TAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

· ANDIAN - ALASSACTIC

APD ID: 10400010753

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Well Type: OIL WELL

Submission Date: 03/07/2017

Highlighted data reflects the most recent changes

09/25/2017

Show Final Text

Drilling Plan Data Report

27

Well Work Type: Drill

Well Number: 701H

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation,	Depth	Depth	Lithologies	Mineral Resources	Formation
17706	PERMIAN	3331	Û.	Ó	ANHYDRITE	NONE	No
17746	RUSTLER	2318	1013	1013	ANHYDRITE	NONE	No
17718	TOP SALT	1968	1363	1363	SALT	NONE	No
17722	BASE OF SALT	-1642	4973	4973	SALT	NONE	No
17719	LAMAR	-1869	5200	5200	LIMESTONE	NONE	No
• 15332	BELL CANYON	-1908	5239	5239	SANDSTONE	NATURAL GAS,OIL	No
15316	CHERRY CANYON	-2950	6281	6281	SANDSTONE	NATURAL GAS,OIL	No
17713	BRUSHY CANYON	-4631	. 7962	7962	SANDSTONE	NATURAL GAS,OIL	No
17721	BONE SPRING LIME	-6105	9436	9436	LIMESTONE	NONE	No
15338	BONE SPRING 1ST	-7113	10444	10444	SANDSTONE	NATURAL GAS,OIL	No
17737	BONE SPRING 2ND	-7587	10918	10918	SANDSTONE	NATURAL GAS,OIL	No
17738	BONE SPRING 3RD	-8660	11991	11991	SANDSTONE	NATURAL GAS,OIL	No
17709	WOLFCAMP	-9081	12412	12412	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Well Number: 701H

Pressure Rating (PSI): 5M

Rating Depth: 12412

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil and Gas order No. 2.

Requesting Variance? YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement surry, for the entire length of the 6-3/4" hole interval to maximize cement slurry.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

Dogwood 23 Fed Com 701H 5 M Choke Manifold Diagram (3-21-14)_03-02-2017.pdf

BOP Diagram Attachment:

Dogwood 23 Fed Com 701H 5 M BOP Diagram (8-14-14)_03-02-2017.pdf

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	1000	0	1000	3331	2331	1000	HCP -110	29.7	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
2	SURFACE	14.7 5	10.0	NEW	API	N	0	1040	0	1040	3331	2291	1040	J-55	40.5	STC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	INTERMED IATE	9.87 5	7.625	NEW	API	N	1000	3000	1000	3000	2331	331	2000	OTH ER	29.7	OTHER - SJIJ II	1.12 5	1.25	BUOY	1.6	BUOY	1.6
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	11100	0	11100	3331	-7769	11100	OTH ER	20	OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.6
5	INTERMED IATE	8.75	7.625	ŅEW	API	N	3000	11600	3000	11600	331	-8269	8600	HCP -110	29.7	OTHER - Flushmax III	1.12 5	1.25	BUOY	1.6	BUOY	1.6
6	PRODUCTI ON	6.75	5.5	NEW	API	N	11100	22572	11100	12500	-7769	-9169	11472	OTH ER	20	OTHER - VAM SFC	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Section 3 - Casing

Page 2 of 7

Well Name: DOGWOOD 23 FED COM

Well Number: 701H

Casing Attachments

Casing ID: 1 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
Tananad Shira Sanan	•
Tapereo String Spec:	/
Casing Design Assumptions and Worksheet(s):	
Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf	
Casing ID: 2 String Type: SURFACE	
Inspection Document:	
Spec Document:	
Taparad String Space	
Casing Design Assumptions and Worksheet(s):	
Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf	
Casing ID: 3 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
	,
rapered string spec:	
Casing Design Assumptions and Worksheet(s):	
Dogwood 23 Fed Com 701H BI M Plan 03-02-2017 pdf	

Operator Name: EOG RESOURCES INCORPORATED Well Name: DOGWOOD 23 FED COM

Well Number: 701H

Casing Attachments

Casing ID: 4 String Type: PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf Casing ID: 5 String Type:INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf String Type: PRODUCTION Casing ID: 6 **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf

Section 4 - Cement

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Well Number: 701H

i.

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		0	0	0	0	0	0		0	0
PRODUCTION	Lead		0	0	0	0	0	0	0	0	0
INTERMEDIATE	Lead		0	0	0	0	0	0		0	0
SURFACE	Lead		0	1040	325	1.73	13.5	562	25	Class C	Class C + 4.0% Bentonite + 0.6% CD- 32 + 0.5% CaCl2 + 0.25 Ib/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail		1040	1040	200	1.34	14.8	268	25	Class C	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
INTERMEDIATE	Lead		0	1160 0	2250	1.38	14.8	3105	25	Class C	Class C + 5% Gypsum + 3% CaCl2 pumped via bradenhead (TOC@surface)
INTERMEDIATE	Tail		1160 0	1160 0	550	1.2	14.4	660	25	Class H	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped conventionally.
PRODUCTION	Lead		1110 0	2257 2	950	1.26	14.1	1197	25	Class H	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C- 17 (TOC @ 11100')

ι.

