1. Geologic Formations

TVD of target	10582'	Pilot Hole Depth	N/A
MD at TD:	20610'	Deepest Expected fresh water:	918'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	918	
Salado	1007	
Castile	3300	
Lamar/Delaware	4670	Oil/Gas
Bell Canyon*	4685	Water/Oil/Gas
Cherry Canyon*	5542	Oil/Gas
Brushy Canyon*	6911	Oil/Gas
Bone Spring	8503	Oil/Gas
1st Bone Spring	9597	Oil/Gas
2nd Bone Spring	9930	Oil/Gas
3rd Bone Spring	10814	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
	Casing In	terval	Csg. Size	Weight	0.1	6	SF	CE D	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs) Grade Con	Conn.	Collapse	SF Burst	Tension	Tension	
17.5	0	969	13.375	54.5	J55	BTC	2.19	1.31	2.41	2.59
12.25	0	7500	9.625	47	L80	BTC	1.21	1.43	1.84	1.93
12.25	7500	9948	9.625	47	HPL80	BTC	1.19	1.48	3.54	4.39
8.5	9848	20610	5.5	20	P-110	DQX	1.98	1.20	2.31	2.54

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N		
Is casing new? If used, attach certification as required in Onshore Order #1	Y		
Does casing meet API specifications? If no, attach casing specification sheet.	Y		
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y		
Does the above casing design meet or exceed BLM's minimum standards? If not provide			
justification (loading assumptions, casing design criteria).	I		
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	V		
the collapse pressure rating of the casing?	Ŷ		
	data da da		

6

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	A
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	775	14.8	1.35	6.53	6:50	Class C Cement, Accelerator
Production	1550	10.2	3.05	15.63	15:07	Class C Cement, Retarder
Casing	239	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP Tool @ 4721' (We request the option to cancel the second stage if cement is circulated to surface during the first stage of cement operations)					d to surface during the first stage of cement operations)	
2nd Stage	1154	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
Casing	265	14.8	1.33	6.34	6:31	Class C cement
Production Liner	1740	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	969		50%
Production Casing	0	8948	8948	9948	75%	20%
2nd Stage Production Casing	0	4221	4221	4721	75%	125%
Production Liner	N/A	N/A	9848	20610		15%

1

.

<u>Cement Top and Liner Overlap</u>

- Oxy is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9.625" mainbore in the future.
- Our plan is to use a whipstock for our exit through the mainbore. Based on our future lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve.
- Cement will be brought to the top of this liner hanger
- See attached for additional casing tie-back information

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		Tested to:
12.25" Intermediate	13-5/8" 5M		Annular	~	70% of working pressure
		5M	Blind Ram	1	
			Pipe Ram		250/5000:
			Double Ram	1	250/5000psi
			Other*]

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.						
On Exploratory wells or on that portion of any well approved for a 5M BOPE system or						
greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in						
accordance with Onshore Oil and Gas Order #2 III.B.1.i.						
A variance is requested for the use of a flexible choke line from the BOP to Choke						
Manifold. See attached for specs and hydrostatic test chart.						
Y Are anchors required by manufacturer?						
A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after						
installation on the surface casing which will cover testing requirements for a maximum of						
30 days. If any seal subject to test pressure is broken the system must be tested. We will						
test the flange connection of the wellhead with a test port that is directly in the flange. We						
are proposing that we will run the wellhead through the rotary prior to cementing surface						
casing as discussed with the BLM on October 8, 2015.						
See attached schematic.						

5. Mud Program

2

Depth		T		¥7.	Weter Loss	
From (ft)	To (ft)	Туре	weight (ppg)	VISCOSITY	water Loss	
0	969	EnerSeal (MMH)	8.4-8.6	40-60	N/C	
969	4721	Brine	9.8-10.0	35-45	N/C	
4721	9948	EnerSeal (MMH)	8.8-9.6	38-50	N/C	
9948	20610	Oil-Based Mud	8.8-9.6	35-50	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 13.375" surface casing shoe with a saturated brine system from 969' - 4721', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the Production Casing TD @ 9948'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Additional logs planned		Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	Surface Casing Shoe - TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5283 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	165°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Total estimated cuttings volume: 2345.5 bbls.

