ONSHORE ORDER NO. 1 Chevron SD_EA 29/32 Fed Com P8 10H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	20000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal. ONSHORE ORDER NO. 1
Chevron
SD EA 29/32 Fed Com P8 10H
Lea County, NM

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	54.5 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	20,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

b. Casing design subject to revision based on geologic conditions encountered.

c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalculated & sent to the BLM prior to drilling.

d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:							
Surface Casing:	850'						
Intermediate Casing:	11,200' TV	D					
Production Casing:	ng: 23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)						
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial			
Surface	1.36	3.12	3.17	1.70			
Intermediate	1.12	1.44	1.93	1.37			
Liner	1.69	5.36	2.50	2.09			
Production	1.11	1.23	1.97	1.37			

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				×
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

ONSHORE ORDER NO. 1
Chevron
SD EA 29/32 Fed Com P8 10H
Lea County, NM

5. CEMENTING PROGRAM

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner								
Tail	Class H	10,850'	12,300'	15.6	1.22	10	123	5.34
Production								
Tail	Acid Soluble	10,350'	20,000'	15.6	1.2	17	1000	5.05

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

ONSHORE ORDER NO. 1 Chevron SD EA 29/32 Fed Com P8 10H Lea County, NM

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	20,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

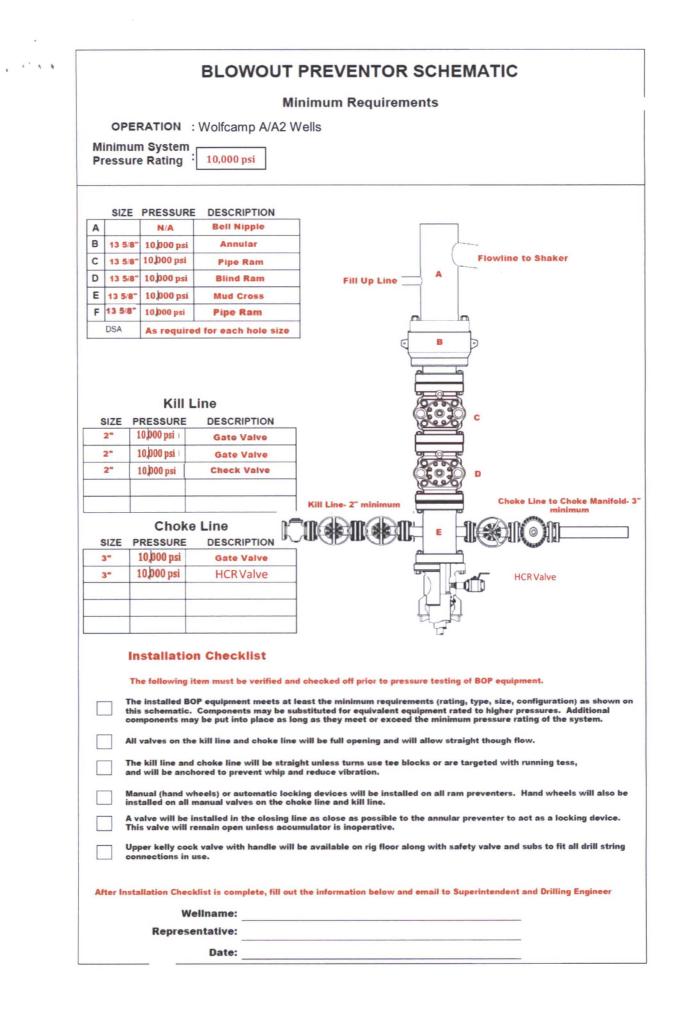
A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

