CEMEN	IT: SURFACE		
Stage T	ool Depth: N/A		
Lead:			
	Top MD of Segment: 0	Btm MD of Segment: 1285.4	7_
	Cmt Type: C	Cmt Additives:	4% Bentonite + 1% CaCl2
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	650 1.73 Volume (cu/ft): 1124.5 13.5 Percent OH Excess: 259	-
Tail:			
	Top MD of Segment: 1285.47	Btm MD of Segment: 1706	<u>)</u>
	Cmt Type: C	Cmt Additives:	1% CaCl2
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	300 1.33 Volume (cu/ft): 399 14.8 Percent OH Excess: 259	-

CEMENT: INTERMEDIATE		
Single Stage		
Lead:		
Top MD of Segment: 0	Btm MD of Segment: 5144.38	
Cmt Type: C	5% NaCl + 6% Bentonite - Ib/sk Kolseal + 0.125 lb/sl Cmt Additives: Celloflake + 0.4% Retarde	k
Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	1043 1.885 Volume (cu/ft): 1966.06 12.9 Percent OH Excess: 25%	
Tail:		

1				1					
	Top MD of		MD of						
	Segment: 5144.38	Segn	nent: 578	80					
	Cmt Type: C		Cmt Additives:	0.2% Retarder					
	Quantity (sks):	200							
	Yield (cu/ft/sk):	1.34 Volume (cu/ft):		68					
	Density (lbs/gal):	14.8 Percent OH Exc	cess: 25	<u>%</u>					
**CON	TINGENCY 2 Stage Cem	ent Job							
propor above	* DVT depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for								
review									
	circulation is encounter e placed below DVT.	ed, Apache may 2-stage Ir	nterm csg. A DVT	may be used in the 7" csg & ECP					
1st Sta	ge								
13t Sta	80								
Lead:									
	Top MD of	Rtm	MD of						
	Segment: 3500		nent: 5144.	38					
	Cmt Type: C		Cmt Additives:	5% NaCl + 6% Bentonite + 2 lb/sk Kolseal + 0.125 lb/sk Celloflake + 0.4% Retarder					
	cint Type. C		cilit Additives.	Cellollake 1 0.470 Netaluel					
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	1.885 Volume (cu/ft): 12.9 Percent OH Exc	The second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a second section of the second section is not a section of the second section is not a section of the second section is not a section of the second section of the second section of the secti	33 5%					
Tail:									
	Top MD of Segment: 5144.38		MD of ment: 57	80					
	Cmt Type: C		Cmt Additives:	0.3% Retarder					
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	200 1.34 Volume (cu/ft): 14.8 Percent OH Exc		68 5%					

Stage T	Tool / ECP Depth:	± 3500'			
2nd Sta	age				
Lead:					
	Top MD of Segment: 0		Btm MD of Segment:	2815.44	•
	Cmt Type: C		Cmt Ac	dditives:	5% NaCl + 6% Bentonite
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	565 1.868 Volume (c 12.9 Percent O		1055.42 25%	-
Tail:					
	Top MD of Segment: 2815.44		Btm MD of Segment:	3500	
	Cmt Type: C		Cmt Ac	dditives:	0.3% Retarder
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	200 1.34 Volume (c 14.8 Percent O		268 25%	

-			
CEMEN	IT: PRODUCTION		
Single S	Stage		
Lead:			
	Top MD of	Btm MD of	
	Segment: 3000	Segment:	10461.18
1	Cmt Type: H	Cmt Ac	dditives: 10% gel + 5% Salt
	Quantity (sks):	925	
	Yield (cu/ft/sk):	2.32 Volume (cu/ft):	1221
	Density (lbs/gal):	11.9 Percent OH Excess:	20%
Tail:			
1			
l	Top MD of	Btm MD of	
	Segment: 10461.18	Segment:	15667.23

