

Commitment Runs Deep

SEP 0 6 2017

Design Plan Operation and Maintenance Plan Closure Plan

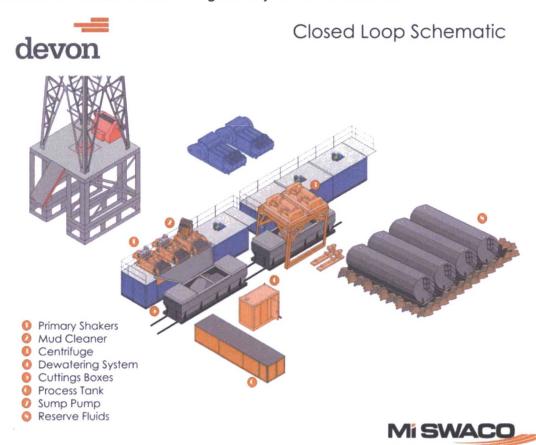
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependant on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe

dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

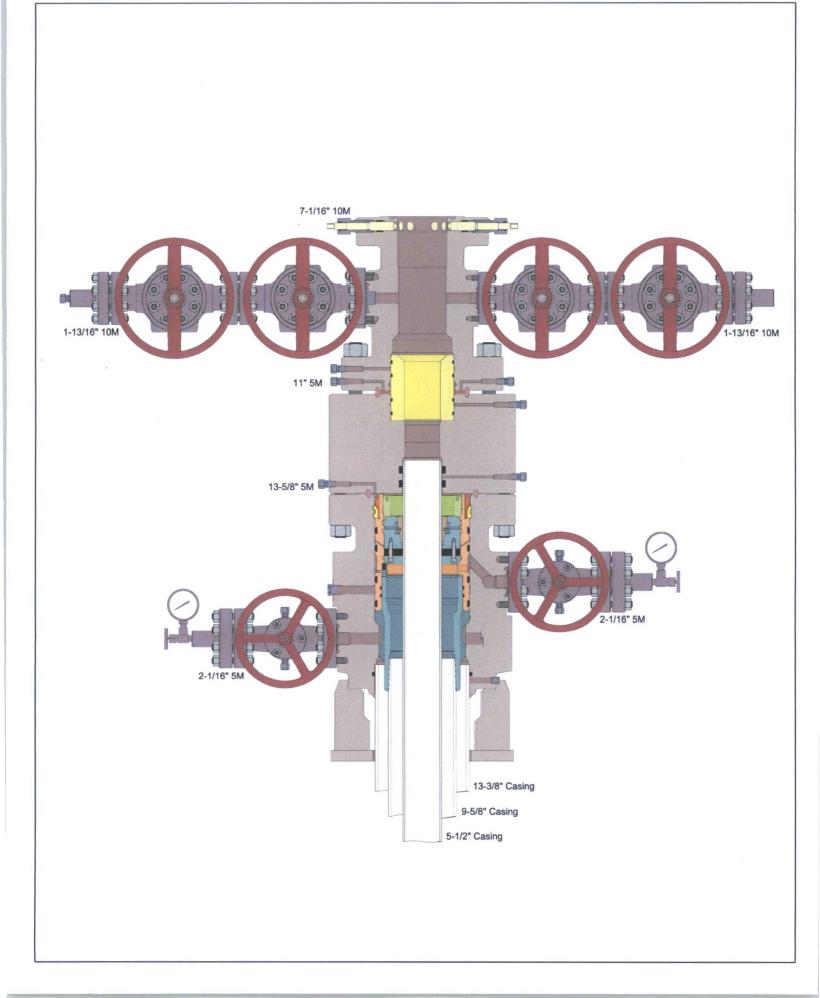
A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi.


- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 3M, as shown on the attached schematic.
 Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 3M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 3,000 psi high pressure test. The 3,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the 9-5/8' intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 3M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Surface Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section	
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point	

Surface Casing Collapse Design				
Load Case	External Pressure	Internal Pressure None		
Full Evacuation	Water gradient in cement, mud above TOC			
Cementing	Wet cement weight	Water (8.33ppg)		