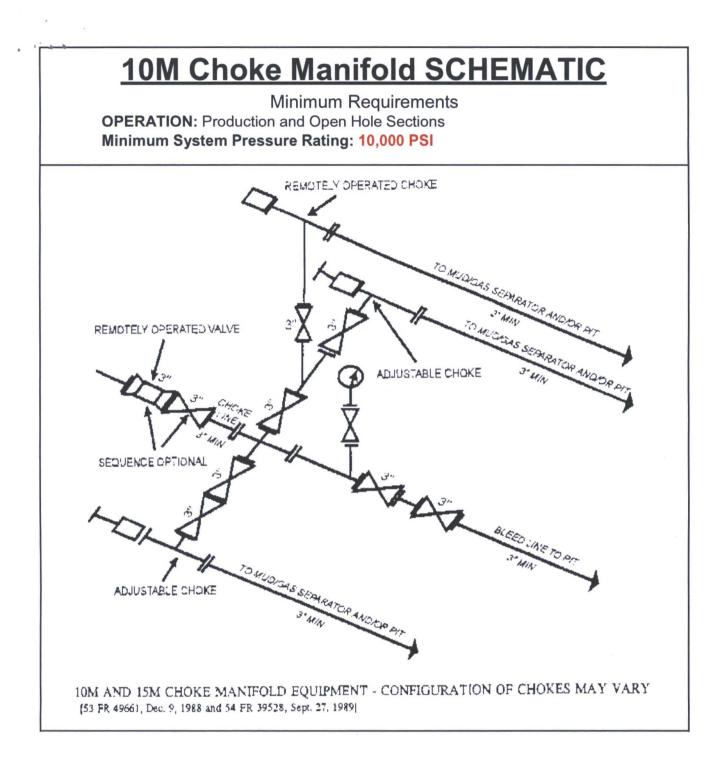
7. TESTING, LOGGING, AND CORING

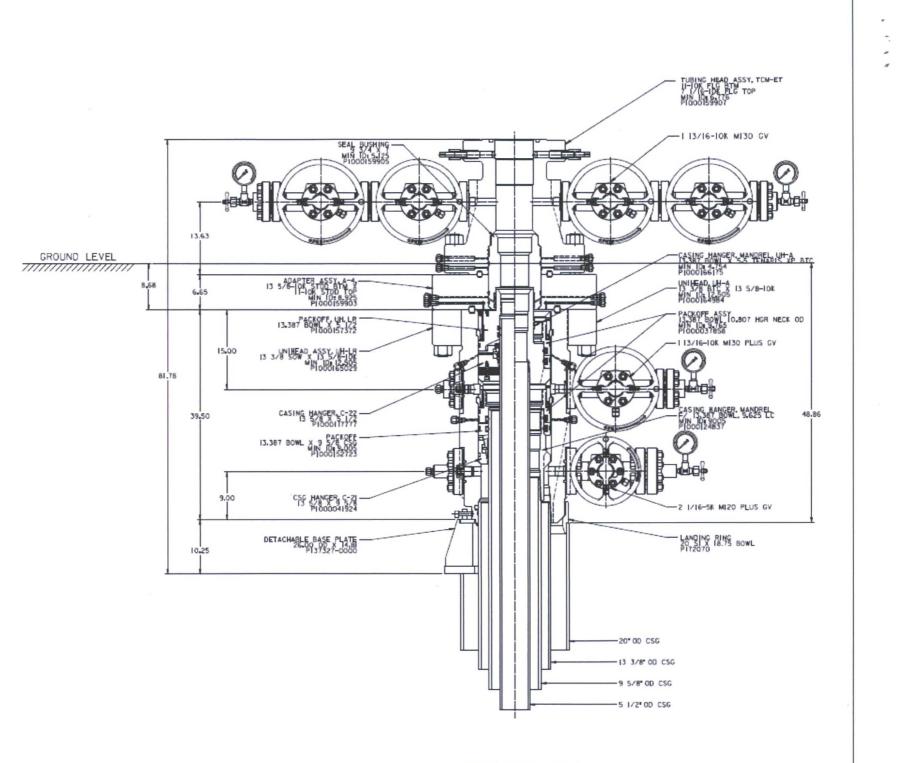
The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD


c. Conventional whole core samples are not planned.


d. A Directional Survey will be run.


8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a.	No abnormal pressures or temperatures are expected.	Estimated BHP at intermediate TD is:	5750	psi
	No abnormal pressures or temperatures are expected.	Estimated BHP at production TD is:	9830	psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

. . . .

CONTITECH RUBBER	No:QC-DB- 231/ 2014				
Industrial Kft.	Page: 10 / 119				

ContiTech

				1	from the second second second		
QUALIT	Y CONT		ATE	CERT. N	1 °:	594	
PURCHASER: C	ontiTech O	il & Marine Co	orp.	P.O. Nº:		4500412631	
CONTITECH ORDER Nº: 53	38332	HOSE TYPE:	3" ID		Choke &	Kill Hose	
HOSE SERIAL Nº:	67349	NOMINAL / ACT	UAL LENGTH	l:	13,72 m	/ 13,85 m	
W.P. 68,9 MPa 10	000 psi	T.P. 103,4	MPa 150	00 psi	Duration:	60	min.
See attachment. (1 page) ↑ 10 mm = 10 Min.							
→ 10 mm = 25 MPa COUPLINGS Type		Serial	N°	C	uality	Heat N°	
3" coupling with 4 1/16" 10K API Swivel Fla Hub		1435	1436	AIS	61 4130 61 4130 61 4130	A1258U 034939 A1045N	
Not Designed For W	ell Testing	3				PI Spec 16 C	
Tag No.: 66 – 1198 All metal parts are flawless					Temp	erature rate:	"В"
WE CERTIFY THAT THE ABOVE	WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.						
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.							
Date: Inspector 03. April 2014.			Quality Contr	Con	tiTech Rubbe dustrial Kft. ity Control Dej (1)	1 01	6

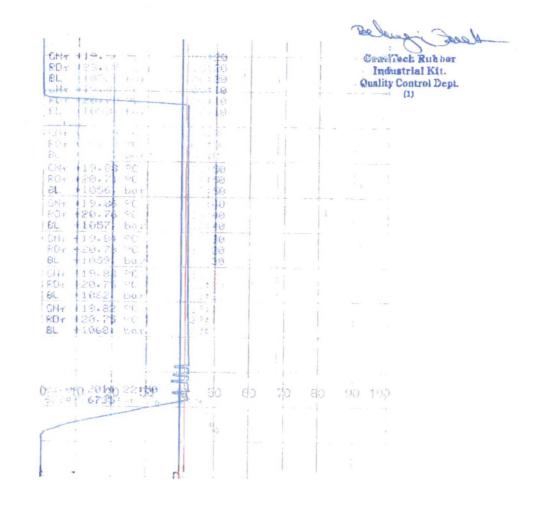
CONTITECH RUBBER	No:QC-DB- 231/ 2014		
Industrial Kft.	Page: 14 / 119		

