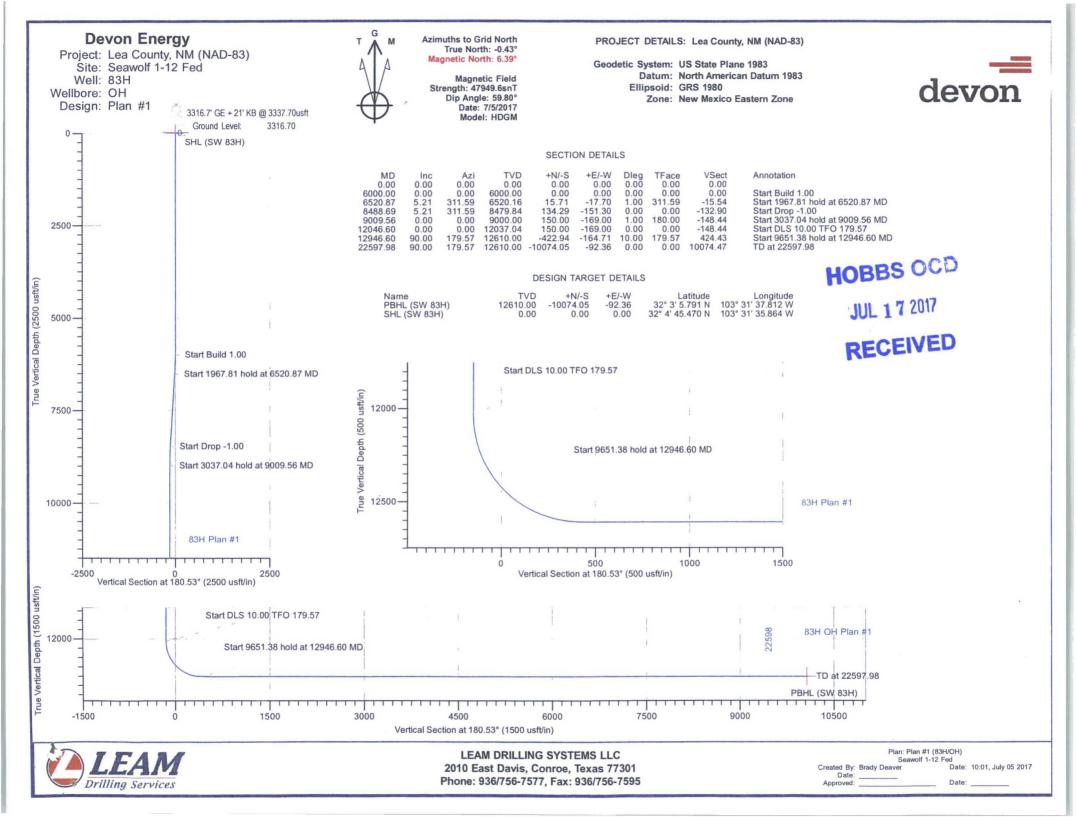
. . J

*

HOBBS OCD JUL 1 7 2017 RECEIVED

Devon Energy

Lea County, NM (NAD-83) Seawolf 1-12 Fed 83H

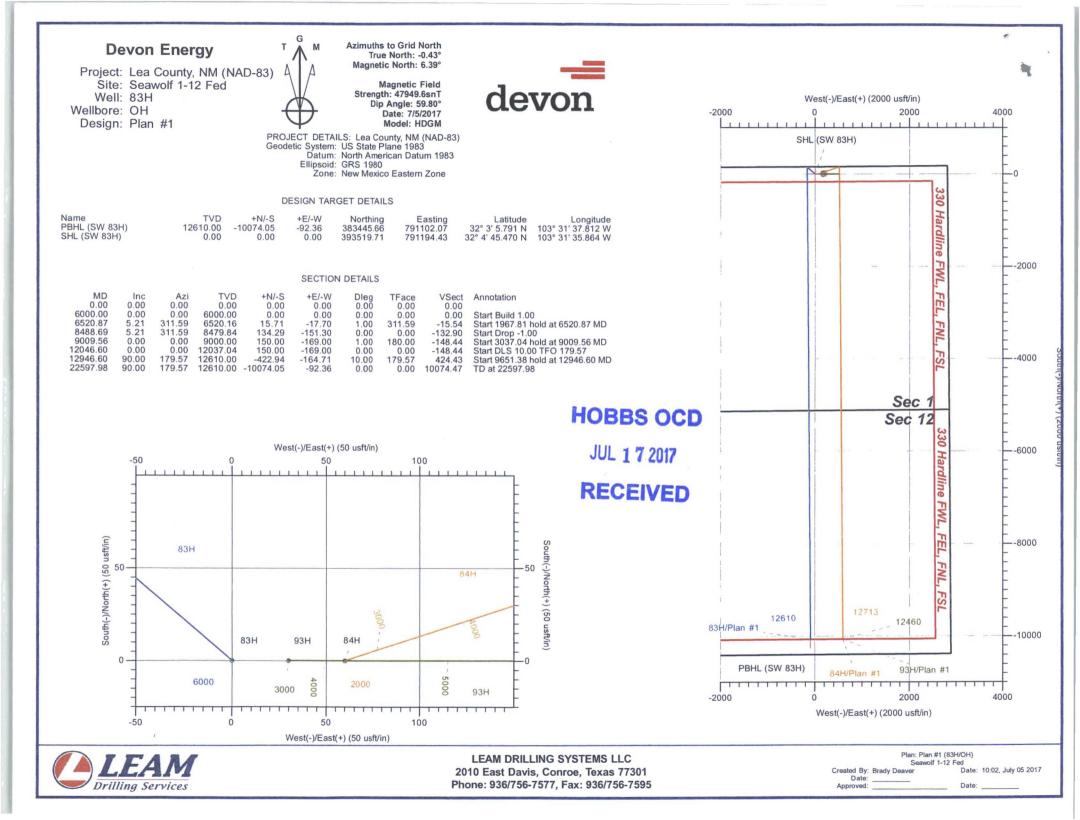

OH

Plan: Plan #1

Standard Planning Report

05 July, 2017

-


LEAM Drilling Systems LLC

Planning Report

Database: Company: Project: Site: Well: Wellbore:	Devor Lea C	5000.1 Multi Us Energy ounty, NM (NAI olf 1-12 Fed			TVD Refer MD Refere North Refe	ence:		Well 83H 8316.7' GE + 21' 8316.7' GE + 21' Grid Minimum Curvatu	KB @ 3337.7		
Design: Plan #1											
Project	Lea Co	ounty, NM (NAD)-83)			the second	so	an in a	. ,		
Map System:		e Plane 1983		System Datum: Mean Sea Level							
Geo Datum: North American Datum 1983											
Map Zone:	New Me	xico Eastern Zo	one								
Site	Seawo	If 1-12 Fed	a	and a second and a second and a second	anti di setta de secono de la companya d	· · · · · · · · ·	an a she a sa a		1		
Site Position:			North	ing:	393,	,463.69 usft	Latitude:			32° 4' 45.071 M	
From:	Ma	D	Eastin	ng:	789,	,088.21 usft	Longitude:			103° 32' 0.348 V	
Position Uncer	tainty:	0.00	0 usft Slot F	Radius:		13-3/16 "	Grid Converg	ence:		0.42	
Well	83H					-				· · · · · · · · · · · · · · · · · · ·	
Well Position	+N/-S	56.0	02 usft No	orthing:		393,519.71	usft Lati	tude:		32° 4' 45.470 M	
	+E/-W	2,106.2		asting:		791,194.43	Busft Lon	gitude:		103° 31' 35.864 V	
Position Uncertainty			0.00 usft Wellhead Elevat						round Level:		
Wellbore Magnetics	ОН	o.c	6	ellhead Elevatio	Declina		Dip A	ngle		3,316.70 us	
Wellbore	ОН	Concession P. A.	6		an a			ngle			
Wellbore Magnetics	ОН	del Name HDGM	6	le Date	Declina	ation	Dip A	ngle		Strength nT)	
Wellbore Magnetics	ОН	del Name HDGM	6	le Date	Declina	ation	Dip A	ngle		Strength nT)	
Wellbore Magnetics	ОН	del Name HDGM	6	le Date 7/5/2017	Declina	ation 6.82	Dip A ('	ngie) 59.80		Strength nT)	