Well Number: 701H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (Ibs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1040	1160 0	SALT SATURATED	8.8	10							
1160 0	2257 . 2	OIL-BASED MUD	10	14							
0	1040	WATER-BASED MUD	8.6	8.8							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Well Number: 701H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7522

Anticipated Surface Pressure: 4772

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Dogwood 23 Fed Com 701H H2S Plan Summary_03-02-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Dogwood 23 Fed Com 701H Wall Plot_03-02-2017.pdf

Dogwood 23 Fed Com 701H Planning Report_03-02-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Dogwood 23 Fed Com 701H 5.500in 20.00 VST P110EC DWC_C-IS MS Spec Sheet_03-02-2017.pdf Dogwood 23 Fed Com 701H 5.500in 20.00 VST P110EC VAM SFC Spec Sheet_03-02-2017.pdf Dogwood 23 Fed Com 701H 7.625in 29.7 P110EC VAM SLIJ-II_03-02-2017.pdf Dogwood 23 Fed Com 701H 7.625in 29.70 P-110 FlushMax III Spec Sheet_03-02-2017.pdf Dogwood 23 Fed Com 701H BLM Plan_03-02-2017.pdf Dogwood 23 Fed Com 701H Proposed Wellbore_03-02-2017.pdf Dogwood 23 Fed Com 701H Rig Layout_03-02-2017.pdf

Other Variance attachment:

Dogwood 23 Fed Com 701H Co-Flex Hose Certification_03-02-2017.PDF Dogwood 23 Fed Com 701H Co-Flex Hose Test Chart_03-02-2017.pdf

EOG 5M Choke Manifold Diagram (rev. 3/21/14)

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

1,013'
1,363'
4,973'
5,200'
5,200'
5,239'
6,281'
7,962'
9,436'
10,444'
10,550'
10,918'
11,463'
11,991'
12,412'
12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,281'	Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

•			< ·					
Hole	and the second	Csg		к -	*	DFmin	DFmin	DFmin
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 - 1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP-	LTC	1.125	1:25	1.60
				110			د. در در د	
9.875"	1,000' –	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'	÷ .	14 1 1				20.10	
8.75"	3,000' 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
			a sura a	. 110				
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
					MS			
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

COLUMNATION OF

1.1.2. 1.2. 1.1.1.

	No.	Wt.	Yld	Mix	
Depth	Sacks	ppg	Ft ³ /ft	Water	Slurry Description
		-		Gal/sk	
10-3/4"	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25
1,040'					lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
	· · ·				Metasilicate
7-5/8"	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
11,600'		-			(TOC @ Surface)
and stranger	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
l .•	550	14.4	. 1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20%
					CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped
				1	Conventionally
5-1/2"	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 +
22,572'		· .	, · ,	· · · ·	0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 1,040'	Fresh - Gel	8.6-8.8	28-34	N/c
1,040' - 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,013'
Top of Salt	1,363'
Base of Salt / Top Anhydrite	4,973'
Base Anhydrite	5,200'
Lamar	ʻ 5,200'
Bell Canyon	5,239'
Cherry Canyon	6,281'
Brushy Canyon	7,962'
Bone Spring Lime	9,436'
1 st Bone Spring Sand	10,444'
2 nd Bone Spring Shale	10,550'
2 nd Bone Spring Sand	10,918'
3 rd Bone Spring Carb	11,463'
3 rd Bone Spring Sand	11,991'
Wolfcamp	12,412'
TD	12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,281'	Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

Hole		Csg				DFmin	DFmin	DFmin
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 - 1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0-1,000'	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
				110				
9.875"	1,000' -	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'							
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
				110				
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
		1			MS			
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4"	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 h/ck Calla Elaka (TOC @ Surface)
1,040					ID/SK CEIIO-FIAKE (TOC @ SUITACE)
	200	14.8	1.34	6.34	Class C + 0.6% FL- $62 + 0.25$ lb/sk Cello-Flake + 0.2% Sodium
				_	Metasilicate
7-5/8"	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
11,600'					(TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20%
					CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped
					Conventionally
5-1/2"	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 +
22,572'					0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss	
0-1,040'	Fresh - Gel	8.6-8.8	28-34	N/c	
1,040' - 11,600'	Brine	8.8-10.0	28-34	N/c	
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6	
Lateral					

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,013'
Top of Salt	1,363'
Base of Salt / Top Anhydrite	4,973'
Base Anhydrite	5,200'
Lamar	5,200'
Bell Canyon	5,239'
Cherry Canyon	6,281'
Brushy Canyon	7,962'
Bone Spring Lime	9,436'
1 st Bone Spring Sand	10,444'
2 nd Bone Spring Shale	10,550'
2 nd Bone Spring Sand	10,918'
3 rd Bone Spring Carb	11,463'
3 rd Bone Spring Sand	11,991'
Wolfcamp	12,412'
TD	12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,281'	Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

1.