ContiTech

Hose Data Sheet

1 4 4

CRI Order No.	538332
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500412631 CBC544771, CBC544769, CBC544767, CBC544763, CBC544768, CBC544745, CBC544744, CBC544746
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	45 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOURC/W BX155 ST/ST INLAID R.GR.
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOUR C/W BX155 ST/ST INLAID R.GR.
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	Yes
Lifting collar	Yes
Element C	Yes
Safety chain	Yes
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15


ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 594, 596, 597

.

.

4 4 4

Page: 1/1

Tenaris

Casing and Tubing Performance Data

)

PIPE BODY DATA

		G	EOMETR	an a	a an a				
Outside Diameter	9.625 in	Wall Thickness	0.435 in	API Drift Diameter	8.599 in				
Nominal Weight	43.50 lbs/ft	Nominal ID	8.755 in	Alternative Drift Diameter	8.625 in				
Plain End Weight	42.73 lbs/ft	Nominal cross section	12.559 in						
	8 8 8 4 5 5 F	PER	FORMANCI	lana sesen ses :	en andre e e				
Steel Grade	L80	Minimum Yield	80,000 psi	Minimum Ultimate	95,000 psi				
Tension Yield	1,005,000 in	Internal Pressure Yield	6,330 psi	Collapse Pressure	3,810 psi				
Available Seamless	Yes	Available Welded	No						
CONNECTION DATA									
TYPE: LTC		G	EOMETR						
Coupling Reg OD	10.625 in : <	Threads per in	8	Thread turns make up	3.5				

, .	1		PERFORMANCI		
Steel Grade	L80	Coupling Min Yield	80,000 psi	Coupling Min Ultimate	95,000 psi
Joint Strength	813,000 lbş			Internal Pressure Resistance	6,330 psi

1

For the latest performance data, always visit our website: www.tenaris.com

June 17 2015

TenarisHydril

Connection: Wedge 513[™] **Casing/Tubing**: CAS

Size: 7.625 in. Wall: 0.375 in. Weight: 29.70 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

GEOMETRY Standard Drift Nominal Weight 29.70 lbs/ft Nominal OD 7.625 in. 6.750 in. Diameter Special Drift Nominal ID Wall Thickness 6.875 in. 0.375 in. N/A Diameter Plain End Weight 29.06 lbs/ft PERFORMANCE Body Yield 940 x 1000 lbs Internal Yield 9470 psi SMYS 110000 psi Strength 7150 psi Collapse WEDGE 513[™] CONNECTION DATA GEOMETRY

PIPE BODY DATA

Connection OD 7.625 in. Connection ID 6.800 in. 4.420 in. Make-Up Loss Critical Section 5.125 sq. in. Threads per in. 3.29 Area PERFORMANCE 564 × 1000 Internal Pressure Tension Efficiency 60.0 % Joint Yield Strength 9470 psi lbs Capacity Compression Compression 707 x 1000 lbs 75.2 % Bending 40 º/100 ft Strength Efficiency External Pressure 7150 psi Capacity MAKE-UP TORQUES Maximum (*) Minimum 9000 ft-lbs Optimum 10800 ft-lbs 15800 ft-lbs **OPERATIONAL LIMIT TORQUES** 47000 ft-lbs Yield Torque Operating Torque 70000 ft-lbs BLANKING DIMENSIONS

http://premiumconnectiondata.tenaris.com/tsh_print.php?hWall=0.375&hSize=7.625&hGrade=P110-IC&hConnection=Hydril%20513&hUnits=0&hRBW=87.500... 1/2

For the latest performance data, always visit our website: <u>www.tenaris.com</u>

January 18 2016

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

			PIPE BODY	DATA		
			GEOMET	TRY		
	Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
	Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
	Plain End Weight	19.83 lbs/ft				
			PERFORM	ANCE		
	Body Yield Strength	729 × 1000 lbs	Internal Yield	14360 psi	SMYS	125000 psi
:	Collapse	12100 psi				
	-	TEI	NARISXP® BTC CO	NNECTION D	AĩA	
			GEOME	TRY		
1	Connection OD	6.100 in.	Coupling Length	9,450 in,	Connection ID	4,766 in.
	Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
;			PERFORM	ANCE		2
	Tension Efficiency	100 %	Joint Yield Strength	729 x 1000	Internal Pressure Capacity ⁽¹⁾	14360 psi
	Structural		Structural	729 × 1000	Structural	
	Compression	100 %	Compression	lbs	Bending ⁽²⁾	104 °/100 ft
9.00	Efficiency		Strength			
di Ç	External Pressure Capacity	12100 psi				
			STIMATED MAKE-L	ID TOPOLIES	3)	
	Minimum	11540 ft-lbs	Optimum	12820 ft-lbs		14100 ft-lbs
	+	100	OPERATIONAL LI			
	Operating Torque	22700 ft-lbs	Yield Torque	25250 ft-lbs		
			BLANKING DIN			
			Blanking Din			