Wellbore Magnetics Design Audit Notes: Version:	OH Mo Plan #	del Name HDGM	Samp	le Date 7/5/2017 e: Pl	Declina (°)	ntion 6.82 Tir	Dip A	ngle) 59.80	1 - AMARET 2	Strength nT)	
Wellbore Magnetics Design Audit Notes:	OH Mo Plan #	del Name HDGM	Samp	le Date 7/5/2017 e: Pl	Declina (°) 	ntion 6.82 Tir +	Dip A (' e On Depth:	ingle) 59.80 ((Dire	0.00	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version:	OH Mo Plan #	del Name HDGM	Samp Phas Depth From (T	le Date 7/5/2017 e: Pl	Declina (°) _AN +N/-S	ation 6.82 Tir +1 (1	Dip A (' e On Depth: E/-W	ngle) 59.80 (Dire	0.00	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version:	OH Mo Plan #	del Name HDGM	Samp Phas Depth From (T (usft)	le Date 7/5/2017 e: Pl	Declina (°) AN _+N/-S (usft)	ation 6.82 Tir +1 (1	Dip A (* e On Depth: E/-W usft)	ngle) 59.80 (Dire	() 0.00 section (°)	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section	OH Mo Plan #	del Name HDGM	Samp Phas Depth From (T (usft)	le Date 7/5/2017 e: Pl	Declina (°) AN _+N/-S (usft)	ation 6.82 Tir +1 (t	Dip A (* e On Depth: E/-W usft)	ngle) 59.80 (Dire	() 0.00 section (°)	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth	OH Mc Plan # n: Inclination	odel Name HDGM 1 D	Samp Phas Depth From (T (usft) 0.00 Vertical Depth	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00 +E/-W	ation 6.82 Tir +1 (t (0 Dogleg Rate	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate	ingle) 59.80 (Dire (180 180 Turn Rate	(0.00 ection (°) 0.53 TFO	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured	OH Mc Plan # n:	odel Name HDGM 1	Samp Phas Depth From (T (usft) 0.00 Vertical	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00	ation 6.82 Tir +1 (t C Dogleg	Dip A (* e On Depth: E/-W usft) 0.00 Build	ingle) 59.80 (Dire (18) 18)	(0.00 ection (*) 0.53	Strength nT)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth	OH Mc Plan # n: Inclination (°)	odel Name HDGM 1 D	Samp Phas Depth From (T (usft) 0.00 Vertical Depth	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00 +E/-W	ation 6.82 Tir +1 (t (0 Dogleg Rate	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate	ingle) 59.80 (Dire (180 180 Turn Rate	(0.00 ection (°) 0.53 TFO	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft)	OH Mc Plan # n: Inclination (°) 0.00	Azimuth (°)	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft)	le Date 7/5/2017 .e: PL VD) +N/-S (usft)	Declina (°) 	ation 6.82 Tid +1 (t C Dogleg Rate (*/100usft)	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate (*/100usft)	ngie) 59.80 (Dire (18/ 18/ (18/ (18/ (18/)	() 0,00 ection (°) 0.53 TFO (°)	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft) 0.00	OH Mc Plan # n: Inclination (°) 0.00 0.00	Azimuth (°) 0.00	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft) 0.00	le Date 7/5/2017 .e: Pl VD) +N/-S (usft) 0.00	Declina (°) 	ation 6.82 Tid +1 (1 (1) 0 0 0 0 000	Dip A (* e On Depth: E/-W isft) 0.00 Build Rate (*/100usft) 0.00 0.00 0.00 1.00	ngie) 59.80 (Dire (18/ (18/ (18/ (18/ (18/) 0.00	() 0,00 ection (°) 0.53 TFO (°) 0.00	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft) 0.00 6,000.00	OH Mc Plan # n: Inclination (°) 0.00 0.00 5.21	Azimuth (°) 0.00 0.00	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft) 0.00 6,000.00	le Date 7/5/2017 .e: PL VD) +N/-S (usft) 0,00 0,00	Declina (°) LAN +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00	ation 6.82 Ti 41 (((0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dip A (* e On Depth: E/-W isft) 0.00 Build Rate (*/100usft) 0.00 0.00 1.00 0.00	ngle) 59.80 (Dire (180 (180 (180 (180 (0.00 0.00 0.00	() 0,00 ection (°) 0.53 TFO (°) 0.00 0.00	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft) 0,00 6,520.87 8,488.69 9,009,56	OH Mc Plan # n: Inclination (°) 0.00 0.00 5.21 5.21 0.00	Azimuth (*) 0.00 0.00 0.00 311.59 311.59 0.00	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft) 0.00 6,000,00 6,520,16 8,479,84 9,000,00	