1	Cmt Type: TXI Lite	C	Emt Additives:	0.3% Fluid Loss + 0.2% Retarder
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	1103 1.44 Volume (cu/ft): 12.8 Percent OH Exce	1588.3 ss: 209	-
**CON	TINGENCY 2 Stage Cem	ent Job		
propor	tionally. DV tool will be current shoe. Lab report		elow previous cas	olumes will be adjusted sing and a minimum of 200 feet e for the cement will be onsite for
	circulation is encounter e placed below DVT.	ed, Apache may 2-stage Into	erm csg. A DVT n	nay be used in the 7" csg & ECP
1st Sta	ge			
Lead:				
	Top MD of Segment: 5830	Btm M Segme		<u>8</u>
	Cmt Type: H	C	mt Additives:	10% gel + 5% Salt
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	2.32 Volume (cu/ft): 11.9 Percent OH Exces	1405.9 ss: 209	
Tail:				
	Top MD of Segment: 10461.18	Btm M Segme		3_
	Cmt Type: TXI Lite	С	mt Additives:	0.3% Fluid Loss + 0.2% Retarder
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	1103 1.44 Volume (cu/ft): 12.8 Percent OH Exce	1588.3 ss: 209	_
Stage 7	Fool / ECP Depth:	± 5830'		
2nd Sta	age			
1				

Lead:

	Top MD of Segment: 3000 Cmt Type: H	Btm MD of Segment: 4810.33 Cmt Additives: 10% gel + 5% Salt
Tail:	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	2.32 Volume (cu/ft): 473.28 11.9 Percent OH Excess: 20%
	Top MD of Segment: 4810.33 Cmt Type: C	Btm MD of Segment: 5830 Cmt Additives: 0.3% Retarder
	Quantity (sks): Yield (cu/ft/sk): Density (lbs/gal):	200 1.34 Volume (cu/ft): 268 14.8 Percent OH Excess: 20%

BLACK & TAN 27 FEDERAL COM 302H

String:	SURFACE						
Hole Size:	17.5						
Top Setting Depth (MD):	0	Top Setting Depth (TVD):	0	Btm setting depth (MD):	1700	Btm setting depth (TVD):	1700
Size:	13-3/8"	Grade:	J-55	Weight (lbs/ft):	54.5	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	Buttress
Condition (Ne	ew/Used):	New		Standard (API/Non-A	PI):	API	
Tapered Strin If yes, nee	g (Y/N)?: d spec atta	N chment					
Safety Factor	<u>s</u>						
Collapse Desi	gn Safety Fa	actor:	2.15	Burst Design Safety F	actor:	1.82	
	Body Tensile Design Safety Factor type?: Dry/Buoyant Body Tensile Design Safety Factor: 3.79						
Joint Tensile I Joint Tensile I			pe?: Dry/I	Buoyant 4.04	Buoyant	_	

String:	INTERMEDI	ATE					
Hole Size:	12.25		,				
Top Setting Depth (MD):	0	Top Setting Depth (TVD):	0	Btm setting depth (MD):	900	Btm setting depth (TVD):	900
Size:	9-5/8"	Grade:	J-55	Weight (lbs/ft):	40	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	Buttress

Condition (New/Used):	New		Standard (API/Non-A	API):	API	
Tapered String (Y/N)?: If yes, need spec atta	N achment					
Safety Factors						
Collapse Design Safety F	actor:	5.37	Burst Design Safety F	Factor:	1.7	
Body Tensile Design Safe Body Tensile Design Safe		pe?: Dry/E	Buoyant 1.96	Buoyant	-	
Joint Tensile Design Safe Joint Tensile Design Safe		pe?: Dry/E	Buoyant 2.24	Buoyant	-	
Top Setting 900 Depth (MD):	Top Setting Depth (TVD):	900	Btm setting depth (MD):	5780	Btm setting depth (TVD):	5780
Size: 9-5/8 "	Grade:	J-55	Weight (lbs/ft):	40	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	LTC
Condition (New/Used):	New		Standard (API/Non-A	API):	API	
Tapered String (Y/N)?: If yes, need spec atta	N achment					
Safety Factors						
Collapse Design Safety F	actor:	1.54	Burst Design Safety F	Factor:	1.87	
Body Tensile Design Safe Body Tensile Design Safe		pe?: Dry/E	2.15	Buoyant	-	
Joint Tensile Design Safe Joint Tensile Design Safe		pe?: Dry/l	Buoyant 1.8	Buoyant	-	