Hole		Csg				DFmin	DF _{min}	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0-1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	01,000'	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
				110				
9.875"	1,000' –	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'							
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
				110				
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
					MS			
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4"	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD- $32 + 0.5\%$ CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 22,572'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

æ

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 1,040'	Fresh - Gel	8.6-8.8	28-34	N/c
1,040' – 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,013'
Top of Salt	1,363'
Base of Salt / Top Anhydrite	4,973'
Base Anhydrite	5,200'
Lamar	5,200'
Bell Canyon	5,239'
Cherry Canyon	6,281'
Brushy Canyon	7,962'
Bone Spring Lime	9,436'
1 st Bone Spring Sand	10,444'
2 nd Bone Spring Shale	10,550'
2 nd Bone Spring Sand	10,918'
3 rd Bone Spring Carb	11,463'
3 rd Bone Spring Sand	11,991'
Wolfcamp	12,412'
TD	12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Cherry Canyon	6,281'	Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
14.75"	0-1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP- 110	LTC	1.125	1.25	1.60
9.875"	1,000' – 3,000'	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP- 110	FlushMax III	1.125	1.25	1.60
6.75"	0' - 11,100'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft³/ft	Mix Water Gal/sk	Slurry Description
10-3/4" 1,040'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% $CaCl_2$ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 22,572'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss	
0 - 1,040'	Fresh - Gel	8.6-8.8	28-34	N/c	
1,040' - 11,600'	Brine	8.8-10.0	28-34	N/c	
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6	
Lateral			· .		

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

3.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

4.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1.013'
	1,015
Top of Salt	1,363'
Base of Salt / Top Anhydrite	4,973'
Base Anhydrite	5,200'
Lamar	5,200'
Bell Canyon	5,239'
Cherry Canyon	6,281'
Brushy Canyon	7,962'
Bone Spring Lime	9,436'
1 st Bone Spring Sand	10,444'
2 nd Bone Spring Shale	10,550'
2 nd Bone Spring Sand	10,918'
3 rd Bone Spring Carb	11,463'
3 rd Bone Spring Sand	11,991'
Wolfcamp	12,412'
TD	12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,281'	• Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

1.

Hole		Csg				DFmin	DFmin	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 - 1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
İ				110				
9.875"	1,000' –	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'							
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
				110				
6.75"	0' - 11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
			<u>`</u>		MS			
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4" 1,040'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD- $32 + 0.5\%$ CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 22,572'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Donth	Tuno	Weight (ppg)	Viscosity	Water Loss
Depth	Туре	weight (ppg)	viscosity	water Luss
0 - 1,040'	Fresh - Gel	8.6-8.8	28-34	N/c
1,040' - 11,600'	Brine	8.8-10.0	28-34	· N/c
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,013'
Top of Salt	1,363'
Base of Salt / Top Anhydrite	4,973'
Base Anhydrite	5,200'
Lamar	5,200'
Bell Canyon	5,239'
Cherry Canyon	6,281'
Brushy Canyon	7,962'
Bone Spring Lime	9,436'
1 st Bone Spring Sand	10,444'
2 nd Bone Spring Shale	10,550'
2 nd Bone Spring Sand	10,918'
3 rd Bone Spring Carb	11,463'
3 rd Bone Spring Sand	11,991'
Wolfcamp	12,412'
TD	12,580'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,281'	Oil
Brushy Canyon	7,962'	Oil
1 st Bone Spring Sand	10,444'	Oil
2 nd Bone Spring Shale	10,550'	Oil
2 nd Bone Spring Sand	10,918'	Oil
3 rd Bone Spring Carb	11,463'	Oil
3 rd Bone Spring Sand	11,991'	Oil
Wolfcamp	12,412'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 1,040' and circulating cement back to surface.

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
14.75"	0-1,040'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP- 110	LTC	1.125	1.25	1.60
9.875"	1,000' - 3,000'	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP- 110	FlushMax III	1.125	1.25	1.60
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,100'-22,572'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description	
10-3/4" 1,040'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)	
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate	
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)	
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead	
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally	
5-1/2" 22,572'	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')	

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 3500/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 - 1,040'	Fresh - Gel	8.6-8.8	28-34	N/c
1,040' – 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,572'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7522 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A)EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.