Tenaris

1 1

Data Sheet

TH DS-16.0370 11 ago 16 Rev 00

5" 18.00 ppf P110-ICY - TenarisXP® BTC (min wt 90%) (USC Units)

PIPE BODY DATA GEOMETRY **Standard Drift** 4.151 in. Nominal OD 5.000 in. Nominal Weight 18.00 lbs/ft Diameter Special Drift Nominal ID 4.276 in. Wall Thickness 0.362 in, Diameter Plain End Weight 17,95 lbs/ft PERFORMANCE Internal Yield (4) 14840 psi **Body Yield Strength** 659 x 1000 lbs 16290 psi Collapse CONNECTION DATA 5,720 in, **Coupling Length** Connection ID 4.264 in. **Regular OD** 9,325 in. **Critical Section Area** 5.275 sq. in. Threads per in. 5 Make-Up Loss 4.141 in. PERFORMANCE Internal Pressure Joint Yield Strength 659 x 1000 lbs 16290 psi **Tension Efficiency** 100.0 % Capacity (1) (4) Structural **External Pressure** Structural Compression 100.0 % 659 x 1000 lbs 14840 psi **Compression Rating** Capacity Efficiency Structural 115º/100 ft Bending (2) MAKE-UP TORQUES (3) 12750 ft-lbs Maximum 14030 ft-lbs Minimum 11480 ft-lbs Target

(1) Internal Yield pressure related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

17700 ft-lbs

Yield Torque

(2) Structural rating, pure bending to yield (i.e no other loads applied)

15800 ft-lbs

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com.