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 0.00 -17.70 -151.30 -169.00	ation 6.82 Ti 41 (t (t) 00 Dogleg Rate (*/100usft) 0.00 0.00 1.00	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate (*/100usft) 0.00 0.00 0.00 1.00 0.00 -1.00	ngle) 59.80 (Dire (180 (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	() 0.00 ection (°) 0.53 TFO (°) 0.00 0.00 311.59 0.00 180.00	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft) 0,00 6,000,00 6,520,87 8,488,69 9,009,56 12,046,60	OH Mc Plan # n: inclination (°) 0.00 0.00 5.21 5.21 0.00 0.00 0.00	Azimuth (*) 0.00 0.00 311.59 311.59 0.00 0.00	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft) 0.00 6,000,00 6,520,16 8,479,84 9,000,00 12,037,04	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 -17.70 -151.30 -169.00 -169.00	ation 6.82 Ti +1 (t (0.00 0.00 0.00 1.00 0.00 1.00 0.00	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate (*/100usft) 0.00 0.00 1.00 0.00 -1.00 0.00	ingle) 59.80 (Dire (180 180 (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	() 0.00 ection (°) 0.53 TFO (°) 0.00 0.00 311.59 0.00 180.00 0.00	Strength nT) 47,950	
Wellbore Magnetics Design Audit Notes: Vertical Section Plan Sections Measured Depth (usft) 0.00 6,000.00 6,520.87 8,488.69 9,009.56	OH Mc Plan # n: inclination (°) 0.00 0.00 5.21 5.21 0.00 0.00 5.21 5.21 0.00 0.00 90.00	Azimuth (*) 0.00 0.00 0.00 311.59 311.59 0.00	Samp Phas Depth From (T (usft) 0.00 Vertical Depth (usft) 0.00 6,000,00 6,520,16 8,479,84 9,000,00	le Date 7/5/2017 	Declina (°) LAN +N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 0.00 -17.70 -151.30 -169.00	ation 6.82 Ti 41 (t (t) 00 Dogleg Rate (*/100usft) 0.00 0.00 1.00	Dip A (* e On Depth: E/-W usft) 0.00 Build Rate (*/100usft) 0.00 0.00 1.00 0.00 -1.00 0.00 10.00	ngle) 59.80 (Dire (180 (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	() 0.00 ection (*) 0.53 TFO (*) 0.00 0.00 311.59 0.00 180.00 0.00 179.57	Strength nT) 47,950	