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Ludwing Franco	Drilling Engineer	713-366-5174	832-523-6392
Tim Barnard	Drilling Engineer Team Lead	713-366-5706	281-740-3084
Amrut Athavale	Drilling Engineer Supervisor	713-350-4747	281-740-4448
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: OXY USA Inc

1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

5M Choke Panel

2

ж

Fluid Technology

Quality Document

	TY CONT	ROL CERTIFIC	ATE	CERT. Nº:		746	
PURCHASER:	Phoenix Bea	ttie Co.		P.O. Nº:	00	2491	
CONTITECH ORDER Nº:	412638	HOSE TYPE:	3" ID	Chok	e and Kill	Hose	
HOSE SERIAL Nº:	52777	NOMINAL / ACT	UAL LENGTH:	1	10,67 m	<u></u>	
W.P. 68,96 MPa 1	iaq 0000	т.р. 103,4	MPa 1500	0 psi D	Juration:	60 ~	min.
Pressure test with water at ambient temperature See attachment. (1 page) ↑ 10 mm = 10 Min.							
		COUPL	INGS				
Туре		Serial Nº	0	Quality		Heat Nº	
3" coupling with	917	913	AIS	4130		T7998A	
4 1/16° Flange end			AIS	14130		26984	
INFOCHIP INSTALL	ËD		· · ·		Al	PI Spec 16 perature ra	C ite:"B"
WE CERTIFY THAT THE ABOVE PRESSURE TESTED AS ABOVE	E HOSE HAS BE WITH SATISFAC	en Manufactur Tory Result.	ed in accord	ANCE WITH	THE TERM	s of the ord	ER AND
Date: 04. April. 2008	Inspector		Quality Contro	Contile Indust IJualityC	ch Rubber trial Kit. ontrol Dept.		(
	-		Daca		(1)	Jasie	

FH-1

FH-2

.;

Coflex Hose Certification

1

Page: 1/1

			\frown
Later			
		Contil	chi Rubber trial Kft.
FC = 1415-23 F1 FL = 416523-364		PERIOD A	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
			•
70 +15-04 4: 81 +1253 - 1654 -			
			-
行日 キュミー・パラ ギリ。 ● 新日 中山日 - 28 日本	60	30	(
		Management of the second	
			9912-00212999999999999999999999999999999

.

FH-3

Coflex Hose Certification

Form No 100/12

Phoenix Beattie Corp 11535 Brittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-sail sell@phoenizheattie.com wee.phoenizheattie.com

Delivery Note

---- PHOENIX Beattie

à

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Addre HELMERICH & PAYNE INT'L 1437 SOUTH BOULDER TULSA, OK 74119	ss DRILLING CO	Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RIC 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	3 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

ltern No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
1	HP1DCK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kpsi API Spec 6A Type 68X Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10.000psi Test pressure: 15.000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	0
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	D

Continued...

All goods remain the property of Phoenix Beattie until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge. D

Form No 100/12

Phoenix Beattle Corp 11535 Erittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail mail@phoenixbeattle.com www.phoenixbeattle.com

Delivery Note

à

ñ,

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addre HELMERICH & PAYNE INT'L 1437 SOUTH BOULDER TULSA, OK 74119	ss DRILLING CO	Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RIG 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	; 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
HOI	JJL	005330	05/23/2008

Item No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	O
5	ODCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
б	OOCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
7	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	1	0
	T	Pag	\bigcap	
	Phoenix Beattle Inspection Signature :	PARAMAN	WAVEY	
	Received in Good Condition : Signature		$\overline{}$	
	Print Name 🔐		N	

Date

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be edviced within 5 days. Returns may be subject to a handling charge.

			en de				- <u> </u>		and the second	
Material Identification Certificate										
PA No 000	006330 Client HELMERICH & PAYNE INT'L DRILLING Clent Ref 370-369-001									1
Part No	Description	Material Desc	Material Spec	Qty	WO No	Batch No	Test Cert No	Bin No	Drg No	Issue No
HP10CK3A-35-4F1	3" TOK 16C CAK HOSE x 35TE DAL			1	2491	52777/HB84	and the second se	WATER		
SECKJ-HPFJ	LIFTING & SAFETY EDUIPMENT TO		·	1	2440	002440		N/STK	· · · · · · · · · · · · · · · · · · ·	
SC725-200CS	SAFETY CLAMP 200HH 7.25T	CARBON STEEL	·	1	2519	14665		ZZC		
SC725-132CS	SAFETY CLAMP 132H 7.25T	CARBON STEEL		1	2242	1139		22	the second s	
ł										
1										
Lure				1						
1			·		1					
1				1						
	1		and the second of the second sec							
1				1						1
1				1	1				· · · · · · · · · · · · · · · · · · ·	1
			in the second	1					14,119,1	1
										1
i			all and a second s	1	-					
			-							1
1						1				
1						+				1
				1						1
1				1	1					
				1						1
								1		1
				-						1
1							1	1		
1		1						-		1
								1		
1					1					
							1			
					1	1	1	1	1	1