(4) Minimum wall thickness 90% of nominal

Operating Torque

v49

4 - 1 - 3 - N

Data Sheet

TH DS-16.0372 23 August 2016 Rev 00

5.000" 18.00 lb/ft P110-ICY TenarisHydril Wedge 521®

PIPE BODY DATA GEOMETRY GEOMETRY Nominal OD 5.000 in. Nominal Weight 18.00 lbs/ft Standard Drift Diameter 4.151 in. Nominal ID 4.276 in. Wall Thickness 0.362 in. Special Drift Diameter N/A Plain End Weight 17.95 lbs/ft Iternal Yield ¹ 16290 psi Collapse 14840 psi Body Yield Strength 659 x 1000 lbs Internal Yield ¹ 16290 psi Collapse 14840 psi Box OD (Turned) 5.359 in. Pln ID (Bored) 4.226 in. Make-Up Loss 3.62 in. Critical Section Area 3.891 sq. in. Threads per in. 3.36 16290 psi Internal Yield ¹ 16290 psi ERFORMANCE FERFORMANCE Ending 3.69 in. Box OD (Turned) 5.359 in. Pln ID (Bored) 4.226 in. Make-Up Loss 3.62 in. Compression Rating Joint Yield Strength 486 x 1000 lbs Internal Yield ¹ 16290 psi Compression Rating 88.7 % Compression Rating Strength						
GEOMETRYNominal OD5.000 in.Nominal Weight18.00 lbs/ftStandard Drift Diameter4.151 in.Nominal ID4.276 in.Wall Thickness0.362 in.Special Drift DiameterN/APlain End Weight17.95 lbs/ftVVVVPERFORMANCECONNECTIONANCECONNECTION DATA GEOMETRYCONNECTION DATA GEOMETRYBox OD (Turned)5.359 in.Pin ID (Bored)4.225 in.Make-Up Loss3.62 in.CONNECTION DATA GEOMETRYPerformancePERFORMANCEPERFORMANCECONNECTIONE TAY GEOMETRYBox OD (Turned)5.359 in.Pin ID (Bored)4.225 in.Make-Up Loss3.62 in.Contreads per In.3.36Compression RatingSign for threads per In.3.36Compression RatingSign for the Sign for the Si						
Nominal OD5.000 in.Nominal Weight18.00 lbs/ftStandard Drift Diameter4.151 in.Nominal ID4.276 in.Wall Thickness0.362 in.Special Drift DiameterN/APlain End Weight17.95 lbs/ftN/APlain End Weight17.95 lbs/ft </td <td></td> <td></td> <td>PIPE BOI</td> <td>OY DATA</td> <td></td> <td></td>			PIPE BOI	OY DATA		
Nominal OD5.000 in.Nominal Weight18.00 lbs/ftDiameter4.151 in.Nominal ID4.276 in.Wall Thickness0.362 in.Special Drift DiameterN/APlain End Weight17.95 lbs/ftBody Yield Strength659 x 1000 lbsInternal Yield*16290 psiCollapse14840 psiBody Yield Strength659 x 1000 lbsInternal Yield*16290 psiCollapse14840 psiCONNECTION DATA GEOMETRYBox OD (Turned)5.359 in.Pln ID (Bored)4.225 in.Make-Up Loss3.62 in.CONNECTION DATA GEOMETRYPERFORMANCEPERFORMANCEPERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiBending85'/100 ftInternal Yield*16290 psiMAKE-UP TORQUESMake-Up tor oft-lbsOPERFATIONAL LIMIT TORQUES			GEON	1ETRY		
Nominal ID4.2/6 in.Wall Trickness0.362 in.DiameterN/APlain End Weight17.95 lbs/ftPERFORMANCEBody Yield Strength659 x 1000 lbsInternal Yield*16290 psiCollapse14840 psiCONNECTION DATA GEOMETRYCONNECTION DATA GEOMETRYBox OD (Turned)5.359 in.PIn ID (Bored)4.226 in.Make-Up Loss3.62 in.Contract geometricPERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression RatingBendingBending88.7 %Compression RatingBending6100 ft-lbsOptimumTORQUESMake-UP TORQUESMaximum*Iternal Yield*16290 psiCompression RatingBendingBendingGoptimumTORQUESMake-UP TORQUES	Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft		4.151 in.
Body Yield Strength 659 x 1000 lbs Internal Yield' 16290 psi Collapse 14840 psi Body Yield Strength 659 x 1000 lbs Internal Yield' 16290 psi Collapse 14840 psi Box OD (Turned) 5.359 in. Pin ID (Bored) 4.226 in. Make-Up Loss 3.62 in. Critical Section Area 3.891 sq. in. Threads per in. 3.36 3.62 in. 16290 psi Compression Efficiency 73.8 % Joint Yield Strength 486 x 1000 lbs Internal Yield' 16290 psi Compression Efficiency 88.7 % Compression Rating 585 x 1000 lbs Collapse 14840 psi Bending 85'/100 ft V V V V V Minimum 6100 ft-lbs Optimum 7300 ft-lbs Maximum* 10700 ft-lbs	Nominal (D	4.276 in.	Wall Thickness	0,362 in.		N/A