String: PRODUCTION

Hole Size:	8.75						
Top Setting Depth (MD):	0	Top Setting Depth (TVD):	0	Btm setting depth (MD):	15667.23	Btm setting depth (TVD):	10950
Size:	5-1/2"	Grade:	P-110	Weight (lbs/ft):	17	Joint (Butt,FJ, LTC,STC, SLH, N/A, Other):	Buttress
Condition (Ne	w/Used):	New		Standard (API/Non-A	API):	API	
Safety Factors	5						
Collapse Desig	gn Safety Fa	actor:	1.36	Burst Design Safety F	actor:	1.33	
Body Tensile I Body Tensile I			pe?: Dry/B	uoyant 2.04	Buoyant		
Joint Tensile [Joint Tensile [pe?: Dry/B	uoyant 2.13	Buoyant		
Tapered Strin	g (Y/N)?: d spec atta	N chment					

ContiTech

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 157/ 2014 Page: 17 / 131

QU INSPECTIO	ALITY CON N AND TES		CATE		CERT. N	1 °:	373	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. N°:		450039835	5
CONTITECH RUBBER orde	N°: 538079	HOSE TYPE:	3"	ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	67090	NOMINAL / AC	CTUAL L	ENGTH:		10,67 m	/ 10,73 m	
W.P. 68,9 MPa	10000 psi	T.P. 103,4	MPa	1500	00 psi	Duration:	60	min
↑ 10 mm = 10 N	lin.	See attachm	nent. (1 page	e)			
→ 10 mm = 25 M	IPa Type	Cori	al Nº		0	uality	Heat	No.
3" coupling v		1252	890	1		SI 4130		A1126U
4 1/16" 10K API b.w.		,	000			SI 4130	0352	
NOT DESIG	NED FOR W	ELL TESTII	NG			Α	Pl Spec 16	C
						Temp	erature ra	te:"B"
All metal parts are flawless WE CERTIFY THAT THE ABO						H THE TERMS	OF THE ORDE	R
STATEMENT OF CONFORM conditions and specifications accordance with the reference	TY: We hereby of the above Purod standards, codes	certify that the aborder and	ove items that these and mee	equipment items/entite the relev	nt supplied quipment v ant accept	were fabricated	inspected and	tested in
Date: 05. March 2014.	Inspector	-	Quali	y Contro	ol Suo	Contillect R Industrial Quality Contro	Kft.	

Page: 1/1

			Land Junter
			Centileta Rubber Industrial Kft.
l i	0 10 20 30 40	50 60 70 80	90 100 Dept
	ERL PRES PUT	%	
	BL +105%L bb-		
,	EL 1066, Drv.		
	616 + 18 55 - 1		
!	Teile - Nr. 323017	16m-a-10,5	38600
!			
: 1			
1	\$1000.2 000 D		

CONTITECH RUBBER Industrial Kft.	No:QC-DB- 157/ 2014	
	Page: 25 / 131	

Hose Data Sheet

CRI Order No.	538079
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500398355
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
Type of coupling other end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Black and Tan 27 Federal COM 302H Intermediate Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW (psi) (ppg)	
Depth (ft)		
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Intermediate Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Gas Kick Profile
 - o Influx at 15,667.2' MD
 - o 30 Bbl Kick Volume
 - o 0.5 ppg Kick Intensity
 - o Maximum Mud Weight of 9.5 ppg
 - o Kick gas gravity of 0.7 ppg
 - O No margin of error on frac gradient
 - o 5" DP
 - o 650' of 6.5" Drill Collars
- Lost Returns with Water
 - o No margin of error on frac gradient
 - Mud/Water Interface at 5780'
 - Mud weight with losses at 9.5 ppg
- Pressure Test
 - o 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 2300 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - o Mud weight is 10.2 ppg
 - Cement Mix-Water Density is 8.33 ppg

Collapse Loads

Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 2890'.
 - o Mud Weight is 10.2 ppg
- Lost Returns with Mud Drop

- o Losses occurring at 5800' MD
- o Pore Pressure at 8.33 ppg
- o Current Mud Weight at 9.5 ppg
- Mud level drops to 714.3'
- Cementing
 - o Lead Slurry Density at 12.9 ppg
 - o Tail Slurry Density at 14.8 ppg
 - o Tail Slurry Length of 500'
 - o TOC at surface
 - o Mud Weight at shoe 10.2 ppg
 - Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 10.2 ppg
 - O Fluid Gradient Below TOC is 10.2 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 2300 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 302H Surface Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi) (ppg)	
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Surface Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Fracture @ Shoe w/ Gas Gradient Above
 - No margin of error on frac gradient
 - Using a 0.7 ppg gas gradient
- Lost Returns with Water
 - o No margin of error on frac gradient
 - Mud/Water Interface at 1700'
 - Mud weight with losses at 10.2 ppg
- Pressure Test
 - o 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 1200 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - Mud weight is 8.6 ppg
 - Cement Mix-Water Density is 8.33 ppg