.

. *

Copy of 263301C APD17-178 Seawolf 1-12 Fed 83H 30025 NMNM114988 Devon v12.11 Sundry 07132017ZMS380718

103/4	surface	0	14 3/4	inch hole.		the second se	Factors	SUR	FACE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	40.50	J	55	ST&C	10.37	3.46	0.51	1,000	40,500
"B"								0	0
w/8.4#/g Comparison o	mud, 30min Sfo of Proposed t			Tail Cmt ment Volume		circ to sfc.	Totals:	1,000	40,500
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
14 3/4	0.5563	529	709	582	22	8.80	3548	5M	1.50
Burst Frac Grad	dient(s) for Se	gment(s) A,	B = 3.13, b	All > 0.70,	1 mm 1 mm 1 mm	x ma x xaa x xa	ar e sano se sagar se sa		1000 A 1000 A 100
7 5/8	casing in	side the	10 3/4			Design	Factors	INTERN	MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	29.70	P	110	BUTT	2.30	1.63	1.17	11,846	351,826
"B"								0	0
- w/8.4#/g	mud, 30min Sfo	c Csg Test psig:					Totals:	11,846	351,826
The c	ement volum	ne(s) are inte	nded to ach	ieve a top of	0	ft from s	urface or a	1000	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
8 3/4	0.1005	741	1533	1335	15	10.00	5222	10M	0.33
							MASP is withi	n 10% of 50	00psig, need
*Assumed 1/3	fluid filled for	collapse cald	ulation						
Tail cmt	* * 1942 * 1990 * 10		1999 N 1999 N 1999	1 1000 8 0000 8 1000		, 1 1880 F 1880 F 18			-
51/2	casing in	side the	7 5/8	20 Anote 2 Anote 2 Anote		Design Fa	ctors	PROD	UCTION
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	20.00	P	110	BUTT	2.45	1.91	1.05	12,046	240,920
"B"								0	0
"C"	20.00	Р	110	BUTT	7.35	1.28	1.57	10,551	211,020
"D"								0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig:	668				Totals:	22,597	451,940
				ieve a top of	11100	ft from s	urface or a	746	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
Size		0.50	4400	072	17	12.00			0.35
Size 6 3/4	0.0835	852	1133	973	A Part of the second	12.00			0.00

HOBBS OCD JUL 1 7 2017 RECEIVED

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Co, LP
LEASE NO.:	NMNM114988
WELL NAME & NO.:	83H-Seawolf 1 12 Fed
SURFACE HOLE FOOTAGE:	160'/N & 2467'/W
BOTTOM HOLE FOOTAGE	330'/S & 2188'/W
LOCATION:	Section 1, T.26 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

🛛 Lea County

10

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Wolfcamp formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper

copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

1

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. DURING THIS WOC TIME, NO DRILL PIPE, ETC. SHALL BE RUN IN THE HOLE.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Risks:

Medium Cave/Karst Possibility of water flows in the Castile and in the Salado. Possibility of lost circulation in the Rustler, in the Red Beds and in the Delaware.

- A. The 10 3/4 inch surface casing shall be set at approximately 1000 feet (in a competent bed <u>below the Magenta Dolomite</u>, which is a <u>Member of the Rustler</u>, and if salt is encountered, set casing at least 25 feet above the salt) and cemented to the surface.
 - 1. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 Excess calculates to 22%. Additional cement may be required.
- 3. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- 4. If cement falls back, remedial cementing will be done prior to drilling out that string.
- B. The minimum required fill of cement behind the 7 3/4 inch intermediate casing (in the basal anhydrite of the Castile Formation) is:

The intermediate casing shall be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing, which is calculated by BLM standards.

C. The minimum required fill of cement behind the 5 1/2 inch production casing is:

Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Excess calculates to 17%. Additional cement may be required.

Note: All perforations shall be a minimum of 0330 feet FEL.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- A. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- B. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored

Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 15%. Additional cement may be required.

according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).

- C. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- D. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - 1. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - 2. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to

Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- 3. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- 4. The results of the test shall be reported to the appropriate BLM office.
- 5. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- 6. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

1,10

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

CLN 04122017