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

FH-5

Coflex Hose Certification

Fluid Technology

Quality Document

2.11月1日十十

FH-6

CERTIFICATE OF CONFORMITY

Supplier : CONTITECH RUBBER INDUSTRIAL KFT. Equipment : 6 pcs. Choke and Kill Hose with installed couplings Type : 3ⁿ x 10,67 m WP: 10000 psi Supplier File Number : 412638 Date of Shipment : April. 2008 Customer : Phoenix Beattle Co. Customer P.o. : 002491 Referenced Standards / Codes / Specifications : API Spec 16 C Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager

_ontiTech Rubber Industrial Kit. Quality Control Dept. (1)

Date: 04. April. 2008

5M BOP Stack

Mud Cross Valves: D ROTATING HEAT 5. 5M Check Valve 6. Outside 5M Kill Line Fill Line Valve 7. Inside 5M Kill Line 8. Outside 5M Kill Line 0 1. 5000 psi Annular Valve (13-5/8" ID) 9. 5M HCR Valve 2. 5,000 psi Upper Pipe Ram *Minimum ID = 2-1/16" on Kill PIPE Line side and 3" minimum (13-5/8" ID) ID on choke line side BLIND 3. 5,000 psi Blind Ram (13-5/8" ID) 7. 9. 5. 6. 8 To Co-Flex and To Kill **Choke Manifold** Line PIPE 4. 5,000 psi Lower Pipe Ram (13-5/8" ID) SPOOL

OXY's Minimum Design Criteria

A/11-11

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- o External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rigits unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

Below is a summary that describes the general operational steps to drill and complete this well:

- Drill 17-1/2" hole x 13-3/8" casing for surface section. Cement to surface.
- Drill 12-1/4" hole x 9-5/8" casing for intermediate section. Cement to surface.
- Drill 8-1/2" hole x 5-1/2" liner for production section. Cement to top of liner, 100' inside 9-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 17# P110 DQX tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

5 ¹/₂" 17# P110 DQX Tie-back string specifications:

PERFORMANCE DATA

TMK UP DQX		5.500 in	17.00 lbs/ft	P-110
Technical Data Sheet				
Tubular Parameters			8	
Size	6 500	in	Minimum Yield	110.000
Nominal Weight	17.00	lbs/ft	Minimum Tensile	125,000
Grade	P-110		Yield Load	548,000
PE Weight	16 87	ibs/ft	Tensile Load	620,000
Wall Thickness	0.304 to Min Ir		Min Internal Yield Pressure	10,680
Nominal ID	4 892	171	Collapse Pressure	7.500
Drift Diameter	4.767	in		
Nom: Pipe Body Area	4.962	in1		
	1		A REAL PROPERTY.	
Connection Parameters	AND A MARK WARE AND A SUCCESSION			
Connection 00	6.050	un.		
Connection ID	4 892	ιh		
Make-Up Loss	4 122	in.		
Critical Section Area	4.962	(D ¹		
Tension Efficiency	100.0	96		
Compression Efficiency	100.0	%		
Vield Load In Tension	546.000	lbs	S DE LA CA	
Min Internal Yield Pressure	10,600	psi		
Collapse Pressure	7 500	p5ł		
Make-Un Torques	nya Maka a nyanya na Jama'ny Lan Ja			
Min Malio Un Termin	0.000	ii lla e		

Min Make-Up Torque	9,000	ft-lbs
Opt Make-Up Torque	10 100	ft-lbs
Max Make-Up Torque	11.100	t-0⊳s
rieid Torque	16,100	ft-lbs

Printed on: July 29-2014

SUTE

The content of this Technical Data Sheet is for general information only and does not guarantee performance or linkly foreas for a particular purpose, which only a competent drilling professional can determine considering the specific instantation and operation carameters. Information that is printed or downloaded is no longer controlled by 10 × 19900 and might not be the latest thormation. Anyone using the information herein does so all their own osal. To verify that you have the latest TVM IPSCO technical information, please contact TVM IPSCO Technical 1 ales to interfer al. 1.853-055-0000

1.7.1

psi psi lbs lbs psi psi

-

à.