Body Yield Strength659 x 1000 lbsInternal Yield¹16290 psiCollapse14840 psiCONNECTION DATA GEOMETRYCONNECTION DATA GEOMETRYBox OD (Turned)5.359 in.Pln ID (Bored)4.226 in.Make-Up Loss3.62 in.Critical Section Area3.891 sq. in.Threads per in.3.363.62 in.PERFORMANCECompression Efficiency88.7 %Compression Rating585 x 1000 lbsInternal Yield¹16290 psiCollapse14840 psiBending85'/100 ftStrength7300 ft-lbsMaximum*10700 ft-lbsMAKE-UP TORQUES	Plain End Weight	17,95 lbs/ft				
StrengthBSS X 1000 IbsInternal Yield*16290 psiCollapse14840 psiCONNECTION DATA GEOMETRYBox OD (Turned)5.359 in.Pin ID (Bored)4.226 in.Make-Up Loss3.62 in.Critical Section Area3.891 sq. in.Threads per in.3.363.62 in.PERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression 			PERFOR	MANCE		
GEOMETRYBox OD (Turned)5.359 in.Pin ID (Bored)4.226 in.Make-Up Loss3.62 in.Critical Section Area3.891 sq. in.Threads per in.3.36PERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiMAKE-UP TORQUESMAKE-UP TORQUESMinimum6100 ft-lbsOptimum7300 ft-lbsMaximum*10700 ft-lbs		659 x 1000 lbs	Internal Yield ¹	16290 psi	Collapse	14840 psi
GEOMETRYBox OD (Turned)5.359 in.Pin ID (Bored)4.226 in.Make-Up Loss3.62 in.Critical Section Area3.891 sq. in.Threads per in.3.36PERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiMAKE-UP TORQUESMAKE-UP TORQUESMinimum6100 ft-lbsOptimum7300 ft-lbsMaximum*10700 ft-lbs						
Box OD (Turned)5.359 in.Pln ID (Bored)4.226 in.Make-Up Loss3.62 in.Critical Section Area3.891 sq. in.Threads per in.3.36						
Critical Section Area3.891 sq. in.Threads per in.3.36PERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiBending85*/100 ftMAKE-UP TORQUESMaximum*10700 ft-lbsMinimum6100 ft-lbsOptimum7300 ft-lbsMaximum*10700 ft-lbs			GEON	MEIRY		
Area3.891 sq. in.Threads per in.3.36PERFORMANCETension Efficiency73.8 %Joint Yield Strength486 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiBending85°/100 ftMAKE-UP TORQUESMinimum6100 ft-lbsOptimum7300 ft-lbsMaximum*10700 ft-lbs	Box OD (Turned)	5.359 in.	Pin ID (Bored)	4.226 in.	Make-Up Loss	3.62 in.
Tension Efficiency73.8 %Joint Yield Strength485 x 1000 lbsInternal Yield*16290 psiCompression Efficiency88.7 %Compression Rating585 x 1000 lbsCollapse14840 psiBending85*/100 ftKKE-UP TORQUESKKE-UP TORQUES10700 ft-lbs10700 ft-lbsMinimum6100 ft-lbsOptimum7300 ft-lbsMaximum*10700 ft-lbs		3.891 sq. in.	Threads per in.	3.36	* 0	
Tension Efficiency 73.8 % Strength 486 x 1000 lbs Internal Yield* 16290 psi Compression Efficiency 88.7 % Compression Rating 585 x 1000 lbs Collapse 14840 psi Bending 85°/100 ft MAKE-UP TORQUES 14840 psi 16290 psi Minimum 6100 ft-lbs Optimum 7300 ft-lbs Maximum* 10700 ft-lbs OPERATIONAL LIMIT TORQUES 0 0 0 0 0 0		ng ang panganén	PERFOR	MANCE	ter i sliželi.	
Efficiency 88.7 % Rating 585 x 1000 lbs Collapse 14840 psi Bending 85°/100 ft MAKE-UP TORQUES Minimum 6100 ft-lbs Optimum 7300 ft-lbs Maximum* 10700 ft-lbs OPERATIONAL LIMIT TORQUES	Tension Efficiency	73.8 %		486 x 1000 lbs	Internal Yield ¹	16290 psi
MAKE-UP TORQUES Minimum 6100 ft-lbs Optimum 7300 ft-lbs Maximum* 10700 ft-lbs OPERATIONAL LIMIT TORQUES		88.7 %		585 x 1000 lbs	Collapse	14840 psi
Minimum 6100 ft-lbs Optimum 7300 ft-lbs Maximum* 10700 ft-lbs OPERATIONAL LIMIT TORQUES	Bending	85°/100 ft				
OPERATIONAL LIMIT TORQUES			MAKE-UP	TORQUES		
	Minimum	6100 ft-lbs	Optimum	7300 ft-lbs	Maximum*	10700 ft-lbs
Operational 20000 ft-lbs Yield Torque 30000 ft-lbs			OPERATIONAL	LIMIT TORQUES	11 - 24 명이	
	Operational	20000 ft-lbs			Yield Torque	30000 ft-lbs