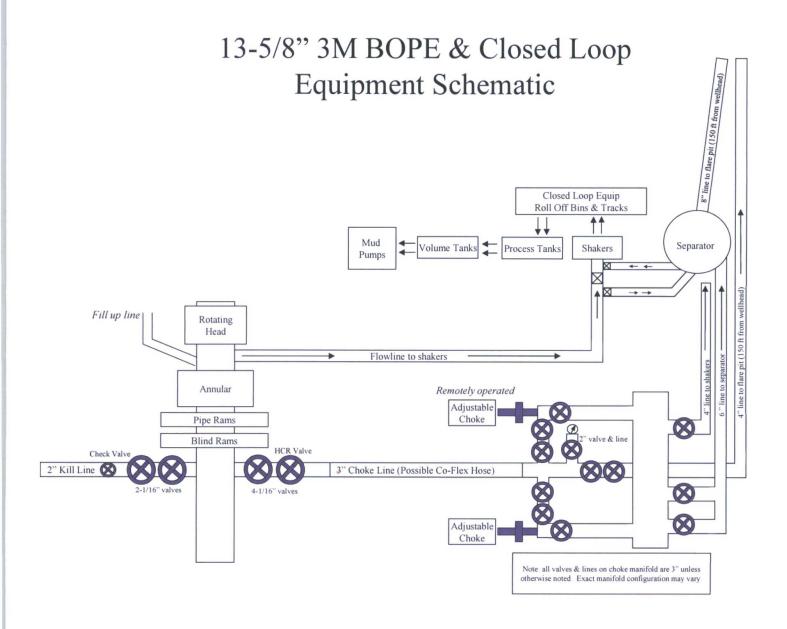
Surface Casing Tension Design			
Load Case	Assumptions		
Overpull	100kips		
Runing in hole	3 ft/s		
Service Loads	N/A		

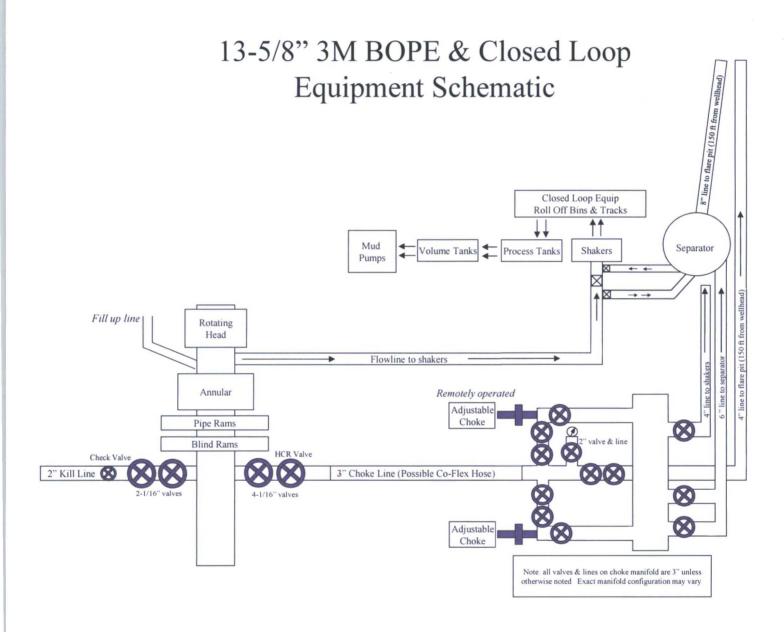
Intermediate

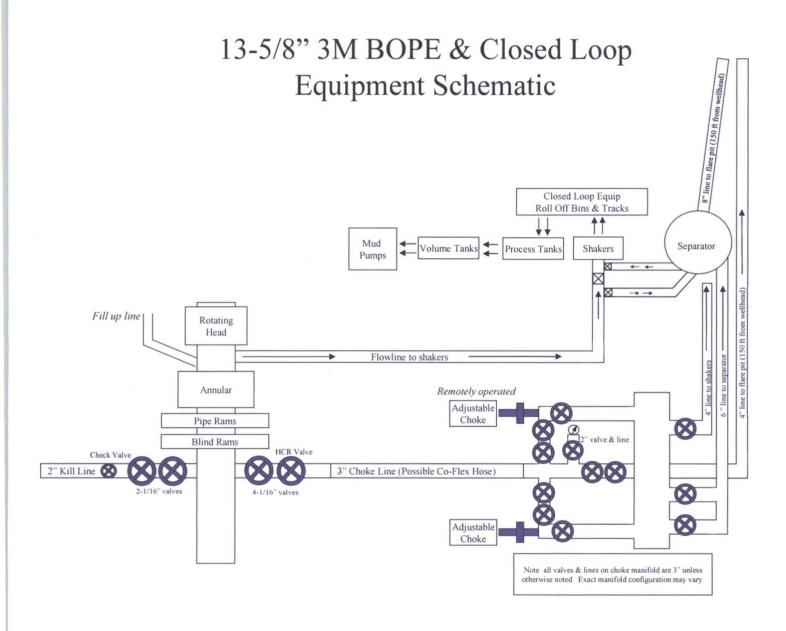
All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