Collapse Loads

Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 850'.
 - Mud Weight is 8.6 ppg
- Lost Returns with Mud Drop
 - Losses occurring at 4000'
 - o Pore Pressure at 8.00 ppg
 - o Current Mud Weight at 10.2 ppg
 - o Mud level drops to 863'
- Cementing
 - o Lead slurry of 13.5 ppg with TOC at surface

- o Tail slurry slurry at 14.8 ppg with length of 500'
- Mud weight at shoe 8.6 ppg
- o Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 8.6 ppg
 - O Fluid Gradient Below TOC is 8.6 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 1200 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 302H Production Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi)	(ppg)
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100′ TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Production Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Pressure Test
 - o 8000 psi with 8.33 ppg fresh water
- Green Cement Pressure Test
 - o 3800 psi put on casing when bumping the plug with 8.33 ppg displacement

Production Loads

- Tubing Leak
 - o Packer Fluid Density at 8.6 ppg
 - o Packer Depth of 10411.2'
 - o Perf Depth at 15667.2' MD
 - o Gas/Oil Gradient 0.35 psi/ft
 - o Reservoir pressure at 5119 psi
- Injection Down Casing
 - o Injection pressure of 8000 psi
 - o Injection density of 9.4 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - 9.5 ppg mud weight above TOC
 - O 8.33 ppg below TOC
 - O Pore pressure applied in the openhole

Collapse Loads

Internal Profile

- Cementing
 - o Mud weight at shoe is 9.5 ppg
 - o TOC at surface
 - o Lead Slurry Density is 11.9 ppg
 - o Tail Slurry Density is 12.8 ppg
 - o Tail Slurry Length at 5706.1'.
 - Displacement fluid density is 8.33 ppg

Production Loads

- Full Evacuation
- Above/Below Packer
 - o Reservoir pressure at 4850 psi
 - o Density Above Packer at 8.6 ppg
 - o Density Below Packer at 6.0 ppg
 - o Assuming a fluid drop above the packer

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 9.5 ppg
 - O Fluid Gradient Below TOC is 9.5 ppg

- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 3800 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

Black and Tan 27 Federal COM 302H Intermediate Casing Design Assumptions

Pore Pressure

Vertical Depth (ft)	Pore Pressure/EMW		Permeable Zones
Depth (ft)	(psi)	(ppg)	Zones
20	0	0	No
1700	748	8.47	No
3900	1621	8	No
5800	2552	8.47	No
8586	3970	8.9	No
11352	5661	9.6	No

Fracture Pressure

Vertical Depth (ft)	Fracture Pressure/EMW	
Depth (ft)	(psi)	(ppg)
20	9	9
1700	1189	13.46
3900	2026	10
5800	4055	13.46
8586	6004	13.46
11352	8551	14.5

Temperature Gradient

Ambient Temperature is 80° F

Temperature gradient of 0.75°/100' TVD

- Single External Pressure Profile
- Temperature Deration
- Buckling

Intermediate Casing Loads

Burst Loads

Internal Profile

Drilling Loads

- Gas Kick Profile
 - o Influx at 15,667.2' MD
 - o 30 Bbl Kick Volume
 - o 0.5 ppg Kick Intensity
 - o Maximum Mud Weight of 9.5 ppg
 - o Kick gas gravity of 0.7 ppg
 - o No margin of error on frac gradient
 - o 5" DP
 - o 650' of 6.5" Drill Collars
- Lost Returns with Water
 - No margin of error on frac gradient
 - o Mud/Water Interface at 5780'
 - Mud weight with losses at 9.5 ppg
- Pressure Test
 - o 1500 psi casing pressure test with 8.33 ppg fresh water
- Green Cement Pressure Test
 - 2300 psi put on casing when bumping the plug with 8.33 ppg displacement fresh water