*If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

1. Internal Yield Rating is based on 90% RBW.

"B" w/8.4#/g mu Comparison of F Hole A Size N		Csg Test psig:	COMPANY	Coupling	Joint	Collapse	Burst	Length	Weight
"B" w/8.4#/g mu comparison of F Hole A Size N	ud, 30min Sfc Proposed t Annular Volume	Csg Test psig:		OTOO	44.40		0.5		
w/8.4#/g mu comparison of F Hole A Size N	Proposed t Annular Volume		55	ST&C	11.10	2.94	0.5	850	46,325
omparison of F Hole A Size N	Proposed t Annular Volume		ST. Station					0	0
Size	Volume			Tail Cmt ement Volum	does	circ to sfc.	Totals:	850	46,325
		1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
17 1/2 0	0.6946	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
		650	865	645	34	8.70	2966	3M	1.56
urst Frac Gradie			3=,b All>						
	casing ins		13 3/8	ABu	particular in the second secon	Design	An other statements of the statements		MEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
	43.50	L	80	LT&C	1.87	0.69	0.73	11,500	500,250
"B"								0	0
w/8.4#/g mu	ud, 30min Sfc	Csg Test psig:					Totals:	11,500	500,250
The cem	ent volume	e(s) are inter	nded to ach	ieve a top of	0	ft from su	urface or a	850	overlap.
Hole A	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
12 1/4	0.3132	look 🖌	0	3662		9.20	5920	10M	0.81
D V Tool(s):			4870				sum of sx	<u>Σ CuFt</u>	Σ%exces
by stage % :		19	71				2367	5163	41
lass 'H' tail cmt y	/ld > 1.20						MASP is with	in 10% of 50	000psig,
Tail cmt									
7 5/8	Liner w	and a second sec	#####			Design Fa		LI	NER
7 5/8 Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
7 5/8 Segment "A"		and a second sec		Coupling LT&C	Joint 2.63			Length 1,450	Weight 43,065
7 5/8 Segment "A" "B"	#/ft 29.70	Grade HCP	110	the second se		Collapse	Burst 0.97	Length 1,450 0	Weight 43,065 0
7 5/8 Segment "A" "B" w/8.4#/g mu	#/ft 29.70 ud, 30min Sfc	Grade	110	the second se	2.63	Collapse 0.83	Burst 0.97 Totals:	Length 1,450 0 1,450	Weight 43,065 0 43,065
7 5/8 Segment "A" "B" w/8.4#/g mu	#/ft 29.70	Grade HCP	110 1,262	LT&C	2.63 13.10	Collapse 0.83	Burst 0.97 Totals: if it were a	Length 1,450 0 1,450 vertical w	Weight 43,065 0 43,065 rellbore.
7 5/8 Segment "A" "B" w/8.4#/g mu A wo	#/ft 29.70 ud, 30min Sfc build be:	Grade HCP Csg Test psig:	110 1,262 MTD	LT&C Max VTD	2.63 13.10 Csg VD	Collapse 0.83 0.83 Curve KOP	Burst 0.97 Totals: if it were a Dogleg ^o	Length 1,450 0 1,450 vertical w Severity ^o	Weight 43,065 0 43,065 rellbore. MEOC
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot	#/ft 29.70 ud, 30min Sfc build be: Hole Plan	Grade HCP Csg Test psig:	110 1,262 MTD 12300	LT&C Max VTD 12300	2.63 13.10 Csg VD 12300	0.83 0.83 Curve KOP 12115	Burst 0.97 Totals: if it were a Dogleg ^o 90	Length 1,450 0 1,450 vertical w Severity ^o 12	Weight 43,065 0 43,065 rellbore. MEOC 12865
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem	#/ft 29.70 ud, 30min Sfc build be: Hole Plan	Grade HCP Csg Test psig: nned e(s) are inter	110 1,262 MTD 12300 nded to ach	LT&C Max VTD 12300 ieve a top of	2.63 13.10 Csg VD 12300 3950	0.83 0.83 Curve KOP 12115 ft from su	Burst 0.97 Totals: if it were a Dogleg ^o 90	Length 1,450 0 1,450 vertical w Severity ^o	Weight 43,065 0 43,065 rellbore. MEOC
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem	#/ft 29.70 ud, 30min Sfc build be: Hole Plan	Grade HCP Csg Test psig:	110 1,262 MTD 12300	LT&C Max VTD 12300	2.63 13.10 Csg VD 12300	0.83 0.83 Curve KOP 12115	Burst 0.97 Totals: if it were a Dogleg ^o 90	Length 1,450 0 1,450 vertical w Severity ^o 12	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap.
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole	#/ft 29.70 ad, 30min Sfc build be: Hole Plan ent volume	Grade HCP Csg Test psig: nned e(s) are inter	110 1,262 MTD 12300 nded to ach	LT&C Max VTD 12300 ieve a top of	2.63 13.10 Csg VD 12300 3950	0.83 0.83 Curve KOP 12115 ft from su	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a	Length 1,450 0 1,450 vertical w Severity ^o 12 7550	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cemu Hole Size	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume Annular	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage	110 1,262 MTD 12300 nded to ach 1 Stage	LT&C Max VTD 12300 ieve a top of Min	2.63 13.10 Csg VD 12300 3950 1 Stage	0.83 0.83 Curve KOP 12115 ft from su Drilling	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cemu Hole Size 8 1/2 Class 'H' tail cmt y	#/ft 29.70 ad, 30min Sfc Duld be: Hole Plar ent volume Annular Volume 0.0770 yld > 1.20	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is wit	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip?	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl
7 5/8 Segment "A" "B" w/8.4#/g mu A wc No Pilot The cem Hole Size 8 1/2 Class 'H' tail cmt y Burst Frac Gradie	#/ft 29.70 ad, 30min Sfc Duld be: Hole Plar ent volume Annular Volume 0.0770 yld > 1.20	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is wit	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cerm Hole Size 8 1/2 Class 'H' tail cmt y Burst Frac Gradiet Tail cmt	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sep	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A,	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D =	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip?	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cply 0.44
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole Size 8 1/2 Class 'H' tail cmt y Burst Frac Gradier Tail cmt 5 1/2	#/ft 29.70 ad, 30min Sfc build be: Hole Plan ent volume 0.0770 yld > 1.20 nt(s) for Sec casing ins	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is wit	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DO CONSERVA	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cple 0.44
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y burst Frac Gradier Tail cmt 5 1/2 Segment	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec casing ins #/ft	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DO CONSERVA Design Collapse	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "B" w/8.4#/g mu A wc No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y Burst Frac Gradier Tail cmt 5 1/2 Segment "A"	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec casing ins #/ft 20.00	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D =	Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET Coupling BUTT	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91	Collapse 0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DO CONSERVA Design Collapse 1.28	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44