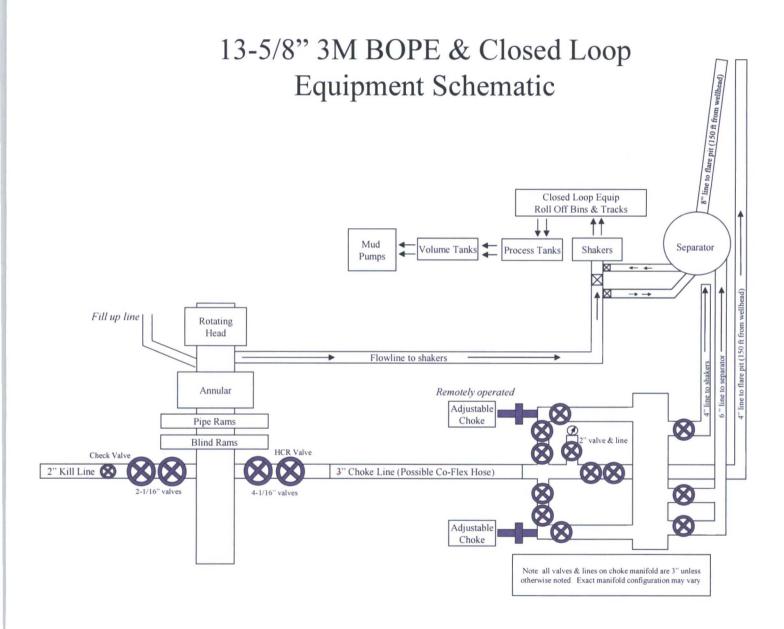
Intermediate Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section	
Fracture @ Shoe	Formation Pore Pressure	Dry gas	

Intermediate Casing Collapse Design					
Load Case External Pressure Internal Pressure					
Full Evacuation	Water gradient in cement, mud above TOC	None			
	above roc				
Cementing	Wet cement weight	Water (8.33ppg)			


Intermediate Casing Tension Design				
Load Case Assumptions				
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads	N/A			


All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.


Production Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi	
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid	
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid	


	Production Casing Collapse Design	1	
Load Case	Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Production Casing Tension Design				
Load Case Assumptions				
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads	N/A			

Fluid Technology

ContiTech Beattle Corp. Website: www.contitechbeattle.com

Monday, June 14, 2010

RE:

Drilling & Production Hoses Lifting & Safety Equipment

To Helmerich & Payne,

A Continental ContiTech hose assembly can perform as intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use in Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly it is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional information/clarifications then please do not hesitate to contact us.

ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattle Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattle.com

R16212

OUALITY DOCUMENT

PHOENIX RUBBER

6728 Szeged, Budapesti út 10. Hungary • H–6701 Szeged, P. O. Box 152 none: (3662) 556-737 • Fax: (3662) 566-738 SALES & MARKETING: H-1092 Budapest, Ráday u. 42-44, Hungary • H-1440 Budapest, P. O. Box 26 Phone: (361) 456-4200 • Fax: (361) 217-2972, 456-4273 • www.taurusemerge.hu

QUAL INSPECTION	ITY CONTR		ATE	CERT. N	lo: (552	
PURCHASER:	Phoenix Beat	tie Co.		P.O. N°	1519F	A-871	
PHOENIX RUBBER order No.	170466	HOSE TYPE:	3" ID	Cho	oke and Kill I	Hose	
HOSE SERIAL Nº	34128	NOMINAL / AC	TUAL LENGTH:		11,43 m		
W.P. 68,96 MPa 1	0000 psi	T.P. 103,4	MPa 1500	0 psi	Duration:	60	min.
Pressure test with water at ambient temperature ↑ 10 mm = 10 Min. → 10 mm = 25 MPa		achment. (1	page)				The Conjust of Astron
7 TO HILL		COUPLI	NGS				.22
Туре		Serial N°		Quality		Heat N°	
3" coupling with	72	20 719	A	ISI 4130		C7626	
4 1/16" Flange end			A	ISI 4130		47357	
				:			
All metal parts are flawless WE CERTIFY THAT THE ABOVE PRESSURE TESTED AS ABOVE	E HOSE HAS BEEN	I MANUFACTURI	API Spec 16 Temperatur	e rate:"E		F THE ORDE	R AND
29. April. 2002.	Inspector		Quality Control	Hose	NIX RUBB dustrial Ltd. Inspection a MERICATOR	Colour	w.

> VERIFIED TRUE CO. PHOENIX RUBBER Q.C.