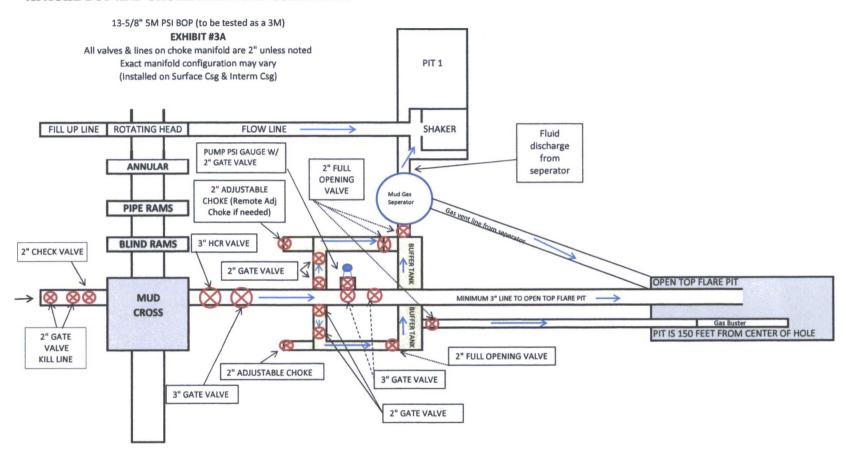
External Profile

- Mud and Cement Mix-Water
 - TOC at surface
 - o Mud weight is 10.2 ppg
 - o Cement Mix-Water Density is 8.33 ppg

Collapse Loads

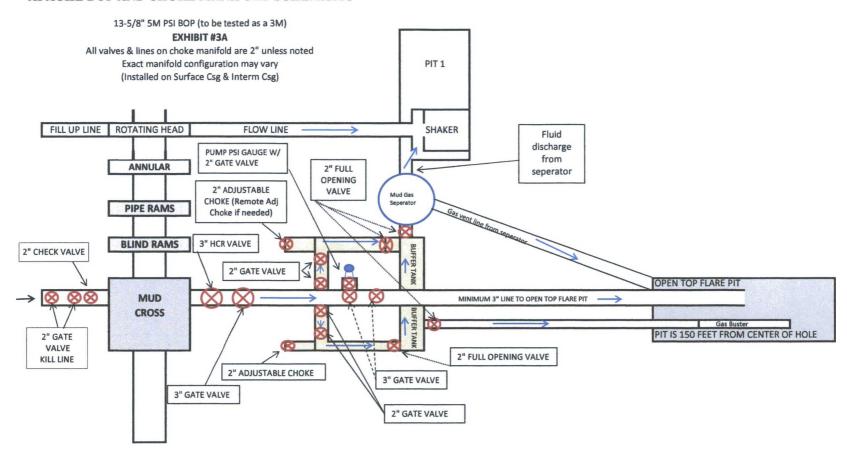
Internal Profile

- Partial Evacuation
 - o 50% evacuation. Top of mud level at 2890'.
 - Mud Weight is 10.2 ppg
- Lost Returns with Mud Drop


- o Losses occurring at 5800' MD
- o Pore Pressure at 8.33 ppg
- o Current Mud Weight at 9.5 ppg
- o Mud level drops to 714.3'
- Cementing
 - Lead Slurry Density at 12.9 ppg
 - o Tail Slurry Density at 14.8 ppg
 - o Tail Slurry Length of 500'
 - o TOC at surface
 - o Mud Weight at shoe 10.2 ppg
 - o Displacement fluid density at 8.33 ppg

External Profile

- Fluid Gradients w/ Pore Pressure
 - O Fluid Gradient Above TOC is 10.2 ppg
 - O Fluid Gradient Below TOC is 10.2 ppg


- Average Running in hole speed at 2.0 ft/s
- Overpull of 100,000 lbf
- 2300 psi Green Cement Pressure Test
- Service Loads from Burst and Collapse

APACHE BOP AND CHOKE MANIFOLD SCHEMATIC

^{***} If H2S is encountered in quantities greater than 100ppm, Apache will shut in well & install a remote operated choke ***

APACHE BOP AND CHOKE MANIFOLD SCHEMATIC

^{***} If H2S is encountered in quantities greater than 100ppm, Apache will shut in well & install a remote operated choke ***