7 5/8 Segment "A" "B" w/8.4#/g mu A wc No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y Burst Frac Gradier Tail cmt 5 1/2 Segment "A"	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec casing ins #/ft	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET Coupling	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint	0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DO CONSERVA Design Collapse	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 C Class 'H' tail cmt y furst Frac Gradier Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Ser <i>#/ft</i> 20.00 18.00 ad, 30min Sfc	Grade HCP Csg Test psig: Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P Csg Test psig:	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8 110 110 2,662	Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET Coupling BUTT	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62	Collapse 0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DO CONSERVA Design Collapse 1.28 1.42	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals:	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y Surst Frac Gradier Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Ser <i>#/ft</i> 20.00 18.00 ad, 30min Sfc	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is wite B, C, D = 7 5/8 110 110 2,662 would be:	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET COUPLING BUTT BUTT	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85	Collapse 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? OC CONSERVA Design Collapse 1.28 1.42 1.51	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 retrical well	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore.
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole Size 8 1/2 (lass 'H' tail cmt y wurst Frac Gradieu Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu B ;egn	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Ser <i>#/ft</i> 20.00 18.00 ad, 30min Sfc	Grade HCP Csg Test psig: nned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P Csg Test psig: gn Factors	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is wite B, C, D = 7 5/8 110 110 2,662 would be: MTD	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET Coupling BUTT BUTT Max VTD	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85 Csg VD	Collapse 0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? O CONSERVA Design Collapse 1.28 1.42 1.51 Curve KOP	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v Dogleg ^o	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 retrical well Severity ^o	Weight 43,065 0 43,065 (ellbore. 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore. MEOC
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 0 1/2 1/2 0 1/2 1/2 0 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec #/ft 20.00 18.00 ad, 30min Sfc ment Desig Hole Plar	Grade HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P Csg Test psig: gn Factors anned	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8 110 110 2,662 would be: MTD 19775	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET Coupling BUTT BUTT Max VTD 12575	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85 Csg VD 12575	Collapse 0.83 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? OCONSERVA Design Collapse 1.28 1.42 1.51 Curve KOP 12115	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v Dogleg ^o 90	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 retrical well Severity ^o 12 12 19,775	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore. MEOC 12865
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 C Size 8 1/2 C Suss 'H' tail cmt y Suss 'Frac Gradier Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu B iegn No Pilot	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec #/ft 20.00 18.00 ad, 30min Sfc ment Desig Hole Plar ent volume	Grade HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P Csg Test psig: gn Factors anned e(s) are inter	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8 110 110 2,662 would be: MTD 19775 nded to ach	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET COUPLING BUTT BUTT Max VTD 12575 ieve a top of	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85 Csg VD 12575 0	Collapse 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DCONSERVA Design Collapse 1.28 1.42 1.51 Curve KOP 12115 ft from su	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v Dogleg ^o 90 urface or a	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 severity ^o 12 12,755 rtical well Severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 12,755 12,755 19,775 12,755 12,755 12,755 12,755 12,755 13,755 14,775 14,755 15,755 14,755 15,755 14,755 14,755 14,755 14,755 14,755 14,755 15,755 14,755 1	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore. MEOC 12865 overlap.
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y Burst Frac Gradier Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu Biegn No Pilot The cemu	#/ft 29.70 ad, 30min Sfc build be: Hole Plan ent volume 0.0770 yld > 1.20 nt(s) for Ser #/ft 20.00 18.00 ad, 30min Sfc ment Desig Hole Plan ent volume	Grade HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P Csg Test psig: gn Factors anned e(s) are inter 1 Stage	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8 110 110 2,662 would be: MTD 19775 nded to ach 1 Stage	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET COUPLING BUTT BUTT Max VTD 12575 ieve a top of Min	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85 Csg VD 12575 0 1 Stage	Collapse 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DCONSERVA Design Collapse 1.28 1.42 1.51 Curve KOP 12115 ft from su Drilling	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v Dogleg ^o 90 urface or a Calc	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 severity ^o 12 12,00 7,675 19,775 severity ^o 12 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,00 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,675 12,000 7,000 12,000 7,000 12,	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore. MEOC 12865 overlap. Min Dist
7 5/8 Segment "A" "B" w/8.4#/g mu A wo No Pilot The cem Hole 8 1/2 Class 'H' tail cmt y Size Surst Frac Gradien Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g mu B iegn No Pilot The cemu Hole A Size	#/ft 29.70 ad, 30min Sfc build be: Hole Plar ent volume 0.0770 yld > 1.20 nt(s) for Sec #/ft 20.00 18.00 ad, 30min Sfc ment Desig Hole Plar ent volume	Grade HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx 123 gment(s): A, side the Grade P P Csg Test psig: gn Factors anned e(s) are inter	110 1,262 MTD 12300 nded to ach 1 Stage CuFt Cmt 150 MASP is witt B, C, D = 7 5/8 110 110 2,662 would be: MTD 19775 nded to ach	LT&C Max VTD 12300 ieve a top of Min Cu Ft 838 hin 10% of 500 CURVE SAFET COUPLING BUTT BUTT Max VTD 12575 ieve a top of	2.63 13.10 Csg VD 12300 3950 1 Stage % Excess -82 00psig, need Y FACTOR TC Joint 2.91 5.62 54.85 Csg VD 12575 0	Collapse 0.83 Curve KOP 12115 ft from su Drilling Mud Wt 13.50 exrta equip? DCONSERVA Design Collapse 1.28 1.42 1.51 Curve KOP 12115 ft from su	Burst 0.97 Totals: if it were a Dogleg ^o 90 urface or a Calc MASP 7032 TIVE Factors Burst 1.47 1.66 Totals: if it were a v Dogleg ^o 90 urface or a	Length 1,450 0 1,450 vertical w Severity ^o 12 7550 Req'd BOPE 10M PROD Length 12,100 7,675 19,775 severity ^o 12 12,755 rtical well Severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 severity ^o 12 12,755 19,775 12,755 12,755 19,775 12,755 12,755 12,755 12,755 12,755 13,755 14,775 14,775 15,775 14,775 15,775 14,775 14,775 14,775 14,775 14,775 14,775 15,775 14,775 1	Weight 43,065 0 43,065 rellbore. MEOC 12865 overlap. Min Dist Hole-Cpl 0.44 UCTION Weight 242,000 138,150 380,150 bore. MEOC 12865 overlap.

Carlsbad Field Office